UNIVERSITY OF CINCINNATI

Date: May.16, 2005

I, _____________________Wonhee Shin_________________________,
hereby submit this work as part of the requirements for the degree of:

Master

in:

Music Composition

It is entitled:

What I wanna be in here

This work and its defense approved by:

Chair: _____Joel Hoffman_____ _____Michael Fiday_______
______Mara Helmuth______

_______________________________
_______________________________
What I wanna be in here

Wonhee Shin
The piece *What I wanna be in here* is for two flutes, two clarinets in Bb, two bassoons, one trumpet in C, one horn in F, one trombone, one tuba, one marimba, one violin, one viola, one violoncello, and one contrabass. I wrote the piece when I was exhausted by the pieces which are complex, dense, and extremely dissonance. The piece uses only four notes which are E, F, F sharp, and G. In addition, all notes are in the down beat. It seems to the piece a quite simple. However, I vary the simple motive with dynamic change rapidly, and tempo change. The piece gradually speeds up to the middle of the piece, and then in the latter part, the tempo rapidly speeds down, so finally the tempo is back to the beginning tempo of the piece. Moreover, the rhythm of brass part helps the speed change of the piece. The duration of brass notes is gradually extended and shortened.
What I wanna be in here

Wonhee Shin

* C score
poco a poco animato
meno mosso  \( \frac{\text{fl.}}{\text{trp.}} \)  \( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)

\( \frac{\text{mm}}{\text{mf}} \)  \( \frac{\text{mf}}{\text{fl.}} \)
- 29 -
- 33 -
- 39 -