INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
ON THE COHOMOLOGY OF THE HYPERELLIPTIC MAPPING CLASS GROUP

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of the Ohio State University

By
Dan Gries, B.S.

The Ohio State University
2000

Dissertation Committee:
Professor Guido Mislin, Advisor
Professor Henry Glover
Professor Avner Ash

Approved by
Advisor
Department of Mathematics
Let $\Gamma_{g,k}^n$ be the mapping class group of an oriented surface $S_{g,k}^n$ of genus g, with k boundary components, and n punctures. We set $\Gamma_g = \Gamma_{g,0}^0$ and $\Gamma^n = \Gamma_{0,0}^n$. The focus of this dissertation is the hyperelliptic mapping class group, denoted by Δ_g, which is defined as the normalizer of a special order two element in Γ_g. It is a particularly nice subgroup of Γ_g to study, as it is a quotient of Artin's braid group B_{2g+2}, which leads to a graphical interpretation of Δ_g in terms of braids, which we can manipulate to obtain information about Δ_g.

The dissertation is divided into four chapters; the first presents the necessary background information, the second discusses the relationship between braid groups and Δ_g, the third concerns the Yagita invariant of Δ_g at the prime 2, and the last presents some cohomology computations.

The introduction is divided into five sections. The first section provides some background on Farrell cohomology. The next two sections define the mapping class groups and the Yagita invariant. The fourth section provides information on Riemann surfaces, which is needed to study Δ_g from a topological viewpoint. For an algebraic description, the fifth section discusses known presentations of mapping class groups.

Viewing the presentations of Δ_g and Artin's braid group B_n, one can readily see a classical map $B_{2g+2} \to \Delta_g$. In Chapter 2 we describe the kernel of this map, and then
get information about torsion and dihedral subgroups in Δ_g by studying elements of B_{2g+2}. This graphical tool is also used in Chapter 4 when we need some information about Γ^\ddagger.

The cohomology of Δ_g is p-periodic for all odd primes p, however it is never 2-periodic. This motivates a study in Chapter 3 of the Yagita invariant of Δ_g at the prime 2, which is a sort of generalized 2-period. We obtain complete results for every even genus g, and partial results for odd g. We also determine the 2-rank of Δ_g.

Finally, in the last chapter we gather information about Δ_g from the topological viewpoint, toward the calculation of the Farrell cohomology of Δ_g. We then combine this information along with the information and techniques of Chapter 2 to determine the p-part of the Farrell cohomology of Δ_g for $g = (p - 1)/2$ and $g = p - 1$, which are the first two cases of Δ_g containing p-torsion.
Dedicated to my parents,

and especially to my wife-to-be Yuka.
ACKNOWLEDGMENTS

First and foremost, I must thank my advisor, Professor Guido Mislin, for his support, wisdom, grace, and great patience. Without his guidance this dissertation would never have materialized.

I am also indebted to Professor Henry Glover, not only for serving as a co-advisor in times of Professor Mislin's absence, but also for his guidance and warmth throughout.

I thank Professor Avner Ash for giving of his time to serve on my dissertation committee.

I also thank the mathematics departmen of the Ohio State University, for the educational and financial assistance throughout my tenure as a graduate teaching associate. I must also thank the departmental staff, for all the work they do to keep the graduate program running.

I am grateful to my parents for always nurturing intellectual pursuits, and for all the love and support they have given me throughout graduate school.

And I must thank my wife-to-be, Yuka, for all her love and support, and for providing stability in times of distress. I may never have succeeded without her.
VITA

August 30, 1970 Born in Toledo, Ohio

1992 .. B.S. in mathematics Villanova University,
Villanova, Pennsylvania

1992 – Present Graduate Teaching Associate, The Ohio
State University Department of Mathematics

FIELDS OF STUDY

Major field: Mathematics

Specialization: Algebraic Topology
TABLE OF CONTENTS

Abstract ... ii
Dedication ... iii
Acknowledgments .. v
Vita .. vi
List of Figures .. ix

CHAPTER PAGE
1 Introduction ... 1
 1.1 Cohomology of groups .. 1
 1.2 The Yagita invariant ... 4
 1.3 Mapping class groups ... 5
 1.4 Riemann Surfaces .. 7
 1.5 Presentations .. 10

2 Braid calculations in Δ_g 13
 2.1 Artin's braid group ... 13
 2.2 Δ_g as a quotient of B_{2g+2} 16
 2.3 The map $\Delta_g \twoheadrightarrow \Sigma_{2g+2}$ 21
 2.4 Braid representatives for the hyperelliptic 22
 2.5 Some torsion elements of Δ_g 24
 2.6 A dihedral subgroup of Δ_g 26

3 The Yagita invariant of Δ_g at the prime 2 36
 3.1 Some lemmas on subgroups of order 2 37
 3.2 The 2-rank of Δ_g ... 39
 3.3 The Yagita invariant of Δ_{2k} at the prime 2 41
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The hyperelliptic diffeomorphism</td>
</tr>
<tr>
<td>1.2</td>
<td>A Dehn Twist</td>
</tr>
<tr>
<td>1.3</td>
<td>Dehn twist generators for (\Gamma_g)</td>
</tr>
<tr>
<td>2.1</td>
<td>A generator of (B_n)</td>
</tr>
<tr>
<td>2.2</td>
<td>The braid relation (\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1})</td>
</tr>
<tr>
<td>2.3</td>
<td>Braid representatives for (C) and (z)</td>
</tr>
<tr>
<td>2.4</td>
<td>Equal braids representing (z^2)</td>
</tr>
<tr>
<td>2.5</td>
<td>Equal braids representing (z^k)</td>
</tr>
<tr>
<td>2.6</td>
<td>Equal braids representing (\sigma_i^{-1}C\sigma_1C^{-1})</td>
</tr>
<tr>
<td>2.7</td>
<td>Generators for (\ker{B_{2g+2} \to \Delta_g})</td>
</tr>
<tr>
<td>2.8</td>
<td>(C_m)</td>
</tr>
<tr>
<td>2.9</td>
<td>(bC b^{-1} = C_m)</td>
</tr>
<tr>
<td>2.10</td>
<td>The element (I_m)</td>
</tr>
<tr>
<td>2.11</td>
<td>(I_m C = I_{m-1})</td>
</tr>
<tr>
<td>2.12</td>
<td>Order (2g + 2, 4g + 2) and (4g) elements in (\Delta_g)</td>
</tr>
<tr>
<td>2.13</td>
<td>Equal braids representing (\tau)</td>
</tr>
<tr>
<td>2.14</td>
<td>The element (\sigma)</td>
</tr>
</tbody>
</table>
2.15 \(\tau \sigma \tau = \sigma^{-1} \) ... 28
2.16 \(\tau \tau \tau = C \) ... 29
2.17 Expressing \(\sigma \) in terms of \(z \) and \(\tau \). .. 32
4.1 Order two elements of \(\Gamma_0^4 \). ... 63
4.2 Generators for \(K_4 \). ... 65
4.3 The action of \(J \) on \(A_{23} \). ... 66
4.4 Showing \(A_{23} = A_{14} \) with a braid calculation. ... 67
4.5 \(A_{23}A_{13}A_{12} = 1 \) \(\Rightarrow \) \(A_{13} = A_{23}^{-1}A_{12}^{-1} \) ... 68
CHAPTER 1
INTRODUCTION

1.1 Cohomology of groups

In this section, we will present only a few facts about group cohomology which are relevant to this dissertation. A comprehensive study of group cohomology can be found in [Bro82]. The content of this section can be found in that text.

Definition 1.1.1. Given a group Γ, we may regard \mathbb{Z} as a trivial $\mathbb{Z}\Gamma$-module. Then the cohomological dimension of a group Γ, denoted $cd(\Gamma)$, is defined by

$$cd(\Gamma) = \text{proj dim}_{\mathbb{Z}\Gamma}(\mathbb{Z})$$

$$= \inf\{n : \mathbb{Z} \text{ admits a projective resolution of length } n\}$$

$$= \inf\{n : H^i(\Gamma, -) = 0 \text{ for } i > n\}$$

$$= \sup\{n : H^i(\Gamma, M) \neq 0 \text{ for some } \Gamma\text{-module } M\}$$

where $\text{proj dim}_R(M)$ denotes the projective dimension over the ring R of an R-module M. The equivalence of the above definitions is shown in [Bro82]. (The first equality is by definition of projective dimension.)

Therefore, the cohomological dimension of a group measures the vanishing of the associated cohomology functor.
We mention two properties of cohomological dimension:

- If Γ contains torsion, then $\text{cd}(\Gamma) = \infty$.

- (Serre's Theorem) If $[\Gamma : \Gamma'] < \infty$ and Γ is torsion-free, then $\text{cd}(\Gamma') = \text{cd}(\Gamma)$.

There is also a virtual notion, which extends the idea of cohomological dimension to the case of groups containing torsion:

Definition 1.1.2. The virtual cohomological dimension of a group Γ, denoted $\text{vcd}(\Gamma)$, is defined to be the cohomological dimension of some torsion-free subgroup of finite index. (All such subgroups have the same cohomological dimension, which is implied by Serre's Theorem.)

Some groups of finite vcd have a nice periodicity property in cohomology. This phenomenon is best viewed in Farrell cohomology rather than regular cohomology.

Definition 1.1.3. A group Γ of finite vcd is said to have periodic cohomology if for some $d \neq 0$ there is an element u of $\tilde{H}^d(\Gamma, \mathbb{Z})$ which is invertible in the ring $\tilde{H}^*(\Gamma, \mathbb{Z})$. Cup product with u then gives a periodicity isomorphism

$$\tilde{H}^i(\Gamma, M) \approx \tilde{H}^{i+d}(\Gamma, M)$$

for any Γ-module M and any $i \in \mathbb{Z}$.

Similarly, we define the p-period:

Definition 1.1.4. Let p be prime. A group Γ of finite vcd is said to have p-periodic cohomology if the p-primary component $\tilde{H}^d(\Gamma, \mathbb{Z})_{(p)}$ of $\tilde{H}^d(\Gamma, \mathbb{Z})$, contains an invertible element u of non-zero degree d. We then have

$$\tilde{H}^i(\Gamma, M)_{(p)} \approx \tilde{H}^{i+d}(\Gamma, M)_{(p)}$$
for any Γ-module M and any $i \in \mathbb{Z}$, and we define the p-period of Γ, denoted $p(\Gamma)$, to be the number d. We adopt the convention that the p-period of a p-torsion-free group is one (in this case, $\hat{H}^d(\Gamma, \mathbb{Z})_{(p)} = 0$).

To simplify the language, we will refer to the group Γ as p-periodic when it has p-periodic cohomology.

There is a decomposition of rings

$$
\hat{H}^*(\Gamma, M)_{(p)} \approx \prod_p \hat{H}^*(\Gamma, M)_{(p)},
$$

where p ranges over the primes such that Γ has p-torsion. The number of such p's is finite, which is implied by the finite vcd of Γ. Therefore it is clear that Γ has periodic cohomology if and only if Γ has p-periodic cohomology for every prime p.

We have the following condition for p-periodicity:

Theorem 1.1.1. A group of finite vcd is p-periodic if and only if it does not contain $\mathbb{Z}/p \times \mathbb{Z}/p$.

Finally we state a theorem, due to Brown, that is useful in calculating cohomology.

Theorem 1.1.2. [Bro82] If Γ is a group of finite vcd and is p-periodic, then

$$
\hat{H}^*(\Gamma)_{(p)} \approx \prod_{\pi \in S} \hat{H}^*(\pi)_{(p)},
$$

where S is a set of representatives for the conjugacy classes of subgroups of order p.

3
1.2 The Yagita invariant

The Yagita invariant, defined for a group Γ of finite vcd along with a prime p, was defined in [Yag85] for finite groups, and extended to more general groups in [Tho89]. We shall denote this invariant by $Y_p(\Gamma)$. It is defined as follows.

Fixing a prime p, let Γ be of finite vcd, and $\pi < \Gamma$ any subgroup of order p. Since Γ is of finite vcd, there exists a torsion-free normal subgroup Δ of finite index in Γ. It is well-known that if $i : \mathbb{Z}/p \hookrightarrow G$ is an inclusion into a finite group, then the image of the induced map i^* is non-trivial (see [Eve63]).

Since π injects into the finite quotient Γ/Δ, the image

$$\text{Im}\{H^k(\Gamma; \mathbb{Z}) \to H^k(\pi; \mathbb{Z})\}$$

of the restriction map in cohomology is non-zero for some degree $k > 0$. Reduction mod p maps $H^*(\pi; \mathbb{Z})$ onto $\mathbb{F}_p[u] \subset H^*(\pi; \mathbb{F}_p)$, where u is of degree 2. Therefore there is a maximal number $m = m(\pi, \Gamma)$ such that

$$\text{Im}\{H^k(\Gamma; \mathbb{Z}) \to H^k(\pi; \mathbb{F}_p)\} \subset \mathbb{F}_p[u^m] \subset H^*(\pi; \mathbb{F}_p).$$

Note that $m(\pi, \Gamma)$ is bounded by $m(\pi, \Gamma/\Delta)$, since the map $H^*(\Gamma/\Delta; \mathbb{Z}) \to H^*(\pi; \mathbb{F}_p)$ factors through $H^*(\Gamma; \mathbb{Z})$. Since Γ/Δ is finite, we conclude that $m(\pi, \Gamma)$ is bounded by a bound depending on Γ only. The Yagita invariant $Y_p(\Gamma)$ is then defined as the least common multiple of the values $2m(\pi, \Gamma)$, where π ranges over the subgroups of Γ of order p. By convention, we set $Y_p(\Gamma) = 1$ when Γ is p-torsion-free.

We mention two properties of the Yagita invariant:

- One sees from the definition that for $H < G$, we have $Y_p(H)|Y_p(G)$.

• Given the short exact sequence $\Delta \to G \to G/\Delta$, where Δ is free, we have $Y_p(G)|Y_p(G/\Delta)$.

• The Yagita invariant is a generalization of the p-period to the case of groups which may not be p-periodic; that is, when Γ is p-periodic, we have $p(\Gamma) = Y_p(\Gamma)$. A proof of this fact can be found in Yining Xia’s Ph.D. thesis of 1990 [Xia90].

1.3 Mapping class groups

Let S_g denote an orientable surface of genus g, and more generally let $S^n_{g,k}$ denote a surface of genus g, with n points and k open disks removed. Let $\text{Diffeo}_+(S^n_{g,k})$ be the topological group of orientation-preserving diffeomorphisms of $S^n_{g,k}$, with the compact-open topology. Let $\text{Diffeo}_0(S^n_{g,k})$ be the connected component of the identity, or equivalently, the subgroup of diffeomorphisms isotopic to the identity. The mapping class group of $S^n_{g,k}$, denoted $\Gamma^n_{g,k}$, is defined to be the quotient $\text{Diffeo}_+(S^n_{g,k})/\text{Diffeo}_0(S^n_{g,k})$. An equivalent definition is to set $\Gamma^n_{g,k} = \pi_0(\text{Diffeo}_+(S^n_{g,k}))$, the group of connected components of $\text{Diffeo}_+(S^n_{g,k})$. We will write Γ_g for the group $\Gamma^0_{0,0}$, and Γ^n for $\Gamma^n_{0,0}$.

When studying mapping class groups, one usually assumes that $g > 1$, as $\Gamma_1 = \text{Sl}_2(\mathbb{Z})$, and thus is not an interesting case. In fact, in the literature this assumption is sometimes omitted. Throughout this dissertation we also will assume $g > 1$, as $\Delta_1 = \Gamma_1$.

We also have $\Delta_2 = \Gamma_2$, but for $g \geq 3$, Δ_g is neither normal or of finite index in Γ_g. (See [Coh93]).

The hyperelliptic diffeomorphism is the order two map which acts as a rotation of π
around an axis which passes through each hole of S_g, as shown in figure 1.1. The class of this diffeomorphism in Γ_g will be denoted C, and will be called the hyperelliptic element. The group that is the main focus of this thesis is the hyperelliptic mapping class group, Δ_g, which is defined as the normalizer of $\langle C \rangle \approx \mathbb{Z}/2$ in Γ_g.

We state here some relevant facts about the mapping class groups; recall we are assuming $g > 1$:

- Γ_g is of finite vcd; precisely, $vcd(\Gamma_g) = 4g - 5$ [Har86]. This implies Δ_g is also of finite vcd.

- Γ_g is never 2-periodic.

- For p an odd prime, Γ_g is p-periodic if and only if one of the following conditions holds (see [Mis94]):

 1. $g \not\equiv 1 \pmod{p}$
 2. g is of the form $kp + 1$ with $k \not\equiv 0, -1 \pmod{p}$ and the interval $[(2k + 3)/p, (2k + 2)/(p - 1)]$ does not contain any integer.
The p-period of Γ_g depends on p. It can be found in [Mis94].

- The \textit{Nielsen realization theorem}, proven by Kerckhoff [Ker83], states that any finite subgroup of Γ_g can be realized by a finite group of maps in $\text{Diffeo}_+(S_g)$.

The following theorem of Birman and Hilden also deals with representing mapping classes by diffeomorphisms:

\textbf{Theorem 1.3.1.} [BH73] Let h and x be in Γ_g, where x is of finite order n and h is in the normalizer of (x), i.e., $hxh^{-1} = x^i$ for some i. Then h and x can be represented by topological mappings \tilde{h} and \tilde{x} satisfying $\tilde{x}^n = 1$ and $\tilde{h}\tilde{x}\tilde{h}^{-1} = \tilde{x}^i$.

By a result of Earle and Eells [EE67], the maps \tilde{h} and \tilde{x} may be taken to be in $\text{Diffeo}_+(S_g)$.

\section*{1.4 Riemann Surfaces}

We present here some basic background on the topic of finite group actions on Riemann surfaces.

Suppose G is a finite group of orientation-preserving diffeomorphisms acting on S_g, the closed surface of genus g. Such diffeomorphisms must each have finitely many fixed points. These points will be called \textit{ramification points} for the action of G on S_g. Their orbits under the action of G have cardinality less than $|G|$.

The quotient S_g/G is isomorphic to a closed surface of some genus h. There is
an associated branched covering \(\pi : S_g \to S_h \). That is, there is a finite set of points \(\{P_1, \ldots, P_b\} \), which are the images of the ramification points, such that the restriction

\[
S_g - \pi^{-1}\{P_1, \ldots, P_b\} \to S_h - \{P_1, \ldots, P_b\}
\]
is a covering in the traditional sense, with \(|G| \) sheets and transformation group \(G \). An alternate definition, then, of a ramification point is a point \(P \) such that \(|\pi^{-1}(\pi(P))| < |G|\).

The points \(\{P_1, \ldots, P_b\} \) are called branch points for the covering, with the order of a branch point \(P_i \) defined by

\[
ord(P_i) = |\text{stab}_G(Q_i)|
\]

where \(Q_i \) is any point in \(\pi^{-1}(P_i) \). Since \(|\pi^{-1}(\pi(P_i))| \) is the cardinality of the orbit of \(P_i \) under the action of \(G \), we have

\[
ord(P_i) = |G|/|\pi^{-1}(\pi(P_i))|.
\]

The list of orders \(ord(P_1), \ldots, ord(P_b) \) is called the branching data for the group action. According to the Riemann-Hurwitz equation, one has

\[
2g - 2 = |G|(2h - 2) + |G| \sum_{i=1}^{b} \left(1 - \frac{1}{n_i}\right),
\]

where \(n_i = ord(P_i) \). A theorem of Tucker (see [Tuc83]) implies that the order of a branch point must equal the order of some element of \(G \); in particular this implies the branch point orders cannot exceed the maximal order of group elements.

In particular, we can consider the action of a finite-order diffeomorphism on \(S_g \). This leads to the definition of the fixed point data as follows. Suppose \(f \in \text{Diffeo}_+(S_g) \).
has order n. Using the notation from above, we have a covering π and a set $\{P_1, \ldots, P_b\}$ of branch points for this action of \mathcal{Z}/n. Again, let $n_i = \text{ord}(P_i)$. From each orbit $\pi^{-1}(P_i)$ we shall choose a representative x_i. Then f^{n/m_i} generates $\text{stab}_{\mathcal{Z}/n}(x_i)$ and, with respect to a fixed Riemannian structure, the differential of f^{n/m_i} acts as a rotation on the tangent space at x_i. Let k_i be an integer such that $f^{k_i n/m_i}$ acts as a rotation through $2\pi/n_i$. The number k_i is well-defined modulo n_i and is prime to n_i. Therefore there is no loss of information by just considering $k_i/n_i \in \mathbb{Q}/\mathbb{Z}$ rather than n_i and k_i as separate integers. The fixed point data of f is then defined as the collection

$$(g, n|k_1/n_1, \ldots, k_b/n_b).$$

and shall be denoted by $\sigma(f)$. The numbers $k_1/n_1, \ldots, k_b/n_b$ are unique up to order as elements of \mathbb{Q}/\mathbb{Z}. We may omit g and n from the data if they are clear from the context.

A classical theorem of Nielson [Nie37] states that two orientation-preserving diffeomorphisms of finite order are conjugate in $\text{Diffeo}_+(S^2)$ if and only if they have the same fixed point data. Furthermore, Symonds [Sym88] proved that the fixed point data of a finite order diffeomorphism depends only on its isotopy class. Since the Nielson realization theorem states that any finite order element $x \in \Gamma_g$ can be represented by a finite order diffeomorphism f, we can define fixed point data for torsion elements of Γ_g by putting $\sigma(x) = \sigma(f)$. We conclude that two finite order elements of Γ_g are conjugate if and only if they have the same fixed point data. This provides a method for counting conjugacy classes of subgroups of Γ_g isomorphic to \mathbb{Z}/n.

In [GM87], Glover and Mislin determined all the possible fixed point data for
torsion in Γ_g. From their proof it follows that fixed point data always have an integral sum, that is

$$\sum_{i=1}^{b} \frac{k_i}{n_i} \in \mathbb{Z}.$$

1.5 Presentations

Presentations exist for some of the mapping class groups $\Gamma^n_{g,k}$. Although this endeavor was the work of many, over many years, a simplified presentation for $\Gamma^n_{g,1}$ was determined by Wajnryb for $k = 0$ or 1 [Waj83]. The presentations are given in terms of Dehn twists, which are diffeomorphisms associated to embedded circles in S_g. Given a simple closed curve c in the oriented surface S_g, the Dehn twist about c is defined to be the diffeomorphism which is the identity outside of a cylindrical neighborhood of c, and which acts on the cylindrical neighborhood so as to twist one end by 2π, as shown in figure 1.2. Note that the twist is independent of the orientation of c, but does depend on the orientation of S_g.

The presentation given by Wajnryb has $2g + 1$ generators, representing Dehn twists about the curves $a_1, a_2, b_1, b_2, \ldots, b_g, w_1, w_2, \ldots, w_{g-1}$, as shown in figure 1.3 (Note a_3, a_4, \ldots, a_g are unnecessary in Wajnryb's presentation). Also, the set of defining relations is finite. We will use the name of a curve also for the name of the corresponding Dehn twist.

The hyperelliptic mapping class group is equal to the subgroup of Γ_g generated by $a_1, b_1, w_1, b_2, w_2, \ldots, w_{g-1}, b_g$, and a_g [BH71]. To simplify its presentation, we will
give new names to the generators as follows:

\[
\begin{array}{cccccccc}
\sigma_1 & \sigma_2 & \sigma_3 & \sigma_4 & \sigma_5 & \ldots & \sigma_{2g-1} & \sigma_{2g} & \sigma_{2g+1} \\
\end{array}
\]

The presentation of \(\Delta_g \) is then on these generators, with the relations:

(i) \(\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \) for \(1 \leq i \leq 2g \),

(ii) \(\sigma_i \sigma_j = \sigma_j \sigma_i \) if \(|i - j| \geq 2 \),

(iii) \(z^{2g+2} = 1 \), where \(z = \sigma_1 \sigma_2 \ldots \sigma_{2g+1} \),

(iv) The element \(C = \sigma_1 \sigma_2 \ldots \sigma_{2g+1} \sigma_{2g+1} \ldots \sigma_2 \sigma_1 \) is in the center and satisfies \(C^2 = 1 \).

The element \(C \) is the hyperelliptic element as defined before (see [BH71]).

Note that the first two relations say that two Dehn twists about non-intersecting

![A Dehn Twist](image)

Figure 1.2: A Dehn Twist
curves commute, whereas Dehn twists about two curves a and b which intersect in one point satisfy the braid relation

$$aba = bab.$$

This is true in general for Dehn twists on S_g.

As far back as 1934, Magnus [Mag34] determined a presentation for Γ^n. If, in the above presentation for Δ_g, we replace $2g + 2$ with n, and replace relation (iv) with:

(iv)' $C = 1$,

then we obtain a slightly simplified form of Magnus’s presentation for Γ^n, on n generators. (Here C is the same as in (iv)).

Inspecting the presentations, we find a central extension

$$1 \longrightarrow \mathbb{Z}/2 \longrightarrow \Delta_g \longrightarrow \Gamma^{2g+2} \longrightarrow 1.$$ \hspace{1cm} (1.1)

In fact, this non-split extension was determined by Birman and Hilden and used to determine their presentation of Δ_g from Magnus’s presentation of Γ^n [BH71] (also see [BH73] for a simpler version of their proof).

Figure 1.3: Dehn twist generators for Γ_g
CHAPTER 2
BRAID CALCULATIONS IN Δ_q

2.1 Artin's braid group

Artin's braid group on n strings, B_n (see [Art47] and [Bir71]), is defined via the presentation:

(i) There are generators $\sigma_1, \ldots, \sigma_{n-1},$

(ii) $\sigma_i \sigma_j = \sigma_j \sigma_i$ if $|i - j| \geq 2,$ and

(iii) $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ for $1 \leq i \leq n - 2.$

Alternate classical definitions of B_n may be found in [Bir71]. We shall briefly describe one such definition.

The elements of B_n can be represented by geometric braids on n strings. A geometric braid on n strings is defined as follows. We choose n points O_1, \ldots, O_n in $\mathbb{R}^2,$ that we will fix once and for all. Let $I = [0, 1].$ We then have n points $P_1 = (O_1, 0), \ldots, P_n = (O_n, 0)$ and n points $Q_1 = (O_1, 1), \ldots, Q_n = (O_n, 1)$ in $\mathbb{R}^2 \times I.$ We shall visualize $\mathbb{R}^2 \times I$ oriented with $\mathbb{R}^2 \times \{0\}$ a horizontal plane lying below the plane $\mathbb{R}^2 \times \{1\}.$ Then the points P_i lie in the lower plane and the points Q_i lie directly
above them. We “connect with braided strings” the points P_1, \ldots, P_n to Q_1, \ldots, Q_n (not necessarily connecting P_i to Q_i). That is, we define curves

$$\gamma_i = (\alpha_i, \beta_i) : (I, \{0\}, \{1\}) \rightarrow (\mathbb{R}^2 \times I, P_i, Q_{\sigma(i)})$$

where σ is a permutation of the array $(1, \ldots, n)$, and such that:

- $\beta_i(t_1) < \beta_i(t_2)$ for $0 \leq t_1 < t_2 \leq 1$ (the curves should move upwards), and
- $\alpha_i(t) \neq \alpha_j(t)$ for $i \neq j$ and all $t \in I$ (the curves should not intersect).

Let A_i be the arc which is the image of γ_i in $\mathbb{R}^2 \times I$. Their union $A = A_1 \cup \cdots \cup A_n$ is called a geometric braid. It is a subset of $\mathbb{R}^2 \times I$.

We define an equivalence relation as follows. If A and B are geometric braids, we shall write $A \sim B$ if one can be deformed to the other by an isotopic deformation

$$G_t : \mathbb{R}^2 \times I \rightarrow \mathbb{R}^2 \times I, \text{ for } t \in [0, 1]$$

of the ambient space such that

- G_t is constant on the boundary $\mathbb{R}^2 \times \{0, 1\}$ for every s,
- $G_0(A) = A$ and $G_1(A) = B$, and
- each intermediate image $H_s(A)$ is also a geometric braid.

Finally, we may define (equivalent to the above) the braid group B_n to consist of geometric braids, modulo this equivalence relation. Multiplication in B_n is then performed by concatenation, that is, placing one geometric braid on top of the other.
and deforming vertically by a factor of one-half. In this thesis we shall adopt the convention that if b_1 and b_2 are braids, then b_1b_2 is represented with b_1 on top of b_2.

In short, we may represent elements of B_n with braid diagrams, which consist of n arcs connecting n points on two parallel line segments. A braid diagram representing the braid group generator σ_i is shown in figure 2.1.

![Braid Diagram](image)

Figure 2.1: A generator of B_n

If we define the braid group as in the geometric braid construction above, then the commutation relation (ii) in the presentation of B_n obviously holds. Also, the braid relation (iii) is also clear, from figure 2.2.

A proof of the equivalence of our above descriptions of B_n, that is, a proof that the relations (i), (ii), and (iii) are a sufficient set of defining relations for the geometric braid defined group, can be found in [Bir71].

Note that if we add the relation

(iv) $\sigma_i^2 = 1$ for $1 \leq i \leq n - 1$
to the presentation of B_n above, we obtain the classical presentation for the symmetric group on n letters, Σ_n. We identify the element σ_i with the transposition $(i \ i + 1)$.

Thus we obtain a surjection $B_n \twoheadrightarrow \Sigma_n$, where the image of a braid given as a braid diagram can be read off by following the strings from top to bottom: if a strand starts at position k and ends at position l, then the associated permutation takes k to l. In other words, the map $B_n \twoheadrightarrow \Sigma_n$ is given by “forgetting the under- and over-crossings” of a braid diagram.

2.2 Δ_g as a quotient of B_{2g+2}

Examining the presentation of Δ_g, we find it is obtained from the presentation of B_{2g+2}, by adding the relations

1. $z^{2g+2} = 1$
2. $C^2 = 1$
\(3\) \([C, \sigma_i] = 1 \text{ for } i = 1, \ldots, 2g + 1\)

where we have defined

\[z = \sigma_1 \sigma_2 \cdots \sigma_{2g+1}\]

and

\[C = \sigma_1 \sigma_2 \cdots \sigma_{2g+1} \sigma_{2g+1} \cdots \sigma_2 \sigma_1\].

We shall alternately refer to the generators \(\sigma_i\) as elements of \(B_{2g+2}\) and \(\Delta_g\).

Therefore we obtain a surjection \(\rho : B_{2g+2} \twoheadrightarrow \Delta_g\), whose kernel is generated by the braids corresponding to \(z^{2g+2}, C^2\), and \([C, \sigma_i], i = 1, \ldots, 2g + 1\) (that is, braids whose words in \(B_{2g+2}\) are identical to the given words for these elements of \(\Delta_g\)). Similarly, \(\Gamma^n\) is a quotient of \(B_n\), and the set of generators for \(\ker(B_n \twoheadrightarrow \Gamma^n)\) is the same as \(\ker(\rho)\) but with \(C^2\) replaced by \(C\). Using the map \(\rho\), we may represent elements of \(\Delta_g\) with braids, keeping in mind that the braids are collected into equivalence classes.

In this dissertation, we shall frequently blur the distinction between elements in \(\Delta_g\) and their braid representatives. To get a feel for these braid representatives, we shall consider the kernel of \(\rho\).

The braids corresponding to the hyperelliptic element \(C\) and the order \(2g + 2\) element \(z\) are drawn in figure 2.3. For clarity, the braids are drawn with a specific number of strings, but for general genus these braids have the obvious similar form.

(In this dissertation, we will similarly draw braids in \(B_n\) for arbitrary \(n\) with a specific number of strings, when the general form is clear.)

One finds easily that the relations \([C, \sigma_i] = 1\) are automatically satisfied in the braid group for all \(i\) except \(i = 1\). Thus we need only three generators for the kernel.
of $B_{2g+2} \rightarrow \Delta_g$, namely C^2, z^{2g+2}, and $\sigma_1^{-1}C\sigma_1C^{-1}$. (We use $\sigma_1^{-1}C\sigma_1C^{-1}$ instead of $\sigma_1C\sigma_1^{-1}C^{-1}$, since the former has a simpler looking braid.) We will sketch these generators below.

We first consider the braid z^{2g+2}. More generally we shall sketch the braid z^k for $1 \leq k \leq 2g+2$. Observe in Figure 2.3 a simplified form of z^2; in Figure 2.4 we extend this idea to illustrate z^k. Note then, that z^{2g+2} is represented by a full twist of all $2g+2$ strings.

Figure 2.3: Braid representatives for C and z

\[z^2 = \quad \ldots \ldots \ldots \ldots \ldots = \]

Figure 2.4: Equal braids representing z^2
We simplify the braid $\sigma_1^{-1}C\sigma_1C^{-1}$ in Figure 2.2.

Finally, adding the braid C^2, we collect the three generators of $\ker(\rho)$ together in Figure 2.7.
Figure 2.6: Equal braids representing $\sigma_1^{-1} C \sigma_1 C^{-1}$

Figure 2.7: Generators for $\ker\{B_{2g+2} \to \Delta_g\}$
2.3 The map $\Delta_g \to \Sigma_{2g+2}$

We shall describe commuting surjections as shown in the following diagram.

$$
\begin{array}{c}
B_{2g+2} \xrightarrow{p_3} \Delta_g \\
p_1 \downarrow \quad \phi \quad p_3 \\
\Sigma_{2g+2} \leftarrow \Gamma^{2g+2}
\end{array}
$$

Each of the groups in the diagram have $2g + 1$ generators, and the maps can be defined in the obvious way on these generators; some of these maps have already been observed. Since $\ker(p_2)$ consists of pure braids, the upper triangle of diagram 2.1 is commutative. Similarly, since $\ker(p_3) = \langle C \rangle$ has trivial image in Σ_{2g+2}, the lower triangle is also commutative.

We have described these maps purely in terms of group presentations; however, we can give geometric descriptions for ϕ, p_3, and p_4 as follows.

To simplify the discussion, we may use the equivalent definition of Γ^n as the mapping class group of the sphere with $2g + 2$ distinguished points, rather than punctures, which must remain fixed as a set by the representative diffeomorphisms. In [Bir71], Birman explains that p_4 corresponds to the action of a representative diffeomorphism on the $2g + 2$ distinguished points. The map p_3 can be interpreted geometrically as a map induced by the branched cover $S_g \to S_g/\langle C \rangle \approx S^2$, which takes the fixed points of C injectively to the $2g + 2$ distinguished points of S^2. We may then reason that the map ϕ can be interpreted as being associated to the action of an element in Δ_g on the fixed points of C.
This means that we can view the action of an element \(x \in \Delta_g \) on the fixed points of \(C \) by looking at a braid representative for \(x \). Similarly we can use braids to view the action of an element of \(\Gamma^n \) on the \(n \) distinguished points (or punctures).

2.4 Braid representatives for the hyperelliptic

In Propositions 2.4.1 and 2.4.2, we provide several braids which represent either the hyperelliptic or the identity.

Proposition 2.4.1. Let \(C_m \) be the braid as shown in Figure 2.8, with \(1 \leq m \leq 2g+2 \). Then, as an element of \(\Delta_g \), \(C_m \) is equal to the hyperelliptic element \(C \).
Proof. Since C is central in Δ_g, the braid bCb^{-1} shown in Figure 2.9 is equal to C in Δ_g. Also, the braids C_m and bCb^{-1} can be seen to be equal in B_{2g+2}, therefore $C_m = C$ in Δ_g. □

Figure 2.10: The element I_m.

Proposition 2.4.2. Let I_m be the braid in B_{2g+2} consisting of side-by-side full twists of m and $2g+2-m$ strings, respectively, where the twists have opposite orientations. (See Figure 2.10.) Then, as an element of Δ_g,

$$I_m = \begin{cases} 1 & \text{if } m \text{ is even,} \\ C & \text{if } m \text{ is odd.} \end{cases}$$
Proof. Figure 2.11 illustrates the relation (in Δ_g)

$$I_m C = I_{m-1},$$

or

$$I_m = C I_{m-1}. \quad (2.2)$$

Note that I_0 is a full twist of all $2g + 2$ strings, therefore $I_0 = 1$ in Δ_g. The claim is then proven recursively, using relation 2.2.

Note that if we reverse the orientations of the twists in Figure 2.10, we obtain I_m^{-1}, which equals I_m in Δ_g, by the proposition.

2.5 Some torsion elements of Δ_g

We may now present some braids representing elements of finite order in Δ_g. We already have an element z of order $2g + 2$, given in the presentation of Δ_g. We use Proposition 2.4.1 to construct more torsion elements. This is done by finding braid elements whose n^{th} power equals one of the braids C_m as constructed in Proposition 2.4.1 and shown there to represent either 1 or C in Δ_g.

Consider the braids shown in figure 2.12, here drawn with a specific number of strings, but similarly defined for general genus. The first braid shown represents the order $2g + 2$ element z. The $2g + 1$ power of the second braid, and the $2g$ power of the third are both equal to C_1, that is, a full twist of $2g + 1$ strings next to a single string. (Note that successive powers of the second braid cause the strings to wind
Figure 2.11: $I_m C = I_{m-1}$
around the middle string, which is shown as a thick line.) The braid C_1 represents the hyperelliptic, therefore the elements shown are of orders $4g + 2$ and $4g$, respectively. (In fact, the order $4g + 2$ element is of maximal finite order in Γ_g; see [Mis94].)

Elements of prime order p can be found using the order $4g$, $4g + 2$, and $2g + 2$ elements described above. That is, we can illustrate p-torsion in Δ_g whenever p divides one of the successive integers $2g$, $2g + 1$, or $2g + 2$. We shall see later that this is a necessary condition for the existence of p-torsion in Δ_g, and for p an odd prime, there is a unique conjugacy class of \mathbb{Z}/p. Thus, up to conjugacy, the braids thus constructed represent all of the possible p-torsion in Δ_g, for odd primes p.

2.6 A dihedral subgroup of Δ_g.

Theorem 2.6.1. Let $g \geq 2$. Δ_g contains a subgroup isomorphic to D_8, the dihedral group of order 8, when either g is even or $g \equiv 3 \pmod{4}$. For $g \equiv 1 \pmod{4}$, there is no such subgroup.
Figure 2.13: Equal braids representing τ.

Figure 2.14: The element σ.

The proof will be provided by a series of lemmas, dealing with separate cases. We will show the existence of these subgroups in two ways; first, we will illustrate them directly from the viewpoint of braids, and then we will provide an alternate description which is more algebraic.

Lemma 2.6.1. For g even, Δ_g contains a subgroup isomorphic to D_8.

Proof. Consider the elements of Δ_g which are represented by the braids τ and σ as
shown in Figures 2.13 and 2.14. Note the two braids shown for τ are equal in the braid group. The square of τ is a full twist of all $2g + 2$ strings, and therefore is the identity in Δ_g. Also, σ^2 is represented by side-by-side full twists of $g + 1$ strings, with opposite orientations. Since $g + 1$ is odd, this element represents C, as determined in Section 2.4. Therefore σ is of order 4. Finally, we see in Figure 2.15 that $\tau\sigma\tau = \sigma^{-1}$, which completes the relations that define D_8.

\textbf{Lemma 2.6.2.} For any genus g, Δ_g contains a subgroup isomorphic to D_{2g+2}. When $g \equiv 3 \pmod{4}$, this implies Δ_g contains a subgroup isomorphic to D_8.

\textit{Proof.} Recall the element z of order $2g + 2$ in Δ_g, as defined in Section 2.2. Consider
also the half-twist element τ as in the previous lemma, which is of order two in Δ_g.
For any genus g we have the relation $z\tau z\tau = C$, or

$$\tau z\tau = Cz^{-1},$$

(2.3)
as illustrated in Figure 2.16. (Note $\tau = \tau^{-1}$). This implies

$$\tau z^2\tau = z^{-2}.$$

(2.4)

Therefore τ and the order $g+1$ element z^2 generate a subgroup isomorphic to D_{2g+2}.

Suppose $g \equiv 3 \pmod{4}$. Then 8 divides $2g + 2$, and therefore

$$D_8 < D_{2g+2} < \Delta_g.$$
Explicitly, let ζ be the order four element $z^{(g+1)/2}$. Since $(g+1)/2$ is even, equation 2.3 implies

$$\tau \zeta \tau = \zeta^{-1}, \quad (2.5)$$

which means ζ and τ generate a group isomorphic to D_8. □

An alternate description of the subgroups found above can be provided using only the order two element τ, the order $2g + 2$ element z, and relation 2.3. We provide this alternate description in the following.

Lemma 2.6.3. Let z and τ be the elements of Δ_g as described above. Then the following subgroups are isomorphic to D_8:

1. $\langle \tau, z^{(g+1)/2} \rangle$, when $g \equiv 3 \pmod{4}$,
2. $\langle z^{g+1}, \tau z \rangle$, when g is even,
3. $\langle \tau, z^{g+1} \tau \rangle$, when g is even.

Moreover, the group (3) is equal to the group described in Lemma 2.6.1.

Proof. The group (1) has already been shown to be isomorphic to D_8 in lemma 2.6.2.

For the group (2), note that z^{g+1} is of order two. Relation 2.3 implies $\tau z \tau z = C$, so τz is of order 4. Also, since $g + 1$ is odd, we have, using relation 2.3,

$$z^{g+1}(\tau z)z^{g+1} = (z^{g+1}\tau)zz^{g+1} = (C\tau z^{-1})zz^{g+1} = C\tau z = (\tau z)^2(\tau z) = (\tau z)^3,$$
which completes the relations that define D_8.

For the group (3), τ is of order two, and since $g + 1$ is odd, relation 2.3 implies

$$z^{g+1}z^{g+1} = z^{g+1}(\tau z^{g+1})$$
$$= z^{g+1}(Cz^{-(g+1)})$$
$$= C,$$

so $z^{g+1}\tau$ is of order four. Finally, we check the last relation defining D_8:

$$\tau(z^{g+1}\tau) = \tau z^{g+1}$$
$$= Cz^{-(g+1)}\tau$$
$$= (z^{-(g+1)}\tau)^2z^{-(g+1)}\tau$$
$$= (z^{-(g+1)}\tau)^3.$$

To prove the last claim, that the group (3) is equal to the group described in Lemma 2.6.1, we observe in Figure 2.17 that $\sigma = z^{g+1}\tau$. Note the form of z^{g+1} is as described in Section 2.2. □

To complete the proof of Theorem 2.6.1, we must show that Δ_g does not contain a D_8 when $g \equiv 1$ (mod 4). We will need the following two lemmas.

Lemma 2.6.4. Let $g \equiv 1$ (mod 4), and let $x \in \Delta_g$ be an order four element whose square is not the hyperelliptic element. Then x has no fixed points.

Proof. Let N_i denote the number of branch points of order i for the action of $\langle x \rangle$ on
Figure 2.17: Expressing σ in terms of z and τ.
Sg. There are branch points of orders two and four. The Riemann-Hurwitz equation reads

\[2g - 2 = 4(2h - 2) + 4 \left(\frac{3}{4} N_4 + \frac{1}{2} N_2 \right). \]

Letting \(g = 4k + 1 \), this simplifies to

\[8k + 8 - 2N_2 = 8h + 3N_4. \]

Recall from Lemma 3.1.2 that for \(g \) odd, an order two element in \(\Delta_g \) not equal to the hyperelliptic element must have zero or four fixed points. Thus \(N_2 \), which is the number of fixed points of \(x^2 \), must be either zero or four. In either case, the above equation reduces mod 8 to

\[N_4 \equiv 0 \pmod{8}. \]

But \(x \) cannot have more fixed points than \(x^2 \), so \(N_4 \leq 4 \), which implies \(N_4 \) must be zero. This means \(x \) is fixed-point free. \(\Box \)

Lemma 2.6.5. Suppose \(\Delta_g \) contains a subgroup \(G \) of order \(2^n \), \(n \geq 0 \), and that the hyperelliptic element \(C \) is not contained in \(G \). Then the order of \(G \) must divide \(2g + 2 \).

Proof. Considering the group \(\langle C \rangle \times G \) as a group of diffeomorphisms, we see that \(G \) acts on the \(2g + 2 \) fixed points of \(C \). Suppose an element \(x \in G \) of order \(2^m \) has a fixed point in common with \(C \). This implies the group \(\langle x \rangle \times \langle C \rangle \approx \mathbb{Z}/2^m \times \mathbb{Z}/2 \) has a branch point of order \(|\langle x \rangle \times \langle C \rangle| = 2^{m+1} \), which is impossible, as the order of a branch point cannot exceed the maximal order for group elements, which is \(2^m \). Therefore \(G \) must act on the fixed points of \(C \) freely. This implies the \(2g + 2 \) fixed
points of C are partitioned into orbits of cardinality $|G|$, which means $|G|$ must divide $2g + 2$. □

Lemma 2.6.6. Δ_g does not contain a subgroup isomorphic to D_8 when $g \equiv 1 \pmod{4}$.

Proof. Let $g = 4k + 1$, and suppose there is a subgroup isomorphic to D_8 in Δ_g. There are two order four elements of this subgroup, one we will call σ, the other is σ^{-1}.

We will consider two cases; either $\sigma^2 = C$ or $\sigma^2 \neq C$.

CASE 1: $\sigma^2 \neq C$. Then D_8 cannot contain C, as σ^2 is the only central order two element of D_8. Using Lemma 2.6.5, we find the order of D_8, which is 8, must divide $2g + 2$, which implies $g \equiv 3 \pmod{4}$, contrary to our assumption.

CASE 2: $\sigma^2 = C$. By analyzing fixed point data, we will show that an element of order four in Γ_g cannot be conjugate to its inverse (hence the same is true in Δ_g). Since the relations which define D_8 imply that σ and σ^{-1} are conjugate, there can be no such subgroup in Δ_g.

We will first count branch points for the action of $\langle \sigma \rangle \approx \mathbb{Z}/4$ on S_g. Recall C has $2g + 2$ fixed points. Let σ have f fixed points. These are fixed points of $\sigma^2 = C$. We then have

$$
\begin{align*}
N_4 &= f \\
N_2 &= \frac{2g + 2 - f}{2},
\end{align*}
$$

where N_i denotes the number of branch points of order i. The Riemann-Hurwitz equation for this data is

$$
2g - 2 = 4(2h - 2) + 4 \left[\frac{3}{4} f + \frac{1}{2} \left(\frac{2g + 2 - f}{2} \right) \right],
$$

34
which simplifies to

\[4 = 8h + 2f. \]

The only non-negative integer solution is \(h = 0, f = 2 \). Therefore,

\[
N_4 = 2 \\
N_2 = \frac{2g+2-2}{2} = g.
\]

The fixed point data for the element \(\sigma \) must then be of the form

\[
\left(\frac{i_1}{4}, \frac{i_2}{4}, \frac{1}{2}, \ldots, \frac{1}{2} \right)_{g},
\]

where \(i_1 \) and \(i_2 \) are either 1 or 3. Since the fixed point data must have an integral sum, and since \(g \) is odd, the only possibilities are \((i_1, i_2) = (1, 1)\) or \((i_1, i_2) = (3, 3)\). If \(\sigma \) has fixed point data corresponding to \((i_1, i_2) = (1, 1)\), then its inverse \(\sigma^3 \) will have \((i_1, i_2) = (3, 3)\), and vice versa. Since fixed point data determines conjugacy classes, \(\sigma \) cannot be conjugate to its inverse.

\[\square \]
CHAPTER 3
THE YAGITA IN Variant OF Δ_g AT THE PRIME 2

For $g > 1$ the group Δ_g is never 2-periodic, since we can always find a subgroup isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$, as we will see in section 3.2. A generalization of the p-period is the Yagita invariant Y_p, which we calculate in this chapter for $p = 2$. We shall determine the Yagita invariant of Δ_g at the prime 2 for all g even, and provide some partial results for odd genus. We also determine the 2-rank of Δ_g, that is, the maximal n such that Δ_g contains a cartesian product of n copies of $\mathbb{Z}/2$. The results are as follows.

Theorem 3.0.1. The 2-rank of Δ_g is 2 when g is even, and 3 when g is odd.

Theorem 3.0.2. Let $Y_2(\Delta_g)$ denote the Yagita invariant of Δ_g at the prime 2. Then:

- $Y_2(\Delta_g) = 4$ when g is even.
- $Y_2(\Delta_g) = 4$ when $g \equiv 3 \pmod{8}$.
- $Y_2(\Delta_g)$ is either 2 or 4 when $g \equiv 5 \pmod{8}$.
- $Y_2(\Delta_g)$ is either 4 or 8 when $g \equiv 7 \pmod{8}$

The best we have for $g \equiv 1 \pmod{8}$ is to use the following to obtain upper bounds:
Theorem 3.0.3. Assume that \(g = l2^\alpha + 1 \) with \(l \) an odd integer and \(\alpha \geq 0 \). Then \(Y_2(\Delta_g) \) divides \(2^{\alpha+2} \).

Proof. This is a corollary to Theorem 3 in [Xia98], which concerns \(Y_2(\Gamma_g) \), but here restated to give an upper bound on \(Y_2(\Delta_g) \). \qed

3.1 Some lemmas on subgroups of order 2

In the following two lemmas, we consider a subgroup \(\pi \) of order two lying in either \(\Gamma_g \) or \(\Delta_g \). Suppose the associated branched covering \(S_g \to S_g/\pi \) has \(n \) branch points, and quotient space of genus \(h \). Note \(n \) is both the number of fixed points for an order two diffeomorphism generating \(\pi \) and the number of branch points for the covering. The associated Riemann-Hurwitz equation is then \(2g - 2 = 2(2h - 2) + n \).

The following lemma is Proposition 4.3 of [GMX94], there stated for subgroups \(\pi \) of odd prime order \(p \). The proof is based on an action of \(\Gamma_g \) on a certain space \(X_\infty \), depending on \(\pi \), which is a subspace of the Teichmüller space \(T_g \). The assumption \(p > 2 \) was made to avoid the case of \(\pi = \langle C \rangle \) acting on a genus two surface, in which case \(X_\infty \) is empty and the argument fails. However, for \(g > 2 \), \(X_\infty \) is non-empty for any subgroup \(\pi \) of prime order, as stated earlier in the paper, and the proof carries through verbatim. Thus for groups \(\pi \) of order two we may state the proposition as follows.

Lemma 3.1.1. Let \(g > 2 \) and \(\pi \subset \Gamma_g \) be a subgroup of order 2, with associated Riemann-Hurwitz equation \(2g - 2 = 2(2h - 2) + n \). Then there exists a cohomology element \(e \in H^{6(g-h)-2n}(\Gamma_g; \mathbb{Z}) \) whose restriction to \(H^{6(g-h)-2n}(\pi; \mathbb{Z}) \) is nontrivial.
Lemma 3.1.2. Let π be a subgroup of order 2 in Δ_g, with associated Riemann-Hurwitz equation $2g - 2 = 2(2h - 2) + n$. Also assume π is not generated by the hyperelliptic element. Then if g is odd, n equals 0 or 4, and if g is even, n is 2.

Proof. For g odd, let $g = 2k + 1$, and the Riemann-Hurwitz equation reads

$$2(2k + 1) - 2 = 2(2h - 2) + n,$$

or

$$4k = 4(h - 1) + n.$$

Reducing this mod 4 we obtain

$$n \equiv 0 \pmod{4}. \quad (3.1)$$

For g even, a similar calculation gives us

$$n \equiv 2 \pmod{4}. \quad (3.2)$$

The group $\pi \times \langle C \rangle \cong \mathbb{Z}/2 \times \mathbb{Z}/2$ acts on S_g, with quotient space S^2. All branch points for the associated cover are of order 2, since that is the maximal order in $\mathbb{Z}/2 \times \mathbb{Z}/2$. The $2g + 2$ fixed points of C give $g + 1$ branch points. Let there be b additional branch points. Then the Riemann-Hurwitz equation reads

$$2g - 2 = 4(-2) + 4(g + 1 + b) \left(1 - \frac{1}{2}\right)$$

which implies $b = 2$. These two additional branch points correspond to 4 ramification points in S_g; these are fixed points of order 2 elements of $\pi \times \langle C \rangle$.

38
When g is odd, Equation 3.1 implies the four ramification points must be fixed points of a single order 2 element. There are two order 2 elements other than C in $\pi \times \langle C \rangle$; we see, therefore, that one of them has four fixed points, and the other has none.

Similarly, when g is even, Equation 3.2 implies the two order 2 elements in $\pi \times \langle C \rangle$ different from C must each have two fixed points.

From this one readily obtains

Corollary 3.1.1. The hyperelliptic element C is the unique finite-order element of Δ_g which can be represented by a finite-order diffeomorphism with $2g + 2$ fixed points.

Proof. Let x be represented by such a diffeomorphism. One can easily determine from the Riemann-Hurwitz equation that x must be of order two. Then the above lemma implies that x must equal C. \qed

3.2 The 2-rank of Δ_g

In this section, we will prove Theorem 3.0.1. We will use the following lemma to provide a lower bound on the 2-rank.

Lemma 3.2.1. Δ_g contains a subgroup isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2$ when g is even, and a subgroup isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$ when g is odd.

Proof. Recall the element z of order $2g + 2$, and the order two element τ represented by a half-twist braid, cf. Section 2.6. The element $\zeta = z^{g+1}$ is of order two. Examining braid representatives of τ, ζ, and C, one finds they have different images under the
map \(B_g \rightarrow \Sigma_{2g+2} \), which factors through \(\Delta_g \). Thus \(\tau, \zeta, \) and \(C \) are distinct elements in \(\Delta_g \). Furthermore, the element \(C \) is central, and \(\zeta \) commutes with \(\tau \) if and only if \(g \) is odd, by the relation 2.3. Therefore we have

\[
\mathbb{Z}/2 \times \mathbb{Z}/2 \cong \langle \tau \rangle \times \langle C \rangle \subset \Delta_{2k},
\]

and

\[
\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \cong \langle \tau \rangle \times \langle \zeta \rangle \times \langle C \rangle \subset \Delta_{2k+1}.
\]

In fact, we already knew that \(\mathbb{Z}/2 \times \mathbb{Z}/2 \) is contained in \(\Delta_{2k} \), as it is a subgroup of \(D_8 \), which was shown in section 2.6 to be contained in \(\Delta_{2k} \). Indeed, the \(\mathbb{Z}/2 \times \mathbb{Z}/2 \) described above is in the \(D_8 \) described there. □

Proof of Theorem 3.0.1. Suppose \((\mathbb{Z}/2)^n \) is contained in \(\Delta_g \). We will assume one \(\mathbb{Z}/2 \) is generated by the hyperelliptic involution, \(C \), since this must be the case if \(n \) is maximal.

Lemma 2.6.5 implies \(2^{n-1} \), the order of \((\mathbb{Z}/2)^n / \langle C \rangle \), divides \(2g + 2 \). That is, \(2^{n-2} \) divides \(g + 1 \).

When \(g \) is even, this implies \(n \) can be at most two. The above lemma then implies the 2-rank of \(\Delta_g \) is 2 for \(g \) even.

Now suppose \(g \) is odd, and consider the branched cover associated to the action of \((\mathbb{Z}/2)^n \) on \(S_g \). All branch points must be of order 2, since that is the maximal order for group elements. There are \((g+1)/2^{n-2} \) order 2 branch points which are the image of the fixed points of \(C \). Suppose there are \(b \) additional branch points. Note
that since $S_g/(C) \approx \mathbb{S}^2$, the quotient of the $(\mathbb{Z}/2)^n$ action must also have genus zero.

The Riemann-Hurwitz equation then reads

$$2g - 2 = 2^n(-2) + 2^n \left(\frac{1}{2} \right) \left(\frac{g+1}{2^{n-2}} + b \right),$$

which one solves to obtain

$$b = \frac{4(2^{n-1} - 1)}{2^{n-1}},$$

from which we see the maximal n is 3. The above lemma then implies the 2-rank of Δ_g is 3 for g odd. □

3.3 The Yagita invariant of Δ_{2k} at the prime 2

Lemma 3.3.1. Let $g > 0$ be even. Then $Y_2(\Delta_g) = 4$.

Proof. Xia proved $Y_2(\Gamma_g) = 4$ for even genus $g > 0$ [Xia98]. This provides an upper bound for $Y_2(\Delta_g)$. Recall from Section 2.6 that Δ_g contains a subgroup isomorphic to D_8 for any even genus g. Since $Y_2(D_8) = 4$ (See [Yag85]), this provides a lower bound and completes the proof. □

3.4 Partial results on $Y_2(\Delta_g)$ for odd genus

Lemma 3.4.1. Let $g \equiv 3, 7 \pmod{8}$. Then 4 divides $Y_2(\Delta_g)$.

Proof. This follows immediately from Lemma 2.6.1, since $Y_2(D_8) = 4$. □

Lemma 3.4.2. Let $g \equiv 7 \pmod{8}$. Then $Y_2(\Delta_g)$ divides 8.
Proof. If \(g \equiv 7 \pmod{8} \), then we have
\[
g = 8k + 7 = 2(4k + 3) + 1,
\]
or \(g = 2l + 1 \) where \(l \) is odd. The claim then follows from Theorem 3.0.3. \(\square \)

Lemma 3.4.3. Let \(g \equiv 3, 5 \pmod{8} \). Then \(Y_2(\Delta_g) \) is either 2 or 4.

Proof. We will assume \(g \equiv 3 \pmod{8} \). The case \(g \equiv 5 \pmod{8} \) is proven similarly.

Let \(\pi = \langle x \rangle \) be a group of order 2 in \(\Delta_g \), with associated Riemann-Hurwitz equation \(2g - 2 = 2(2h - 2) + n \). We have seen \(n \) must be either 0, 4, or \(2g + 2 \).

To obtain an upper bound on the numbers \(m(\pi) \) as in the definition of the Yagita invariant, we look for a cohomology element \(e(\pi) \in H^{2k}(\Delta_g; \mathbb{Z}) \) whose restriction to \(H^{2k}(\pi; \mathbb{Z}) \) is non-trivial, where \(l \) is odd. It then follows that \(m(\pi) \mid 2^{k-1} \).

Case 1: \(n = 0 \). From the Riemann-Hurwitz equation we obtain \(h = (g + 1)/2 \).

Recall from Lemma 3.1.1 that there is a cohomology class \(e \in H^d(\Gamma_g; \mathbb{Z}) \) whose restriction to \(H^d(\pi; \mathbb{Z}) \) is non-trivial, where \(d = 6(g - h) - 2n \). By restriction, we obtain a class \(e' \in H^d(\Delta_g; \mathbb{Z}) \) which also restricts non-trivially to \(H^d(\pi; \mathbb{Z}) \). Here
\[
d = 6 \left(g - \frac{g + 1}{2} \right) - 2(0) = 3(g - 1) \equiv 6 \pmod{8}.
\]

Then \(d = 2j \), \(j \) odd, which implies \(m(\pi) = 1 \).

Case 2: \(n = 4 \). Here, we have \(h = (g - 1)/2 \), and the class \(e' \) as defined in the previous case has degree
\[
d = 6 \left(g - \frac{g - 1}{2} \right) - 2(4) = 3(g + 1) - 8 \equiv 4 \pmod{8}.
\]

Then \(d = 4j \), \(j \) odd, which implies \(m(\pi) \mid 2 \).
Case 3: \(\tilde{n} = 2g + 2 \). In this case, \(\tilde{x} \) must be the hyperelliptic element \(C \), and \(\tilde{h} = 0 \). The class \(e' \) has degree \(2(g - 2) \), and \(g - 2 \) is odd; hence \(m(\pi) = 1 \).

The Yagita invariant is defined to be the least common multiple of the numbers \(2m(\pi) \), where \(\pi \) ranges over the subgroups of order 2 in \(\Delta_g \). The cases above show that \(m(\pi)|2 \) for all \(\pi \), thus \(Y_2(\Delta_g) \) must be either 2 or 4.

Combining Lemmas 3.4.1 and 3.4.3, we obtain

Corollary 3.4.1. \(Y_2(\Delta_g) = 4 \) for \(g \equiv 3 \) (mod 8).

Combining Lemmas 3.4.1 and 3.4.2, we obtain

Corollary 3.4.2. \(Y_2(\Delta_g) = 4 \) or \(8 \) for \(g \equiv 3 \) (mod 8).
CHAPTER 4
THE FARRELL COHOMOLOGY OF Δ_g

4.1 Branching data for $\langle C \rangle \times \mathbb{Z}/p \subset \Delta_g$

Given an element x of odd prime order p in Δ_g, we have $|Cx| = 2p$. In sections 4.3 and 4.4 we will be interested in fixed point data for Cx. First we must determine branching data.

We can realize both C and x by periodic diffeomorphisms $S_g \to S_g$, also denoted by C and x, which commute (we apply the Nielsen Realization Theorem to the order $2p$ element Cx). C permutes the fixed points of x and vice versa. We know C has $2g + 2$ fixed points, and $S_g/\langle C \rangle \approx S^2$. The map $x : S_g \to S_g$ covers a map $\overline{x} : S_g/\langle C \rangle \to S_g/\langle C \rangle$, also of order p. The branched covering $S_g \to S_g/\langle Cx \rangle$ is equivalent to the composition of branched coverings

$$
S_g \xrightarrow{\pi_1} S_g/\langle C \rangle \xrightarrow{\pi_2} (S_g/\langle C \rangle)/\langle \overline{x} \rangle.
$$

The covering $S_g \to S_g/\langle Cx \rangle$ has branch points of orders 2, p, and $2p$. Let the number of branch points of order i be denoted N_i. We determine N_2, N_p, and N_{2p} as follows.

Let $P_1, P_2, \ldots, P_{2g+2}$ be the fixed points of C acting on S_g. These map to distinct
points \(\pi_1(P_1), \ldots, \pi_1(P_{2g+2}) \) in \(S_g/\langle C \rangle \). Some of these points will be fixed by \(\bar{x} \), the rest must be permuted among themselves, which follows from the fact that \(x \) permutes the \(P_i \)'s. From the Riemann-Hurwitz equation, we know the action of \(\langle \bar{x} \rangle \approx \mathbb{Z}/p \) on \(S_g/\langle C \rangle \approx S^2 \) has exactly two fixed points. So 0, 1, or 2 of the points \(\pi_1(P_1), \ldots, \pi_1(P_{2g+2}) \) are fixed by \(\bar{x} \). A point \(\pi_1(P_i) \) that is fixed by \(\bar{x} \) determines a branch point \(\pi_2\pi_1(P_i) \) of order \(2p \) for the covering \(S_g \to S_g/\langle C x \rangle \). The rest, which are permuted by \(\bar{x} \), identify \(p \)-fold to branch points of order 2 in \(S_g/\langle C x \rangle \).

Thus, if \(N_{2p} = 0 \), then \(\langle \bar{x} \rangle \approx \mathbb{Z}/p \) permutes the points \(\pi_1(P_1), \ldots, \pi_1(P_{2g+2}) \), without fixing any, which implies \(p \mid 2g + 2 \), and that \(N_2 = \frac{2g+2}{p} \). Similarly

\[
N_{2p} = 1 \Rightarrow p \mid 2g + 1 \quad \text{and} \quad N_2 = \frac{2g+1}{p}
\]

and

\[
N_{2p} = 2 \Rightarrow p \mid 2g \quad \text{and} \quad N_2 = \frac{2g}{p}.
\]

We see that if \(p \) does not divide \(2g \), \(2g + 1 \), or \(2g + 2 \), then \(\mathbb{Z}/p \not\subseteq \Delta_g \). Also, note that an odd prime \(p \) will divide only one of these numbers.

Finally, we determine \(N_p \) from the Riemann-Hurwitz equation. Then the branching data for the action of \(\langle C x \rangle \) on \(S_g \) can be summarized as follows:

\[
\begin{align*}
p \mid 2g & \quad \Rightarrow \quad N_2 = \frac{2g}{p}, \quad N_p = 0, \quad N_{2p} = 2 \\
p \mid 2g + 1 & \quad \Rightarrow \quad N_2 = \frac{2g+1}{p}, \quad N_p = 1, \quad N_{2p} = 1 \\
p \mid 2g + 2 & \quad \Rightarrow \quad N_2 = \frac{2g+2}{p}, \quad N_p = 2, \quad N_{2p} = 0.
\end{align*}
\]

Note that we can determine the number of fixed points for the order \(p \) element \(x \) from the branching data above. For example, when \(p \mid 2g + 1 \), the pre-image in \(S_g \) of the
branch point of order p consists of two fixed points of x, and the pre-image of the branch point of order $2p$ gives us one more fixed point, for a total of three. Thus we have:

\[
p|2g \quad \Rightarrow \quad f = 2,
\]

\[
p|2g + 1 \quad \Rightarrow \quad f = 3,
\]

\[
p|2g + 2 \quad \Rightarrow \quad f = 4,
\]

where f denotes the number of fixed points for \mathbb{Z}/p.

4.2 Prime-power torsion in Δ_g.

We have shown above that Δ_g has p-torsion whenever p divides $2g$, $2g + 1$, or $2g + 2$. In this section we will prove the following more general result.

Theorem 4.2.1. Let p be an odd prime. Δ_g contains a subgroup isomorphic to \mathbb{Z}/p^α if and only if p^α divides $2g$, $2g + 1$, or $2g + 2$.

For a partial result in the case $p = 2$, see Lemma 2.6.5.

Proof. We have exhibited elements in Δ_g of orders $2g$, $2g + 1$, and $2g + 2$, thus the converse statement is true.

For the forward implication, we assume the existence of a \mathbb{Z}/p^α in Δ_g. Then we have $\mathbb{Z}/2 \times \mathbb{Z}/p^\alpha = \mathbb{Z}/2p^\alpha < \Gamma_g$, where the order two element is the hyperelliptic element C. Also, we may represent this subgroup as a group of diffeomorphisms acting on S_g. Recall that C has $2g + 2$ fixed points. Those which are not fixed by any
other element of $\mathbb{Z}/2p^\alpha$ will map to branch points of order two in the associated cover $S_g \to S_g/(\mathbb{Z}/2p^\alpha)$. Also, each branch point of order $2p^i$ will have $2p^\alpha/2p^i = p^{\alpha-i}$ points in its pre-image, which are of the fixed points of C. Thus we count the order-two branch points as

$$N_2 = \frac{2g + 2 - \sum_{i=1}^{\alpha} p^{\alpha-i} N_{2p^i}}{p^\alpha},$$ \hspace{1cm} (4.1)

where N_m denotes the number of branch points of order m. Note that the quotient $S_g/(\mathbb{Z}/2p^\alpha)$ is of genus zero since the quotient by the action of (C) alone is of genus zero. The Riemann-Hurwitz equation for this action of $\mathbb{Z}/2p^\alpha$ on S_g is then as follows:

$$2g - 2 = 2p^\alpha(-2) + 2p^\alpha \left[\left(1 - \frac{1}{2}\right)^{2g+2-\sum_{i=1}^{\alpha} p^{\alpha-i} N_{2p^i}} \right. \left. + \sum_{i=1}^{\alpha} \left(1 - \frac{1}{2p^i}\right) N_{2p^i}\right].$$

One simplifies this equation to obtain

$$4(p^\alpha - 1) = \sum_{i=1}^{\alpha} 2p^{\alpha-i}(p^i - 1)(N_{2p^i} + N_{p^i}).$$ \hspace{1cm} (4.2)

Reducing this equation modulo p, the only term in the sum which survives is at $i = \alpha$. and we obtain

$$-4 \equiv 2(-1)(N_{2p^\alpha} + N_{p^\alpha}) \pmod{p},$$

or

$$2 \equiv N_{2p^\alpha} + N_{p^\alpha} \pmod{p}.$$

Because p is odd, this means $N_{2p^\alpha} + N_{p^\alpha}$ is at least two, and therefore the last term $2(p^\alpha - 1)(N_{2p^\alpha} + N_{p^\alpha})$ of the sum in equation 4.2 is at least $4(p^\alpha - 1)$. But this equals
the left hand side of the equation, so the remaining terms of the sum must all be zero, which implies $N_{2p^i} = N_{p^i} = 0$ for $1 \leq i \leq (\alpha - 1)$. Therefore the action of $\mathbb{Z}/2p^\alpha$ on S_g has branch points only of orders 2, p^α, and $2p^\alpha$.

Equation 4.1 now reads

$$N_2 = \frac{2g + 2 - N_{2p^\alpha}}{p^\alpha},$$

and the above argument implies that N_{2p^α} must be at most 2. Since N_2 is an integer, this means p^α must divide $2g$, $2g + 1$, or $2g + 2$. \hfill \Box

4.3 Conjugacy classes of \mathbb{Z}/p in Δ_g

Toward the calculation of the Farrell cohomology of Δ_g, we will determine the number of conjugacy classes of \mathbb{Z}/p in Δ_g, with p an odd prime, by computing fixed point data. In the next section we will determine the index of the centralizer of a \mathbb{Z}/p in its normalizer. We remark that these results remain true if we substitute \mathbb{Z}/p^α in place of \mathbb{Z}/p, with similar proofs. For simplicity, however, we will be concerned only with \mathbb{Z}/p, which suffices to obtain the subsequent results on cohomology.

We will use the notation $N_G(H)$ and $C_G(H)$ to denote the normalizer and centralizer, respectively, of H in G.

Lemma 4.3.1. Let G_1,G_2, and G be finite subgroups of Δ_g, which do not contain the hyperelliptic element C. Then

(i) G_1 is conjugate to G_2 in Δ_g if and only if $\langle C \rangle \times G_1$ and $\langle C \rangle \times G_2$ are conjugate in Γ_g.

48
(ii) \(N_{\Delta_g}(G) = N_{\Gamma_g}((C) \times G) \).

(iii) \(C_{\Delta_g}(G) = C_{\Gamma_g}((C) \times G) \).

Proof. The third statement is clear from the definitions, as is the forward implications for both (i) and (ii).

For the converse in (i), assume there is an \(h \in \Gamma_g \) such that conjugation by \(h \) is an isomorphism \((C) \times G_1 \xrightarrow{\sim} (C) \times G_2 \). The element \(hCh^{-1} \in \Delta_g \) can be represented by an order two diffeomorphism with \(2g+2 \) fixed points, since the conjugacy class of an order two element in \(\Gamma_g \) is determined by the number of its fixed points. Therefore, by Corollary 3.1.1, \(h^{-1}Ch \) must equal \(C \), that is, \(h \) commutes with \(C \). Then by definition, \(h \) is in \(\Delta_g \). So \(G_1 \) and \(G_2 \) are conjugate in \(\Delta_g \).

To prove the converse in (ii), we set \(G_1 = G_2 = G \) and use the same argument as above.

\[\square \]

So, to count conjugacy classes of \(\mathbb{Z}/p \) in \(\Delta_g \), we will count the conjugacy classes of \((C) \times \mathbb{Z}/p \) in \(\Gamma_g \). The result is as follows.

Theorem 4.3.1. Let \(p \) be an odd prime. Then \(\Delta_g \) contains a subgroup isomorphic to \(\mathbb{Z}/p \) if and only if \(p \) divides \(2g, 2g + 1, \) or \(2g + 2 \). Moreover, any two subgroups of order \(p \) in \(\Delta_g \) are conjugate in \(\Delta_g \).

Proof. Our work in the previous section, along with the torsion elements exhibited in section 2.5, proves the first assertion.
To prove the second assertion, we will study the fixed point data for an element Cx of order $2p$, where x is of order p in Δ_g. In general, the fixed point data for an element of order $2p$ in Γ_g are of the form
\[
\left(\frac{1}{2}, \frac{i}{2}, \frac{1}{p}, \ldots, \frac{\beta_{N_p}}{p}, \frac{\gamma_1}{2p}, \ldots, \frac{\gamma_{N_{2p}}}{2p} \right)
\]
where N_i denotes the number of branch points of order i. Thus, $\frac{1}{2}$ is repeated N_2 times in the fixed point data. The fixed point data always have an integral sum, thus
\[
\frac{1}{2} + \cdots + \frac{1}{2} + \frac{\beta_1}{p} + \cdots + \frac{\gamma_{N_{2p}}}{2p} \in \mathbb{Z}
\]
or, equivalently,
\[
pN_2 + 2\beta_1 + \cdots + 2\beta_{N_p} + \gamma_1 + \cdots + \gamma_{N_{2p}} \equiv 0 \pmod{2p}. \tag{4.3}
\]
We will determine the fixed point data for Cx in three cases.

CASE 1: $p|2g$. We have $N_2 = \frac{2g}{p}$, $N_p = 0$, and $N_{2p} = 2$. Note N_2 is even. Putting these into Equation 4.3, we obtain
\[
\gamma_1 + \gamma_2 \equiv 0 \pmod{2p}. \tag{4.4}
\]
Also, note γ_1 and γ_2 are relatively prime to $2p$. The possible fixed point data for Cx are then
\[
\left(\frac{1}{2}, \ldots, \frac{i}{2}, \frac{1}{2p}, \frac{-i}{2p} \right), \quad i = 1, 3, 5, \ldots, 2p - 1.
\]
In interpreting these fixed point data, recall the fixed point data are considered as elements of \mathbb{Q}/\mathbb{Z}, thus the numbers i are defined modulo $2p$.

50
Without loss of generality, we may assume

$$\sigma(Cx) = \left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{1}{2p}, \frac{1}{2} \right).$$

Then

$$\sigma((Cx)^i) = \left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{i}{2p}, \frac{-i}{2p}\right),$$

for $i = 1, 3, 5, \ldots, 2p - 1$, so all the possible fixed point data are realized by a single group $(C) \times \mathbb{Z}/p$. Recall the fixed point data of an finite-order element determines its conjugacy class in Γ_g. Since in the above argument x was an arbitrary element of order p, this means there is only one conjugacy class of $(C) \times \mathbb{Z}/p$ in Γ_g, which implies there is only one conjugacy class of \mathbb{Z}/p in Δ_g, by the above lemma.

Case 2: $p|2g + 1$. We have $N_2 = \frac{2g + 1}{p}$, $N_p = 1$, and $N_{2p} = 1$. Putting these into Equation 4.3, we obtain

$$pN_2 + 2\beta_1 + \gamma_1 \equiv 0 \pmod{2p}$$

or, since N_2 is odd,

$$2\beta_1 + \gamma_1 \equiv p \pmod{2p}. \quad (4.5)$$

Thus, if $\beta_1 = i$, then $\gamma_1 = p - 2i$. The possible fixed point data for Cx are then

$$\left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{i}{2p}, \frac{p - 2i}{2p}\right), \quad i = 1, 2, \ldots, p - 1.$$

So there are $p - 1$ possible fixed point data, realized by the powers $(Cx)^i$ of some element Cx, where i is prime to $2p$. As in the above case, we obtain one conjugacy class of $(C) \times \mathbb{Z}/p$ in Γ_g, and thus only one conjugacy class of \mathbb{Z}/p in Δ_g.

51
CASE 3: $p|2g + 2$. We have $N_2 = \frac{2g+2}{p}$, $N_p = 2$, and $N_{2p} = 0$. Putting these into Equation 4.3, we obtain

$$2\beta_1 + 2\beta_2 \equiv 0 \pmod{2p}$$

or

$$\beta_1 + \beta_2 \equiv 0 \pmod{p}.$$

This means the possible fixed point data of C_x are

$$\left(\frac{1}{2}, \ldots, \frac{i}{2}, p, -\frac{i}{p}\right), \quad i = 1, 2, \ldots, \frac{p - 1}{2}.$$

which correspond to powers $(C_x)^i$ of some element C_x, where i is prime to $2p$. As before we obtain one conjugacy class of \mathbb{Z}/p in Δ_g. □

4.4 The index $[N(\mathbb{Z}/p) : C(\mathbb{Z}/p)]$

Theorem 4.4.1. Let x be an element of Δ_g of odd prime order p. Then

$$[N_{\Delta_g}((x)) : C_{\Delta_g}((x))] = \begin{cases} 2 & \text{if } p \text{ divides } 2g \text{ or } 2g + 2 \\ 1 & \text{if } p \text{ divides } 2g + 1. \end{cases}$$

Proof. Let x be of odd prime order p. It is well-known that for a cyclic subgroup $\langle a \rangle$ of order n in a group G, the index $[N_G(\langle a \rangle) : C_G(\langle a \rangle)]$ is equal to the number of i's between 1 and $n - 1$ such that a is conjugate to a^i in G. Also, by Lemma 4.3.1,

$$[N_{\Delta_g}((x)) : C_{\Delta_g}((x))] = [N_{\Gamma_g}((C_x)) : C_{\Gamma_g}((C_x))].$$
so we can determine this index, which we shall abbreviate by \([N : C]\), by examining fixed point data to see when \((Cx)^i\) is conjugate to \(Cx\). We return to the fixed point data determined within the proof of Lemma 4.3.1.

CASE 1: \(p|2g\). In Lemma 4.3.1, we found the fixed point data

\[
\sigma((Cx)^i) = \left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{i}{2p}, \frac{-i}{2p}\right), \quad i = 1, 3, 5, \ldots, 2p - 1,
\]

for \(x\) a suitable generator for the order \(p\) subgroup. From this we see \(Cx\) is conjugate to \((Cx)^i\) only for \(i = -1\). (That is, \(i = 2p - 1\); the numbers \(i\) are identified modulo \(p\).) Thus the index \([N : C]\) is 2.

CASE 2: \(p|2g + 1\). Here the fixed point data are

\[
\sigma((Cx)^i) = \left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{i}{p}, \frac{p - 2i}{2p}\right), \quad i = 1, 2, \ldots, p - 1,
\]

from which we clearly see \(Cx\) is never conjugate to \((Cx)^i\) for \(i \neq 1\). The index \([N : C]\) is therefore 1.

CASE 3: \(p|2g + 1\). Here the fixed point data are

\[
\sigma((Cx)^i) = \left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{i}{p}, \frac{-i}{p}\right), \quad i = 1, 2, \ldots, p - 1.
\]

Again, we find \(Cx\) is conjugate to \((Cx)^i\) only for \(i = -1\), and the index \([N : C]\) is therefore 2.

\[\square\]

4.5 The \(p\)-period of \(\Delta_g\)

We can now determine the \(p\)-period of \(\Delta_g\) for \(p\) an odd prime and for all \(g \geq 2\), using our work in the previous sections. The result is as follows.
Theorem 4.5.1. \(\Delta_g \) is \(p \)-periodic for every odd prime \(p \). Moreover, the \(p \)-period of \(\Delta_g \) is as follows:

\[
p(\Delta_g) = \begin{cases}
4 & \text{if } p \text{ divides } 2g \text{ or } 2g + 2 \\
2 & \text{if } p \text{ divides } 2g + 1, \\
1 & \text{otherwise.}
\end{cases}
\]

Recall that the \(p \)-period of a \(p \)-torsion free group is 1, hence the last statement about the \(p \)-period is just a restatement of a previous finding.

The remainder of this section will be devoted to proving the above theorem.

To prove the first assertion, we will show that \(\Delta_g \) does not contain a subgroup isomorphic to \(\mathbb{Z}/p \times \mathbb{Z}/p \). Theorem 1.1.1, due to Brown, then implies \(\Delta_g \) is \(p \)-periodic.

Recall from section 1.5 the short-exact sequence:

\[
1 \to \mathbb{Z}/2 \to \Delta_g \to \Gamma^{2g+2} \to 1,
\]

where \(\Gamma^{2g+2} \) denotes the mapping class group of the sphere with \(2g + 2 \) punctures. Suppose there is a subgroup \(\mathbb{Z}/p \times \mathbb{Z}/p \lt \Delta_g \). Then the above sequence implies that there is a subgroup \(\mathbb{Z}/p \times \mathbb{Z}/p \lt \Gamma^{2g+2} \). Any branch points in the associated cover must be of order \(p \). The Riemann-Hurwitz equation for this action is

\[
-2 = p^2(2h - 2) + p^2 \left(1 - \frac{1}{p} \right) n,
\]

where \(h \) is the genus of the quotient, and \(n \) the number of branch points. Reducing this equation modulo \(p \), we obtain

\[
-2 \equiv 0 \pmod{p},
\]

54
which is impossible for an odd prime. Hence Δ_g does not contain a $\mathbb{Z}/p \times \mathbb{Z}/p$, and is therefore p-periodic.

To finish the proof of Theorem 4.5.1, we will determine the p-period. Recall Δ_g contains p-torsion if and only if p divides $2g$, $2g+1$, or $2g+2$. In most of these cases Γ_g is p-periodic. Recall Γ_g is p-periodic whenever $g \not\equiv 1 \pmod{p}$. For a prime $p \geq 5$, p dividing $2g$, $2g+1$, or $2g+2$ implies $g \not\equiv 1 \pmod{p}$. Also, Xia proved in [Xia92a] that Γ_g is 3-periodic if and only if $g \not\equiv 1 \pmod{3}$. If $3|2g$ or $3|2g+2$, then $g \not\equiv 1 \pmod{3}$. However, if $3|2g+1$, then

$$2g+1 = 3k \Rightarrow g = 3 \left(\frac{k-1}{2} \right) + 1 \Rightarrow g \equiv 1 \pmod{3},$$

and Γ_g is therefore not 3-periodic.

So, in the cases when Δ_g has p-torsion and is p-periodic, Γ_g is p-periodic also, except for when $p = 3$ divides $2g+1$.

As we have seen, there is at most one conjugacy class of \mathbb{Z}/p in Δ_g. Therefore Brown's decomposition theorem implies

$$\tilde{H}^*(\Delta_g)_{(p)} \approx \tilde{H}^*(N(\mathbb{Z}/p))_{(p)}, \quad (4.6)$$

whenever p divides $2g$, $2g+1$, or $2g+2$. Since Δ_g is p-periodic, $N(\mathbb{Z}/p)$ is p-periodic, and therefore by Lemma 3.1 of [GMX92], we know the p-period of $N(\mathbb{Z}/p)$, which is the p-period of Δ_g, has the form $2[N(\mathbb{Z}/p) : C(\mathbb{Z}/p)]p^n$, where $\alpha \geq 0$ is some integer. Glover, Mislin, and Xia [GMX92] proved the p-period of a p-periodic mapping class group Γ_g is not divisible by p, and hence in these cases the p-period of Δ_g is also not divisible by p. Thus the p-period of Δ_g is $2[N(\mathbb{Z}/p) : C(\mathbb{Z}/p)]$, except possibly in the
case \(p = 3, 3|2g + 1 \). Our calculation in Theorem 4.4.1 of the index \([N(\mathbb{Z}/p) : C(\mathbb{Z}/p)]\) provides us the \(p \)-period for all odd primes \(p \), except in this one case.

For the case \(3|2g + 1 \) we can show the 3-period of \(\Delta_g \) is also \(2[N(\mathbb{Z}/p) : C(\mathbb{Z}/p)] \), using the following.

Lemma 4.5.1. Let \(y \) be an element of order \(n \) in \(\Gamma_g \). Suppose also that \(y \) may be represented by a diffeomorphism of order \(n \) with exactly one fixed point. Then there is an injection \(I : N_{\Gamma_g}((y)) \hookrightarrow \Gamma^1_g \).

Proof. Let \(h \in N_{\Gamma_g}((y)) \). Then \(hyh^{-1} = y^k \), for some \(k \) prime to \(n \). By theorem 1.3.1, we may represent \(h \) and \(y \) by diffeomorphisms, which we name \(f \) and \(z \), satisfying

\[
\begin{align*}
 fz^{-1} &= z^k \\
 z^n &= 1.
\end{align*}
\]

By assumption, \(y \) may be represented by a diffeomorphism with exactly one fixed point. This implies any diffeomorphism of order \(n \) representing \(y \) must have exactly one fixed point. Let \(P \) be the fixed point of \(z \). Then

\[
z^kf(P) = fz(P) = f(P)
\]

which implies \(zf(P) = f(P) \), hence \(f(P) \) is a fixed point of \(z \), implying \(f(P) = P \). So \(f \in \text{Diffeo}_+(S_g, P) \). Therefore we view \(f \) as an element of \(\Gamma^1_g \) and set \(I(h) = f \).

(i) \(I \) is well defined: Suppose \(h_1 = h_2 \) in \(N_{\Gamma_g}((y)) \), i.e., \(h_1 \) and \(h_2 \) are isotopic in \(\text{Diffeo}_+(S_g) \), and \(h_1yh_1^{-1} = y^k = h_2yh_2^{-1} \). Represent \(h_1 \) and \(h_2 \) by \(f_1 \) and \(f_2 \) in \(\text{Diffeo}_+(S_g, P) \) as defined above. The maps \(f_1 \) and \(f_2 \) are isotopic in \(\text{Diffeo}_+(S_g) \).
since, as elements of Γ_g, we have $f_1 = h_1 = h_2 = f_2$. Also, f_1 and f_2 satisfy $f_1zf_1^{-1} = z^* = f_2zf_2^{-1}$. Therefore, by Birman and Hilden, there is a homotopy $H : S_g \times [0,1] \to S_g$ with $H_0 = f_1$, $H_1 = f_2$, and $H_s z H_s^{-1} = z^{k_s}$ for all $s \in [0,1]$. Therefore H_s fixes the point P, for all $s \in [0,1]$, which means H is an isotopy through $\text{Diffeo}_+(S_g, P)$. Therefore $f_1 = f_2$ as elements of Γ_g^1. So I is well-defined.

(ii) I is injective: Suppose $f_1 = I(h_1) = I(h_2) = f_2$. Then f_1 and f_2 are isotopic through $\text{Diffeo}_+(S_g, P)$, which means they are isotopic through $\text{Diffeo}_+(S_g)$. So, as elements of Γ_g we have $h_1 = f_1 = f_2 = h_2$, implying I is one-to-one. □

We now return to the case $3|2g + 1$. Although $p = 3$ is the only case we need, the following argument holds for any odd prime p dividing $2g + 1$. We have already observed (Theorem 4.3.1) that there is, up to conjugacy, a unique subgroup of order p in Δ_g. Let x be an element of order p in Δ_g. The element C_x of order $2p$ has exactly one fixed point, cf. section 4.1. Therefore, by the above lemma, $N_{\Gamma_g}(\langle C_x \rangle) = N_{\Delta_g}(\langle x \rangle)$ injects into Γ_g^1. In her Ph.D. thesis [Lu98], Qin Lu has shown that Γ_g^1 has p-period 2 for every odd prime p. Therefore the p-period of $N_{\Delta_g}(\langle x \rangle)$, which is the p-period of Δ_g, divides 2. Since $p(\Delta_g) = 2[\mathbb{N}(\mathbb{Z}/p) : C(\mathbb{Z}/p)]p^\alpha$, we have $\alpha = 0$ and $[\mathbb{N}(\mathbb{Z}/p) : C(\mathbb{Z}/p)] = 1$. This agrees with our above assertion, and now provides us the 3-period when $3|2g + 1$. This last case finishes the proof of Theorem 4.5.1.
4.6 The case $g = \frac{(p-1)}{2}$

The first case of Δ_g containing p-torsion is at $g = (p-1)/2$, which is also the first case of p-torsion in Γ_g. In this section we will study the Farrell cohomology of $\Delta_{(p-1)/2}$. The main result is as follows.

Theorem 4.6.1. Let p be an odd prime. Then

$$\hat{H}^*(\Delta_{(p-1)/2}; \mathbb{Z})(p) \approx \hat{H}^*(\mathbb{Z}/p; \mathbb{Z}) = \mathbb{F}_p[u, u^{-1}],$$

where u is a cohomology class of degree two.

We will need the following lemma. Recall from section 2.3 the existence of a map from Δ_g onto Σ_{2g+2}.

Lemma 4.6.1. Suppose $x \in \Delta_g$ is an element of prime order $q \geq 2$, not equal to the hyperelliptic element. Then the image of x under the map $\phi : \Delta_g \to \Sigma_{2g+2}$ is non-trivial.

Proof. Recall that the image of a finite-order element under ϕ is determined by its action on the $2g + 2$ fixed points of the hyperelliptic element C. If x is of order two, then Lemma 3.1.2 implies x has at most four fixed points. Also we know odd prime order elements have at most four fixed points, cf. section 4.1. Therefore the number of fixed points for x is always less than $2g + 2$, so x must act on the fixed points of C non-trivially, and hence has non-trivial image in Σ_{2g+2}. \[\square\]

Since we will use Brown's decomposition theorem to compute cohomology, we are interested in normalizers of order p subgroups of $\Delta_{(p-1)/2}$. The following lemma will make the calculation of cohomology easy.
Lemma 4.6.2. Let p be an odd prime, and let $\pi < \Delta_{(p-1)/2}$ be a subgroup of order p. Then the normalizer of π is equal to $\langle C \rangle \times \pi \approx \mathbb{Z}/2p$, where C is the hyperelliptic element.

Proof. Let N_Δ and C_Δ denote the normalizer and centralizer, respectively, of π. We have determined that $N_\Delta = C_\Delta$ whenever p divides $2g + 1$, as in this case. Furthermore, Xia determined in [Xia92c] that the normalizer of a \mathbb{Z}/p in $\Gamma_{(p-1)/2}$ is finite, therefore N_Δ is also finite.

Note $\mathbb{Z}/p \times \mathbb{Z}/p$ is not contained in N_Δ, as Δ_π is p-periodic for all odd primes p. Nor is \mathbb{Z}/p^2 contained in N_Δ, since p^2 does not divide $2g$, $2g + 1$, or $2g + 2$, cf. Theorem 4.2.1. Therefore, the only p-torsion in N_Δ is π itself.

Let $q \neq p$ be prime, $q \geq 2$, and suppose $y \neq C$ is of order q in $N_\Delta = C_\Delta$. Then y commutes with x. Recall the map ϕ, here it is from $\Delta_{(p-1)/2}$ to Σ_{p+1}. Under ϕ, x and y map to commuting non-trivial elements, by the above lemma. But $\phi(x)$ is a product of p-cycles, and $\phi(y)$ a product of q-cycles, which must be disjoint since they commute. But this is impossible in Σ_{p+1}, as $p + q \geq p + 1$. Therefore N_Δ does not contain any prime order torsion except for π and $\langle C \rangle$, and as N_Δ is finite, we must therefore have $N_\Delta = \langle C \rangle \times \pi$.

Proof of Theorem 4.6.1. Recall there is exactly one conjugacy class of \mathbb{Z}/p in $\Delta_{(p-1)/2}$. Therefore Brown’s decomposition theorem combined with the above lemma implies

$$\widetilde{H}^*(\Delta_{(p-1)/2}; \mathbb{Z})_{(p)} \approx \widetilde{H}^*(N_\Delta; \mathbb{Z})_{(p)} \approx \widetilde{H}^*(\mathbb{Z}/2p; \mathbb{Z})_{(p)} \approx \widetilde{H}^*(\mathbb{Z}/p; \mathbb{Z}).$$

□
4.7 The case \(g = p - 1 \).

The next case in which \(\Delta_g \) contains \(p \)-torsion is at \(g = p - 1 \). In this section, we will calculate the \(p \)-part of the Farrell cohomology of \(\Delta_{p-1} \). The result is as follows.

Theorem 4.7.1. Let \(p \) be an odd prime. Then

\[
\tilde{H}^i(\Delta_{p-1}; \mathbb{Z}_p) = \begin{cases}
\mathbb{Z}/p & i \equiv 0, 1 \pmod{4} \\
0 & i \equiv 2, 3 \pmod{4}.
\end{cases}
\]

The work in this section will be to determine the normalizer of a subgroup isomorphic to \(\mathbb{Z}/p \) in \(\Delta_{p-1} \). A result of Xia will then easily complete the proof of the above theorem.

Lemma 4.7.1. The normalizer of \(\pi \) contains a subgroup isomorphic to \(D_8 \).

Proof. Recall that there is a unique conjugacy class of \(\mathbb{Z}/p \) in \(\Delta_{p-1} \). Therefore, we will not lose generality as we focus on a specific subgroup \(\pi \cong \mathbb{Z}/p \). Recall the element \(z \) of order \(2g + 2 \); here it is of order \(2p \). Let \(\pi = \langle z^2 \rangle \) be our model of \(\mathbb{Z}/p \).

Also recall from Section 2.6 the construction of two subgroups isomorphic to \(D_8 \) in \(\Delta_g \) for even genus. We may use either one of them, as they both normalize \(\pi = \langle z^2 \rangle \). Specifically, recall \(\langle \tau, z^{g+1}\tau \rangle \cong D_8 \), and the relation

\[
\tau z \tau = C z^{-1},
\]

which implies

\[
\tau z^2 \tau = (C z^{-1})^2 = z^{-2}.
\]
Then \(\tau \) normalizes \(\pi \), taking a generator to its inverse. Also,

\[
z^{g+1} \tau(z^2)(z^{g+1} \tau)^{-1} = z^{g+1} \tau(z^2)\tau^{-1}z^{-(g+1)}
\]

\[
= z^{g+1}z^{-2}z^{-(g+1)}
\]

\[
= z^{-2},
\]

so \(z^{g+1} \tau \) normalizes \(\pi \), also by taking a generator to its inverse. Thus \((\tau, z^{g+1} \tau) \approx D_8 \) is contained in the normalizer.

In the above lemma, we may have used our other example \(\langle z^{g+1}, \tau z \rangle \approx D_8 \), since it also normalizes \(\pi \). In addition, one may show that these two subgroups isomorphic to \(D_8 \) are conjugate by an infinite order element. This will necessarily follow from our work in this section, but it can be shown directly with braid elements.

To determine the structure of the normalizer of \(\pi \) in \(\Delta_g \), we will make use of the results of Xia in [Xia92b], where he calculated normalizers in \(\Gamma_{p-1} \). By the Riemann-Hurwitz formula we know \(x \) must have exactly four fixed points. (In fact, in Section 4.1 we have seen this is true for \(\mathbb{Z}/p < \Delta_g \), \(p \) dividing \(g + 1 \).) Xia uses this fact to construct the top exact sequence in the following diagram:

\[
\begin{array}{ccc}
\mathbb{Z}/p & \hookrightarrow & N_{\Gamma_{p-1}}(\mathbb{Z}/p) \xrightarrow{j} \Gamma^4_0 \\
\mathbb{Z}/p & \hookrightarrow & N_{\Delta_{p-1}}(\mathbb{Z}/p) \xrightarrow{j} \Delta^4_0 \\
\end{array}
\]

Here we define \(\Gamma^4_0 \) as the mapping class group of the sphere with four punctures, where the punctures are allowed to be permuted. Let \(I = j(C) \), the image in \(\Gamma^4_0 \) of the hyperelliptic element. We complete the diagram above by defining \(\Delta^4_0 \) to be the centralizer of \(I \).
Lemma 4.7.2. $\text{im}(\bar{j}) = \text{im}(j) \cap \Delta_0^4$.

Proof. Clearly $\text{im}(\bar{j}) \subseteq \text{im}(j) \cap \Delta_0^4$. Conversely, let $f \in \text{im}(j) \cap \Delta_0^4$. Then $fI = I f$, and there exists an $\bar{f} \in \text{N}_{\Gamma_{p-1}}(\mathbb{Z}/p)$ with $j(\bar{f}) = f$. We need to show \bar{f} is in Δ_{p-1}, that is, $\bar{f}C = C \bar{f}$. Since

$$j(\bar{f}\bar{C}\bar{f}^{-1}C) = ff^{-1}I = 1,$$

we have

$$\bar{f}\bar{C}\bar{f}^{-1}C \in \ker(j) = \mathbb{Z}/p = \langle x \rangle,$$

and therefore $\bar{f}\bar{C}\bar{f}^{-1}C = x^m$ for some m, or $\bar{f}\bar{C}\bar{f}^{-1} = Cx^m$. Since $\bar{f}\bar{C}\bar{f}^{-1}$ is of order two, we have

$$\bar{f}\bar{C}\bar{f}^{-1} = (\bar{f}\bar{C}\bar{f}^{-1})^p = (Cx^m)^p = C$$

or $\bar{f}C = C\bar{f}$. □

There are two conjugacy classes of \mathbb{Z}/p in Γ_{p-1}, which one determines from fixed point data. Xia determined the image of j for both classes. We have the following diagram with exact rows:

$$\xymatrix{ K_4 \ar[r] & \Gamma_0^4 \ar[r] & \Sigma_4 \ar[u] \ar[r] & D_8 \ar[r] & G \ar[u] \ar[r] & \text{im}(\bar{j}) \ar[r] & \text{im}(j) \ar[r] & F \ar[u] }$$

(4.8)
where the second row is Xia’s calculation for the conjugacy class considered here. The map $\Gamma_0^4 \to \Sigma_4$ takes an element to the permutation corresponding to its action on the four punctures. The kernel K_4 is called the pure mapping class group of the sphere with four punctures. It is isomorphic to $\mathbb{Z} \ast \mathbb{Z}$.

We need to determine the subgroups F and G. From Lemma 4.7.1 we know that D_8 must be in $\text{im}(j)$, since the kernel of j is \mathbb{Z}/p, and D_8 contains no p-torsion. Therefore the group G in the diagram above must be D_8, since the kernel of the map from $\text{im}(j)$ is free.

Now we must determine F. Since $\text{im}(j) = \text{im}(j) \cap \Delta_0^4$, we have $F = K_4 \cap \Delta_0^4$. That is, F is the part of K_4 invariant under conjugation by I. We will use braid diagrams to determine F.

Recall that Γ_0^4 is a quotient of B_4. If an element of Γ_0^4 is represented by a braid, we can view the action of the element on the punctures by looking at the image of the braid in the symmetric group Σ_4. For example, consider the braids shown in Figure 4.1; they represent order two elements in Γ_0^4, since their squares are a full
twist or side-by-side opposite twists, which are the identity in \(\Gamma_0^4 \). Observing their image in \(\Sigma_4 \), we find the first two of these elements transpose the four punctures in pairs, whereas the third element fixes two punctures.

Recall from the branching data computed in Section 4.1 that the hyperelliptic element \(C \) in \(\Delta_{p-1} \) fixes none of the order \(p \) element's fixed points. Therefore, the image \(j(C) = I \) in \(\Gamma_0^4 \) fixes none of the four punctures. So \(I \) must be represented by a braid such as the first two shown in Figure 4.1. Let \(J \) be the first of these two braids.

First we will find the elements of \(\Gamma_4 < \Gamma_0^4 \) which are invariant under conjugation by \(J \), and then show that these are the same as the invariants under conjugation by \(I \).

Lemma 4.7.3. \((K_4)^{(J)} = K_4 \).

Proof. We will view elements of \(\Gamma_0^4 \) with braid representatives, and blur the distinction between these elements and their braids. The subgroup \(K_4 \) in \(\Gamma_0^4 \) consists of elements whose representatives are pure braids. That is, we have the following commutative diagram, where \(P_4 \) represents the pure braid group on four strings.

\[
P_4 \hookrightarrow B_4 \twoheadrightarrow \Sigma_4
\]

\[
| \quad | \quad |
K_4 \hookrightarrow \Gamma_0^4 \twoheadrightarrow \Sigma_4
\]

The pure braid group on four strings, \(P_4 \), is generated by six elements, shown in Figure 4.2 [Bir71]. Therefore, these braids may be taken to be representatives of generators for \(K_4 \). We need to show conjugation by \(J \) fixes each generator.
It is clear that \(J A_{12} J = A_{12} \) and \(J A_{34} J = A_{34} \). (In fact, \(A_{12} = A_{34} \), since \(A_{12} A_{34}^{-1} \) consists of side-by-side opposite twists, hence is the identity.) Figure 4.3 shows that \(J A_{23} J = A_{14} \), and therefore \(J A_{14} J = A_{23} \).

But Figure 4.4 shows that \(A_{23} = A_{14} \). So, thus far, the action of \(J \) has been shown to be trivial on all generators except \(A_{13} \) and \(A_{24} \). Finally, Figure 4.5 shows that

\[
A_{13} = A_{23} A_{12}^{-1},
\]

and a similar braid calculation shows

\[
A_{24} = A_{34} A_{23}^{-1}.
\]

Thus \(A_{13} \) and \(A_{24} \) are products of the other generators, hence also fixed under conjugation by \(J \).

We have determined that \(J \) acts trivially on \(K_4 \), but to determine the group \(F \), we need to determine the action of \(I \) on \(K_4 \). However, the following lemma implies that \(I \) and \(J \) are conjugate in \(\Gamma_0^4 \).
Lemma 4.7.4. Let x be any order two element in Γ_0^4 which does not fix any of the four punctures, and let J be the order two element as above. Then x is conjugate to J in Γ_0^4.

Proof. We have the exact sequence

$$K_4 \hookrightarrow \Gamma_0^4 \xrightarrow{p} \Sigma_4$$

Let $p(J) = \sigma$, and $p(x) = \sigma'$. Both of these are permutations of order two fixing no letters; that is, they are both products of two disjoint 2-cycles. Such permutations are conjugate in Σ_4. Therefore let α be in Σ_4 with $\alpha \sigma' \alpha^{-1} = \sigma$. Since p is onto, there exists an f with $p(f) = \alpha$. Then

$$p(fxf^{-1}J) = \alpha \sigma' \alpha^{-1} \sigma = \sigma^2 = 1,$$

which implies $fxf^{-1}J$ equals some element λ in K_4, or

$$fxf^{-1} = \lambda J.$$
\[A_{23} = B \Rightarrow A_{23} = B^{-1}. \]

\[B = A_{14}^{-1} \Rightarrow A_{23} = B^{-1} = (A_{14}^{-1})^{-1} = A_{14}. \]

Figure 4.4: Showing \(A_{23} = A_{14} \) with a braid calculation.
But using the fact that J acts trivially on K_4 we obtain

$$1 = (fxf^{-1})^2 = (\lambda J)^2 = \lambda J \lambda J = \lambda^2,$$

which implies $\lambda = 1$, as K_4 is a free group. Therefore

$$fxf^{-1} = J,$$

so x is conjugate to J.

Since a pure braid remains pure under conjugation by any braid, the subgroup K_4 remains fixed as a set under conjugation. Therefore, by an inner automorphism on Γ_0^4, we may replace J with I, and K_4 will still be represented by P_4. since J acts trivially on K_4, the action of I must then also be trivial. Therefore F equals all of K_4. \[\square\]
Since we have shown the groups F and G of diagram 4.8 to be K_4 and D_8, respectively, we therefore have

$$\text{im}(j) = \text{im}(\overline{j}),$$

which implies

$$N_{\Delta_{p-1}}(\pi) = N_{\Gamma_{p-1}}(\pi).$$

Also, Brown's decomposition theorem implies

$$\widehat{H}^*(\Delta_{p-1}; \mathbb{Z})_p \approx \widehat{H}^*(N_{\Delta_{p-1}}(\pi); \mathbb{Z})_p.$$

Since Xia [Xia92b] calculated $\widehat{H}^*(N_{\Gamma_{p-1}}(\pi); \mathbb{Z})_p$, we may appeal to his result to complete the proof of Theorem 4.7.1.
BIBLIOGRAPHY

