INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
THE EFFECTS OF CAUSAL UNCERTAINTY AND EXPECTANCY VIOLATION ON SOCIAL PERCEPTION PROCESSES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

By
Shannon Riley, B. A., M. A.

The Ohio State University
1997

Dissertation Committee:
Professor Gifford Weary, Adviser
Professor Robert Arkin
Professor Marilynn Brewer
Professor Thomas Nygren

Approved by
Professor Gifford Weary
Adviser
Psychology Graduate Program
ABSTRACT

Three studies were conducted to examine whether expectancy violation can act as situational input data relevant to causal understanding and temporarily activate causal uncertainty feelings. Two of these studies also explored the effect of expectancy violation on the social information processing of individuals high and low in causal uncertainty. Participants with high and low causal uncertainty were exposed to five hypothetical outcomes that either violated or confirmed expectancies, and then were asked to observe an actor's behavior and to form an impression of the actor they observed. Consistent with predictions, the current research provided evidence that expectancy violation can activate temporarily causal uncertainty feelings, and that this activation was especially likely to occur for chronically accessible causal uncertainty feelings.

Also consistent with predictions, the results of the current studies indicated that heightened feelings of causal uncertainty resulted in more systematic, complex attributional processing, especially for participants high in causal uncertainty. Importantly, it appears that the effects of causal uncertainty on social information processing might account for the effects of depression on social information processing that previously have been found in the literature on
the social-cognitive consequences of depression. In the current studies, depression levels had no explanatory power to account for the effects on the social information processing measures, above and beyond that of causal uncertainty. Potential reasons for the different styles of social information processing adopted by participants high and low in causal uncertainty are discussed. Methodological considerations and implications for future research also are discussed.
ACKNOWLEDGMENTS

I would like to thank Drs. Robert Arkin, Marilynn Brewer, and Thomas Nygren for serving on my committee and providing valuable comments and suggestions regarding this research.

I also would like to thank Dr. William von Hippel for his recommendations concerning methodology employed in the final two studies of this research, and for his helpful comments on an earlier draft of this work.

I am grateful to Dr. Gifford Weary, without whose wisdom, patience, sage advice, and support this dissertation would not have been possible.

I also wish to thank Jill Jacobson for her patience in dealing with my questions about the computer, Darcy Reich for discussing with me the assumptions associated with the ANCOVA procedure, and Bridget Flannery and Inbal Gurari for unselfishly giving their time to help me code data.

I thank Blair Jarvis for helping me with the figures in the current document and for his enduring friendship and hearty sense of humor.

Finally, I offer great thanks to Charlene and Terry Riley for giving me unwavering encouragement, unconditional love, and emotional and moral support over the years.
VITA

March 31, 1969...............................Born - Rochester, New York

1991..B.A., University of Richmond
 Richmond, Virginia

1991-1992....................................Graduate Teaching Associate,
 The Ohio State University

1992-1993....................................NIMH Graduate Fellow,
 The Ohio State University

1993-Present................................Graduate Teaching and Research Associate,
 The Ohio State University

1994..M.A., The Ohio State University,
 Columbus, Ohio

PUBLICATIONS

Orlando, FL.

FIELDS OF STUDY

Major Field: Psychology
TABLE OF CONTENTS

Abstract ... ii
Acknowledgments .. iv
Vita ... v
List of Tables .. viii
List of Figures .. ix
Chapters:

1. Introduction ... 1
 Control-Motivation-Attributional-Activity Hypothesis ... 4
 Depression and social information processing ... 5
 Causal uncertainty .. 7
 Expectancy violation ... 9
 The current research .. 10

2. Study 1 .. 12
 Method .. 15
 Results .. 19
 Discussion ... 25

3. Study 2 .. 27
 Method .. 31
 Results .. 33
 Discussion ... 44
4. Study 3.. 48
 Method... 50
 Results... 54
 Discussion.. 71

5. General Discussion.. 76

List of References.. 83

Appendices
 Appendix A – Tables... 93
 Appendix B – Figures.. 104
 Appendix C – Materials for Study 1... 116
 Appendix D – Videotape Inference Questionnaire for Study 2............... 165
 Appendix E – Inference Coding Instructions for Judges......................... 174
 Appendix F – SPAI Packets for Study 3.. 176
 Appendix G – Videotape Inference Questionnaire for Study 3............. 225
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Study 1 means for the average expectancy per scenario measure</td>
<td>94</td>
</tr>
<tr>
<td>2. Study 2 means for the average certainty per cause measure</td>
<td>95</td>
</tr>
<tr>
<td>3. Study 2 means for the number of concrete inferences as assessed by raters</td>
<td>96</td>
</tr>
<tr>
<td>4. Study 3 means for time 1 uncertainty feelings</td>
<td>97</td>
</tr>
<tr>
<td>5. Study 3 means for number of inferences generated by participants in each expectancy condition</td>
<td>98</td>
</tr>
<tr>
<td>6. Study 3 means for inferential confidence scores</td>
<td>99</td>
</tr>
<tr>
<td>7. Study 3 means for average confidence per inference scores</td>
<td>100</td>
</tr>
<tr>
<td>8. Study 3 mean ratings of descriptive ability of linguistic categories</td>
<td>101</td>
</tr>
<tr>
<td>9. Study 3 mean scores on optimal measure of the generation of dispositional inferences</td>
<td>102</td>
</tr>
<tr>
<td>10. Study 3 raters' assessments of mean number of inferences generated by participants in each expectancy condition</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Scree plot for time 1 Current Feelings scale – Study 1</td>
<td>105</td>
</tr>
<tr>
<td>2.</td>
<td>Scree plot for time 2 Current Feelings scale – Study 1</td>
<td>106</td>
</tr>
<tr>
<td>3.</td>
<td>Scree plot for time 1 Current Feelings scale – Study 2</td>
<td>107</td>
</tr>
<tr>
<td>4.</td>
<td>Scree plot for time 2 Current Feelings scale – Study 2</td>
<td>108</td>
</tr>
<tr>
<td>5.</td>
<td>Regression for Time 1 Causal Uncertainty Feelings – Study 2</td>
<td>109</td>
</tr>
<tr>
<td>6.</td>
<td>Scree plot for time 1 Current Feelings scale – Study 3</td>
<td>110</td>
</tr>
<tr>
<td>7.</td>
<td>Scree plot for time 2 Current Feelings scale – Study 3</td>
<td>111</td>
</tr>
<tr>
<td>8.</td>
<td>Regression for Time 2 Causal Uncertainty Feelings – Study 3</td>
<td>112</td>
</tr>
<tr>
<td>9.</td>
<td>Path Analysis for Participants High in Causal Uncertainty</td>
<td>113</td>
</tr>
<tr>
<td>10.</td>
<td>Path Analysis for Participants Low in Causal Uncertainty</td>
<td>114</td>
</tr>
<tr>
<td>11.</td>
<td>Path Analysis for all participants</td>
<td>115</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

For several decades social psychologists have explored the process through which individuals come to understand, explain, and predict their social environment. In 1958, Fritz Heider coined the term "common-sense psychology" to describe individuals' attempts to understand and interpret others' behaviors. Heider (1958) identified two primary ways in which people can attempt to figure out the causes of behavior. People can look to the environment to find the cause of a behavior (i.e., an external attribution), or they can try to locate the cause of the behavior in the person engaging in the behavior in question (i.e., an internal attribution). Since Heider's early work, many psychologists have endeavored to explore further the ways in which people search for the causal structure of events. From the classic early theories of attribution like Kelley's (1967, 1971) ANOVA Cube model and Jones & Davis's (1965) Correspondent Inference Theory to the more recent stage models of the attribution process (Gilbert, Pellham, & Krull, 1988), social psychologists have sought to refine their understanding of how people ascribe causality.
Much of the research in the area of attribution in the 1960s and 1970s focused on how people engage in attribution as well as on the outcome of attribution processes. For example, correspondent inference theory (Jones & Davis, 1965; Jones & McGillis, 1976) was developed to explain how individuals attribute the causes of another's behavior to that other's intentions and dispositions. Kelley's (1967) ANOVA cube model dealt with how people attributed the causes of behavior to either the person or the environment. While these theories posited slightly different cognitive processes on the part of perceivers, both of these theories presented attribution processes that could be characterized as rational, logical, and complex.

Despite the abundance of research on attribution, as Pyszczynski & Greenberg (1981) pointed out, there was little known about when individuals would choose to engage in attributional activity. During the late 1970s and early 1980s, several researchers began identifying factors that instigate attribution processes.

In a review of this literature, Hastie (1984) identified four factors that elicited attributional activity. The first factor was the asking of an explicit "why" question. As demonstrated by Enzle & Shopflockher (1978), asking people to explain others' behaviors can elicit causal analyses. The second factor that could instigate causal search was outcome dependency (Berscheid, Graziano, Monson, & Dermer, 1976) or involvement (Harvey, Yarkin, Lightner, & Town, 1980). The third factor that Hastie (1984) identified as a condition that could
elicit causal search was task failure (Schoeneman, van Uchelen, Stonebrink, & Cheek, 1986; Wong & Weiner, 1981). Finally, Hastie (1984) identified the occurrence of unexpected events as a condition that instigated the onset of attributional activity. This particular condition has, in fact, been extensively researched and found to elicit a causal search (Clary & Tesser, 1983; Kanazawa, 1992; Lau & Russell, 1980; Hastie, 1984; Pyszczynski & Greenberg, 1981; Wong & Weiner, 1981).

Although the research by Hastie (1984) and others indicates an association between certain situational factors and attributional activity, there currently are no data that indicate why this association exists. In the remainder of this introduction, I review several lines of research which suggest that the need to understand and control the social environment is the primary underlying motive for engaging in attributional analyses. I then discuss a model of causal uncertainty recently developed by Weary and Edwards (1996). Causal uncertainty is an individual difference variable that concerns individuals' uncertainty about their ability to understand, predict, and control the social environment. It has been suggested that causal uncertainty has several important effects on individuals' social information processing. Then, I review the literature concerning expectancy violation and the effects that this has on information processing, in particular, attributional processing. Finally, three studies are described, the general purpose of which is to provide experimental evidence regarding the relationship between expectancy violation and causal
uncertainty. In addition, these studies seek to explore further the roles of both expectancy violation and causal uncertainty in individuals' social perception processes.

Control-Motivation-Attributional-Activity Hypothesis

A dominant theme in the attribution literature in general is the need to understand, predict, and control the social environment. Theorists such as Heider (1958) and Kelley (1967, 1971) have proposed that the formation of attributions is one method by which people attempt to satisfy the need for effective control. That is, people make attributions in an attempt to render the social environment more understandable, predictable, and controllable. This need to understand and control the environment also could serve as an explanation for why certain conditions elicit causal analyses.

Other lines of research provide evidence consistent with the notion that an increase in the need to understand and control the environment leads to greater attributional activity. Pittman and his colleagues (Pittman & D'Agostino, 1985; Pittman & Pittman, 1980; Swann, Stephenson, & Pittman, 1980) increased subjects' need for control by temporarily depriving subjects of feelings of control. Exposing subjects to uncontrollable events led to increased attributional activity, increased utilization of attribution-relevant information, an increased search for diagnostic social information, and a more careful and accurate processing of available information. Additionally, research on more chronically aroused levels of control motivation has resulted in similar findings. Burger & Hemans (1988)
found that subjects who scored high on the Desire for Control Scale (Burger & Cooper, 1979) were more likely to seek out, attend to, utilize, and think about attributionally relevant information than were subjects scoring low on this scale.

Depression and Social Information Processing

Yet another line of research that provides some evidence for the link between the need to understand and control the environment and increased attributional activity has been conducted with depressed and nondepressed individuals. Weary and her colleagues have conducted research on depressives' sensitivity to information that might render the social world understandable. These researchers have found that depressed perceivers are more motivated to seek diagnostic information about others (Hildebrand-Saints & Weary, 1989), are more attributionally complex (Marsh & Weary, 1989), and are more sensitive to available attributional information (Gleicher & Weary, 1991; Weary, Jordan, & Hill, 1985) than their nondepressed counterparts. Weary and her colleagues have postulated that it is depressed individuals' generalized expectations of uncontrollability over life events and resultant feelings of uncertainty about their ability to understand, predict, and control the social environment that engenders this sensitivity to and systematic, thorough processing of available information.

As a result of these early findings concerning depressives' sensitivity to certain types of social information, Weary, Marsh, Gleicher, and Edwards (1993) developed a model of the social-cognitive consequences of depression. Briefly,
these authors proposed that depressives' expectations of uncontrollability over life events result in metacognitive feelings of causal uncertainty. Causal uncertainty, or uncertainty about one's ability to understand causal relations, and hence, to predict and control the social environment, is hypothesized to have two consequences. The first is the adoption of an accuracy goal. Perceivers will try to obtain a subjective sense that they have an accurate understanding of the social world. This accuracy goal, in turn, results in a more extensive processing of and search for social information. Most of the research stimulated by Weary et al.'s model has provided evidence consistent with the ideas presented in the model.

More recent work stemming from the Weary et al. (1993) model has focused on the effects of depression and expectations of uncontrollability on various cognitive processes. For example, research has demonstrated that depressives are more likely to engage in piecemeal processing when forming impressions about other people (Edwards & Weary, 1993), are more likely to generate a greater number of inferences on-line after observing a behavioral sequence (Gleicher & Weary, 1991), are less likely to display the correspondence bias when making attributions about another's behavior (Yost & Weary, 1996), and engage in greater inferential correction (Reich & Weary, 1996) than do nondepressed individuals. Path analyses from three of these studies (Edwards & Weary, 1993; Reich & Weary, 1996; Yost & Weary, 1996)
provide support for the notion that the detailed and systematic information processing engaged in by depressives is due to their perceived lack of control over life events.

Causal Uncertainty

Weary et al.'s (1993) model of the social-cognitive consequences of depression postulates that uncertainty is an important moderator of the effects of depressives' expectations of uncontrollability on their social perception processes. "Uncertainty in this context refers to uncertainty about one's ability to understand, predict, and control the social environment and, as such, is quite similar to Weisz et al.'s (1987) notion of contingency uncertainty—uncertainty about the causes of events," (Weary et al., 1993, p.260). The uncertainty that Weary et al. (1993) refer to has been labeled causal uncertainty.

In an effort to articulate more fully the notion of causal uncertainty, Weary and Edwards (1996) have developed a model of causal uncertainty. These authors have suggested that causal uncertainty consists of both causal uncertainty beliefs and cognitive feelings of uncertainty. Causal uncertainty beliefs have been defined as "generalized self-constructs about one's uncertain or inadequate understanding or detection of causal relations in the social world," (Weary & Edwards, 1996, p. 159). Such beliefs can be activated by chronic sources, such as chronic control loss expectations on the part of a perceiver, temporary sources, such as situational expectations or task instruction, or situational input relevant to causal knowledge.
While Weary and Edwards (1996) believe that causal uncertainty beliefs are available for everyone, they have suggested that such beliefs are likely to be more accessible and, consequently, more likely to influence the thoughts and behavior of some people more than others. One consequence of these individual differences in the accessibility of causal uncertainty beliefs concerns individuals' sensitivity to situational input relevant to causal understanding. Weary and Edwards (1996) suggest that chronically accessible causal uncertainty beliefs require less situational input to become activated than do causal uncertainty beliefs that are not chronically accessible. Once these beliefs have been activated, Weary and Edwards (1996) suggest that cognitive feelings of causal uncertainty should follow automatically. These feelings have been described as nonemotional feelings experienced as confusion, puzzlement, or bewilderment (Weary & Edwards, 1996).

As was mentioned previously, one source of activation for causal uncertainty beliefs that has been proposed is situational input data relevant to causal understanding. Weary and Edwards (1996) have suggested that situational input data can include covariation information, information about multiple or alternative causes for an event, outcome dependency, or unexpected or negative outcomes. These types of situational input data include some of the same conditions that have been shown to instigate spontaneous attributional processing. Thus, it is possible that by exposing individuals to conditions known to elicit attributional activity, one might be able to activate temporarily causal
uncertainty beliefs and resultant feelings of uncertainty, particularly among those who possess chronically accessible causal uncertainty beliefs.

Expectancy Violation

The most widely researched and most basic factor instigating spontaneous attributional processing is expectancy violation. Hastie (1984) summarizes the dominance of expectancy violation in instigating causal processing by stating that, "The notion that unexpected events elicit causal reasoning appears to be conceptually the most basic of the conditions that have been hypothesized to instigate causal reasoning, in the sense that other specific conditions may be seen as subordinate to the unexpectedness condition," (p. 53).

Several researchers have provided evidence that exposure to unexpected outcomes leads individuals to engage in greater amounts of attributional activity than exposure to expected outcomes. For example, Wong and Weiner (1981) found that individuals were most likely to engage in spontaneous attributional search when the outcome of an event was negative and unexpected. Kanazawa (1992) argued somewhat differently that expectancy violation is the only antecedent that independently prompts spontaneous causal thinking. He went on to state that negative outcomes elicit causal thinking only to the extent that those outcomes are unexpected. Additionally, Pyszczynski and Greenberg (1981), Clary and Tesser (1983), and Hastie (1984) all found that exposure to
unexpected events or incongruent actions of an actor is more likely to induce attributional activity relative to expected events or congruent actions of an actor.

Why does the occurrence of unexpected outcomes have this effect on attributional activity? Clary & Tesser (1983) argued that unexpected events challenge a perceiver's prior ideas, and causal analysis is undertaken as a means of regaining a sense of control. Weiner (1985) stated that attributional search in response to unexpected events might be an example of exploratory behavior that is elicited by a feeling of uncertainty. He further states that exploratory behaviors are undertaken in order to understand better oneself and the environment.

This is not, however, to suggest that all instances of expectancy violation lead to increased feelings of uncertainty. Some types of expectancy violation might be an especially potent source of situational input data that could activate causal uncertainty beliefs and feelings. I will return to a discussion of the types of expectancy violation that might or might not activate causal uncertainty beliefs and feelings in a later section of this document.

The Current Research

The goal of the current research was to examine whether some types of expectancy violation act as situational input that can temporarily activate causal uncertainty beliefs. The purpose of this examination of the effect of expectancy violation on causal uncertainty was actually threefold. The first study of the current research explored the notion that chronically accessible causal
uncertainty beliefs are more easily activated by situational input than are causal uncertainty beliefs that are not chronically accessible. Second, while both the work of Clary and Tesser (1983) and of Weiner (1985) speculates that some unexpected events may prompt attributial processing because they create a state of uncertainty and a desire to reestablish a sense of control, there is no direct evidence to date which supports this notion. The provision of such evidence was a major goal of the second and third studies of the current research.

Finally, the results of the research on depressives' social perception processes provide some initial evidence consistent with the notion that the effects of depression on social information processing are due to depressed individuals' motivation to reduce uncertainty and to regain a sense of interpretive and predictive control over their environments. However, the nature of this evidence is indirect and correlational, and the role of causal uncertainty in social information processing has remained largely unexplored. The three studies in the current research represented an initial attempt to provide a direct assessment of causal uncertainty feelings, and to provide experimental evidence regarding the role of causal uncertainty feelings and situational information relevant to these feelings in social information processing.
CHAPTER 2

STUDY 1

Study 1 was designed to provide initial evidence regarding the effect of expectancy violation on feelings of causal uncertainty for individuals with high and low causal uncertainty. Participants with either high or low levels of causal uncertainty were exposed to either expectancy violation or expectancy confirmation by completing a Social Perceptiveness Assessment Inventory (SPAI). While completing the SPAI, participants were asked to generate causes for outcomes that either violated or confirmed their expectancies. Participants were then asked to complete a questionnaire designed to assess their feelings of causal uncertainty.

As was previously noted, not all instances of expectancy violation are thought to activate causal uncertainty beliefs and increase feelings of causal uncertainty. Jones and Davis (1965) have theorized that unexpected behavior often is more informative and more likely to result in correspondent inferences than is expected behavior. In correspondent inference theory, expectancies can be based on situational factors such as normative constraints. To the extent that
a person's behavior violates expectancies or occurs in spite of the presence of certain inhibitory situational factors, the behavior will be particularly informative about the person's disposition, and the resulting dispositional inference will more likely correspond to the observed behavior. Importantly, correspondent inferences have been associated with increased confidence (Jones, Davis, and Gergen, 1961). Indeed, correspondence has been operationally defined in terms of how confident a perceiver is in making an inference (Weary, Stanley, and Harvey, 1989). It appears, then, that to the extent that an expectancy violation allows a perceiver to form a correspondent inference, then that type of expectancy violation may actually lead to reductions in uncertainty.

If, however, an expectancy violation does not allow a perceiver to form a correspondent inference, then that type of expectancy violation might lead to increases in causal uncertainty. Jones and McGillis (1976) have stated that in order to form correspondent inferences, a perceiver must assume that a target has knowledge that his or her behavior will bring about particular effects. These authors further stated that as the discrepancy between the behavior and the expectancy grows, perceivers become increasingly skeptical about the knowledge assumption. Thus, as the discrepancy between the behavior and the expectancy grows, a perceiver will be less able to form a correspondent inference and should, therefore, be less confident, or more uncertain, about any inference that is drawn.
In the current research, participants read scenarios that included information about a person, some causal antecedents that should logically lead to a particular outcome, and an outcome. In these scenarios, the causal antecedents were included to create expectancies. Expectancy violation was accomplished by providing participants with an outcome that was inconsistent with or highly discrepant from the logical implications of the antecedent conditions.

If the type of expectancy violation manipulation employed in the current research can serve as situational input data relevant to causal understanding and can, therefore, activate temporarily causal uncertainty beliefs and feelings, then we should see participants exposed to expectancy violation reporting higher levels of causal uncertainty feelings. Therefore, I am predicting a main effect of expectancy condition such that participants exposed to expectancy violation will report higher feelings of causal uncertainty. It is important to note that the current manipulation of expectancy violation consists of exposure to five hypothetical outcomes that violate expectancies. Weary and Edwards (1996) have suggested that for individuals who do not possess chronically accessible causal uncertainty beliefs, situational input relevant to causal understanding may need to be stronger to increase feelings of causal uncertainty. It is possible, in the current study, then, that an expectancy condition X causal uncertainty interaction will emerge, such that expectancy violation will temporarily heighten
causal uncertainty feelings, but only for those participants who possess chronically accessible causal uncertainty beliefs (i.e., participants high in causal uncertainty).

Method

Design

The design of Study 1 was a 2 (Expectancy condition: confirm or violate) × 2 (Level of Causal Uncertainty: high or low) between-subjects design. Level of causal uncertainty was assessed with the Causal Uncertainty Scale (Weary & Edwards, 1994). The Causal Uncertainty Scale (CUS) is a 14-item scale that asks subjects to indicate the degree to which they agree with statements designed to assess their uncertainty about their ability to understand and detect cause and effect relationships in the social world. The response options on this scale are "strongly disagree", "moderately disagree", "slightly disagree", "slightly agree", "moderately agree", and "strongly agree". Subjects' scores are calculated by summing across each of the individual items (scored from 1 to 6). Scores can range from 14 to 84. The CUS has been shown to have high internal reliability, with Cronbach's alphas ranging from .83 to .86, and fairly high test-retest reliability, with reliability coefficients ranging from .62 to .79 (Jacobson, Weary, & Edwards, 1994; Weary & Edwards, 1994). Factor analyses conducted on the CUS have revealed a single factor structure, suggesting that the scale measures one construct (Jacobson, Weary, & Edwards, 1994; Weary & Edwards, 1994). In addition, the CUS has been shown to have adequate
convergent validity. The CUS is related to variables to which it theoretically should relate, such as a stable attributional style, a controllable attribution style, the Beck Depression Inventory, Locus of Control, Desire for Control, and Need for Cognition ($r_s = .30, -.26, .37, .23, -.21, \text{and} -.42$, respectively). Finally, it has been shown that the CUS has good discriminant validity. The CUS is unrelated to both social desirability and general intelligence level (Weary & Edwards, 1994).

Participants

One hundred and twelve male and female undergraduates enrolled in introductory psychology at The Ohio State University participated in this experiment in partial fulfillment of course requirements. Participants were run in groups of two to five. They were randomly assigned to one of the two expectancy conditions.

Procedure

Participants were told that they would be participating in a study designed to validate a psychological measure called the Social Perceptiveness Assessment Inventory (SPAI). Prior to beginning work on the SPAI, participants were asked to complete a scale entitled “Current Feelings” designed to assess their cognitive feelings of causal uncertainty. Items on this scale consist of ten adjectives, six (uncertain, confused, doubtful, puzzled, unsure, and undecided) of which are thought to be theoretically relevant to the cognitive feelings presumed to activate or be activated by causal uncertainty beliefs. Four items
on this scale were included to mask the purpose of the scale. These items ask participants about their levels of positive affect (confident, happy, content, satisfied).

The participants were told that sometimes it is helpful for experimenters to understand how their participants are feeling when they arrive at the lab. Participants were instructed in writing, "This is a questionnaire designed to measure what you are feeling at this moment. There is, of course, no right answer for any statement. The best answer is the one that describes how you are feeling at this moment. Be sure to answer all of the items, even if you are not certain of the best answer. Again, answer these questions according to how you are feeling RIGHT NOW. Circle the answer that best describes how you feel now." Participants rated on 5-point scales the extent to which they felt each of the emotions listed.

After completing the current feelings uncertainty scale, participants were asked to complete the SPAI. Participants were told that, "Social Perceptiveness is one dimension across which people can differ. It is an individual difference that concerns our interactions with other people. Social Perceptiveness deals with how people perceive and pay attention to the events that occur in other people's lives and the reasons for those events. Some people are high in Social Perceptiveness while others are lower on this dimension." Participants were then asked to read about several events that occurred in other people's lives and to answer some questions regarding these events.
Expectancy Violation Manipulation

Half of the participants received a version of the SPAI containing five scenarios designed to violate expectancies. These scenarios included information about a person, some causal antecedents that should logically lead to a particular outcome, and an outcome that is not consistent with the causal antecedents in the scenario. The other half of the participants received a version of the SPAI containing five scenarios designed to confirm expectancies. These scenarios included information about a person, some causal antecedents that should logically lead to a particular outcome, and an outcome that is consistent with the causal antecedents in the scenario. All participants read the same information about the characters in the scenarios, and read about identical outcomes. The only difference between conditions was the extent to which the outcomes were consistent with the causal antecedents.

After reading each scenario, participants were asked to indicate on a 9-point scale, with 1 meaning not at all expected and 9 meaning very much expected, the extent to which they expected the event they read about to occur. Participants then were asked to identify the relevant causes of the scenario outcome and to rate on a 9-point scale, with 1 meaning very uncertain and 9 meaning very certain, their certainty in each cause that they identified.

After completing the SPAI, participants were asked to complete a 10-item inventory designed to assess generally how confident participants felt about
their understanding of the causes underlying the events about which they read. Participants were told that this scale simply asks questions about the SPAI, and that it is part of the inventory validation procedure.

After completing this inventory, participants were again asked to complete the "Current Feelings" questionnaire assessing their current feelings of uncertainty. In order to avoid confusion on the part of the participants about completing the same scale twice, they were given slightly different instructions when they completed this scale the second time. Here, participants were asked to complete the scale according to how they were feeling right at that moment. Participants were told that their responses to each item should feel like gut reactions, and that they should not have to think about any of their responses for very long. The written instructions given to the participants for this scale were the same as those given for the first administration of the scale.

Finally, participants were asked to complete several questionnaires as part of a large psychology department scale validation study. These questionnaires were the Causal Uncertainty Scale (CUS) and the Beck Depression Inventory (BDI). After completing these scales, participants were then debriefed and dismissed (See Appendix C for Study 1 materials).

Results

For two reasons, both ANOVAs treating causal uncertainty as a categorical variable and multiple regressions including both depression and causal uncertainty as continuous variables were conducted on all major
dependent measures. First, although the procedure of conducting median splits on potentially continuous variables has been criticized (West, Aiken, & Krull, 1996), such a data analytic approach was undertaken here because procedures for decomposing and testing the type of complex interactions involved in this research are more available and more commonly used for ANOVA than for regression analysis. Second, causal uncertainty and depression have been shown to be significantly correlated with one another. Indeed, previous research examining the role of causal uncertainty in social perception processes has looked only at causal uncertainty indirectly by using depressed and nondepressed participants. In the current research, the independent effects of causal uncertainty and depression on social information processing could best be examined with regression analyses. The results from both of these data analytic procedures are reported for the primary social information processing measures. On the ancillary measures, for clarity of presentation, only the results of the ANOVAs are reported. Results from the regression analyses that differ from the ANOVAs on these ancillary measures are described in the endnotes.

Expectancies

Participants rated on a 9-point scale with 1 meaning not at all expected and 9 meaning very much expected, the extent to which they expected each outcome to occur. Participants' scores on this scale were averaged across scenarios to yield a measure of average expectancy per scenario. A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANOVA was
conducted on this measure. The predicted main effect of expectancy condition was found, $F(1, 107) = 79.82, p < .001$. Participants whose expectancies were violated reported lower scores on this measure, indicating that these participants expected the outcomes about which they read to occur to a lesser degree ($M = 3.46, SD = 1.08$) than did participants whose expectancies were confirmed ($M = 5.61, SD = 1.44$). In addition, an expectancy condition X causal uncertainty interaction was found, $F(1, 107) = 3.82, p = .05$. An examination of the means involved in this interaction indicates that the main effect of expectancy condition occurs for all participants, but is slightly attenuated for participants high in causal uncertainty. However, planned comparisons of the means for this interaction, indicate that although the effect of expectancy condition is attenuated for participants high in causal uncertainty, it is still significant, $t_{(107)} = 4.88, p < .001$, two-tailed. The means for this interaction are listed in Table 1 (See Appendix A for tables).

Uncertainty Ratings

Subjects rated on a 9-point scale with 1 meaning very uncertain and 9 meaning very certain, how certain they were that each cause they listed contributed to the outcome about which they read. Participants’ ratings on this scale were averaged across causes to yield a measure of average certainty per cause. A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANOVA conducted on this measure yielded a main effect of expectancy condition, $F(1, 109) = 5.54, p < .03$. Participants whose expectancies were violated were less
certain in the causes they listed than were participants whose expectancies were confirmed (Ms = 5.50 and 6.06, respectively, SDs = 1.03 and 1.23, respectively).

Current Feelings of Uncertainty

In a previous study an exploratory factor analysis (SAS, Promax rotation) by the principle factors method was conducted on the Current Feelings of Uncertainty scale (Riley, 1994). Based on an analysis of the scree plot, two factors with eigenvalues greater than one were retained, an uncertainty factor (eigenvalue = 4.63) and a positive affect factor (eigenvalue = 1.08). Together, these two factors explained 99 percent of the observed variance. Six items loaded on the uncertainty factor. These items were the uncertain, confused, doubtful, puzzled, unsure and undecided items. Four items loaded on the positive affect factor. These items were the confident, happy, content, and satisfied items.

In the current study, factor analyses (SAS, Promax rotation) using the principal factors method were conducted on this scale at both time 1 and time 2 in order to confirm the existence of these two factors. At time 1, based on an analysis of the scree plot, two factors with eigenvalues greater than one were retained. This scree plot is shown in Figure 1 (See Appendix B for figures). The items assessing the extent to which participants felt uncertain, confused, doubtful, puzzled, unsure, and undecided loaded on an uncertainty factor, and the items assessing the extent to which participants felt confident, happy, content, and satisfied loaded on a positive affect factor. At time 2, based on an
analysis of the scree plot, two factors with eigenvalues greater than one were retained. This scree plot is shown in Figure 2. Again, the items assessing the extent to which participants felt uncertain, confused, doubtful, puzzled, unsure, and undecided loaded on an uncertainty factor, and the items assessing the extent to which participants felt confident, happy, content, and satisfied loaded on a positive affect factor.

Time 1 Causal Uncertainty Feelings

An uncertainty measure was computed by averaging participants' scores on the items that loaded on the uncertainty factor. A 2 (Expectancy Condition) x 2 (Level of Causal Uncertainty) ANOVA was conducted on this measure. This analysis yielded a main effect of level of causal uncertainty, $F(1, 111) = 11.16, p < .01$. As expected, prior to any manipulation in the experiment, participants low in causal uncertainty reported lower feelings of causal uncertainty ($M = 9.04, SD = 3.2$) than did participants high in causal uncertainty ($M = 11.33, SD = 4.07$).

Time 1 Positive Affect

A positive affect measure was computed by averaging participants' scores on the items that loaded on the positive affect factor. A 2 (Expectancy Condition) x 2 (Causal Uncertainty) ANOVA conducted on this measure yielded a main effect of causal uncertainty, $F(1, 111) = 10.51, p < .01$. Prior to any experimental manipulation, participants high in causal uncertainty reported lower levels of positive affect ($M = 12.65, SD = 2.86$) than did participants low in causal uncertainty ($M = 14.37, SD = 2.60$).
Time 2 Causal Uncertainty Feelings

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANCOVA using participants' time 1 uncertainty scores as a covariate was conducted on the time 2 uncertainty measure. Participants' time 1 uncertainty scores were used as a covariate here in order to examine the effects of expectancy violation on causal uncertainty independent of differences in uncertainty that might have existed prior to the experimental manipulation. As expected, this analysis revealed a significant effect of the covariate, time 1 uncertainty, $F(1, 111) = 108.10, p < .001$. A main effect of expectancy condition also emerged, $F(1, 111) = 4.25, p < .05$. Participants whose expectancies were violated reported higher feelings of causal uncertainty ($M = 10.6, SD = .34$) than did participants whose expectancies were confirmed ($M = 9.6, SD = .34$).

Time 2 Positive Affect

A 2 (Expectancy Condition) X 2 (Causal Uncertainty) ANCOVA using participants' time 1 positive affect scores as a covariate was conducted to examine the effects of causal uncertainty and expectancy violation on participants' levels of positive affect controlling for participants' pre-existing levels of positive affect. This analysis yielded a significant effect of the covariate, time 1 positive affect, $F(1, 111) = 112.75, p < .001$, and a significant main effect of causal uncertainty, $F(1, 111) = 5.10, p < .05$. Similar to time 1,
participants high in causal uncertainty reported lower levels of positive affect (M = 13.16, SD = .27) than did participants low in causal uncertainty (M = 14.04, SD = .27).

Discussion

The results of Study 1 provide support for the hypothesis that expectancy violation can temporarily heighten causal uncertainty feelings. Support for this hypothesis comes from two of the major findings of Study 1. First, participants whose expectancies were violated reported less certainty in the causes that they listed for the outcomes about which they read. Second, participants whose expectancies were violated reported higher feelings of causal uncertainty than did participants whose expectancies were confirmed. Taken together, these findings provide support for the notion that the expectancy violation manipulation employed in this study acted as situational input that temporarily activated causal uncertainty feelings.

One of the major purposes of the current study was to explore whether chronically accessible causal uncertainty feelings are more easily activated by situational input than are non-chronically accessible causal uncertainty feelings. The results of study 1 do not provide evidence for this notion. Instead, the results of study 1 indicate that expectancy violation activated causal uncertainty feelings for all participants. The lack of an expectancy condition X causal uncertainty interaction seems to indicate that the expectancy violation
manipulation employed in the current study was strong enough to activate all available causal uncertainty beliefs, even those that were not chronically accessible.

One of the primary goals of the current research is to examine the effects of temporary and chronic sources of causal uncertainty on social information processing. Although Study 1 allowed me to examine the effect of expectancy violation on feelings of causal uncertainty, it did not include any social perception measures. Therefore, Study 2 was conducted in order to examine the effects of expectancy violation and causal uncertainty on social perception processes.
CHAPTER 3

STUDY 2

It has thus far been suggested that some unexpected events increase a perceiver's need to understand and control the social environment. In accord with research by Clary and Tesser (1983) and Weiner (1985), it has been suggested that unexpected events sometimes result in increased attributional analysis as a means of increasing perceivers' understanding and control of the social world. Therefore, expectancy violation has been viewed as a potentially potent source of situational input data that could activate causal uncertainty beliefs and feelings. The results of study 1 provide support for the notion that expectancy violation can engender heightened feelings of causal uncertainty.

Weary and her colleagues have provided some support for the notion that the detailed information processing engaged in by depressives is due to these individuals' perceived lack of control over life events and subsequent motivation to regain a sense of interpretive and predictive control over their environments (Edwards & Weary, 1993; Yost & Weary, 1996). However, the role of causal
uncertainty in social information processing has not yet been directly explored. Study 2 is designed to provide experimental evidence regarding the role of causal uncertainty feelings and situational information relevant to these feelings in social perception processes.

More specifically, Study 2 was a conceptual replication of a study conducted by Gleicher & Weary (1991, Study 1). In this study investigating depressives' social information-processing, Gleicher & Weary (1991) examined the naturally occurring, on-line impressions generated by depressed and nondepressed perceivers in response to an ongoing behavioral sequence. More specifically, depressed and nondepressed subjects generated on-line inferences after viewing a videotape in which a student performed poorly on an aptitude test and then accepted either a high or low degree of causal responsibility for his test performance. After generating their impressions of the student, subjects rated each inference for how confident they were in it, how abstract it was, and how specific it was. Abstract inferences were defined as complex inferences based on a combination of behaviors, while specific inferences were defined as context-specific inferences based on a concrete behavioral referent. This abstract-specific dimension is similar to the concreteness-abstractness dimension along which Semin and Fiedler (1988) classify linguistic categories. At the concrete end of this dimension, linguistic categories "maintain an immediate reference to concrete behavioral events," (p. 560), while at the abstract end of this dimension, linguistic categories "maintain an abstract
reference to a person's psychological properties (traits, dispositions)" (Semin & Fiedler, 1988, p. 560). As can be seen, then, abstract inferences correspond to
the dispositional inferences referred to in classic attribution theories.

Gleicher and Weary (1991) found that when the actor accepted low
causal responsibility for his test outcome, depressed subjects generated a
greater number of inferences and a greater number of abstract inferences than
nondepressed subjects. Further, these authors found that all subjects were less
confident in abstract than specific inferences. Because depressed subjects
generated a greater number of abstract inferences than nondepressed subjects,
depressed subjects were less confident than nondepressed subjects in their
composite impression of the actor. Gleicher and Weary (1991) concluded that
these findings provided evidence of more complex cognitive processing on the
part of depressed perceivers, and that this more complex processing was
motivated by depressives' heightened levels of causal uncertainty and their
subsequent desire for a more accurate social understanding.

The conclusion by Gleicher and Weary (1991) that the generation of a
greater number of abstract inferences is evidence of more complex cognitive
processing is consistent with correspondent inference theory (Jones & Davis,
1965; Jones & McGillis, 1976). The social information processing goal in the
Gleicher and Weary (1991) study was to form a general overall impression of an
actor who violated a social norm. This type of social information configuration is
exactly that referred to by Jones and McGillis (1976) in their discussion of the
attributional effects of the violation of normative expectancies. Correspondent inference theory posits that when a freely chosen behavior violates social norms, logical, complex attributional processing should lead perceivers to make dispositional or correspondent inferences about the person engaging in the unexpected behavior. Moreover, it would seem reasonable to expect that perceivers, to the degree they are more highly motivated to obtain an accurate impression of the person, should be even more sensitive to the attributional implications of such violations and should generate a greater number of dispositional inferences.

In the current study, participants were exposed to the same expectancy violation manipulation that was employed in study 1. Half of the participants were exposed to scenarios that confirmed expectancies, and half of the participants were exposed to scenarios that violated expectancies. After the expectancy violation manipulation, participants underwent a procedure identical to that employed by Gleicher and Weary (1991). Participants whose expectancies were violated by exposure to scenario outcomes were predicted to feel heightened levels of causal uncertainty. In an effort to gain an accurate impression of the actor and thereby reduce causal uncertainty, participants whose expectancies were violated were predicted to generate a greater number of abstract inferences in response to the actor's behavioral sequence than participants whose expectancies were confirmed. This effect of expectancy violation on information processing was predicted to be especially pronounced.
for participants high in causal uncertainty, because individuals high in causal uncertainty are particularly likely to be motivated to gain an accurate impression of the actor and, thereby, to achieve a sense of accurate social understanding. Study 2 was conducted in order to test these predictions.

Method

Design

The design of Study 2 was a 2 (Expectancy Condition: violated or confirmed) X 2 (Level of Causal Uncertainty: high or low) between-subjects design. Level of causal uncertainty was assessed with the Causal Uncertainty Scale. High and low levels of causal uncertainty were operationalized by conducting a median split on participants' scores on this scale.

Participants

One hundred and twenty-eight male and female undergraduates enrolled in introductory psychology participated in this experiment in partial fulfillment of course requirements. Participants were run in groups of two to five and they were randomly assigned to one of the two expectancy conditions.

Procedure

The procedure of Study 2 was the same as that of Study 1 with one exception. After the completion of the second Current Feelings scale, participants engaged in a task identical to that employed by Gleicher and Weary (1991, Study 1). All participants were told, "Another way in which psychologists examine social perceptiveness is by looking at the various methods that people
use to obtain information about other people's personalities." Participants also
were told that one reliable way to learn about another person's personality is to
observe that person's manner of approaching and solving problems. Therefore,
participants were asked to observe a videotape of a student (actor) performing
an analytical ability task and then to report their impressions of the student.

After this explanation, participants viewed a 20-minute videotape in which
a male actor performs three subtests of an aptitude test, the Spatial Analysis
Aptitude Test (SPAAT), and receives feedback from the test administrator. The
actor is told that compared with all people who had previously taken the test, he
performed poorly, scoring in the 20th percentile. The test administrator then
asks the actor how personally responsible he feels for his performance. The
actor violates the social norm favoring internal explanations for performance
outcomes (Jellison & Green, 1981) by responding that he does not feel at all
personally responsible for his performance. The actor reports his feelings of
causal responsibility for his test outcome as a 2 on a 9-point scale assessing
how personally responsible he feels for his test performance.

Immediately after viewing the videotape, participants were asked to
complete a questionnaire in which they were asked to list as many impressions
of the actor as came to mind. They then rated each of these inferences on two
9-point scales for how abstract it was (i.e., to what degree the inference was
based on a combination of behaviors) and for their confidence in it. The order of
these two scales was counterbalanced across participants. This questionnaire
also contained several manipulation checks (See Appendix D for videotape inference generation questionnaire). When participants completed this questionnaire, they were asked to complete the BDI, the CUS, and a scale assessing their general perceptions of control over life events. Finally, participants were debriefed and then dismissed.

Results

Expectancies

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANOVA was conducted on the average expectancy per scenario measure. The predicted main effect of expectancy condition emerged, $F(1, 127) = 79.34, p < .001$, such that participants whose expectancies were violated had lower scores on this measure ($M = 3.81, SD = .92$) than participants whose expectancies were confirmed ($M = 5.54, SD = 1.22$). This analysis yielded no effect of causal uncertainty and no interaction between causal uncertainty and expectancy condition.

Uncertainty Ratings

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANOVA was conducted on the measure of average certainty per cause. This analysis yielded a main effect of expectancy condition, $F(1, 127) = 12.48, p < .01$. Participants whose expectancies were violated reported lower levels of certainty per cause ($M = 5.64, SD = .73$) than did participants whose expectancies were confirmed ($M = 6.19, SD = 1.02$). The ANOVA revealed that this main effect was
qualified by an expectancy condition X causal uncertainty interaction, $F(1, 127) = 3.92, p < .05$. An examination of the means involved in this interaction indicated that participants high in causal uncertainty whose expectancies were violated were less certain about the causes they listed than participants high in causal uncertainty whose expectancies were confirmed. Participants low in causal uncertainty whose expectancies were violated showed no such reduction in their certainty compared with participants low in causal uncertainty whose expectancies were confirmed. Means for this interaction are listed in Table 2.

Current Feelings of Uncertainty

Factor analyses (SAS, Promax rotation) using the principal factors method were conducted on the Current Feelings scale at both time 1 and time 2 in order to confirm the existence of two factors. Based on an analysis of the scree plots, at time 1, two factors with eigenvalues greater than one were retained. At time 2, two factors with eigenvalues greater than one also were retained (these scree plots are shown in Figures 3 and 4). At both time 1 and time 2, the items assessing the extent to which participants felt uncertain, confused, doubtful, puzzled, unsure, and undecided loaded on an uncertainty factor, and the items assessing the extent to which participants felt confident, happy, content, and satisfied loaded on a positive affect factor.

Time 1 Causal Uncertainty Feelings

This uncertainty measure was again computed by averaging participants' scores on the items that loaded on the uncertainty factor. A 2 (Expectancy
Condition) X 2 (Level of Causal Uncertainty) ANOVA was conducted on this measure. Consistent with Study 1, a main effect of level of causal uncertainty emerged, $F(1, 127) = 5.74, p < .05$. Participants high in causal uncertainty reported higher feelings of causal uncertainty prior to the experimental manipulation ($M = 10.36, SD = 3.26$) than participants low in causal uncertainty ($M = 8.95, SD = 3.42$).

Time 1 Positive Affect

A measure of positive affect was again computed by averaging participants' scores on the items that loaded on the positive affect factor. A 2-way ANOVA on this measure revealed only a main effect of causal uncertainty, $F(1, 127) = 14.83, p < .001$. Participants high in causal uncertainty reported lower feelings of positive affect ($M = 12.86, SD = 2.53$) than participants low in causal uncertainty ($M = 14.6, SD = 2.73$).

Time 2 Causal Uncertainty Feelings

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANCOVA using participants' time 1 uncertainty scores as a covariate was conducted on the time 2 uncertainty measure. This analysis revealed only a significant effect of the covariate, $F(1, 127) = 98.39, p < .001$. No effects of causal uncertainty or of expectancy condition and no interaction between these variables emerged from this analysis.
Time 2 Positive Affect

A 2-way ANCOVA using participants' time 1 positive affect scores as a covariate was conducted on participants' time 2 positive affect scores. This analysis revealed only a significant effect of the covariate, $F(1, 127) = 126.19, p < .001$. No other significant effects resulted from this analysis.

Videotape Manipulation Checks

Participants were asked to rate on a 9-point scale how well the student in the videotape performed on the analytical ability task, with a rating of 1 indicative of a very poor performance and a rating of 9 indicative of a successful performance. To ensure that participants had similar perceptions of the actor's performance on the analytical ability task, a 2-way ANOVA was performed on this measure. This analysis showed no significant effects of expectancy condition or of causal uncertainty, and no interaction between these variables, all Fs < 1, ns. The mean score on this measure was 3.4 (SD = 1.75), indicating that all subjects thought that the student performed poorly on the analytical ability task.

Participants were asked to rate on a 9-point scale how responsible the student in the videotape felt for his performance outcome, with 1 meaning not at all responsible, and 9 meaning entirely responsible. A 2-way ANOVA on this measure yielded a main effect of causal uncertainty, $F(1, 119) = 4.81, p < .05$. Participants low in causal uncertainty thought the student felt less personally responsible for his performance outcome ($M = 2.53, SD = 1.56$) than did
participants high in causal uncertainty ($M = 3.22$, $SD = 2.05$). Although this effect was not predicted, it does appear that all participants understood that the student in the videotape accepted a low level of personal responsibility for his performance outcome, and therefore violated the social norm favoring internal explanations for performance outcomes (Jellison and Green, 1981).

Finally, participants were asked to rate on a 9-point scale how responsible they thought the student was for his performance outcome, with 1 meaning not at all and 9 meaning entirely. A 2-way ANOVA conducted on this measure showed no significant effects of expectancy condition or of causal uncertainty, both $F_s < 1$, ns, and no interaction between these variables, $F (1, 119) = 1.14$, ns. All participants viewed the actor as moderately responsible for his poor performance ($M = 6.34$, $SD = 1.86$). Again, this seems to indicate that participants understood that the student in the videotape violated the social norm of internality for performance outcomes.

Numbers of Inferences

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) X 2 (Inference Type: abstract or specific) mixed design ANOVA with inference type as a within-subjects factor was conducted on the number of inferences generated by participants in response to the actor's behavioral sequence. If participants rated an inference as less than five on the abstraction scale, the inference was considered to be specific. If an inference was rated as greater than five on the abstraction scale, the inference was considered to be abstract.
Inferences rated as five were not included in this analysis. No significant effects emerged from this analysis. However, in accord with planned analyses, separate 2 (Expectancy Condition) X 2 (Causal Uncertainty) ANOVAs were conducted on the number of abstract inferences and on the number of specific inferences. The ANOVA conducted on the number of abstract inferences revealed no significant effects of expectancy condition or causal uncertainty. However, the ANOVA conducted on the number of specific inferences yielded a significant effect of expectancy condition, $F(1, 127) = 7.6, p < .01$. Participants whose expectancies were violated generated a greater number of specific inferences ($M = 3.69, SD = 2.58$) than did participants whose expectancies were confirmed ($M = 2.57, SD = 1.98$). This analysis revealed no effects of causal uncertainty and no interactions.

Causal Uncertainty and Depression

Separate regressions including BDI, CUS, expectancy condition, and the interactions between these variables also were conducted on the number of abstract inferences and on the number of specific inferences. The regression conducted on the number of abstract inferences revealed no significant effects of depression, causal uncertainty, or expectancy condition and no interactions between these variables. The regression conducted on the number of specific inferences yielded the same main effect of expectancy condition, $F(1, 127) = 4.85, p < .05$, that emerged from the ANOVA. No other significant effects emerged from this analysis.
Confidence in Inferences

Consistent with Gleicher and Weary (1991, Study 1) participants' confidence in the inferences they generated was assessed by computing an index of average confidence in specific inferences and an index of average confidence in abstract inferences. Inferences rated as a five on the abstraction scale were not included in this analysis. A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) X 2 (Inference Type) mixed design ANOVA was conducted on participants' ratings of confidence in abstract and specific inferences. Inference type was a within-subjects factor.

Gleicher and Weary (1991) considered specific inferences to be based more on context-specific behaviors and to have clearer behavioral referents than abstract inferences. For this reason, these authors predicted that specific inferences would be held with greater confidence than abstract inferences. Consistent with the predictions and findings of Gleicher and Weary (1991), only a main effect of inference type emerged from the ANOVA, $F(1, 92) = 10.3, p < .01$. Specific inferences were held with greater confidence ($M = 6.76, SD = 1.31$) than were abstract inferences ($M = 6.03, SD = 1.58$).

Another way to measure participants' confidence in the inferences they generated is to compute an average confidence per inference score. This measure is computed by summing participants' confidence ratings for each inference and dividing by the number of inferences generated. This measure is slightly different than the previous measure of confidence because it takes
inferences that were rated as a five on the abstraction scale into account. This measure was computed for each participant and subjected to a 2-way ANOVA. No significant effects of expectancy condition or of causal uncertainty and no interaction between these variables emerged from this analysis.

Raters' Assessment of Inferences

Because participants' ratings of inferences could be affected by the expectancy violation manipulation or by other idiosyncratic rating schemes on the part of participants, participants' inferences were recoded according to the Linguistic Category Model (LCM) and associated criteria developed by Semin and Fiedler (1988) (See Appendix E for inference coding instructions). The LCM provides a systematic method by which the level of abstraction of an individual's description of a target's action can be classified. This measure simply provided another method by which the number of abstract or dispositional inferences generated by participants could be examined.

Similar to a study reported by Hamilton, Gibbons, Stroessner, and Sherman (1992), our analysis differed in one important respect from most of the studies reported by Semin, Fiedler and others. The Linguistic Category Model (Semin and Fiedler, 1988) focuses on verbs used in sentences describing interpersonal actions. In the current study, however, a focus on verbs was too constraining because participants were describing not only the actor in the videotape's actions, but also his personality. Therefore, we adapted Semin and Fiedler's classification system to incorporate levels of abstraction for adjectives
as well as verbs. This practice seemed acceptable, given that other researchers have recognized the different properties of adjectives themselves (Hampson et al., 1986), including a narrowness-broadness dimension that is similar to the abstractness-concreteness dimension captured in Semin and Fiedler's classification system.

If an inference was a description of a behavior in which the actor had engaged, it was considered to correspond with Semin and Fiedler's descriptive action verbs or DAVs. For example, if a participant generated the inference that "Dave said he was not responsible for his score," this was coded as a DAV.

If an inference was an interpretation of some of the actor's behavior, it was considered to correspond with Semin and Fiedler's interpretive action verbs or IAVs. For example, if a participant generated the inference, "Dave had a hard time with the blocks," this was considered to be an interpretation on the part of a participant of a behavior displayed by the actor and was coded as an IAV.

Because most of the remaining inferences generated by participants were adjectives describing the actor in some way, we needed to differentiate between these adjectives. If an inference was generated that was an adjective describing the actor, but was really capturing a psychological state being experienced by the actor, it was considered to correspond with Semin and Fiedler's state verbs or SVs. For example, if a participant generated the inference, "Dave is nervous," it was coded as an SV. This type of inference was not coded as an adjective because it seemed to imply a temporary psychological state that the actor was
experiencing. That is, I believed that participants were communicating the idea that Dave would be nervous in similar situations, but would not be nervous all the time, and would probably stop being nervous after the test was completed.

Finally, if an inference was generated that clearly described a disposition of the actor, this inference was considered to correspond with Semin and Fiedler's adjectives or Adj. For example, if a participant generated the inference that, "Dave is stupid," this was coded as an Adj. This inference seems to imply temporal stability as well as cross-situational consistency. That is, I believed that participants were communicating the idea that Dave is stupid all the time and in all situations.

Independent ratings of linguistic category (interrater reliability established on an independent set of 101 inferences, \(r = .75, p < .001 \) were made by two raters (Shannon Riley and a second person familiar with the materials of this study), each rating one half of the inferences generated and both blind to participant condition.

The number of abstract inferences generated by participants was examined in the following manner. If an inference was coded as a DAV or an IAV, it was considered to be concrete. If an inference was coded as an SV or an Adj, it was considered to be abstract. A 2 (Expectancy Condition) X 2 (Causal Uncertainty) X 2 (Inference type: concrete or abstract) mixed design ANOVA with inference type as a within-subjects factor was conducted on the number of inferences generated. This analysis revealed only a significant effect for
inference type, $F(1, 116) = 148.36, p < .001$. Here, all participants generated a greater number of abstract ($M = 5.63, SD = 3.22$) than specific inferences ($M = 1.41, SD = 1.69$). Again, in accord with planned analyses, separate 2 (Expectancy Condition) X 2 (Causal Uncertainty) ANOVAs were conducted on the number of abstract inferences and on the number of concrete inferences. The ANOVA conducted on the number of abstract inferences revealed no effects of expectancy condition or causal uncertainty. The ANOVA conducted on the number of concrete inferences yielded a significant causal uncertainty X expectancy condition interaction, $F(1, 119) = 4.35, p < .04$. Comparisons of the means involved in this interaction indicated that participants low in causal uncertainty whose expectancies were violated generated a smaller number of concrete inferences ($M = 1.14, SD = 1.53$) than did participants low in causal uncertainty whose expectancies were confirmed ($M = 1.53, SD = 1.46$), but the difference between these means was not significant, $t(232) = .91, ns$. Participants high in causal uncertainty whose expectancies were violated generated a greater number of concrete inferences ($M = 1.96, SD = 2.5$) than did participants high in causal uncertainty whose expectancies were confirmed ($M = 1.06, SD = 1.08$), and the difference between these means was significant, $t(232) = 2.04, p < .05$. The means involved in this interaction are in Table 3.

Causal Uncertainty and Depression

Separate regressions including BDI, CUS, expectancy condition, and the interactions between these variables were conducted on the number of abstract
inferences and the number of concrete inferences. The regression conducted on the number of abstract inferences yielded no significant effects. The regression conducted on the number of concrete inferences yielded only the same expectancy condition X causal uncertainty interaction, \(F(1, 119) = 9.87, p < .01 \), that emerged from the ANOVA.

Discussion

The purposes of study 2 were to replicate the effect of expectancy violation on feelings of causal uncertainty found in study 1 and to examine whether temporarily increased levels of causal uncertainty would lead to the generation of a greater number of abstract inferences in response to the actor's behavioral sequence. The results of study 2 partially supported predictions.

In the current study, I predicted that expectancy violation would increase participants' feelings of causal uncertainty. I found some evidence that expectancy violation heightened levels of causal uncertainty. Participants whose expectancies were violated reported higher uncertainty about the causes they listed for the scenario outcomes than participants whose expectancies were confirmed. However, I did not find any effect of expectancy violation on participants' time 2 causal uncertainty feelings.

If expectancy violation did increase feelings of causal uncertainty as reported on the SPAI, why were there no effects of expectancy violation on uncertainty feelings at time 2? One possible explanation for this is that
participants whose expectancies were violated used a strategy that could have decreased their causal uncertainty feelings. However, no measures were employed in the current study that provide support for this notion.

Another possible explanation for this concerns the amount of time that passed between participants' completion of the SPAI and the Current Feelings scale at time 2. Participants were usually run in groups of four or five. In these groups, there were large discrepancies between participants' completion times for the SPAI. Many participants had to wait for other members of their group to finish the SPAI before they could fill out the Current Feelings scale at time 2. It is possible that expectancy violation did heighten feelings of causal uncertainty, but that too much time passed between completion of the SPAI and completion of the Current Feelings scale for these feelings to be reported a second time.

In the current study, I also predicted that expectancy violation would lead participants to generate a greater number of abstract inferences about the actor in the videotape, because correspondent inference theory predicts that the careful, rational processing of the configuration of social information similar to that presented in the videotape should result in the generation of more dispositional inferences. This effect was predicted to be particularly pronounced for participants high in causal uncertainty. The number of inferences generated by participants was measured in two ways. Neither of the measures yielded results consistent with predictions. Analysis of the measure of the number of inferences generated employing participants' ratings of their inferences indicated
that expectancy violation did not result in the generation of a greater number of abstract inferences; however, it did result in the generation of a greater number of specific inferences. Analysis of the measure of the number of inferences generated employing judges’ ratings of participants’ inferences indicated that all participants generated a greater number of abstract inferences in response to the actor’s behavioral sequence, regardless of condition. These findings on the inference measures were unexpected and inconsistent.

Why did expectancy violation not result in a relatively greater number of abstract inferences than expectancy confirmation? Recall that the current study provides only equivocal evidence that expectancy violation increased participants’ feelings of causal uncertainty. If the expectancy violation manipulation employed in the current study failed to activate causal uncertainty beliefs and to heighten feelings of causal uncertainty, then there would have been no reason to expect that participants whose expectancies were violated would generate a greater number of abstract inferences than participants whose expectancies were confirmed.

Another possible explanation for the findings on the inference generation measures concerns the properties of the measures themselves. Both of the measures of information processing in the current study relied on participants' free descriptions of an actor's behavior. Fiedler and Semin (1992) and Maass and Arcuri (1992) have all argued that one of the weaknesses of measures that rely on free descriptions of another is that they capture a pervasive tendency on
the part of perceivers to use relatively abstract terms in their free descriptions of others. While the tendency to use abstract terms was demonstrated by the findings for the measure employing judges' ratings of participants' inferences, this tendency was not reflected by the findings for the measure that employed participants' ratings of their own inferences. Indeed, the inconsistency between these two measures points to another potential weakness of these open-ended information processing measures.

Study 2, then, appears to have several weaknesses. First, the evidence that expectancy violation increased participants' feelings of causal uncertainty was equivocal and not as strong as that obtained in Study 1. This could have been a function of the amount of time between the activation and reporting of causal uncertainty feelings. Second, the measures of participants' generation of abstract inferences might have been somewhat less than optimal. There seems to be some evidence in the literature that free descriptions of others might not be sensitive enough to clearly capture differences in the number of abstract inferences that individuals generate (Maass & Arcuri, 1992; Semin & Fiedler, 1992). In an attempt to remedy these weaknesses of study 2, a third study was conducted to examine the effects of expectancy violation and causal uncertainty on individuals' social information processing.
Up to this point, it remains unclear whether the expectancy violation manipulation employed in the current research serves as situational input that can activate feelings of causal uncertainty. Study 1 provided strong evidence in support of this notion, but the evidence provided by Study 2 was somewhat weaker. As was previously mentioned, one reason that participants in study 2 may not have reported heightened feelings of causal uncertainty is that they may have had to wait too long between the activation of these feelings and the reporting of these feelings. For this reason, in the final study, participants were given the Current Feelings scale at the same time that they were given the SPAI. This prevented participants from having to wait before completing the Current Feelings scale, thereby allowing participants to report their feelings of causal uncertainty immediately after they had presumably been activated.

Another weakness of study 2 can be found in the measures of participants' generation of abstract or dispositional inferences. Because these measures were taken in the context of free descriptions of another, they may
have captured people's tendency to use relatively abstract language (Fiedler and Semin, 1992). One of the goals of study 3 was to provide a different measure of participants' generation of abstract inferences that did not rely on participants' free descriptions of the actor.

The predictions of study 3 were essentially the same as those for study 2. Expectancy violation through exposure to unexpected scenario outcomes was predicted to heighten feelings of causal uncertainty. Because expectancy violation was thought to lead to increased levels of causal uncertainty, it was predicted to result in systematic, complex information processing on a subsequent social perception task. In response to the actor's behavioral sequence in the videotape, systematic processing should lead to an increased tendency to form dispositional inferences. The actor in the videotape violates a social norm, so his behavior is highly informative about his disposition. To the extent that perceivers are motivated to gain an accurate impression of the actor, they should be more sensitive to the attributional implications of his norm violation, and should generate dispositional inferences. In addition, this effect was predicted to be pronounced for participants high in causal uncertainty who were thought to be especially motivated to gain an accurate impression of the actor and, thus, to achieve a sense of accurate social understanding. Despite the possible weaknesses of the social information processing measures used in study 2, I employed these measures again in study 3 because they have been used in previous research. However, I also added to study 3 a measure of the
generation of abstract inferences that did not rely on free descriptions of the actor in order to provide a more rigorous test of my predictions.

Method

Design

The design of Study 3 will be a 2 (Expectancy Condition: violated or confirmed) × 2 (Level of Causal Uncertainty: high or low) between-subjects design. Level of causal uncertainty will be operationalized by conducting a median split on participants' scores on the Causal Uncertainty Scale.

Participants

One hundred and forty-two male and female undergraduates enrolled in introductory psychology at Ohio State University participated in this experiment in partial fulfillment of course requirements. Participants were run in groups of two to five and were randomly assigned to expectancy condition.

Procedure

The procedure of Study 3 is identical to that of Study 2 with two exceptions. First, in this study, the SPAI is slightly different than in study 2. In the current study, the SPAI contains both the cause generation task used in study 2 and a measure designed to assess participants' generation of dispositional inferences. This measure was imported from an area of research concerning the linguistic intergroup bias (LIB). The LIB is a phenomenon that initially was investigated by Maass, Salvi, Arcuri, and Semin (1989), and refers to the tendency to encode expectancy-congruent behaviors at relatively abstract
levels and to encode expectancy-incongruent behaviors at relatively concrete levels. One measure of the LIB makes use of Semin and Fiedler's (1988) Linguistic Category Model. This measure provides participants with four descriptions of a behavior, each one corresponding to one of the four linguistic categories in the Linguistic Category Model. Participants are asked to rate how well each description describes a particular behavior. Karpinski and von Hippel (1996) argued that this measure would reflect the LIB to the extent that people rated descriptions corresponding to concrete linguistic categories as better descriptions of behavior than descriptions corresponding to more abstract linguistic categories.

While the research concerning the LIB is not directly relevant to the current research, this work provides a useful measure for the assessment of the generation of dispositional inferences. The measure of the LIB just described might also be interpreted as a measure of the generation of dispositional inferences. Remember that the abstract linguistic categories in the Linguistic Category Model are state verbs and more importantly, adjectives. To the extent that a person sees a behavior and then reports that adjectives about the actor engaging in the behavior are the best descriptions of the behavioral episode, that person could be said to be forming dispositional attributions or inferences about the actor. Therefore, the rating of descriptions corresponding to abstract linguistic categories as good descriptions of behavior can be seen as the generation of abstract or dispositional inferences.
In the current study, then, following each scenario, were four sentences corresponding to the four levels of abstraction in Semin and Fiedler's (1988) Linguistic Category Model. For example, one scenario describes Emma and her boss Mr. Jones. In one condition Emma is doing very well in her new job. Her sales are up and profits in her division have increased. In the other condition, Emma is doing poorly in her new job. Her sales are down and profits in her division have decreased. The outcome of both of these scenarios, however, is that Mr. Jones gives Emma a promotion. The four sentences provided to participants here are:

- Mr. Jones promoted Emma.
- Mr. Jones helped Emma.
- Mr. Jones admires Emma.
- Mr. Jones is an intelligent businessman.

Participants were asked to rate how well each of the sentences described the situation on a ten point scale (one indicated that the sentence described the situation very poorly; ten indicated that the sentence described the scene very well). The order of this measure and the cause generation task was counterbalanced across participants (See Appendix F for Study 3's SPAI packet).

Second, after participants viewed the videotape, when they were asked to generate inferences in response to the student's behavioral sequence, another measure designed to assess participants' generation of abstract or dispositional
inferences was included. Participants were provided with two sets of four sentences corresponding to the four levels of abstraction in Semin and Fiedler's (1988) Linguistic Category Model. For example, after watching the student in the videotape claim little responsibility for his performance outcome, participants responded to four sentences:

- Dave said he did not feel responsible for his performance.
- Dave distanced himself from his test performance.
- Dave denies responsibility for his outcomes.
- Dave is irresponsible.

Again, participants were asked to rate how well each of the sentences described what they saw in the videotape on a ten point scale (one indicated that the sentence described the video very poorly; ten indicated that the sentence described the video very well). This measure was placed in the inference generation packet, and the order of this measure and the inference generation task was counterbalanced across participants (See Appendix G for Study 3's inference generation packet).

When participants completed the inference generation questionnaire, they were asked to complete the BDI, the CUS, and a scale assessing their general perceptions of control over life events. Finally, participants were debriefed and then dismissed.
Results

Expectancies

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANOVA was conducted on participants' average expectancy per scenario scores. This analysis revealed only a main effect of expectancy condition $F(1, 133) = 65.01, p < .001$. Participants whose expectancies were violated had a lower expectancy score ($M = 3.75, SD = 1.08$) than participants whose expectancies were confirmed ($M = 5.36, SD = 1.24$).

Uncertainty Ratings

A 2-way ANOVA was conducted on participants' certainty ratings per cause. This analysis yielded a marginal main effect of expectancy condition, $F(1, 140) = 3.42, p < .07$. Participants whose expectancies were violated were less certain in the causes they listed ($M = 5.77, SD = .98$) than were participants whose expectancies were confirmed ($M = 6.1, SD = 1.07$). No effect of causal uncertainty or interaction between causal uncertainty and expectancy condition emerged from these analyses.

Assessment of Dispositional Inferences for Scenarios

Participants' generation of dispositional inferences for the hypothetical scenarios was assessed by having participants rate how well, on a 10-point scale with 1 meaning very poorly and 10 meaning very well, four sentences described the outcome they read about in each scenario. Each sentence corresponded to one of Semin and Fiedler's (1988) linguistic categories. In
order to maintain the dichotomous approach that I have taken with respect to inference type thus far in this document, participants' ratings of the four sentences were reduced to ratings of two levels of descriptions, concrete and abstract. That is, participants' ratings of the first two sentences following each scenario were averaged to arrive at a measure of participants' ratings of concrete descriptions. Participants' ratings of the last two sentences following each scenario were averaged to arrive at a measure of participants' ratings of abstract descriptions. These ratings were subjected to a 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) X 2 (Description Type: concrete vs. abstract) mixed design ANOVA with description type as a within-subjects factor. This analysis revealed a main effect of description type, $F(1, 138) = 954.92, p < .001$, such that all participants rated concrete descriptions as better descriptions of the outcomes of scenarios ($M = 6.95, SD = 1.01$) than abstract descriptions ($M = 3.59, SD = 1.24$). This main effect was qualified, however, by an expectancy condition X description type interaction, $F(1, 138) = 25.91, p < .001$.

One way to examine this interaction is to compute an index that compares the ratings of concrete descriptions with the ratings of abstract descriptions to arrive at an overall measure of dispositional inference. Such an index was computed here by subtracting the average rating of abstract descriptions from the average rating of concrete descriptions. The resulting measure is an overall measure of dispositional inference with higher scores indicating a lesser tendency to generate dispositional inferences and lower scores indicating a
greater tendency to generate dispositional inferences. This index of dispositional inference was computed in the current study and subjected to a 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANOVA. This analysis revealed a main effect of expectancy condition, $F(1, 138) = 25.91, p < .001$. Participants whose expectancies were violated had higher scores on this measure ($M = 3.89, SD = 1.18$) than participants whose expectancies were confirmed ($M = 2.79, SD = 1.36$). Thus, participants whose expectancies were violated showed a lesser tendency to generate dispositional inferences than did participants whose expectancies were confirmed. Such a finding is consistent with Jones and McGillis's (1976) notion that when behavioral outcomes are highly discrepant from expected outcomes, behavior is not informative about an actor's disposition and, therefore, perceivers are less able to draw dispositional inferences.

Causal Uncertainty and Depression

A regression analysis with BDI, CUS, expectancy condition, and the interactions between these variables included in the regression equation was conducted on the index of dispositional inference. Similar to the ANOVA, only a main effect of expectancy condition, $F(1, 138) = 15.45, p < .001$, emerged from this analysis.

Current Feelings of Uncertainty

Factor analyses (SAS, promax rotation) were conducted on both the time 1 and time 2 Current Feelings scale items. At time 1, based on an analysis of the
scree plot, two factors with eigenvalues greater than one were retained. This
scree plot is shown in Figure 6. Again, the items assessing the extent to which
participants were feeling uncertain, confused, doubtful, puzzled, unsure, and
undecided loaded on an uncertainty factor. The items assessing the extent to
which participants were feeling confident, happy, content, and satisfied loaded
on a positive affect factor. At time 2, based on an analysis of the scree plot, the
same two factors with eigenvalues greater than one were retained, an
uncertainty factor and a positive affect factor. The scree plot for this analysis is
shown in Figure 7.

Time 1 Causal Uncertainty Feelings

A 2-way ANOVA was conducted on participants' time 1 uncertainty
scores. This analysis revealed a main effect of causal uncertainty, $F (1, 140) =
5.62, p < .02$, such that participants low in causal uncertainty had lower
uncertainty scores than participants high in causal uncertainty ($M_s = 8.59$ and
10.03, respectively, $SD_s = 3.06$ and 3.80, respectively). This main effect was
qualified, however, by an expectancy condition \times causal uncertainty interaction,
$F (1, 140) = 7.12, p < .01$. Comparisons of the means in this interaction indicate
that for participants whose expectancies are confirmed, those high in causal
uncertainty did not feel any more uncertainty at time 1 ($M = 9.48, SD = 3.34$)
than those low in causal uncertainty ($M = 9.66, SD = 3.74$), $t (140) = .22, ns$. For
participants whose expectancies were violated, those high in causal uncertainty
reported higher feelings of causal uncertainty ($M = 10.53, SD = 4.16$) than those
low in causal uncertainty ($M = 7.64$, $SD = 1.90$), $t (140) = 3.66$, $p < .001$, two-tailed8. The means involved in this interaction are listed in Table 4. Because this measure was taken prior to any experimental manipulation, this interaction is most likely due to a chance characteristic of the current study sample.

Time 1 Positive Affect

Participants' time 1 positive affect scores were subjected to a 2-way ANOVA. This analysis yielded only a main effect of causal uncertainty, $F (1, 140) = 27.30$, $p < .001$. Participants low in causal uncertainty reported higher feelings of positive affect ($M = 15.24$, $SD = 2.24$) than did participants high in causal uncertainty ($M = 13.14$, $SD = 2.47$).9

Time 2 Uncertainty Feelings

A 2 (Expectancy Condition) \times 2 (Level of Causal Uncertainty) ANCOVA using participants' time 1 uncertainty scores as a covariate was conducted on participants' time 2 uncertainty scores. This analysis revealed a significant effect of the covariate, $F (1, 140) = 50.92$, $p < .001$, and a significant effect of causal uncertainty, $F (1, 140) = 7.30$, $p < .01$. Participants high in causal uncertainty reported higher feelings of causal uncertainty at time 2 ($M = 10.62$, $SD = .37$) than participants low in causal uncertainty ($M = 9.18$, $SD = .38$). The ANCOVA revealed no effect of expectancy condition and no interaction between expectancy condition and causal uncertainty10.

58
Time 2 Positive Affect

A 2-way ANCOVA using participants' time 1 positive affect scores as a covariate was conducted on participants' time 2 positive affect scores. This analysis revealed a significant effect of the covariate, \(F(1, 140) = 205.44, p < .001 \), and a significant main effect of causal uncertainty, \(F(1, 140) = 7.63, p < .01 \). Similar to time 1, participants low in causal uncertainty reported higher feelings of positive affect (\(M = 14.27, SD = .21 \)) than did participants high in causal uncertainty (\(M = 13.43, SD = .20 \)). No effect of expectancy condition or interaction between causal uncertainty and expectancy condition emerged from this analysis.

Videotape Manipulation Checks

As in Study 2, participants were asked to rate on a 9-point scale how well the student in the videotape performed on the analytical ability task. A 2-way ANOVA performed on this measure showed no significant effects of expectancy condition or of causal uncertainty, and no interaction between these variables, all \(F < 1, ns \). The mean score on this measure was 3.47, (\(SD = 1.86 \)), indicating that all participants thought that the student performed poorly on the analytical ability task.

Participants also were asked again to rate on a 9-point scale how responsible the student in the videotape felt for his performance outcome. A 2-way ANOVA conducted on this measure revealed no significant effects of expectancy condition or of causal uncertainty and no interaction between these conditions.
variables, all Fs < 1, ns. The mean score on this measure was 2.58 ($SD = 1.68$).

It appears that all participants understood that the student in the videotape accepted a low level of personal responsibility for his performance outcome.

Finally, participants were asked to rate on a 9-point scale how responsible they thought that the student was for his performance outcome. A 2-way ANOVA was conducted on this measure. No significant effects of expectancy condition or of causal uncertainty and no interaction between these variables emerged from this analysis (ps range from .21 to .98). The mean score on this measure was 5.83 ($SD = 1.82$). It appears then that all participants understood that the student in the videotape violated the social norm of internality (Jellison and Green, 1981).

Numbers of Inferences

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) X 2 (Inference Type: abstract or specific) mixed design ANOVA was conducted on the number of inferences generated by participants in response to the actor's behavioral sequence. This analysis yielded a significant inference type X expectancy condition interaction, $F (1, 140) = 5.50$, $p < .03$. Comparisons of the means in this interaction showed that participants whose expectancies were violated generated the same number of abstract inferences as did participants whose expectancies were confirmed ($Ms = 2.99$ and 2.90, respectively, $SDs = 2.15$ and 2.07, respectively), $t (274) = .23$, ns. However, participants whose expectancies were violated generated fewer specific inferences ($M = 2.42$, $SD = 2.09$).

However, participants whose
2.07) than did participants whose expectancies were confirmed (M = 3.63, SD = 3.07), t(274) = 3.02, p < .01, two-tailed. The means for this interaction are listed in Table 5.

Causal Uncertainty and Depression

Separate regression analyses with BDI, CUS, expectancy condition, and the interactions between these variables included in the regression equation were conducted on the number of abstract inferences and on the number of specific inferences. The regression analysis conducted on the number of abstract inferences yielded no significant effects. The regression analysis conducted on the number of specific inferences yielded only the same main effect of expectancy condition, F(1, 140) = 5.95, p < .02, that emerged from the ANOVA. No other significant effects emerged from this analysis.

Confidence in Inferences

A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) X 2 (Inference Type) mixed design ANOVA was conducted on participants' ratings of confidence in their inferences. Inference type was a within-subjects factor. A main effect of inference type emerged from this analysis, F(1, 97) = 5.50, p < .03, such that participants were more confident in specific inferences (M = 6.58, SD = 1.58) than in abstract inferences (M = 6.14, SD = 1.67). In addition, this analysis revealed an expectancy condition X causal uncertainty interaction, F(1, 97) = 14.19, p < .01. Comparisons of the means of this interaction indicated that participants low in causal uncertainty whose expectancies were violated
reported somewhat higher confidence in their inferences \((M = 6.89, SD = 1.45)\) than did participants whose expectancies were confirmed \((M = 6.03, SD = 1.53)\), \(t(194) = 1.95, p < .10\), two-tailed. However, participants high in causal uncertainty whose expectancies were violated reported significantly lower confidence in their inferences \((M = 5.83, SD = 1.75)\) than did participants whose expectancies were confirmed \((M = 6.80, SD = 1.53)\), \(t(194) = 2.16, p < .05\), two-tailed. The means involved in this interaction are listed in Table 6.

Another way to measure participants' confidence in the inferences they generated is to compute an average confidence per inference score. This measure is computed by summing participants' confidence ratings for each inference and dividing that sum by the number of inferences generated. This measure was computed for each participant and subjected to a 2-way ANOVA. This analysis revealed a main effect of causal uncertainty, \(F(1, 140) = 4.66, p < .04\), such that participants high in causal uncertainty were less confident in their inferences \((M = 6.09, SD = 1.51)\) than participants low in causal uncertainty \((M = 6.63, SD = 1.35)\). This main effect was qualified, however, by an expectancy condition X causal uncertainty interaction, \(F(1, 140) = 8.90, p < .01\). The means involved in this interaction are listed in Table 7. Comparisons of the means in this interaction show that participants low in causal uncertainty whose expectancies were violated were more confident in their inferences than participants low in causal uncertainty whose expectancies were confirmed \((Ms = 7.04 and 6.18, respectively, SDs = 1.26 and 1.32, respectively), t(140) = 2.53, p\)
<.02, two-tailed. However, participants high in causal uncertainty whose expectancies were violated were less confident in their inferences ($M = 5.83, SD = 1.59$) than participants high in causal uncertainty whose expectancies were confirmed ($M = 6.38, SD = 1.38$), $t (140) = 1.67, p < .10$, two-tailed.

Assessment of Dispositional Inferences for the Videotape

In order to assess participants' generation of abstract or dispositional inferences, I asked participants to rate, on a 10-point scale, with 1 equalling very poorly and 10 equalling very well, how well four sentences described the behavior they saw in the videotape. Each sentence corresponded to one of Semin and Fiedler's (1988) linguistic categories.

The first set of four sentences that participants responded to described the actor's poor performance on the analytical ability task. Participants' ratings of the first two sentences were averaged to arrive at a measure of participants' ratings of concrete descriptions. Likewise, participants' ratings of the last two sentences were averaged to arrive at a measure of participants' ratings of abstract descriptions. Participants' ratings of these two categories then were subjected to a 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) X 2 (Description Type: concrete or abstract) mixed design ANOVA, with description type as a within-subjects factor. This analysis revealed only a significant effect of description type, $F (1, 136) = 369.97, p < .01$. All participants
reported that concrete linguistic categories were better descriptors of the behavior they saw (M = 6.96, SD = 1.72) than were abstract linguistic categories (M = 3.73, SD = 1.75).

The second set of sentences that participants responded to described the actor's refusal to take personal responsibility for his poor performance outcome. Again, participants' ratings of the first two sentences were averaged to arrive at a measure of participants' ratings of concrete descriptions, and participants' ratings of the last two sentences were averaged to arrive at a measure of participants' ratings of abstract descriptions. A 3-way mixed design ANOVA, with description type as a within-subjects factor, was conducted on participants' ratings. This analysis revealed a main effect of description type, $F(1, 136) = 278.73$, $p < .001$, such that all participants reported that concrete descriptions were better descriptions of the behavior they saw (M = 7.04, SD = 2.08) than were abstract descriptions (M = 4.33, SD = 2.03). This main effect of description type was qualified by a causal uncertainty X description type interaction, $F(1, 136) = 5.93$, $p < .02$, which, in turn, was further qualified by a marginal expectancy condition X causal uncertainty X description type interaction, $F(1, 136) = 3.18$, $p < .08$. The means involved in the 3-way interaction are presented in Table 8.

One way to examine these interactions is to compute an index that compares the ratings of concrete descriptions with the ratings of abstract descriptions to arrive at an overall measure of the tendency to generate
dispositional inferences. Such an index was computed here by subtracting participants' ratings of abstract descriptions from participants' ratings of concrete descriptions. The higher the score on this measure, the lesser the tendency to generate dispositional inferences; the lower the score, the greater the tendency to generate dispositional inferences. A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) ANOVA was computed on this measure. A main effect of causal uncertainty emerged, $F(1, 139) = 5.93, p < .02$, such that participants high in causal uncertainty had a lower score on this measure ($M = 2.31, SD = 1.79$) than did participants low in causal uncertainty ($M = 3.12, SD = 2.06$). Thus, participants high in causal uncertainty showed a greater tendency to generate dispositional inferences than did participants low in causal uncertainty. This main effect was qualified, however, by a marginal expectancy condition X causal uncertainty interaction, $F(1, 139) = 3.18, p < .08$. Comparisons of the means in this interaction show that for participants low in causal uncertainty, expectancy violation resulted in a higher score on this measure ($M = 3.51, SD = 2.18$) than did expectancy confirmation ($M = 2.70, SD = 1.88$), $t(139) = 1.76, p < .10$, two-tailed. Participants high in causal uncertainty whose expectancies were violated, however, did not have different scores on this measure than participants high in causal uncertainty whose expectancies were confirmed ($Ms = 2.14$ and 2.48, respectively, $SDs = 1.75$ and 1.85, respectively), $t(139) = .76, ns$. The means involved in this interaction are listed in Table 9.
Causal Uncertainty and Depression

Regression analyses using regresssion equations that included BDI, CUS, expectancy condition, and the interactions between these variables were conducted on the indices of dispositional inference for the first and second set of sentences. The regression analysis conducted on the index of dispositional inference for the first set of sentences revealed no significant effects. The regression analysis conducted on the index of dispositional inference for the second set of sentences revealed the same expectancy condition X causal uncertainty interaction that emerged from the ANOVA. While the ANOVA indicated that this interaction was marginal, the regression indicated that this interaction was significant, $F(1, 139) = 4.86, p < .03$.

Raters' Assessments of Inferences

Participants' inferences were recoded according to the same adapted version of the linguistic category model (Semin & Fiedler, 1988) used in study 2. Independent ratings of linguistic category (interrater reliability established on a set of 102 inferences, $r = .69, p < .001$) were made by two raters (Shannon Riley and a second person familiar with the materials of the study), each rating one half of the inferences generated and both blind to participant condition. Again, as in study 2, if an inference was coded as a DAV or an IAV, it was considered to be concrete. If an inference was coded as an SV or an ADJ, it was considered to be abstract. A 2 (Expectancy Condition) X 2 (Level of Causal Uncertainty) X 2 (Inference Type: concrete or abstract) mixed design ANOVA
with inference type as a within-subjects factor was conducted on the number of inferences generated. This analysis yielded a main effect of inference type, $F(1, 140) = 126.85, p < .001$. All participants generated a greater number of abstract inferences ($M = 5.04, SD = 3.14$) than concrete inferences ($M = 1.73, SD = 1.6$). This main effect of inference type was qualified by an expectancy condition X inference type interaction, $F(1, 140) = 5.70, p < .02$. The means involved in this interaction are listed in Table 10. Comparisons of the means in this interaction indicated that participants whose expectancies were violated generated an equal number of concrete inferences compared to participants whose expectancies were confirmed, ($M_s = 1.78$ and 1.67, respectively, $SD_s = 1.68$ and 1.50, respectively), $t(274) = .26, ns$. However, participants whose expectancies were violated generated fewer abstract inferences ($M = 4.42, SD = 2.77$) than did participants whose expectancies were confirmed ($M = 5.72, SD = 3.50$), $t(274) = 3.06, p < .05$.

Causal Uncertainty and Depression

Separate regression analyses including BDI, CUS, expectancy condition, and the interactions between these variables in the regression equations were conducted on the number of concrete inferences and on the number of abstract inferences. The regression analysis conducted on the number of concrete inferences yielded no significant effects. Similar to the ANOVA, the regression
analysis conducted on the number of abstract inferences yielded a main effect of expectancy condition, $F (1, 140) = 4.99, p < .03$. No other significant effects emerged from this analysis.

Mediational Arguments

In this document, I argue that expectancy violation should lead to increased feelings of causal uncertainty and that increased feelings of causal uncertainty, in turn, should lead to the generation of abstract or dispositional inferences in response to a behavioral sequence where an actor is seen to freely choose a behavior that violates normative expectancies. I have also hypothesized that these effects of expectancy violation and causal uncertainty would be more pronounced for participants high in causal uncertainty. To test these hypotheses, I ran separate path analyses using RAMONA (Brown, 1993) for participants high in causal uncertainty and for participants low in causal uncertainty. For these analyses, the measure of the generation of dispositional inferences was the index computed on the second set of descriptions about the student in the videotape. Recall that this index was computed by subtracting participants' ratings of abstract descriptions from their ratings of concrete descriptions. The resulting index is a measure of the generation of dispositional inferences with lower scores indicating a greater generation of dispositional inferences. This index was used as the measure of the generation of dispositional inferences in these path analyses, because this measure did not
have the weaknesses associated with measures that relied on free descriptions of the actor, and seemed to be the most sensitive of the measures of dispositional inference in the current study.

The correlation matrices between expectancy condition, level of causal uncertainty, time 2 uncertainty feelings, and the measure of dispositional inferences were analyzed using maximum likelihood estimation for participants at each level of causal uncertainty. Because correlation matrices were analyzed, the path coefficients are analogous to standardized regression coefficients.

A model with paths from expectancy condition and level of causal uncertainty to both time 2 uncertainty feelings and to the measure of dispositional inferences, and a path from time 2 uncertainty feelings to the measure of dispositional inferences was estimated for participants high in causal uncertainty and for participants low in causal uncertainty. The results of these analyses are presented in figures 9 and 10.

As can be seen, the analyses offer partial support for my arguments. The model estimated for participants high in causal uncertainty provides good fit to the data, $\chi^2(1, N = 72) = .13, p = .741$. For participants high in causal uncertainty, both the chronic source of causal uncertainty and the temporary source of causal uncertainty (i.e., expectancy condition) lead to increased feelings of causal uncertainty at time 2. However, although the path from time 2 causal uncertainty feelings to the measure of dispositional inference is in the
right direction, it is not significant in this analysis. This finding is not altogether surprising, given that participants high in causal uncertainty whose expectancies were violated did not show a significant increase in the generation of dispositional inferences over participants high in causal uncertainty whose expectancies were confirmed.

The model estimated for participants low in causal uncertainty provides moderate fit to the data, $\chi^2(1, N = 69) = 2.27, p = .17$. In this model, the path from causal uncertainty level to time 2 causal uncertainty feelings is significant, but the path from expectancy condition to time 2 causal uncertainty feelings is not. Instead, for participants low in causal uncertainty, the path from expectancy condition to the measure of dispositional inference is significant, but it is in the direction opposite from predictions.

Thus, these analyses seem to indicate that for participants high in causal uncertainty, expectancy violation leads to increased feelings of causal uncertainty, but does not lead to the generation of a greater number of dispositional inferences. For participants low in causal uncertainty, expectancy violation leads to a lesser generation of dispositional inferences, but this does not appear to be mediated by increased feelings of causal uncertainty.

Because the model estimated for participants low in causal uncertainty provided only moderate fit to the data, and because both of the models estimated had an N of less than 100, a model with the same paths specified was estimated for all of the participants to examine the effects of expectancy violation.
and of causal uncertainty on participants' information processing. The results of this analysis are in figure 11. This model provided good fit to the data, $\chi^2(1, N = 141) p = .80^{13}$. As can be seen, although expectancy violation had no effect on time 2 feelings of causal uncertainty or on the measure of dispositional inferences, increased levels of causal uncertainty did have an effect on participants' inferences. Both chronic levels of causal uncertainty, as measured by the CUS, and temporary levels of causal uncertainty, as measured by time 2 causal uncertainty feelings, led to the generation of more abstract or dispositional inferences, as indicated by lower scores on the measure of dispositional inference. This analysis, then, provides additional support for the notion that increased feelings of causal uncertainty lead to the generation of more abstract or dispositional inferences.

Discussion

There were two main purposes for conducting study 3. First, I wanted to examine the effect of expectancy violation on feelings of causal uncertainty when these feelings were reported immediately after exposure to outcomes that violated expectancies. Second, I wanted to assess participants' tendency to generate abstract or dispositional inferences in response to the actor's behavioral sequence with a measure that did not rely on participants' free descriptions of an actor.

The results of the current study provide partial support for the predictions. It was predicted that expectancy violation would increase participants' feelings of
causal uncertainty. It does appear, in study 3, that the expectancy violation manipulation employed activated temporarily causal uncertainty feelings, and that this was particularly pronounced for individuals high in causal uncertainty. This is demonstrated by both the main effect of expectancy violation on participants' certainty ratings of the causes they listed and by the interaction of expectancy condition and causal uncertainty on participants' time 2 feelings of uncertainty scores (see endnote 10).

It also was predicted that expectancy violation, through exposure to unexpected scenario outcomes, would lead to the generation of more abstract or dispositional inferences in response to the actor's behavioral sequence, because in this situation, these inferences represented complex, systematic cognitive processing that could yield greater information about the target and thereby aid in the reduction of causal uncertainty. This effect of expectancy violation on the generation of dispositional inferences was predicted to be particularly pronounced for participants high in causal uncertainty. As in study 2, the generation of abstract inferences was examined in the context of participants' free descriptions of the actor. Similar to study 2, these measures produced fairly inconsistent findings.

Inference generation measures that rely on free descriptions of an actor are subject to several potential weaknesses. For this reason, one of the major
goals of study 3 was to assess participants' generation of abstract inferences with a measure that did not rely on free descriptions. The results of the analyses on this measure partially supported predictions.

The first measure of the generation of dispositional inferences employed descriptions concerning the student's poor performance on the aptitude test. In retrospect, this set of descriptions was perhaps not a measure on which differences in the display of dispositional inferences should have been expected. The student's poor performance on the aptitude test was not an expectancy violation, and so should not have been expected to lead to increases in the generation of dispositional inferences. The second measure of the generation of dispositional inferences employed descriptions concerning the student's violation of the norm of internality. Jones and McGillis (1976) suggested that the violation of a social norm is informative about a target and likely to be associated with more cognitive activity. This measure, then, does appear to provide an opportunity for participants to generate more abstract inferences in order to reduce uncertainty. The results of the analyses on the second close-ended measure of the generation of abstract inferences partially supported predictions. I did in fact find that heightened levels of causal uncertainty resulted in an increase in the generation of dispositional inferences. However, I did not find that expectancy violation increased the generation of dispositional inferences. Expectancy violation had no effect on the generation of dispositional inferences.
for participants high in causal uncertainty. In addition, expectancy violation actually decreased the generation of dispositional inferences for participants low in causal uncertainty.

Why did expectancy violation fail to result in the increased generation of dispositional inferences? The null effect of expectancy violation on the generation of dispositional inferences by participants high in causal uncertainty may have occurred because participants with high causal uncertainty were already engaging in relatively systematic and complex information processing. Participants high in causal uncertainty whose expectancies were violated may not have thought that increasing the complexity of their attributional processing over and above what it already was would aid them in the reduction of their causal uncertainty.

A possible explanation for the decreased generation of dispositional inferences in response to expectancy violation by participants low in causal uncertainty concerns the properties of the different types of inferences themselves. Specific inferences have been found to be more verifiable and less disputable by an observer (Semin & Fiedler, 1988) and to be held with greater confidence (Gleicher & Weary, 1991; Wright & Mischel, 1988) than are abstract or dispositional inferences. It is possible that participants low in causal uncertainty whose expectancies were violated, instead of engaging in a type of information processing that is motivated by accuracy concerns, engaged in a relatively safe type of information processing that could allow them greater
confidence. Indeed, participants low in causal uncertainty whose expectancies were violated did show evidence of greater inferential confidence than any other participants.

Overall, then, study 3 provides support for the predictions. Expectancy violation did lead to increased feelings of causal uncertainty, at least for participants high in causal uncertainty. In addition, while expectancy violation did not increase the generation of dispositional inferences, heightened levels of causal uncertainty did lead to the generation of a greater number abstract or dispositional inferences in situations where the generation of dispositional inferences represented systematic, complex, information processing. Thus, the adoption of complex, careful, and systematic cognitive processing does seem to be due to increased levels of causal uncertainty.
CHAPTER 5

GENERAL DISCUSSION

There were two major goals of the current research. The first goal was to examine whether expectancy violation could act as situational input that temporarily activates causal uncertainty beliefs and feelings, and to see if such input affects chronically accessible causal uncertainty feelings any differently than causal uncertainty feelings that are not chronically accessible. The second goal was to explore directly the role of causal uncertainty in social information processing. In particular, I wanted to see if causal uncertainty would produce the same effects on social information processing that previously have been found for depression.

One goal of the current research was to examine the effect of expectancy violation on causal uncertainty feelings. The results of the current studies indicate that expectancy violation can act as situational input that activates causal uncertainty feelings. In all three of the studies reported here, expectancy violation increased participants' uncertainty about the causes underlying the
scenario outcomes about which they read. Additionally, in two of the three current studies, participants whose expectancies were violated reported higher feelings of causal uncertainty.

It has been suggested that situational input relevant to causal understanding might affect individuals with chronically accessible causal uncertainty beliefs and feelings differently than individuals with causal uncertainty beliefs and feelings that are not chronically accessible. Chronically accessible causal uncertainty beliefs are associated with higher error sensitivity than non-chronically accessible beliefs (Weary & Edwards, 1996). What this means is that when individuals high in causal uncertainty are exposed to situational input that can activate causal uncertainty beliefs, these individuals are likely to notice a larger discrepancy between their current state of understanding and their desired state of understanding than individuals low in causal uncertainty (Weary & Edwards, 1996). Thus, when causal uncertainty beliefs are activated, individuals high in causal uncertainty are likely to experience feelings of causal uncertainty more intensely than individuals low in causal uncertainty.

One goal of the current research was to see if individuals high in causal uncertainty would experience more intense feelings of causal uncertainty in response to expectancy violation than individuals low in causal uncertainty. The evidence for this notion from the current studies is mixed. While in study 1, no expectancy condition X causal uncertainty interaction emerged on either of the
two uncertainty measures, in study 2, this interaction did emerge on the only uncertainty measure that yielded any significant findings. In addition, in study 3, the expectancy condition X causal uncertainty interaction emerged on the Current Feelings measure of causal uncertainty (see endnote 10). Finally, the path analyses conducted in the third study provided evidence that expectancy violation increased causal uncertainty feelings for participants high in causal uncertainty, but not for participants low in causal uncertainty. There is some evidence, then, albeit mixed, that participants high in causal uncertainty were experiencing more intense feelings of causal uncertainty in response to expectancy violation than participants low in causal uncertainty, at least in the final two studies.

Another goal of the current research was to provide empirical evidence regarding the role of causal uncertainty in social information processing. Gleicher and Weary (1991) argued that the effects of depression on social information processing might have been driven by depressed individuals' greater causal uncertainty and subsequent motivation to regain interpretive and predictive control over the social environment. However, the direct effect of causal uncertainty on social information processing has, up to now, remained largely unexplored.

It has been suggested that causal uncertainty results in a desire to gain a subjective sense of accurate understanding of the social environment (Weary et al., 1993). One way to gain this sense of understanding might be to adopt
rational, complex information processing strategies that could result in accurate inferences and could provide perceivers with a greater amount of information about the social environment. In the current research, it was predicted that individuals whose causal uncertainty feelings were activated, because of their desire to regain a sense of accurate social understanding, would adopt such complex and careful social perception processes. In the current research, complex, systematic information processing was presumed to be reflected by the generation of more abstract or dispositional inferences in response to the actor's behavioral sequence. This presumption is consistent with correspondent inference theory (Jones & Davis, 1965; Jones & McGillis, 1976).

In the two studies reported here that examined social perception processes, on the measures that relied on participants' free descriptions of the student, it was not found that individuals whose causal uncertainty feelings were activated displayed thorough and complex information processing. This is not to suggest that causal uncertainty had no effect on participants' social information processing. On the contrary, the current research shows that causal uncertainty does affect people's social information processing. In study 3, there was clear evidence on the best measure of the generation of dispositional inferences, that participants whose causal uncertainty feelings were activated did adopt more systematic, complex social perception processes than did participants whose causal uncertainty feelings were not activated. In addition, the findings of the path analysis also provide support for the notion that
increased feelings of causal uncertainty lead to more systematic information processing as evidenced by an increase in the generation of abstract or dispositional inferences.

One of the weaknesses of the current research is that there seems to be only one truly good measure of participants' generation of dispositional inferences. The measures that rely on participants' free descriptions of the actor are subject to several potential weaknesses, including idiosyncratic rating schemes on the part of the participants and the tendency for free descriptions to be dominated by more abstract linguistic categories. Future research examining the effect of causal uncertainty on the generation of dispositional inferences should endeavor to incorporate more measures of dispositional inferences that do not fall prey to the same problems as measures relying on free descriptions.

Another potentially fruitful direction for future research might be to explore the motivation underlying individuals' choice of information processing strategy. While individuals high in causal uncertainty are thought to engage in systematic, complex types of information processing in an effort to reduce causal uncertainty, the adoption of these types of social information processing strategies may well not result in a reduction of causal uncertainty. In addition, while it was speculated here that individuals low in causal uncertainty processed social information in a manner to help them increase their confidence, there is no evidence to support this notion. An examination of the motives
underlying various information processing strategies might help to explain why individuals with high and low causal uncertainty process information in the way they do.

The current research is important for several reasons. The studies presented here demonstrate that expectancy violation can sometimes act as situational input that activates temporarily causal uncertainty beliefs and feelings, at least for individuals high in causal uncertainty. Thus, the current research provides us with one method by which causal uncertainty feelings can be experimentally manipulated.

In a related vein, the current research is important because it begins to test predictions about which types of expectancy violation can lead to increases in causal uncertainty. Work by Clary and Tesser (1983) and Weiner (1985) suggested that expectancy violation led to increased attributional activity because it resulted in uncertainty. However, as was mentioned earlier in this document, not all types of expectancy violation should be expected to increase feelings of causal uncertainty. The current research shows that expectancy violations that involve outcomes that are highly discrepant from expectancies can activate causal uncertainty beliefs and feelings. A direction for future research might be to identify other types of expectancy violations that might be expected to increase feelings of causal uncertainty.

Finally, this research is important because it directly examined the effect of causal uncertainty on individuals' social perception processes. The current
research provides evidence that causal uncertainty did result in more complex and systematic information processing as predicted. Importantly, however, depression appeared to have had no effects on social information processing. Taken together, these findings are particularly important because they provide evidence that the effects of depression on social information processing are due to depressed perceivers' higher feelings of causal uncertainty. This can be concluded from the current research because depression levels did not have any explanatory power to account for the effects on the social information processing measures, above and beyond that of causal uncertainty.
LIST OF REFERENCES

ENDNOTES

1. Multiple regressions including BDI, CUS, expectancy condition, and the interactions between these variables in the regression equation yielded only a main effect of BDI, $F(1, 111) = 17.74, p < .001$. This main effect indicated that as participants' BDI scores increased, they reported higher feelings of causal uncertainty.

2. Multiple regression analysis conducted on time 1 positive affect scores revealed only a main effect of BDI, $F(1, 111) = 18.21, p < .001$, such that as participants' BDI scores increased, they reported lower feelings of positive affect.

3. Multiple regressions conducted on the time 2 positive affect scores indicated that in addition to a main effect of causal uncertainty, $F(1, 111) = 7.34, p < .01$, there was also a main effect of depression, $F(1, 111) = 4.03, p < .05$. Similar to time 1, as participants' BDI scores increased, they reported lower feelings of positive affect.
4. Initially, 197 introductory psychology students participated in this experiment. An ANOVA conducted on participants' scores on the Causal Uncertainty Scale completed at the time of the experiment showed that expectancy condition had a marginal effect on participants' causal uncertainty scores, \(F(1, 196) = 3.23, p < .08 \). Because of this, participants' causal uncertainty scores at the time of the experiment could not be used as a blocking variable in the current study. Therefore, participants' prescreening causal uncertainty scores were used. These scores were obtained anywhere from three to seven weeks prior to participation in the experiment. Because not all participants who volunteered to take part in this experiment participated in prescreening, only 128 out of the initial 197 participants had recorded prescreening scores. Only data from these 128 participants were used in the analyses of the current study. Of the 69 participants that were dropped, 32 were in the confirm condition and 37 were in the violate condition.

5. Multiple regression analysis conducted on uncertainty ratings yielded a main effect of expectancy condition, \(F(1, 127) = 6.56, p < .02 \), but no uncertainty \(\times \) condition interaction, \(F(1, 127) = 2.42, p < .13 \).
6. Multiple regression analysis conducted on time 1 causal uncertainty feelings revealed a main effect of depression, $F(1, 127) = 11.70, p < .01$. This main effect of depression was qualified, however, by a depression X expectancy condition interaction, $F(1, 127) = 6.13, p < .02$. An examination of this interaction indicated that participants with high BDI scores in the violate condition reported lower feelings of causal uncertainty than participants with high BDI scores in the confirm condition. Participants with low BDI scores in the violate condition reported feelings of causal uncertainty no different from those reported by participants with low BDI scores in the confirm condition (See Figure 5).

7. Multiple regression analysis conducted on time 1 positive affect scores revealed that in addition to a main effect of causal uncertainty, $F(1, 127) = 9.34, p < .01$, a main effect of depression also emerged, $F(1, 127) = 10.67, p < .01$. As participants' BDI scores increased, they reported lower feelings of positive affect.
8. Multiple regression analysis conducted on participants' time 1 feelings of causal uncertainty revealed no effect of causal uncertainty, $F(1, 140) = 2.74, \text{ ns}$, and only a marginal uncertainty X expectancy condition interaction, $F(1, 140) = 3.20, p < .08$. However, a main effect of depression emerged, $F(1, 140) = 7.62, p < .01$. As participants' BDI scores increased, they reported higher feelings of causal uncertainty. In addition, a main effect of expectancy condition emerged, $F(1, 140) = 4.20, p < .05$. Participants in the violate condition reported lower feelings of causal uncertainty at time 1 than did participants in the confirm condition.

9. Regression analysis conducted on time 1 positive affect scores yielded both the main effect of causal uncertainty, $F(1, 140) = 9.62, p < .01$, and a main effect of depression, $F(1, 140) = 16.8, p < .01$. As participants' BDI scores increased, their levels of positive affect decreased.

10. While the ANCOVA revealed no effect of expectancy condition and no interaction between expectancy condition and causal uncertainty, regression analyses conducted on this measure yielded a significant causal uncertainty X expectancy condition interaction, $F(1, 140) = 4.78, p < .04$ (See Figure 8).
11. Good fit is typically indicated by nonsignificant (p > .05) chi-square values. An additional guideline is for the chi-square to be less than twice the degrees of freedom in the model being tested (Bentler & Bonett, 1980). An additional test for goodness of fit is given by the Root Mean Square Error of Approximation (RMSEA, Steiger & Lind, 1980), with values lower than .08 typically indicating good fit. The RMSEA for this model is 0.00.

12. The RMSEA for this model was .136.

13. The RMSEA for this model was 0.00.
APPENDIX A

TABLES
Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th></th>
<th>Violate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Low</td>
<td>6.03<sub>a</sub></td>
<td>1.4</td>
<td>3.37<sub>c</sub></td>
<td>1.04</td>
</tr>
<tr>
<td>High</td>
<td>5.30<sub>b</sub></td>
<td>1.41</td>
<td>3.59<sub>c</sub></td>
<td>1.15</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at $p < .05$, two-tailed.

Table 1
Study 1 means for the average expectancy per scenario measure
Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th></th>
<th>Violate</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>5.94<sub>a</sub> .93</td>
<td></td>
<td>5.69<sub>a</sub> .89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>6.46<sub>b</sub> 1.05</td>
<td></td>
<td>5.59<sub>a</sub> .53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at \(p < .05 \), two-tailed.

Table 2
Study 2 means for the average certainty per cause measure
Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th></th>
<th>Violate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Low</td>
<td>1.53<sub>ab</sub> 1.46</td>
<td></td>
<td>1.14<sub>a</sub> 1.53</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1.06<sub>a</sub> 1.08</td>
<td></td>
<td>1.96<sub>b</sub> 2.5</td>
<td></td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at $p < .05$, two-tailed.

Table 3
Study 2 means for number of concrete inferences as assessed by raters.
Expectancy Condition

| Causal Uncertainty | Confirm | | Violate |
|--------------------|---------|---------|
| **Low** | M 9.66_α SD 3.74 | M 7.64_β SD 1.90 |
| **High** | M 9.48_α SD 3.34 | M 10.53_α SD 4.16 |

Note. Means with different subscripts are significantly different at p < .05, two-tailed.

Table 4
Study 3 means for time 1 causal uncertainty feelings.
Expectancy Condition

<table>
<thead>
<tr>
<th>Inference Type</th>
<th>Confirm</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Abstract</td>
<td>2.90<sub>a</sub> 2.07</td>
<td>2.99<sub>a</sub> 2.15</td>
</tr>
<tr>
<td>Specific</td>
<td>3.63<sub>b</sub> 3.07</td>
<td>2.42<sub>a</sub> 2.07</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at p < .05, two-tailed.

Table 5
Study 3 means for number of inferences generated by participants in each expectancy condition
Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Low</td>
<td>6.03_{ab}</td>
<td>1.53</td>
</tr>
<tr>
<td>High</td>
<td>6.80_{a}</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at $p < .05$, two-tailed.

Table 6
Study 3 mean inferential confidence scores
Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Low</td>
<td>6.18<sub>α</sub> 1.32</td>
<td>7.04<sub>β</sub> 1.26</td>
</tr>
<tr>
<td>High</td>
<td>6.38<sub>α</sub> 1.38</td>
<td>5.83<sub>α</sub> 1.59</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at $p < .05$, two-tailed.

Table 7
Study 3 mean average confidence per inference scores
Concrete Linguistic Categories

Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>M 7.12<sub>a</sub>, 1.94</td>
<td>M 7.49<sub>a</sub>, 2.07</td>
</tr>
<tr>
<td>High</td>
<td>M 6.87<sub>a</sub>, 2.04</td>
<td>M 6.70<sub>b</sub>, 2.28</td>
</tr>
</tbody>
</table>

Abstract Linguistic Categories

Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>M 4.42<sub>c</sub>, 1.93</td>
<td>M 3.97<sub>c</sub>, 2.02</td>
</tr>
<tr>
<td>High</td>
<td>M 4.38<sub>c</sub>, 1.89</td>
<td>M 4.55<sub>c</sub>, 2.26</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at *p < .05*, one-tailed.

Table 8
Study 3 mean ratings of descriptive ability of linguistic categories
Expectancy Condition

<table>
<thead>
<tr>
<th>Causal Uncertainty</th>
<th>Confirm</th>
<th></th>
<th>Violate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Low</td>
<td>2.70\textsubscript{(a)}</td>
<td>1.88</td>
<td>3.51\textsubscript{(b)}</td>
<td>2.18</td>
</tr>
<tr>
<td>High</td>
<td>2.48\textsubscript{(a)}</td>
<td>1.85</td>
<td>2.14\textsubscript{(a)}</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at \(p < .10\), two-tailed.

Table 9
Study 3 mean scores on optimal measure of the generation of dispositional inferences
Expectancy Condition

<table>
<thead>
<tr>
<th>Inference Type</th>
<th>Confirm</th>
<th>Violate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Abstract</td>
<td>5.72<sub>a</sub></td>
<td>3.50</td>
</tr>
<tr>
<td>Concrete</td>
<td>1.67<sub>c</sub></td>
<td>1.50</td>
</tr>
</tbody>
</table>

Note. Means with different subscripts are significantly different at \(p < .05 \), two-tailed.

Table 10
Study 3 raters’ assessments of mean number of inferences generated by participants in each expectancy condition
Figure 1
Scree Plot for Time 1 Current Feelings Scale--Study 1
Figure 2
Scree Plot for Time 2 Current Feelings Scale--Study 1
Figure 3
Scree Plot for Time 1 Current Feelings Scale--Study 2
Figure 4
Scree Plot for Time 2 Current Feelings Scale--Study 2
Figure 5
Regression for Time 1 Causal Uncertainty Feelings--Study 2
Figure 6
Scree Plot for Time 1 Current Feelings Scale--Study 3
Figure 7
Scree Plot for Time 2 Current Feelings Scale--Study 3
Figure 8
Regression for Time 2 Causal Uncertainty Feelings--Study 3
Expectancy Violation \[\rightarrow \] Time 2 Uncertainty Feelings \[\rightarrow \] Dispositional Inference

Causal Uncertainty (CUS) \[\rightarrow \] Time 2 Uncertainty Feelings

\[.249^* \]
\[.254^* \]
\[.063 \]
\[.124 \]
\[.004 \]

Note. Path coefficients with an * are significant at \(p < .05 \)

Figure 9
Path Analysis for Participants High in Causal Uncertainty
Note. Path coefficients with an * are significant at $p < .05$

Figure 10
Path Analysis for Participants Low in Causal Uncertainty
Causal Uncertainty (CUS)

Expectancy Violation

Time 2 Uncertainty Feelings

Dispositional Inference

Note. Path coefficients with an * are significant at $p < .05$

Figure 11
Path Analysis for All Participants
CURRENT FEELINGS

This is a questionnaire designed to measure what you are feeling at this moment. There is, of course, no right answer for any statement. The best answer is the one that describes how you are feeling at this moment. Be sure to answer all of the items, even if you are not certain of the best answer. Again, answer these questions according to how you are feeling RIGHT NOW. Circle the answer that best describes how you feel now.

1. I feel uncertain.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncertain</td>
<td>uncertain</td>
<td>uncertain</td>
<td>uncertain</td>
<td>uncertain</td>
</tr>
</tbody>
</table>

2. I am confused.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>confused</td>
<td>confused</td>
<td>confused</td>
<td>confused</td>
<td>confused</td>
</tr>
</tbody>
</table>

3. I am confident

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>confident</td>
<td>confident</td>
<td>confident</td>
<td>confident</td>
<td>confident</td>
</tr>
</tbody>
</table>

4. I feel doubtful.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>doubtful</td>
<td>doubtful</td>
<td>doubtful</td>
<td>doubtful</td>
<td>doubtful</td>
</tr>
</tbody>
</table>

5. I am happy

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>happy</td>
<td>happy</td>
<td>happy</td>
<td>happy</td>
<td>happy</td>
</tr>
</tbody>
</table>

6. I feel puzzled.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>puzzled</td>
<td>puzzled</td>
<td>puzzled</td>
<td>puzzled</td>
<td>puzzled</td>
</tr>
</tbody>
</table>

7. I am unsure.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsure</td>
<td>unsure</td>
<td>unsure</td>
<td>unsure</td>
<td>unsure</td>
</tr>
</tbody>
</table>
8. I am content.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>content</td>
<td>content</td>
<td>content</td>
<td>content</td>
<td>content</td>
</tr>
</tbody>
</table>

9. I feel undecided.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>undecided</td>
<td>undecided</td>
<td>undecided</td>
<td>undecided</td>
<td>undecided</td>
</tr>
</tbody>
</table>

10. I feel satisfied.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>satisfied</td>
<td>satisfied</td>
<td>satisfied</td>
<td>satisfied</td>
<td>satisfied</td>
</tr>
</tbody>
</table>
SOCIAL PERCEPTIVENESS ASSESSMENT INVENTORY (SPAI)
Social Perceptiveness is one dimension across which people can differ. It is an individual difference that concerns our interactions with other people. Social Perceptiveness deals with how people perceive and pay attention to the events that occur in other people's lives and the reasons for those events. Some people are high in Social Perceptiveness while others are lower on this dimension.

There are currently a variety of ways to test this individual difference that have been used extensively in recent research. The particular scale that we are using in our research has been used in several previous studies of Social Perceptiveness. We are currently trying to collect data that will give us base rate information about how college students perform on this scale.
Instructions

The people that you will read about on the following pages were participants in a diary study in which they were asked to write a little bit about their background and about the things that happened to them during the week of their participation. The passages that you will read are descriptions of the fairly typical events that occurred in these people's lives. Each passage is adapted from excerpts from one of the several participants' diaries that were used. The passages are written here in narrative form to make them easier to read.

After reading each passage you will be asked some questions concerning your understanding of one of the events that occurred. After each passage you will be asked to identify all of the possible relevant causes of this event. Please list as many causes as you can imagine. You are given boxes in which to list these causes. You should only write one cause in each box. However, you do not have to fill all the boxes. You will then be asked to rate your causes. Please be sure to rate each cause separately by placing a number in each of the smaller boxes to the right of the causes you listed. Remember, it is important that you read each passage carefully and answer the questions honestly and accurately.

Example
Situation X

In the preceding passage, Ted got a C on his history exam.

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted did not study very hard</td>
<td>6</td>
</tr>
<tr>
<td>The exam was difficult</td>
<td>7</td>
</tr>
<tr>
<td>Ted's teacher does not like him</td>
<td>3</td>
</tr>
<tr>
<td>The test wasn't fair</td>
<td>3</td>
</tr>
</tbody>
</table>

To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 very uncertain
2 3 4 5 6 7 8 9 very certain

121
Situation A

Emma lives in a small apartment on the north side just outside of Chicago's city limits. Emma likes Chicago. She enjoys city life and her boyfriend, Jake, is only a half an hour away now instead of three. Emma also likes her new apartment because it is close to everything.

Emma was nervous when she looked into the mirror to tuck in her new blouse. She had bought it the day before at the mall and was wearing it today to the meeting she had with her boss. She wasn't sure why she had been called on to meet with Mr. Jones, but she knew that she had better get going if she wanted to be on time.

On the way to the office, Emma started getting very anxious. A meeting with her boss could only mean one thing. Things had worked out better than she thought they would at this company. Emma's sales were up this month and profits in the division where she worked were rising.

Emma arrived at her office building and took the elevator to the fourth floor. When Emma got off the elevator, she walked to Mr. Jones' office, knocked on the door, and went in. When she left, Emma was thinking about what Mr. Jones had told her. Sixteen people had been hired around the same time she was. Mr. Jones told her that out of these sixteen, she was one of thirteen people to whom he was giving a promotion.
Situation A
In the preceding passage, Emma was one of thirteen out of sixteen employees hired at the same time who got a promotion.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all very much
expected expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.

123
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very very uncertain
very certain
John is a student at Binghamton College and a member of the Binghamton College track team. John is a sophomore and has decided to declare history as his major.

John was thinking about Sarah, a girl in his sociology class when he walked down the stairs to go to the dining hall. He had been thinking about her all week. Sarah had red hair, and John really liked redheads. He thought she was really cute and pretty smart too. John had been thinking of a way to ask her to go out with him. He wasn’t sure what he was going to say when he saw her in class the next day.

When John got to the dining hall, he got a bowl of shredded wheat, some fruit and a large glass of milk. John had very healthy eating habits because he was training so hard for track this season. He practiced four times a week, and ran ten miles on Saturday and Sunday. John wanted to run well in track this year.

On Friday, John and his teammates arrived at one of their track meets. After about one hour, the official signalled that it was time for John’s race. John went to the starting blocks. There were eleven other people running in this race, twelve runners in all. The official’s gun went off, and the race started. Before he knew it, John was crossing the finish line and his race was over. John finished fourth, placing in the top third of the race contestants.
Situation D

In the preceding passage, John finished fourth in the race, placing in the top third of the race contestants.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected
very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain
Situation G

Rob is a sales representative for a large company. He likes his job and is making fairly good money.

On Friday, Rob ran into his friend Mike who told Rob that he was having a party on Saturday night. Rob wasn't sure whether he would go. He didn't go out a lot, but he did like going to parties sometimes.

On Saturday, Rob decided to go to the party. When he got there he saw a really pretty woman with long dark hair and beautiful green eyes. Rob asked his friend Mike to introduce him to her. Rob thought it was a long shot, because he was usually pretty shy with women. But when Rob and Nancy met, they hit it off right away. Rob and Nancy saw each other Sunday afternoon and Monday night.

On Tuesday, Rob was going to pick Nancy up at 7:00. They were going to grab a sandwich and then maybe catch a movie. Rob was still kind of nervous around Nancy because this was only their third date. After Rob picked Nancy up he couldn't take his eyes off of her. Rob was not paying attention to the road when he took the left hand turn out of Nancy's neighborhood. When he turned the corner, he got in a minor accident, hitting another car and denting his fender.
Situation G

In the preceding passage, Rob got in a minor accident, hitting another car and denting his fender.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9

not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>very uncertain</td>
<td>very certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Situation J

Michelle recently graduated from a small college in the South where she majored in psychology. She had lived on campus in the dorms all four years that she was in school because it was convenient for her.

Michelle was a graduate student at the local university, so she wasn’t making very much money. On Wednesday afternoon Michelle was coming home from school, and she was thinking about the notice she had received earlier about her rent. The owners of her apartment complex were voting on whether or not to raise the rent. When Michelle got home, she was hungry. Michelle went to her refrigerator and saw that it was almost empty. She had forgotten that she had to go to the store on her way home from school.

Michelle turned around and went back out to her car. She got in and drove to the grocery store. Michelle bought some things for dinner, some ice cream, and a newspaper. When she got home from the store, she found a notice on her door that said that the rent for her apartment was going up by one hundred dollars a month.

The next day Michelle went and signed a lease for a different apartment. She moved into her new place at the end of the month.
Situation J

In the preceding passage, Michelle moved into a new apartment at the end of the month.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>very uncertain</td>
<td>very certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Situation P

Chris is a sophomore at a large state university. He is a student in introductory psychology and has to complete several hours participating in psychology experiments as part of the class. Chris was a subject who participated in an experiment concerning the ability of nonprofessionals to administer relaxation training to their peers. At the beginning of the experiment he was told the subject in the next room was another college student. Chris was to act as the trainer with the aid of a relaxation training outline; he was seated in front of a one-way mirror so that he could see the other subject.

As the session began, Chris was told that the subject was neither tense nor relaxed. If training was successful, the other subject would be relaxed by the end of the session.

Next Chris was given the training outline which had been used successfully in many previous studies. This outline consisted of seven paragraphs which asked the other student to imagine a series of pleasant events. Suggestions for muscle relaxation and deep breathing were dispersed throughout the outline.

Chris was informed that he would have to deliver the outline exactly as it appeared on the paper in order for the training to work. He read and rehearsed the outline in the presence of the experimenter. Finally, the intercom system was turned on.

Chris was told that he could begin whenever he was ready and that he could observe the other student's level of relaxation throughout the session by watching the other subject's body
language. As Chris began to deliver the training outline, he became flustered and started reading so quickly that he skipped parts of the outline. At the end of the session, after Chris had completed the training outline, the other student was sitting rigidly and looked extremely tense. The other student was not relaxed at the end of the training session.
Situation P

In the preceding passage, the student with whom Chris was participating in the experiment was not relaxed at the end of the session.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain

very certain
SOCIAL PERCEPTIVENESS ASSESSMENT INVENTORY (SPAI)
Social Perceptiveness is one dimension across which people can differ. It is an individual difference that concerns our interactions with other people. Social Perceptiveness deals with how people perceive and pay attention to the events that occur in other people's lives and the reasons for those events. Some people are high in Social Perceptiveness while others are lower on this dimension.

There are currently a variety of ways to test this individual difference that have been used extensively in recent research. The particular scale that we are using in our research has been used in several previous studies of Social Perceptiveness. We are currently trying to collect data that will give us base rate information about how college students perform on this scale.
Instructions

The people that you will read about on the following pages were participants in a diary study in which they were asked to write a little bit about their background and about the things that happened to them during the week of their participation. The passages that you will read are descriptions of the fairly typical events that occurred in these people's lives. Each passage is adapted from excerpts from one of the several participants' diaries that were used. The passages are written here in narrative form to make them easier to read.

After reading each passage you will be asked some questions concerning your understanding of one of the events that occurred. After each passage you will be asked to identify all of the possible relevant causes of this event. Please list as many causes as you can imagine. You are given boxes in which to list these causes. You should only write one cause in each box. However, you do not have to fill all the boxes. You will then be asked to rate your causes. Please be sure to rate each cause separately by placing a number in each of the smaller boxes to the right of the causes you listed. Remember, it is important that you read each passage carefully and answer the questions honestly and accurately.

Example

Situation X

In the preceding passage, Ted got a C on his history exam.

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted did not study very hard</td>
<td>6</td>
</tr>
<tr>
<td>The exam was difficult</td>
<td>7</td>
</tr>
<tr>
<td>Ted's teacher does not like him</td>
<td>3</td>
</tr>
<tr>
<td>The test wasn't fair</td>
<td>3</td>
</tr>
</tbody>
</table>

To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 very uncertain 2 3 4 5 6 7 8 very certain
Situation B

Emma lives in a small apartment on the north side just outside of Chicago's city limits. Emma likes Chicago. She enjoys the city life and her boyfriend, Jake, is only a half an hour away now instead of three. Emma also likes her new apartment because it is close to everything.

Emma was nervous when she looked into the mirror to tuck in her new blouse. She had bought it the day before at the mall and was wearing it today to the meeting she had with her boss. She wasn't sure why she had been called on to meet with Mr. Jones, but she knew that she had better get going if she wanted to be on time.

On the way to the office, Emma started getting very anxious. A meeting with her boss could only mean one thing. Things hadn't worked out as well as she had thought they would at this company. Emma's sales were down this month and profits in the division where she worked were decreasing.

Emma arrived at her office building and took the elevator to the fourth floor. When Emma got off the elevator, she walked to Mr. Jones' office, knocked on the door, and went in. When she left, Emma was thinking about what Mr. Jones had told her. Sixteen people had been hired around the same time she was. Mr. Jones told her that out of these sixteen, she was one of thirteen people to whom he was giving a promotion.
Situation B

In the preceding passage, Emma was one of thirteen out of sixteen employees hired at the same time who got a promotion.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>very uncertain</td>
<td>very certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Situation E

John is a student at Binghamton College and a member of the Binghamton College track team. John is a sophomore and has decided to declare history as his major.

John was thinking about Sarah, a girl in his sociology class when he walked down the stairs to go to the dining hall. He had been thinking about her all week. Sarah had red hair, and John really liked redheads. He thought she was really cute and pretty smart too. John had been thinking of a way to ask her to go out with him. He wasn't sure what he was going to say when he saw her in class the next day.

When John got to the dining hall, he got two cheeseburgers and a chocolate doughnut. Even though he was on the track team, he didn't care about eating healthy. He wasn't training very hard for track this year, and spent a lot of time partying with his friends. On Thursday night, John and one of his friends drank about a case of beer at a party they went to.

On Friday, John and his teammates arrived at one of their track meets. After about one hour, the official signalled that it was time for John's race. John went to the starting blocks. There were eleven other people running in this race, twelve runners in all. The official's gun went off, and the race started. Before he knew it, John was crossing the finish line and his race was over. John finished fourth, placing in the top third of the race contestants.
Situation E

In the preceding passage, John finished fourth in the race, placing in the top third of the race contestants.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain
very certain
Situation H

Rob is a sales representative for a large company. He likes his job and is making fairly good money.

On Friday, Rob ran into his friend Mike who told Rob that he was having a party on Saturday night. Rob wasn’t sure whether he would go. He didn’t go out a lot, but he did like going to parties sometimes.

On Saturday, Rob decided to go to the party. When he got there he saw a really pretty woman with long dark hair and beautiful green eyes. Rob asked his friend Mike to introduce him to her. Rob thought it was a long shot, because he was usually pretty shy with women. But when Rob and Nancy met, they hit it off right away. Rob and Nancy saw each other Sunday afternoon and Monday night.

On Tuesday Rob was going to pick Nancy up at 7:00. They were going to grab a sandwich and then maybe catch a movie. Rob was still kind of nervous around Nancy because this was only their third date. After Rob picked Nancy up, he was being very careful on the road, driving slowly through her neighborhood to watch out for little kids. Rob was careful when he took the left hand turn out of Nancy’s neighborhood. When he turned the corner, he got in a minor accident, hitting another car and denting his fender.
Situation H

In the preceding passage, Rob got in a minor accident, hitting another car and denting his fender.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected

very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain very certain
Situation K

Michelle recently graduated from a small college in the South where she majored in psychology. She had lived on campus in the dorms all four years that she was in school because it was convenient for her.

Michelle was a graduate student at the local university, so she wasn't making very much money. On Wednesday afternoon, Michelle was coming home from school, and she was thinking about the notice she had received earlier about her rent. The owners of her apartment complex were voting on whether or not to raise the rent. When Michelle got home, she was hungry. Michelle went to her refrigerator and saw that it was almost empty. She had forgotten that she had to go to the store on her way home from school.

Michelle turned around and went back out to her car. She got in and drove to the grocery store. Michelle bought some things for dinner, some ice cream, and a newspaper. She also bought new window shades and some posters, because she wanted to fix her place up a little. Michelle's lease wasn't up for another ten months. When she got home from the store, she found a notice on her door that said that the rent for her apartment was staying the same for another year.

The next day Michelle went and signed a lease for a different apartment. She moved into her new place at the end of the month.
Situation K

In the preceding passage, Michelle moved into a new apartment at the end of the month.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>very uncertain</td>
<td>very certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Situation Q

Chris is a sophomore at a large state university. He is a student in introductory psychology and has to complete several hours participating in psychology experiments as part of the class. Chris was a subject who participated in an experiment concerning the ability of nonprofessionals to administer relaxation training to their peers. At the beginning of the experiment he was told the subject in the next room was another college student. Chris was to act as the trainer with the aid of a relaxation training outline; he was seated in front of a one-way mirror so that he could see the other subject.

As the session began, Chris was told that the subject was neither tense nor relaxed. If training was successful, the other subject would be relaxed by the end of the session.

Next Chris was given the training outline which had been used successfully in many previous studies. This outline consisted of seven paragraphs which asked the other student to imagine a series of pleasant events. Suggestions for muscle relaxation and deep breathing were dispersed throughout the outline.

Chris was informed that he would have to deliver the outline exactly as it appeared on the paper in order for the training to work. He read and rehearsed the outline in the presence of the experimenter. Finally the intercom system was turned on.

Chris was told that he could begin whenever he was ready and that he could observe the other student's level of relaxation throughout the session by watching the other student's body
language. As Chris began to deliver the training outline, he became confident and he delivered the outline perfectly. At the end of the session, after Chris had completed the training outline, the other student was sitting rigidly and looked extremely tense. The other student was not relaxed at the end of the session.
Situation Q

In the preceding passage, the student with whom Chris was participating in the experiment was not relaxed at the end of the session.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected

very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.

155
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain

very certain
SOCIAL PERCEPTIVENESS INVENTORY VALIDATION

Please answer the following questions.

1. Overall, how confident are you that you understood the causes of the events that you read about?

 1 2 3 4 5 6 7 8 9

 not at all extremely confident

2. To what extent do you feel that additional information would have been helpful to you in identifying the causes of the events that you read about?

 1 2 3 4 5 6 7 8 9

 not at all extremely helpful

3. To what extent do you feel that completing additional scenarios or passages would be helpful to you in identifying the causes of events that occur in other people's lives?

 1 2 3 4 5 6 7 8 9

 not at all extremely helpful

4. Ideally, how many more scenarios or passages do you think you would need to complete in order to feel like you could accurately identify the causes of events that occur in other people's lives?

 0-2 2-4 4-6 6-8 8-10 10+

5. Place an X on the line below in the place that you feel represents where on the Social Perceptiveness dimension you are.

 very low Social Perceptiveness very high Social Perceptiveness

157
6. How confident are you in your assessment of your level of Social Perceptiveness?

1 2 3 4 5 6 7 8 9
not at all confident extremely confident

7. To what extent do you feel that completing additional scenarios or passages would be helpful to you in judging where you fall on the Social Perceptiveness dimension?

1 2 3 4 5 6 7 8 9
not at all helpful extremely helpful

8. Ideally, how many more scenarios or passages do you think that you would need to complete in order to feel like you could accurately judge where you fall on the Social Perceptiveness dimension?

0-2 2-4 4-6 6-8 8-10 10+

9. To what extent do you feel that this scale could provide an accurate assessment of Social Perceptiveness?

1 2 3 4 5 6 7 8 9
not at all accurate extremely accurate

10. To what extent do you consider Social Perceptiveness to be an important ability?

1 2 3 4 5 6 7 8 9
not at all important extremely important
This is a questionnaire designed to measure what you are feeling at this moment. There is, of course, no right answer for any statement. The best answer is the one that describes how you are feeling at this moment. Be sure to answer all of the items, even if you are not certain of the best answer. Again, answer these questions according to how you are feeling RIGHT NOW. Circle the answer that best describes how you feel now.

1. I feel uncertain.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncertain</td>
<td>uncertain</td>
<td>uncertain</td>
<td>uncertain</td>
<td>uncertain</td>
</tr>
</tbody>
</table>

2. I am confused.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>confused</td>
<td>confused</td>
<td>confused</td>
<td>confused</td>
<td>confused</td>
</tr>
</tbody>
</table>

3. I am confident

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>confident</td>
<td>confident</td>
<td>confident</td>
<td>confident</td>
<td>confident</td>
</tr>
</tbody>
</table>

4. I feel doubtful.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>doubtful</td>
<td>doubtful</td>
<td>doubtful</td>
<td>doubtful</td>
<td>doubtful</td>
</tr>
</tbody>
</table>

5. I am happy

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>happy</td>
<td>happy</td>
<td>happy</td>
<td>happy</td>
<td>happy</td>
</tr>
</tbody>
</table>

6. I feel puzzled.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>puzzled</td>
<td>puzzled</td>
<td>puzzled</td>
<td>puzzled</td>
<td>puzzled</td>
</tr>
</tbody>
</table>

7. I am unsure.

<table>
<thead>
<tr>
<th>not at all</th>
<th>a little bit</th>
<th>somewhat</th>
<th>very much</th>
<th>extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsure</td>
<td>unsure</td>
<td>unsure</td>
<td>unsure</td>
<td>unsure</td>
</tr>
</tbody>
</table>
8. I am content.

not at all a little bit somewhat very much extremely
content content content content content

9. I feel undecided.

not at all a little bit somewhat very much extremely
undecided undecided undecided undecided undecided

10. I feel satisfied.

not at all a little bit somewhat very much extremely
satisfied satisfied satisfied satisfied satisfied
Circle the response that best expresses how much you agree or disagree with the statement.

1. I do not know what it takes to get along well with others.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. When I receive good grades, I usually do not understand why I did so well.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. I do not understand what causes most of the problems that I have with others.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. When I see something good happen to others, I often do not know why it happened.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. When I receive poor grades, I usually do not understand why I did so poorly.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. When someone I know receives a poor grade, I often cannot determine if they could have done anything to prevent it.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. I do not understand what causes most of the good things that happen to me.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. When things go right, I generally do not know what to do to keep them that way.

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Moderately Agree</th>
<th>Slightly Agree</th>
<th>Slightly Disagree</th>
<th>Moderately Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

161
9. When bad things happen, I generally do not know why.

<table>
<thead>
<tr>
<th>Strongly</th>
<th>Moderately</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Moderately</th>
<th>Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
<td>Disagree</td>
<td>Disagree</td>
<td>Agree</td>
<td>Disagree</td>
<td>Agree</td>
</tr>
</tbody>
</table>

10. When there is more than one possible reason for a person's action, it is difficult to determine which one is the actual reason.

<table>
<thead>
<tr>
<th>Strongly</th>
<th>Moderately</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Moderately</th>
<th>Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
<td>Disagree</td>
<td>Disagree</td>
<td>Agree</td>
<td>Disagree</td>
<td>Agree</td>
</tr>
</tbody>
</table>

11. I often feel like I don't have enough information to come to a conclusion about why things happen to other people.

<table>
<thead>
<tr>
<th>Strongly</th>
<th>Moderately</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Moderately</th>
<th>Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
<td>Disagree</td>
<td>Disagree</td>
<td>Agree</td>
<td>Disagree</td>
<td>Agree</td>
</tr>
</tbody>
</table>

12. When I see something bad happen to others, I often do not know why it happened.

<table>
<thead>
<tr>
<th>Strongly</th>
<th>Moderately</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Moderately</th>
<th>Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
<td>Disagree</td>
<td>Disagree</td>
<td>Agree</td>
<td>Disagree</td>
<td>Agree</td>
</tr>
</tbody>
</table>

13. I often feel like I do not have enough information to come to a conclusion about why things happen to me.

<table>
<thead>
<tr>
<th>Strongly</th>
<th>Moderately</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Moderately</th>
<th>Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
<td>Disagree</td>
<td>Disagree</td>
<td>Agree</td>
<td>Disagree</td>
<td>Agree</td>
</tr>
</tbody>
</table>

14. When I think about why someone does something, there are usually so many possible reasons for it that I cannot determine which one was the cause.

<table>
<thead>
<tr>
<th>Strongly</th>
<th>Moderately</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Moderately</th>
<th>Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
<td>Disagree</td>
<td>Disagree</td>
<td>Agree</td>
<td>Disagree</td>
<td>Agree</td>
</tr>
</tbody>
</table>

15. I feel like it is important to be able to determine the actual cause or causes of events in my life.

<table>
<thead>
<tr>
<th>Strongly</th>
<th>Moderately</th>
<th>Slightly</th>
<th>Slightly</th>
<th>Moderately</th>
<th>Strongly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disagree</td>
<td>Disagree</td>
<td>Disagree</td>
<td>Agree</td>
<td>Disagree</td>
<td>Agree</td>
</tr>
</tbody>
</table>
Read each item carefully and circle the number next to the answer that best reflects how you have been feeling during the past two weeks. If you cannot decide between two numbers, circle the higher number.

A. 0 I do not feel sad.
 1 I feel sad.
 2 I am sad all of the time and I can't snap out of it.
 3 I am so sad or unhappy that I can't stand it.

B. 0 I am not particularly discouraged about the future.
 1 I feel discouraged about the future.
 2 I feel I have nothing to look forward to.
 3 I feel that the future is hopeless and that things cannot improve.

C. 0 I do not feel like a failure.
 1 I feel I have failed more than the average person.
 2 As I look back on my life, all I can see is a lot of failures.
 3 I feel I am a complete failure as a person.

D. 0 I get as much satisfaction out of things as I used to.
 1 I don't enjoy things the way I used to.
 2 I don't get real satisfaction out of anything anymore.
 3 I am dissatisfied or bored with everything.

E. 0 I don't feel particularly guilty.
 1 I feel guilty a good part of the time.
 2 I feel quite guilty most of the time.
 3 I feel guilty all of the time.

F. 0 I don't feel I am being punished.
 1 I feel I may be punished.
 2 I expect to be punished.
 3 I feel I am being punished.

G. 0 I don't feel disappointed in myself.
 1 I am disappointed in myself.
 2 I am disgusted with myself.
 3 I hate myself.

H. 0 I don't feel I am any worse than anybody else.
 1 I am critical of myself for my weaknesses or mistakes.
 2 I blame myself all the time for my faults.
 3 I blame myself for everything bad that happens.

I. 0 I don't have any thoughts of killing myself.
 1 I have thoughts of killing myself, but I would not carry them out.
 2 I would like to kill myself.
 3 I would kill myself if I had the chance.

J. 0 I don't cry anymore than usual.
 1 I cry more now than I used to.
 2 I cry all the time now.
 3 I used to be able to cry, but now I can't even though I want to.

K. 0 I am no more irritated now than I ever am.
 1 I get annoyed or irritated more easily than I used to.
 2 I feel irritated all the time now.
 3 I don't get irritated at all by the things that used to irritate me.
L. 0 I have not lost interest in other people.
1 I am less interested in other people than I used to be.
2 I have lost most of my interest in other people.
3 I have lost all of my interest in other people.

M. 0 I make decisions about as well as I ever could.
1 I put off making decisions more than I used to.
2 I have greater difficulty in making decisions than before.
3 I can't make decisions at all anymore.

N. 0 I don't feel I look any worse than I used to.
1 I am worried that I am looking old or unattractive.
2 I feel that there are permanent changes in my appearance that make me look unattractive.
3 I believe that I look ugly.

O. 0 I can work about as well as before.
1 It takes an extra effort to get started at doing something.
2 I have to push myself very hard to do anything.
3 I can't do any work at all.

P. 0 I can sleep as well as usual.
1 I don't sleep as well as I used to.
2 I wake up 1-2 hours earlier than usual and find it hard to get back to sleep.
3 I wake up several hours earlier than I used to and cannot get back to sleep.

Q. 0 I don't get more tired than usual.
1 I get tired more easily than I used to.
2 I get tired from doing almost anything.
3 I am too tired to do anything.

R. 0 My appetite is no worse than usual.
1 My appetite is not so good as it used to be.
2 My appetite is much worse now.
3 I have no appetite at all anymore.

S. 0 I haven't lost much weight, if any, lately.
1 I have lost more than 5 pounds.
2 I have lost more than 10 pounds.
3 I have lost more than 15 pounds.
- I am purposely trying to lose weight by eating less. Yes___ No____

T. 0 I am no more worried about my health than usual.
1 I am worried about physical problems such as aches and pains; or upset stomach; or constipation.
2 I am very worried about physical problems, and it's hard to think of much else.
3 I am so worried about my physical problems that I cannot think about anything else.

U. 0 I have not noticed any recent change in my interest in sex.
1 I am less interested in sex than I used to be.
2 I am much less interested in sex now.
3 I have lost interest in sex completely.
APPENDIX D

VIDEOTAPE INFERENCE QUESTIONNAIRE FOR STUDY 2
This booklet contains several measures that ask about your impressions of the student you just watched in the videotape. Please work on each of the measures in the order that it appears in the packet, and do not look ahead.

Please answer all the questions as honestly as possible. Your responses will be anonymous and confidential.

If you have any questions, knock on the door and the experimenter will answer them.
The next few pages contain a form we have prepared for you to use to record your IMPRESSIONS of the student in the videotape. Simply write down the first idea that occurs to you in the first box, the second idea that occurs to you in the second box, and so on. Please put only one impression in each box. You might have positive impressions, negative impressions, or neutral impressions. ALL ARE FINE. You can use single adjectives or phrases, as you prefer. You may IGNORE SPELLING, GRAMMAR, AND PUNCTUATION.

Please put down as many ideas as occur to you. Don't feel limited by the number of pages provided in this booklet — if you need extra paper on which to list your impressions, knock on the door and the experimenter will give you more.

If you have any questions about how to complete this measure, please feel free to ask the experimenter.
When we form impressions of other people, it is possible that we are more
confident of the accuracy of some of these impressions than of others. To the right of the boxes
in which you wrote your impressions, you will see a column of small boxes labelled "C". In those
boxes, we would like you to rate how confident you are that each of your impressions of the
student is really true of him.

Follow the scale below in making your ratings. Please remove the scale and stick it on the
bottom of the page on which you wrote your impressions, in the box labelled "Do not write here."
If you used more than one page to list your impressions, you may move the scale from page to
page at your convenience.

If you have any questions about these instructions, please ask the experimenter for help.

Confidence

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>not at all confident</td>
<td>extremely confident</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sometimes when we form an impression of another person, the impression relates directly to how we have seen the person behave. Such a specific impression helps us characterize how the person behaved in the particular situation in which we observed him/her.

For example, imagine a scenario in which Jim lies to his mother by telling her that his car accident was not his fault. You might infer from Jim’s behavior in this situation that he is untruthful. That would be an example of a specific impression related to the incident you observed.

On the other hand, you may also notice that Jim’s tone of voice when he speaks to his mother is defiant. The combination of his lying and his defiant tone might lead you to conclude that Jim is not a likeable person. This is an example of a more complex, or abstract impression. An abstract impression, then, results from the combination of several pieces of information, and might apply to the target in a number of different situations.

At the beginning of this booklet you listed your impressions of the student you observed in the videotape. Please think now about your impressions of the student. Some of those impressions are probably specific thoughts about his performance on the Spatial Analysis Aptitude Test. Some of your thoughts might be very abstract, and still others might lie somewhere between specific and abstract. We would like you now to tell us how abstract you think your impressions are.

We would like you to rate each of your impressions for abstractness. Please remove the scale below, and stick it on the bottom of the page on which you wrote your impressions, in the box labelled “Do not write here.” In the column labelled “A” to the right of where you wrote your impressions, rate how abstract you think each impression is, following the scale. If you used more than one page to list your impressions, you may move the scale from one page to the other at your convenience.

<table>
<thead>
<tr>
<th>Abstractness</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>not at all</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extremely</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>abstract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

171
Instructions: The following questions ask about your impressions of the student and about your participation in this experiment. Please read each item carefully and answer all the questions. Circle the number that best answers each question.

How well did the student you observed on the videotape perform on the analytical ability task?

1 2 3 4 5 6 7 8 9
very poorly very well

To what degree did the student indicate that he felt personally responsible for his performance outcome? In other words, to what extent did he believe that his outcome was due to his ability?

1 2 3 4 5 6 7 8 9
not at all entirely responsible responsible

To what extent do you believe that the student felt his ratings of personal responsibility for his outcome would be evaluated by the experimenter?

1 2 3 4 5 6 7 8 9
not at all entirely

To what extent do you feel the student was responsible for his performance on the task? That is, to what extent was his performance due to his ability?

1 2 3 4 5 6 7 8 9
not at all entirely
To what extent are you **confident** or **certain** of your evaluation of the student's personality?

1 2 3 4 5 6 7 8 9

extremely
uncertain

In general, how **confident** or **certain** are you about your opinions, judgements and decisions?

1 2 3 4 5 6 7 8 9

extremely
uncertain

To what extent do you have a **feeling of personal control** and power over the events in your life?

1 2 3 4 5 6 7 8 9

not at all
entirely

When there is more than one possible reason for a person's action it is difficult to determine which one is the actual reason.

1 2 3 4 5 6 7 8 9

strongly
agree

To what extent do you agree with this statement: "I found it difficult to remember relevant information from the videotape"?

1 2 3 4 5 6 7 8 9

strongly
agree

Since the way you feel may influence your perceptions or impressions of other people, please rate how **anxious** you felt during the experiment.

1 2 3 4 5 6 7 8 9

not at all
extremely

anxious

anxious
APPENDIX E

INFERENCE CODING INSTRUCTIONS FOR JUDGES
Data Coding Classification Scheme

Based on the Linguistic Category Model (Semin & Fiedler, 1988)

The Linguistic Categories are:

Descriptive Action Verbs (DAVs) — These verbs make concrete reference to a behavior that allows the behavior's classification and its discrimination from other behaviors such as drinking, smoking, and so forth. These statements are easily verifiable. These verbs refer to one particular activity and to at least one physically invariant feature of the action. The action has a clear beginning and end. These usually do not have positive or negative connotations. These verbs simply describe a behavior.
Examples: call, kiss, talk, stare (e.g., A is talking to B)

Interpretive Action Verbs (IAVs) — The verb involves description of a specific behavior but also its interpretation. These verbs refer to a general class of behaviors. These verbs refer to a defined action with a beginning and an end. These verbs have positive or negative semantic connotations.
Examples: help, cheat, inhibit, imitate, attack, encourage, hurt (e.g., A is helping B)

State Verbs (SVs) — These verbs refer to the psychological state of Person A. These statements do not have a concrete reference to a specific behavior episode or event. These verbs refer to mental or emotional states. There is no clear definition of a beginning or end of an action with these verbs. The temporal stability of these verbs is longer. These statements are fairly abstract.
Examples: like, hate, notice, envy, respect, understand, worry, pity (e.g., A likes B)

Adjectives (Adjs) — These terms serve to discriminate Person A from other persons who are introverted, anxious, reserved, and so forth. These terms allow a classification of Person A in relation to others. These terms are abstract, and assume temporal stability of the quality in question. These refer to dispositions or traits.
Examples: friendly, stubborn, aggressive, intelligent (e.g., A is an extraverted person)

On the coding sheet that you have been given, next to each inference, please place a number in the column labeled LC according to the following scale:

* DV = 1 IAV = 2 SV = 3 Adj = 4 *
APPENDIX F

SPAI PACKETS FOR STUDY 3
SOCIAL PERCEPTIVENESS ASSESSMENT INVENTORY (SPAI)
SOCIAL PERCEPTIVENESS

Social Perceptiveness is one dimension across which people can differ. It is an individual difference that concerns our interactions with other people. Social Perceptiveness deals with how people perceive and pay attention to the events that occur in other people's lives and the reasons for those events. Some people are high in Social Perceptiveness while others are lower on this dimension.

There are currently a variety of ways to test this individual difference that have been used extensively in recent research. The particular scale that we are using in our research has been used in several previous studies of Social Perceptiveness. We are currently trying to collect data that will give us base rate information about how college students perform on this scale.
Instructions

The people that you will read about on the following pages were participants in a diary study in which they were asked to write a little bit about their background and about the things that happened to them during the week of their participation. The passages that you will read are descriptions of the fairly typical events that occurred in these people's lives. Each passage is adapted from excerpts from one of the several participants' diaries that were used. The passages are written here in narrative form to make them easier to read.

After reading each passage you will be asked some questions concerning your understanding of one of the events that occurred. After each passage you will be asked to identify all of the possible relevant causes of this event. Please list as many causes as you can imagine. You are given boxes in which to list these causes. You should only write one cause in each box. However, you do not have to fill all the boxes. You will then be asked to rate your causes. Please be sure to rate each cause separately by placing a number in each of the smaller boxes to the right of the causes you listed. Remember, it is important that you read each passage carefully and answer the questions honestly and accurately.

Example

Situation X

In the preceding passage, Ted got a C on his history exam.

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted did not study very hard</td>
<td>6</td>
</tr>
<tr>
<td>The exam was difficult</td>
<td>7</td>
</tr>
<tr>
<td>Ted's teacher does not like him</td>
<td>3</td>
</tr>
<tr>
<td>The test wasn't fair</td>
<td>3</td>
</tr>
</tbody>
</table>

To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 very uncertain 2 3 4 5 6 7 8 9 very certain

179
Situation B

Emma lives in a small apartment on the north side just outside of Chicago's city limits. Emma likes Chicago. She enjoys the city life and her boyfriend, Jake, is only a half an hour away now instead of three. Emma also likes her new apartment because it is close to everything.

Emma was nervous when she looked into the mirror to tuck in her new blouse. She had bought it the day before at the mall and was wearing it today to the meeting she had with her boss. She wasn't sure why she had been called on to meet with Mr. Jones, but she knew that she had better get going if she wanted to be on time.

On the way to the office, Emma started getting very anxious. A meeting with her boss could only mean one thing. Things hadn't worked out as well as she had thought they would at this company. Emma's sales were down this month and profits in the division where she worked were decreasing.

Emma arrived at her office building and took the elevator to the fourth floor. When Emma got off the elevator, she walked to Mr. Jones' office, knocked on the door, and went in. When she left, Emma was thinking about what Mr. Jones had told her. Sixteen people had been hired around the same time she was. Mr. Jones told her that out of these sixteen, she was one of thirteen people to whom he was giving a promotion.
Situation B

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

describes describes
the situation the situation
very poorly very well

___ Mr. Jones promoted Emma.
___ Mr. Jones helped Emma.
___ Mr. Jones admires Emma.
___ Mr. Jones is an intelligent businessman.
Situation B
In the preceding passage, Emma was one of thirteen out of sixteen employees hired at the same time who got a promotion.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected
very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain

very certain
Situation E

John is a student at Binghamton College and a member of the Binghamton College track team. John is a sophomore and has decided to declare history as his major.

John was thinking about Sarah, a girl in his sociology class when he walked down the stairs to go to the dining hall. He had been thinking about her all week. Sarah had red hair, and John really liked redheads. He thought she was really cute and pretty smart too. John had been thinking of a way to ask her to go out with him. He wasn’t sure what he was going to say when he saw her in class the next day.

When John got to the dining hall, he got two cheeseburgers and a chocolate doughnut. Even though he was on the track team, he didn’t care about eating healthy. He wasn’t training very hard for track this year, and spent a lot of time partying with his friends. On Thursday night, John and one of his friends drank about a case of beer at a party they went to.

On Friday, John and his teammates arrived at one of their track meets. After about one hour, the official signalled that it was time for John’s race. John went to the starting blocks. There were eleven other people running in this race, twelve runners in all. The official’s gun went off, and the race started. Before he knew it, John was crossing the finish line and his race was over. John finished fourth, placing in the top third of the race contestants.
Situation E

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>describes</td>
<td>describes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the situation</td>
<td>the situation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>very poorly</td>
<td>very well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- [] John finished fourth in his race.
- [] John exerted himself during his race.
- [] John wants to win all of his races.
- [] John is a hardworking runner.
Situation E

In the preceding passage, John finished fourth in the race, placing in the top third of the race contestants.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>very uncertain</td>
<td>very certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rob is a sales representative for a large company. He likes his job and is making fairly good money.

On Friday, Rob ran into his friend Mike who told Rob that he was having a party on Saturday night. Rob wasn’t sure whether he would go. He didn’t go out a lot, but he did like going to parties sometimes.

On Saturday, Rob decided to go to the party. When he got there he saw a really pretty woman with long dark hair and beautiful green eyes. Rob asked his friend Mike to introduce him to her. Rob thought it was a long shot, because he was usually pretty shy with women. But when Rob and Nancy met, they hit it off right away. Rob and Nancy saw each other Sunday afternoon and Monday night.

On Tuesday Rob was going to pick Nancy up at 7:00. They were going to grab a sandwich and then maybe catch a movie. Rob was still kind of nervous around Nancy because this was only their third date. After Rob picked Nancy up, he was being very careful on the road, driving slowly through her neighborhood to watch out for little kids. Rob was careful when he took the left hand turn out of Nancy’s neighborhood. When he turned the corner, he got in a minor accident, hitting another car and denting his fender.
Situation H

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

describes the situation
very poorly

_____ Rob hit another car.
_____ Rob damaged another car.
_____ Rob pays no attention to other cars.
_____ Rob is a careless driver.
Situation H

In the preceding passage, Rob got in a minor accident, hitting another car and denting his finder.

To what extent did you expect this event to occur?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>not at all</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very much</td>
</tr>
<tr>
<td></td>
<td>expected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>expected</td>
</tr>
</tbody>
</table>

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain
very certain
Situation K

Michelle recently graduated from a small college in the South where she majored in psychology. She had lived on campus in the dorms all four years that she was in school because it was convenient for her.

Michelle was a graduate student at the local university, so she wasn't making very much money. On Wednesday afternoon, Michelle was coming home from school, and she was thinking about the notice she had received earlier about her rent. The owners of her apartment complex were voting on whether or not to raise the rent. When Michelle got home, she was hungry. Michelle went to her refrigerator and saw that it was almost empty. She had forgotten that she had to go to the store on her way home from school.

Michelle turned around and went back out to her car. She got in and drove to the grocery store. Michelle bought some things for dinner, some ice cream, and a newspaper. She also bought new window shades and some posters, because she wanted to fix her place up a little. Michelle's lease wasn't up for another ten months. When she got home from the store, she found a notice on her door that said that the rent for her apartment was staying the same for another year.

The next day Michelle went and signed a lease for a different apartment. She moved into her new place at the end of the month.
Situation K

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

describes the situation describes the situation
very poorly very well

___ Michelle moved out of her old apartment.
___ Michelle could not afford her old apartment.
___ Michelle likes to save money.
___ Michelle is thrifty.
Situation K

In the preceding passage, Michelle moved into a new apartment at the end of the month.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very very
uncertain
very certain
Situation Q

Chris is a sophomore at a large state university. He is a student in introductory psychology and has to complete several hours participating in psychology experiments as part of the class. Chris was a subject who participated in an experiment concerning the ability of nonprofessionals to administer relaxation training to their peers. At the beginning of the experiment he was told the subject in the next room was another college student. Chris was to act as the trainer with the aid of a relaxation training outline; he was seated in front of a one-way mirror so that he could see the other subject.

As the session began, Chris was told that the subject was neither tense nor relaxed. If training was successful, the other subject would be relaxed by the end of the session.

Next Chris was given the training outline which had been used successfully in many previous studies. This outline consisted of seven paragraphs which asked the other student to imagine a series of pleasant events. Suggestions for muscle relaxation and deep breathing were dispersed throughout the outline.

Chris was informed that he would have to deliver the outline exactly as it appeared on the paper in order for the training to work. He read and rehearsed the outline in the presence of the experimenter. Finally the intercom system was turned on.

Chris was told that he could begin whenever he was ready and that he could observe the other student's level of relaxation throughout the session by watching the other student's body
language. As Chris began to deliver the training outline, he became confident and he delivered the outline perfectly. At the end of the session, after Chris had completed the training outline, the other student was sitting rigidly and looked extremely tense. The other student was not relaxed at the end of the session.
Situation Q

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

describes describes
the situation the situation
very poorly very well

<table>
<thead>
<tr>
<th>Sentence</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris read an outline to another student.</td>
<td></td>
</tr>
<tr>
<td>Chris failed the experimental task.</td>
<td></td>
</tr>
<tr>
<td>Chris dreads psychology experiments.</td>
<td></td>
</tr>
<tr>
<td>Chris is incompetent.</td>
<td></td>
</tr>
</tbody>
</table>

198
Situation Q

In the preceding passage, the student with whom Chris was participating in the experiment was not relaxed at the end of the session.

To what extent did you expect this event to occur?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>not at all</td>
<td>expected</td>
<td>very much expected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>very uncertain</td>
<td>very certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOCIAL PERCEPTIVENESS ASSESSMENT INVENTORY (SPAI)
SOCIAL PERCEPTIVENESS

Social Perceptiveness is one dimension across which people can differ. It is an individual difference that concerns our interactions with other people. Social Perceptiveness deals with how people perceive and pay attention to the events that occur in other people's lives and the reasons for those events. Some people are high in Social Perceptiveness while others are lower on this dimension.

There are currently a variety of ways to test this individual difference that have been used extensively in recent research. The particular scale that we are using in our research has been used in several previous studies of Social Perceptiveness. We are currently trying to collect data that will give us base rate information about how college students perform on this scale.
Instructions

The people that you will read about on the following pages were participants in a diary study in which they were asked to write a little bit about their background and about the things that happened to them during the week of their participation. The passages that you will read are descriptions of the fairly typical events that occurred in these people's lives. Each passage is adapted from excerpts from one of the several participants' diaries that were used. The passages are written here in narrative form to make them easier to read.

After reading each passage you will be asked some questions concerning your understanding of one of the events that occurred. After each passage you will be asked to identify all of the possible relevant causes of this event. Please list as many causes as you can imagine. You are given boxes in which to list these causes. You should only write one cause in each box. However, you do not have to fill all the boxes. You will then be asked to rate your causes. Please be sure to rate each cause separately by placing a number in each of the smaller boxes to the right of the causes you listed. Remember, it is important that you read each passage carefully and answer the questions honestly and accurately.

Example

Situation X

In the preceding passage, Ted got a C on his history exam.

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ted did not study very hard</td>
<td>6</td>
</tr>
<tr>
<td>The exam was difficult</td>
<td>7</td>
</tr>
<tr>
<td>Ted's teacher does not like him</td>
<td>3</td>
</tr>
<tr>
<td>the test wasn't fair</td>
<td>3</td>
</tr>
</tbody>
</table>

To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 very certain
very uncertain

203
Situation A

Emma lives in a small apartment on the north side just outside of Chicago's city limits. Emma likes Chicago. She enjoys city life and her boyfriend, Jake, is only a half an hour away now instead of three. Emma also likes her new apartment because it is close to everything.

Emma was nervous when she looked into the mirror to tuck in her new blouse. She had bought it the day before at the mall and was wearing it today to the meeting she had with her boss. She wasn't sure why she had been called on to meet with Mr. Jones, but she knew that she had better get going if she wanted to be on time.

On the way to the office, Emma started getting very anxious. A meeting with her boss could only mean one thing. Things had worked out better than she thought they would at this company. Emma's sales were up this month and profits in the division where she worked were rising.

Emma arrived at her office building and took the elevator to the fourth floor. When Emma got off the elevator, she walked to Mr. Jones' office, knocked on the door, and went in. When she left, Emma was thinking about what Mr. Jones had told her. Sixteen people had been hired around the same time she was. Mr. Jones told her that out of these sixteen, she was one of thirteen people to whom he was giving a promotion.
Situation A

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

describes describes
the situation the situation
very poorly very well

____ Mr. Jones promoted Emma.
____ Mr. Jones helped Emma.
____ Mr. Jones admires Emma.
____ Mr. Jones is an intelligent businessman.
Situation A
In the preceding passage, Emma was one of thirteen out of sixteen employees hired at the same time who got a promotion.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all very much
expected expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>very uncertain</td>
<td>very certain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Situation D

John is a student at Binghamton College and a member of the Binghamton College track team. John is a sophomore and has decided to declare history as his major.

John was thinking about Sarah, a girl in his sociology class when he walked down the stairs to go to the dining hall. He had been thinking about her all week. Sarah had red hair, and John really liked redheads. He thought she was really cute and pretty smart too. John had been thinking of a way to ask her to go out with him. He wasn't sure what he was going to say when he saw her in class the next day.

When John got to the dining hall, he got a bowl of shredded wheat, some fruit and a large glass of milk. John had very healthy eating habits because he was training so hard for track this season. He practiced four times a week, and ran ten miles on Saturday and Sunday. John wanted to run well in track this year.

On Friday, John and his teammates arrived at one of their track meets. After about one hour, the official signalled that it was time for John's race. John went to the starting blocks. There were eleven other people running in this race, twelve runners in all. The official's gun went off, and the race started. Before he knew it, John was crossing the finish line and his race was over. John finished fourth, placing in the top third of the race contestants.
Situation D

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

1. ______ John finished fourth in his race.
2. ______ John exerted himself during his race.
3. ______ John wants to win all of his races.
4. ______ John is a hardworking runner.

describes the situation very poorly

describes the situation very well
Situation D

In the preceding passage, John finished fourth in the race, placing in the top third of the race contestants.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain
very certain
Situation G

Rob is a sales representative for a large company. He likes his job and is making fairly good money.

On Friday, Rob ran into his friend Mike who told Rob that he was having a party on Saturday night. Rob wasn't sure whether he would go. He didn't go out a lot, but he did like going to parties sometimes.

On Saturday, Rob decided to go to the party. When he got there he saw a really pretty woman with long dark hair and beautiful green eyes. Rob asked his friend Mike to introduce him to her. Rob thought it was a long shot, because he was usually pretty shy with women. But when Rob and Nancy met, they hit it off right away. Rob and Nancy saw each other Sunday afternoon and Monday night.

On Tuesday, Rob was going to pick Nancy up at 7:00. They were going to grab a sandwich and then maybe catch a movie. Rob was still kind of nervous around Nancy because this was only their third date. After Rob picked Nancy up he couldn't take his eyes off of her. Rob was not paying attention to the road when he took the left hand turn out of Nancy's neighborhood. When he turned the corner, he got in a minor accident, hitting another car and denting his fender.
Situation G

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

<table>
<thead>
<tr>
<th>describes the situation</th>
<th>describes the situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>very poorly</td>
<td>very well</td>
</tr>
</tbody>
</table>

____ Rob hit another car.
____ Rob damaged another car.
____ Rob pays no attention to other cars.
____ Rob is a careless driver.
Situation G

In the preceding passage, Rob got in a minor accident, hitting another car and denting his fender.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected
very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain
very certain
Situation J

Michelle recently graduated from a small college in the South where she majored in psychology. She had lived on campus in the dorms all four years that she was in school because it was convenient for her.

Michelle was a graduate student at the local university, so she wasn't making very much money. On Wednesday afternoon Michelle was coming home from school, and she was thinking about the notice she had received earlier about her rent. The owners of her apartment complex were voting on whether or not to raise the rent. When Michelle got home, she was hungry. Michelle went to her refrigerator and saw that it was almost empty. She had forgotten that she had to go to the store on her way home from school.

Michelle turned around and went back out to her car. She got in and drove to the grocery store. Michelle bought some things for dinner, some ice cream, and a newspaper. When she got home from the store, she found a notice on her door that said that the rent for her apartment was going up by one hundred dollars a month.

The next day Michelle went and signed a lease for a different apartment. She moved into her new place at the end of the month.
Situation J

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

1 2 3 4 5 6 7 8 9 10

describes the situation
describes very poorly very well

Michelle moved out of her old apartment. ___
Michelle could not afford her old apartment. ___
Michelle likes to save money. ___
Michelle is thrifty. ___
Situation J

In the preceding passage, Michelle moved into a new apartment at the end of the month.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine. Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain
very certain
Situation P

Chris is a sophomore at a large state university. He is a student in introductory psychology and has to complete several hours participating in psychology experiments as part of the class. Chris was a subject who participated in an experiment concerning the ability of nonprofessionals to administer relaxation training to their peers. At the beginning of the experiment he was told the subject in the next room was another college student. Chris was to act as the trainer with the aid of a relaxation training outline; he was seated in front of a one-way mirror so that he could see the other subject.

As the session began, Chris was told that the subject was neither tense nor relaxed. If training was successful, the other subject would be relaxed by the end of the session.

Next Chris was given the training outline which had been used successfully in many previous studies. This outline consisted of seven paragraphs which asked the other student to imagine a series of pleasant events. Suggestions for muscle relaxation and deep breathing were dispersed throughout the outline.

Chris was informed that he would have to deliver the outline exactly as it appeared on the paper in order for the training to work. He read and rehearsed the outline in the presence of the experimenter. Finally, the intercom system was turned on.

Chris was told that he could begin whenever he was ready and that he could observe the other student's level of relaxation throughout the session by watching the other subject's body
language. As Chris began to deliver the training outline, he became flustered and started reading so quickly that he skipped parts of the outline. At the end of the session, after Chris had completed the training outline, the other student was sitting rigidly and looked extremely tense. The other student was not relaxed at the end of the training session.
Situation P

Listed below are sentences pertaining to the situation that you just read about. Please read each sentence carefully, and then decide how well you think each of the sentences describes the situation that you just read about. Place the appropriate number on the line next to each sentence. Use the following scale:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>describes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>describes</td>
</tr>
<tr>
<td>the situation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very well</td>
</tr>
<tr>
<td>very poorly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

____ Chris read an outline to another student.
____ Chris failed the experimental task.
____ Chris dreads psychology experiments.
____ Chris is incompetent.
Situation P

In the preceding passage, the student with whom Chris was participating in the experiment was not relaxed at the end of the session.

To what extent did you expect this event to occur?

1 2 3 4 5 6 7 8 9
not at all expected very much expected

In the boxes below, please list all of the possible relevant causes of this event that you can imagine.
Please only write one cause in each box.
On the previous page, you listed causes for an event that you read about in the passage. To the right of each cause that you listed, please use the following scale to rate how certain you are that each cause contributed to the event.

1 2 3 4 5 6 7 8 9
very uncertain very certain
APPENDIX G

VIDEOTAPE INFERENCE QUESTIONNAIRE FOR STUDY 3
This booklet contains several measures that ask about your impressions of the student you just watched in the videotape. Please work on each of the measures in the order that it appears in the packet, and do not look ahead.

Please answer all the questions as honestly as possible. Your responses will be anonymous and confidential.

If you have any questions, knock on the door and the experimenter will answer them.
Instructions: Listed below on this page are sentences that could describe the actions that you saw in the videotape. Please read each sentence carefully, and then decide how well you think each of the sentences describes the scene in the videotape that you just watched. Place the appropriate number on the line next to each sentence. Use the following scale:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>describes</td>
<td>describes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the scene</td>
<td>the scene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>very poorly</td>
<td>very well</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

_____ Dave scored in the 20th percentile on the SPAAT.
_____ Dave failed the SPAAT.
_____ Dave does not understand spatial analysis.
_____ Dave is unintelligent.

_____ Dave said he did not feel responsible for his test performance.
_____ Dave distanced himself from his test performance.
_____ Dave denies responsibility for his outcomes.
_____ Dave is irresponsible.
The next few pages contain a form we have prepared for you to use to record your IMPRESSIONS of the student in the videotape. Simply write down the first idea that occurs to you in the first box, the second idea that occurs to you in the second box, and so on. Please put only one impression in each box. You might have positive impressions, negative impressions, or neutral impressions. ALL ARE FINE. You can use single adjectives or phrases, as you prefer. You may IGNORE SPELLING, GRAMMAR, AND PUNCTUATION.

Please put down as many ideas as occur to you. Don't feel limited by the number of pages provided in this booklet — if you need extra paper on which to list your impressions, knock on the door and the experimenter will give you more.

If you have any questions about how to complete this measure, please feel free to ask the experimenter.
PLEASE WRITE ONE IMPRESSION PER BOX

DO NOT WRITE HERE

229
When we form impressions of other people, it is possible that we are more confident of the accuracy of some of these impressions than of others. To the right of the boxes in which you wrote your impressions, you will see a column of small boxes labelled "C". In those boxes, we would like you to rate how confident you are that each of your impressions of the student is really true of him.

Follow the scale below in making your ratings. Please remove the scale and stick it on the bottom of the page on which you wrote your impressions, in the box labelled "Do not write here." If you used more than one page to list your impressions, you may move the scale from page to page at your convenience.

If you have any questions about these instructions, please ask the experimenter for help.

Confidence

1 2 3 4 5 6 7 8 9
not at all confident extremely confident
Sometimes when we form an impression of another person, the impression relates directly to how we have seen the person behave. Such a specific impression helps us characterize how the person behaved in the particular situation in which we observed him/her.

For example, imagine a scenario in which Jim lies to his mother by telling her that his car accident was not his fault. You might infer from Jim’s behavior in this situation that he is untruthful. That would be an example of a specific impression related to the incident you observed.

On the other hand, you may also notice that Jim’s tone of voice when he speaks to his mother is defiant. The combination of his lying and his defiant tone might lead you to conclude that Jim is not a likeable person. This is an example of a more complex, or abstract impression. An abstract impression, then, results from the combination of several pieces of information, and might apply to the target in a number of different situations.

At the beginning of this booklet you listed your impressions of the student you observed in the videotape. Please think now about your impressions of the student. Some of those impressions are probably specific thoughts about his performance on the Spatial Analysis Aptitude Test. Some of your thoughts might be very abstract, and still others might lie somewhere between specific and abstract. We would like you now to tell us how abstract you think your impressions are.

We would like you to rate each of your impressions for abstractness. Please remove the scale below, and stick it on the bottom of the page on which you wrote your impressions, in the box labelled “Do not write here.” In the column labelled “A” to the right of where you wrote your impressions, rate how abstract you think each impression is, following the scale. If you used more than one page to list your impressions, you may move the scale from one page to the other at your convenience.

```
Abstractness

1 2 3 4 5 6 7 8 9
not at all abstract

extremely abstract
```

232
Instructions: The following questions ask about your impressions of the student and about your participation in this experiment. Please read each item carefully and answer all the questions. Circle the number that best answers each question.

How well did the student you observed on the videotape perform on the analytical ability task?

1 2 3 4 5 6 7 8 9
very poorly very well

To what degree did the student indicate that he felt personally responsible for his performance outcome? In other words, to what extent did he believe that his outcome was due to his ability?

1 2 3 4 5 6 7 8 9
not at all entirely responsible responsible

To what extent do you believe that the student felt his ratings of personal responsibility for his outcome would be evaluated by the experimenter?

1 2 3 4 5 6 7 8 9
not at all entirely

To what extent do you feel the student was responsible for his performance on the task? That is, to what extent was his performance due to his ability?

1 2 3 4 5 6 7 8 9
not at all entirely
To what extent are you confident or certain of your evaluation of the student's personality?

1 2 3 4 5 6 7 8 9
extremely uncertain

In general, how confident or certain are you about your opinions, judgements and decisions?

1 2 3 4 5 6 7 8 9
extremely uncertain

To what extent do you have a feeling of personal control and power over the events in your life?

1 2 3 4 5 6 7 8 9
not at all entirely

When there is more than one possible reason for a person's action it is difficult to determine which one is the actual reason.

1 2 3 4 5 6 7 8 9
strongly disagree strongly agree

To what extent do you agree with this statement: "I found it difficult to remember relevant information from the videotape"?

1 2 3 4 5 6 7 8 9
strongly disagree strongly agree

Since the way you feel may influence your perceptions or impressions of other people, please rate how anxious you felt during the experiment.

1 2 3 4 5 6 7 8 9
not at all extremely anxious