INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
The complexity of the collection of measure distal transformations

Beleznay, Ferenc, Ph.D.
The Ohio State University, 1993
THE COMPLEXITY OF THE COLLECTION OF
MEASURE DISTAL TRANSFORMATIONS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of The Ohio State University

By

F. Belezmay,

* * * * *

The Ohio State University

1993

Dissertation Committee:

Matthew Foreman
Vitaly Bergelson
Timothy Carlson

Approved by

Matthew Foreman
Adviser
Department of Mathematics
ACKNOWLEDGEMENTS

It is impossible for me to name all the people I would like to thank. Let me just say that I am grateful to my family and my teachers for their support and patience. Special thanks go to my advisor, Matthew Foreman who helped me both professionally and personally during the four years I spent at OSU. I also appreciate the support I have received from OSU.
VITA

1987 B.Sc., Eötvös Loránd University, Budapest, Hungary.

1989-1993 Graduate Teaching Associate, Department of Mathematics, The Ohio State University, Columbus, Ohio.

1992 M.S., Graduate School, Department of Mathematics, The Ohio State University, Columbus, Ohio.

1992, 1993 summers .. Research assistant, supported by NSF grant #DMS 726115

FIELDS OF STUDY

Major Field: Mathematics
Table of Contents

ACKNOWLEDGEMENTS ... ii

VITA .. iii

CHAPTER

I Introduction .. 1

II Definitions and preliminaries ... 3

III Examples of measure distal systems ... 21

 3.1 Notation ... 21

 3.2 Systems on the finite dimensional tori .. 27

 3.3 Systems on the infinite dimensional torus 34

IV The complexity of the collection of measure distal transformations 42

 4.1 Lower bound .. 42

 4.2 Upper bound ... 47

BIBLIOGRAPHY ... 56
CHAPTER I

Introduction

In [4], Halmos introduced three different topologies on the space of measure preserving transformations. He showed that the class of ergodic transformations is a dense $G_δ$ set in what he called the neighborhood topology. This topology makes the space of measure preserving transformations to be a Polish (complete, separable, metrizable) space. In [5] he showed that the class of ergodic weakly mixing transformations was also a dense $G_δ$ set in this space. In [10] Rokhlin showed that the collection of strongly mixing transformations is a meager set in this space, hence showing that there is a weakly mixing, not strongly mixing transformation. In this thesis I calculate the complexity of another class of transformations, the class of measure distal transformations.

In [3] Furstenberg gave an ergodic theoretic proof of Szemerédi’s theorem. He used a structure theorem for ergodic transformations, which states that every ergodic transformation can be reached by transfinite induction from the trivial one point transformation by taking relatively compact and weakly mixing extensions and inverse limits. A transformation is called measure theoretically distal if only compact extensions are needed. There are several names for these. Zimmer in [11] where he gives a similar structure theorem, calls these transformations having generalized
discrete spectrum. He proves that an ergodic transformation has generalized discrete spectrum if and only if it has a separating sieve, the notion of Parry [9].

In [2] we computed the "complexity" of distal transformations of topological dynamics. This thesis contains similar results using the analogy between the distal and measure distal transformations. We show that the set of measure distal transformations forms a complete coanalytic set, hence it is not a Borel set, but universally measurable.

In Chapter 3 we give a "uniform" construction of measure distal transformations. Using this we show in Chapter 4 that the set of measure distal transformations is \(\Pi^1 \)-hard, i.e. every coanalytic set is reducible to it via a Borel function. In Chapter 4 we also give a \(\Pi^1 \)-definition of measure distality, which shows that the set of measure distal transformations is coanalytic. We use descriptive set theoretic methods. For reference on these see e.g. [8].
CHAPTER II
Definitions and preliminaries

In this chapter we introduce the necessary notation and preliminaries. We mostly follow the notation of chapter 5 and 6 of [3] and [4].

Definition 2.0.1 The triple \((X, \mathcal{B}, \mu)\) is called a measure space if \(X\) is a set, \(\mathcal{B}\) is a \(\sigma\)-algebra of subsets of \(X\) and \(\mu\) is a \(\sigma\)-additive probability measure on \(\mathcal{B}\).

If \((X, \mathcal{B}, \mu)\) is a measure space, we can define another \(\sigma\)-algebra \(\mathcal{B}^*\), consisting of equivalence classes of sets of \(\mathcal{B}\) that differ by a set of measure 0. Since the measure \(\mu\) naturally projects to this \(\sigma\)-algebra, we will use the same letter for the two measures. We can also define the Boolean operations on \(\mathcal{B}^*\) by \([A] \cup [B] = [A \cup B]\), \([A] \cap [B] = [A \cap B]\) and \(\neg [A] = [X \setminus A]\).

Definition 2.0.2 The quadruple \(X = (X, \mathcal{B}, \mu, \Gamma)\) is called a measure preserving system, if \((X, \mathcal{B}, \mu)\) is a measure space and \(\Gamma\) is a group of measure preserving transformations of \(X\).

A measure preserving system \(X = (X, \mathcal{B}, \mu, \Gamma)\) is called separable if \(\mathcal{B}^*\) is generated by countably many elements and \(\Gamma\) is countable.

We deal only with the case when \(\Gamma = \mathbb{Z}\). In this case the group is generated by some \(T : X \rightarrow X\) bijection, such that both \(T\) and \(T^{-1}\) are measurable and
measure preserving. We will use the notation $X = (X, B, \mu, T)$, indicating explicitly the generating element of the group.

Definition 2.0.3 (cf. Definition 5.1 of [3]) A homomorphism $\alpha : (X, B, \mu) \to (Y, \mathcal{D}, \nu)$ between two measure spaces is given by an injection $\alpha^{-1} : \mathcal{D}^* \to B^*$ satisfying

(i) $\alpha^{-1}([A] \cup [B]) = \alpha^{-1}([A]) \cup \alpha^{-1}([B])$, for all $A, B \in \mathcal{D}$;

(ii) $\alpha^{-1}([A] \cap [B]) = \alpha^{-1}([A]) \cap \alpha^{-1}([B])$, for all $A, B \in \mathcal{D}$;

(iii) $\alpha^{-1}([-A]) = -\alpha^{-1}([A])$, for all $A \in \mathcal{D}$;

(iv) $\mu(\alpha^{-1}([A])) = \nu([A])$, for all $A \in \mathcal{D}$.

Definition 2.0.4 We say that the measure preserving system (Y, \mathcal{D}, ν, S) is a factor of (X, B, μ, T) if there is a homomorphism α between the underlying measure spaces satisfying

(v) $\alpha^{-1}([S(A)]) = T(\alpha^{-1}([A]))$ and $\alpha^{-1}([S^{-1}(A)]) = T^{-1}(\alpha^{-1}([A]))$ for all $A \in \mathcal{D}$.

The systems are said to be equivalent, if this homomorphism is bijective.

Note that if (X, B, μ, T) is a measure preserving system and \mathcal{D} is a T-invariant σ-subalgebra of B, then (X, \mathcal{D}, μ, T) is a factor of (X, B, μ, T) by the identity map. Also if (Y, \mathcal{D}, ν, S) is a factor of (X, B, μ, T) by α and \mathcal{D}' is the α^{-1}-image of \mathcal{D}, then (Y, \mathcal{D}, ν, S) is equivalent to $(X, \mathcal{D}', \mu, T)$. This means that factors and invariant σ-subalgebras naturally correspond to each other.

Now we introduce a special kind of extension, the skew product of Anzai ([3]). Let (Y, \mathcal{D}, ν, S) be a measure preserving system, and (W, \mathcal{E}, θ) be a measure space.
Suppose also that for each \(y \in Y \) we have a measurable \(\nu \)-measure preserving map \(\sigma(y) \) from \(W \) to itself such that the map \((y, w) \mapsto \sigma(y)w \) is measurable from \((Y \times W) \) to \(W \). We define the skew product of \(Y \) with \(W \) to be the system \((X, B, \mu, T) \), where \(X = Y \times W \), \(B = \mathcal{D} \times \mathcal{E} \), \(\mu = \nu \times 0 \) and \(T(y, w) = (Sy, \sigma(y)w) \). Then \(X \) is a measure preserving system and by the projection on the first coordinate \(Y \) is a factor of \(X \).

If \(\alpha : (X, \mathcal{B}, \mu, T) \to (Y, \mathcal{D}, \nu, S) \) is a factor map then this induces an isometry \(U_\alpha : L^2(Y) \to L^2(X) \) as follows. For any \(f \in L^2(Y) \) define \(B_t(f) = \{ y : f(y) < t \} \). Let \(C_t(f) \) be any set from \(\alpha^{-1}([B_t(f)]) \), and let us define \(U_\alpha(f)(x) = \inf \{ t : x \in C_t(f) \} \). This gives an isometric embedding of \(L^2(Y) \) onto a closed subspace of \(L^2(X) \). This closed subspace is also the space of functions measurable with respect to the \(\alpha^{-1} \)-image of \(\mathcal{D}^* \). Clearly \(X \) is equivalent to the factor \(Y \) if and only if \(U_\alpha \) is onto.

We also need an inverse of this map. For any \(f \in L^2(X) \) let \(Pf \) be the projection onto the image space of \(L^2(Y) \). Let us define \(E(f|Y) = U_\alpha^{-1}(Pf) \). The map \(f \mapsto E(f|Y) \) is the conditional expectation map.

Proposition 2.0.5 (i) If \(f \in L^2(X) \) and \(g \) are bounded and measurable with respect to the \(\sigma \)-algebra \(\alpha^{-1}(\mathcal{D}^*) \), then \(E(gf|Y) = U_\alpha^{-1}(g)E(f|Y) \).

(ii) \(SE(f|Y) = E(Tf|Y) \).

Proof. See proposition 5.4 of [3].

Our goal is to study nonatomic, separable measure preserving systems and towers of these. We restrict our attention to systems on the infinite dimensional torus \(T^N \), with the \(\sigma \)-algebra of the Borel sets and the product of the Lebesgue measure. Since every nonatomic separable measure preserving system is equivalent to a system on
T^N, this is not a substantial restriction.

Let O be the algebra consisting of finite unions of sets of the form $\Pi_{n \in \mathbb{N}} A_n$, where each A_n is a finite union of rational intervals (open, closed or half-open), and for all but finitely many n, $A_n = T$. This is a countable algebra that generates the σ-algebra of Borel sets. Let $\{O_n : n \in \mathbb{N}\}$ be an enumeration of O.

Definition 2.0.6 Let's define an equivalence relation \sim on the measure preserving transformations of T^N by $T \sim S$ iff for all $n \in \mathbb{N}$, $\mu(T(O_n) \Delta S(O_n)) = 0$. Look at the space of these equivalence classes, and put the following metric on it:

$$d([T], [S]) = \sum_{n=1}^{\infty} \frac{1}{2^n} [\mu(T(O_n) \Delta S(O_n)) + \mu(T^{-1}(O_n) \Delta S^{-1}(O_n))]. \quad (2.1)$$

We call this space the space of measure preserving transformations. We use the notation MPT to refer to this space.

Proposition 2.0.7 The space of measure preserving transformations is a Polish space.

Proof. See e.g. in [6].

Definition 2.0.8 A measure preserving transformation is called ergodic if every invariant set has measure 1 or 0.

Lemma 2.0.9 Let (X, B, μ, T) be a measure preserving system, and $A \subset B$ be an algebra generating B. Then the transformation $T : X \to X$ is ergodic iff for every $B, C \in A$ such that $\mu(B), \mu(C) > 0$, there is an m such that $\mu(T^m B \cap C) > \frac{1}{2} \mu(B) \mu(C)$.

Proof. Ergodicity implies \(\lim_{N \to \infty} \sum_{m=0}^{N-1} \mu(T^m B \cap C) = \mu(B)\mu(C) \), hence for some \(m \in \mathbb{N} \), \(\mu(T^m B \cap C) > \frac{1}{2} \mu(B)\mu(C) \).

For the other direction suppose that \(T \) is not ergodic, i.e. there is an invariant \(A \in \mathcal{B} \) such that \(\delta < \mu(A) < 1 - \delta \) for some \(\delta > 0 \). Fix \(\epsilon > 0 \) such that \((\delta - \epsilon)^2 \geq 4\epsilon \), and choose \(B, C \in \mathcal{A} \) such that \(\mu(B \Delta A) < \epsilon \), and \(\mu(C \Delta (X \setminus A)) < \epsilon \). Then for all \(m \in \mathbb{N} \), \(\mu(T^m A \Delta T^m B) < \epsilon \), and since \(T^m A \cap (X \setminus A) = \emptyset \), \(\mu(T^m B \cap C) < 2\epsilon \). On the other hand by assumption there is an \(m \in \mathbb{N} \) such that \(\mu(T^m B \cap C) > \frac{1}{2} \mu(B)\mu(C) > \frac{1}{2}(\delta - \epsilon)^2 \), so \((\delta - \epsilon)^2 < 4\epsilon \), contradicting to the choice of \(\epsilon \). \(\square \)

Proposition 2.0.10 The ergodic transformations form a dense \(G_δ \) set in the space of measure preserving transformations.

Proof. The proof of this can be found i.e. [6]. We show here that it is a \(G_δ \) set to motivate the proof of Lemma 2.0.17. For \(n, m \in \mathbb{N} \) let

\[
D_{n,m} = \{ [T] : \exists k, \; \mu(T^k O_n \cap O_m) > \frac{1}{2} \mu(O_n)\mu(O_m) \}. \tag{2.2}
\]

The set \(D_{n,m} \) is open for every \(n, m \in \mathbb{N} \). Indeed, let \(k \) be a witness for \([T] \in D_{n,m} \) and let \(\mu(T^k O_n \cap O_m) = \frac{1}{2} \mu(O_n)\mu(O_m) + \delta \) for some \(\delta > 0 \). Let \(\mathcal{L} = \{ O_l : l \in L \} \) be a finite list of elements of \(\mathcal{O} \), such that for all \(0 \leq j \leq k \) there are \(l_1^j, \ldots, l_{k-j}^j \in \mathcal{L} \), such that \(\mu(T^j O_n \cup \bigcup_{i=1}^{l_1^j} O_{l_1^j}) < \delta / 4k \). Let \(S \) be such that \(\mu(S O_l \cup T O_l) < \delta / 2k |L| \) for all \(l \in L \). Then for all \(j < k \),

\[
\mu(S T^j O_n \cup T^{j+1} O_n) \leq \mu(T^j O_n \cup S(\bigcup_{i=1}^{l_1^j} O_{l_1^j}) + \mu(S(\bigcup_{i=1}^{l_1^j} O_{l_1^j}) \cup T(\bigcup_{i=1}^{l_1^j} O_{l_1^j})) + \mu(T(\bigcup_{i=1}^{l_1^j} O_{l_1^j}) \cup T^{j+1} O_n) \leq \tag{2.3}
\]

\[
\mu(S T^j O_n \cup \bigcup_{i=1}^{l_1^j} O_{l_1^j}) + \mu(S(\bigcup_{i=1}^{l_1^j} O_{l_1^j}) \cup T(\bigcup_{i=1}^{l_1^j} O_{l_1^j})) + \mu(T(\bigcup_{i=1}^{l_1^j} O_{l_1^j}) \cup T^{j+1} O_n) \leq \tag{2.4}
\]
\[
\frac{\delta}{4k} + \sum_{i=1}^{L} (S O_i \Delta T O_i') + \frac{\delta}{4k} \leq \frac{\delta}{2k} + |L|\frac{\delta}{2k}|L| = \frac{\delta}{k}.
\]

(2.5)

Hence \(\mu(S^{k-j}T'O_n \Delta S^{k-j-1}T^{j+1}O_n) < \frac{\delta}{k} \). So \(\mu(S^kO_n \Delta T^kO_n) < \mu(S^kO_n \Delta S^{k-1}T'O_n) + \mu(S^{k-1}T'O_n \Delta S^{k-2}T^2O_n) + \ldots + \mu(ST^{k-1}O_n \Delta T^kO_n) \leq k\frac{\delta}{k} = \delta \), which implies that \(\mu(S^kO_n \cap O_m) > \frac{1}{2}\mu(O_n)\mu(O_m) + \delta - \delta \), which witnesses that \([S] \in D_{n,m}\).

Finally since in this space \(\mu(O_n) > 0 \) for every \(n \in \mathbb{N} \), according to Lemma 2.0.9 the set of ergodic transformations is the intersection of these \(D_{n,m} \)'s, which is a \(G_k \) set.

\[\square\]

In order to define the two main kind of extensions, we need to introduce the notion of disintegration of measures. However due to Theorem 5.15 of [3], we don’t need this notion in its most general form. We repeat this theorem here.

Theorem 2.0.11 Let \(\alpha : X \rightarrow Y \) be a homomorphism of separable measure-preserving systems. There exist a system \(X' \) equivalent to \(X \), a system \(Y' \) equivalent to \(Y \) and a measure space \(Z' \) such that \(X' \) is a skew product of \(Y' \) and \(Z' \).

\[\square\]

Remark. From now on whenever we have a factor map, we assume that it is induced by a spatial map of the underlying spaces, which we denote by the same letter. Also, if \(X \) is a skew product of \(Y \) and some \(W \), then we identify \(U_n(L^2(Y)) \) with \(L^2(Y) \).

Let \(X = Y \times W \) be a skew product with \(Tx = (S_y, \sigma(y)w) \). Let \(\mu_y = \delta_y \times \theta \) be the measure on \(X \), where \(\delta_y \) is the point mass on \(y \). Hence \(\mu_y \) concentrates on the fiber above \(y \) and there it coincides with the measure on \(W \).

Proposition 2.0.12 (i) \(E(f|Y)(y) = \int f d\mu_y \) for \(f \in L^2(X) \) and for a.e. \(y \in Y \).
(ii) For every measurable $A \subseteq X$, $\mu(A) = \int \mu_y(A) d\nu(y)$.

(iii) $\int f d\mu = \int (\int f d\mu_y) d\nu(y)$ for every $f \in L^2(X)$.

Proof. This is an easy consequence of Theorem 5.8 of [3]. □

Definition 2.0.13 Let X_1, X_2 be extensions of Y by ϕ_1 and ϕ_2. The relative product $X_1 \times_Y X_2 = (X, B, \mu, T)$ is defined as follows: $X = X_1 \times X_2$, $B = B_1 \times B_2$, the transformation is defined pointwise: $T(x_1, x_2) = (T_1x_1, T_2x_2)$. Finally, for $A \subseteq B_1 \times B_2$, $(\mu_1 \times_Y \mu_2)(A) = \int (\mu_1 \times \mu_2)(A) d\nu(y)$.

Proposition 2.0.14 (i) $X_1 \times_Y X_2$ is a measure preserving system, which is an extension of Y.

(ii) The measure on the relative product is characterized by

$$\int f_1(x_1)f_2(x_2)d(\mu_1 \times_Y \mu_2) = \int E(f_1|Y)E(f_2|Y)d\nu$$

for all $f_i \in L^2(X_i)$, $i = 1, 2$.

(iii) $(\mu_1 \times_Y \mu_2)_y = \mu_{1,y} \times \mu_{2,y}$.

Proof. See section 5.5 of [3]. □

Lemma 2.0.15 If $(X_i, B_i, \mu_i, T_i) = (Y, D, \nu, S_i) \times (W_i, \mathcal{E}_i, \theta_i)$ are skew products for $i = 1, 2$ with $T_i(y, w) = (Sy, \sigma_i(y)w)$, then

$$(X_1 \times_Y X_2) \sim (Y \times W_1 \times W_2, \mathcal{D} \times \mathcal{E}_1 \times \mathcal{E}_2, \nu \times \theta_1 \times \theta_2, T)$$

where the action T is defined by $T(y, w_1, w_2) = (Sy, \sigma_1(y)w_1, \sigma_2(y)w_2)$.
Proof. This follows easily from 2.0.14.

Definition 2.0.16 An extension $\alpha : X \to Y$ is relatively ergodic if the only invariant functions in $L^2(X)$ are in $L^2(Y)$.

We will need a version of Lemma 2.0.9 for relatively ergodic extensions, i.e. we want to be able to decide whether an extension is relatively ergodic just by looking at the action on a countable family of sets.

Lemma 2.0.17 Let (X, B, μ, T) be the skew product of (Y, D, ν, S) and (W, E, θ), and let π be the projection of X to Y. Let A be an algebra that generates B as a σ-algebra. Suppose that A is generated by sets of the form $B \times C$, where $B \in D$ and $C \in E$. Then this extension being relatively ergodic is equivalent to the following property:

(RE) Suppose that for $E, F \in A$ such that $\pi(E) = \pi(F)$, and for $0 < \delta < 1/6$ there are $E_1, F_1 \in D$ with the following properties:

(RE1) $\nu(E_1), \nu(F_1) > (1 - \delta)\nu(\pi(F))$,

(RE2) for every $w \in E_1$, $\theta(\{u \in E : \pi(u) = w\}) > \delta$,

(RE3) for every $w \in F_1$, $\theta(\{u \in F : \pi(u) = w\}) > \delta$, and

(RE4) for all $m \in \mathbb{Z}$, $\nu(\pi(T^m(E)) \cap \pi(F)) > (1 - \delta)\nu(\pi(F))$.

Then there is an $m \in \mathbb{N}$ such that $\mu(T^m(E) \cap F) > \frac{1}{2} \delta^2 \nu(\pi(F))$.

Proof. First we show that relative ergodicity implies (RE). Relative ergodicity implies that for all $g, h \in L^2(X)$ such that $E(h|Y) = 0$,

$$\lim_{N \to \infty} \frac{1}{N + 1} \sum_{n=0}^{N} \int E(gT^m(h)|Y) d\nu = 0.$$ (2.8)
(See e.g. [3]) On the other hand for every \(f \in L^2(X) \), \(E(f - E(f|Y)|Y) = 0 \), so

\[
\lim \frac{1}{N+1} \sum_{m=0}^{N} \int E(gT^m(f) - gS^m(E(f|Y))|Y) d\nu = 0. \quad (2.9)
\]

Using the properties of the conditional expectation,

\[
\int E(gT^m(f) - gS^m(E(f|Y))|Y) d\nu = \int E(gT^m(f)|Y) d\nu - \int E(g|Y)S^m(E(f|Y)) d\nu. \quad (2.10)
\]

\[
\int E(gT^m(f)|Y) d\nu = \int E(g|Y)S^m(E(f|Y)) d\nu. \quad (2.11)
\]

Hence

\[
\limsup \frac{1}{N+1} \sum_{m=0}^{N} \int E(gT^m(f)|Y) d\nu = \limsup \frac{1}{N+1} \sum_{m=0}^{N} \int E(g|Y)S^m(E(f|Y)) d\nu, \quad (2.12)
\]

which is the same as

\[
\limsup \frac{1}{N+1} \sum_{m=0}^{N} \int gT^m(f) d\mu = \limsup \frac{1}{N+1} \sum_{m=0}^{N} \int E(g|Y)S^m(E(f|Y)) d\nu. \quad (2.13)
\]

Now let \(f = \chi_F \) and \(g = \chi_F \) be the characteristic functions. For every \(y \in Y \), \(E(g|Y)(y) \) and \(E(f|Y)(y) \) gives the \(\theta \)-measure of the fibers of \(F \) and \(E \) above the point \(y \). So \([E(g|Y)S^m(E(f|Y))](y) > \delta^2 \) as long as \(y \in F_1 \) and \(y \in S^{-m}E_1 \). We now give a lower bound of the measure of \(F_1 \cap S^{-m}E_1 \). First notice that \(F_1 \cap S^{-m}E_1 \) contains every point of \(\pi(F) \) which is not in any of \(U = \pi(F) \setminus F_1 \), \(V = \pi(F) \setminus \pi(T^{-m}E) \) or \(W = \pi(T^{-m}E) \setminus S^{-m}E_1 \). Indeed,

\[
F_1 \cap S^{-m}E_1 = F_1 \setminus (F_1 \setminus S^{-m}E_1) = \quad (2.16)
\]
\{\pi(F) \setminus \{\pi(F) \setminus F_i\}\setminus [F_i \setminus S^{-m}E_1] = \tag{2.17} \}

\{\pi(F) \setminus U\} \setminus [\pi(F) \setminus S^{-m}E_1] \supset \tag{2.18} \}

\{[\pi(F) \setminus U\] \setminus [\pi(F) \setminus \pi(T^{-m}E)]\} \setminus [\pi(T^{-m}E) \setminus S^{-m}E_1] = \tag{2.19} \}

\{[\pi(F) \setminus U\] \setminus V\} \setminus W. \tag{2.20} \}

\nu(U) = \nu(\pi(F) \setminus F_i) < \delta \nu(\pi(F)), \tag{2.21} \}

\nu(V) = \nu(\pi(F) \setminus \pi(T^{-m}(E))) < \delta \nu(\pi(F)), \text{ and } \tag{2.22} \}

\nu(W) = \nu(\pi(T^{-m}(E)) \setminus S^{-m}(E_1)) = \tag{2.23} \}

\nu(S^{-m}\pi(E) \setminus S^{-m}E_1) = \nu(\pi(E) \setminus E_1) < \delta \nu(\pi(E)) = \delta \nu(\pi(F)). \tag{2.24} \}

So \mu(F_i \cap S^{-m}E_1) \geq (1 - 3\delta)\nu(\pi(F)) > \frac{1}{2}\nu(\pi(F)). Since \(g = \chi_F\) and \(f = \chi_E\) are non-negative functions, we can conclude that 2.15 is bigger than \(\frac{1}{2}\delta^2 \nu(\pi(F))\). Rewriting 2.14 we get that

\begin{equation}
\limsup \frac{1}{N+1} \sum_{m=0}^{N} \mu(T^m(E) \cap F) > \frac{1}{2}\delta^2 \nu(\pi(F)). \tag{2.25} \end{equation}

Hence at least one of the terms should satisfy the inequality, which is what we wanted.

Now we show the other direction, i.e. that (RE) implies relative ergodicity. Suppose that there is a T-invariant set \(A\) such that for \(A_1 = \pi(A)\), \(\nu(A_1) > 0\). Also suppose that there is some \(0 < \delta' < 1/3\) such that for every \(y \in A_1\), \(\delta' < \theta(\{x \in A : \pi(x) = y\}) < 1 - \delta'\). Such an \(A\) exist if \(X\) is not relatively ergodic over \(Y\). Indeed, if \(X\) is not relatively ergodic over \(Y\), then by definition there is an invariant \(A'\) such that for \(A'_1 = \pi(A')\), \(\nu(A'_1) > 0\) and for all \(y \in A'_1\), \(0 < \theta(\pi^{-1}(y)) < 1\). Then by Fubini's
theorem the function $f : A'_1 \to \mathbb{R}$ defined by $f(y) = \theta(\pi^{-1}(y))$ is almost everywhere defined and measurable. Hence there is a $0 < \delta' < 1/3$ such that the measurable $A_1 = \{ y \in A'_1 : \delta' < \theta(\pi^{-1}(y)) < 1 - \delta' \}$ does not have zero measure. Clearly A_1 is also invariant, and $A = \pi^{-1}(A_1)$ works.

We show that in this case (RE) does not hold. Let $A' = (X \setminus A) \cap \pi^{-1}(A_1)$. Fix $\epsilon > 0$ and let $E, F \in \mathcal{A}$ be approximations of A and A' such that $\mu(E \Delta A) < \epsilon$, $\mu(F \Delta A') < \epsilon$, $\pi(E) = \pi(F)$ and $\nu(\pi(F) \Delta \pi(A')) = \nu(\pi(E) \Delta \pi(A)) < \epsilon$. (Without the condition $\pi(E) = \pi(F)$, these approximations exist because \mathcal{A} is a dense algebra in \mathcal{B}. We can satisfy $\pi(E) = \pi(F)$, because we assumed that \mathcal{A} is generated by sets from $\mathcal{D} \times \mathcal{E}$.) Then for all $m \in \mathbb{Z}$, $\mu(T^m(E) \cap F) \leq \mu(T^m(E \Delta T^m(A)) + \mu(T^m(A) \cap A') + \mu(A' \Delta F) < 2\epsilon$. On the other hand let $\delta = \delta'/2$. If $0 < \epsilon < \delta$ is small enough to satisfy $\epsilon < \delta^2 \nu(\pi(A)) - 3\epsilon - \delta \epsilon$ and $2\epsilon < \delta(\nu(\pi(A')) - \epsilon)$, then E and F will satisfy the hypothesis of (RE) for δ. Indeed, let $E_1 = \{ y : \theta\{x \in E : \pi(x) = y\} > \delta \}$ and $F_1 = \{ y : \theta\{x \in F : \pi(x) = y\} > \delta \}$. If $\nu(E_1) \leq (1 - \delta)\nu(\pi(E))$, then $\nu((\pi(E) \setminus E_1) \cap \pi(A)) > \delta \nu(\pi(E)) - \epsilon$. For $y \in (\pi(E) \setminus E_1) \cap \pi(A)$, $\theta\{x \in A : \pi(x) = y\} > \delta' = 2\delta$, and $\theta\{x \in E : \pi(x) = y\} \leq \delta$. Hence $\mu(A \Delta E) \geq \delta(\delta \nu(\pi(E)) - \epsilon) \geq \delta(\delta(\nu(\pi(A)) - \epsilon)) - \epsilon)$, which contradicts our choice of ϵ. To show that $\nu(F_1) > (1 - \delta)\nu(\pi(F))$ is similar.

For (RE4) $\nu(\pi(T^m(E)) \cap \pi(F)) \geq \nu(\pi(T^m(A)) \cap \pi(F)) - \nu(\pi(T^m(E)) \Delta \pi(T^m(A))) = \nu(\pi(A') \cap \pi(F)) - \nu(\pi(E) \Delta \pi(A)) > \nu(\pi(F)) - 2\epsilon > (1 - \delta)\nu(\pi(F))$ by our choice of ϵ. The last inequality holds, because we chose $2\epsilon < \delta(\nu(\pi(A')) - \epsilon) < \delta \nu(\pi(F))$ so by the conclusion of (RE), there is an $m \in \mathbb{N}$ such that $\mu(T^m(E) \cap F) > \frac{1}{2}\nu(\pi(F))\delta^2$. We already showed that $2\epsilon > \mu(T^m(E) \cap F)$, hence $2\epsilon > \frac{1}{5}(\nu(\pi(A)) - \epsilon)\delta^2$. But
this cannot be true for arbitrarily small \(\epsilon \), which proves that (RE) implies relative ergodicity.

The following definitions are from chapter 6 of [3].

Definition 2.0.18 Let \(\mathcal{X} \) be an extension of \(\mathcal{Y} \).

(i) \(\mathcal{X} \) is a weakly mixing extension of \(\mathcal{Y} \) if \(\mathcal{X} \times_\mathcal{Y} \mathcal{X} \) is ergodic over \(\mathcal{Y} \).

(ii) Call \(f \in L^2(\mathcal{X}) \) almost periodic (AP) relative to \(\mathcal{Y} \) if for every \(\delta > 0 \) there exist \(g_1, \ldots, g_n \in L^2(\mathcal{X}) \) such that for every \(j \in \mathbb{Z} \) and for a.e. \(y \in \mathcal{Y} \)

\[
\inf_{1 \leq k \leq n} \|T^j f - g_k\|_{L^2(\nu_y)} < \delta. \tag{2.26}
\]

(iii) Call \(f \in L^2(\mathcal{X}) \) compact relative to \(\mathcal{Y} \) if it is a limit of relatively almost periodic functions.

(iv) \(\mathcal{X} \) is a compact extension of \(\mathcal{Y} \) if the set of relatively almost periodic functions are dense in \(L^2(\mathcal{X}) \). (i.e. every \(f \in L^2(\mathcal{X}) \) is compact relative to \(\mathcal{Y} \).

Remark. If we are talking about an extension \((\mathcal{X}, \mathcal{B}, \mu, T) \) of \((\mathcal{X}, \mathcal{D}, \mu, T) \), where \(\mathcal{D} \) is a \(\sigma \)-subalgebra of \(\mathcal{B} \), then we use the expressions almost periodic or compact relative to \(\mathcal{D} \), instead of writing out the whole factor system.

Proposition 2.0.19 Let \((\mathcal{X}, \mathcal{B}, \mu, T) \) be an extension of \((\mathcal{X}, \mathcal{D}, \mu, T) \). Then the collection of relatively compact functions is a closed, invariant subspace of \(L^2(\mathcal{B}) \). Moreover let \(\mathcal{E} \) be the smallest \(\sigma \)-algebra such that every relatively compact function is measurable with respect to \(\mathcal{E} \). Then \(L^2(\mathcal{E}) \) is the collection of all relatively compact functions.
Proof. See the proof of Theorem 6.15 of [3].

Definition 2.0.20 Let $\alpha : X \rightarrow Y$ be an factor map. Let $H \in L^2(X \times_Y X)$ and $\phi \in L^2(X)$. Then the convolution $H * \phi$ is defined by

$$H * \phi(x) = \int H(x, x')\phi(x')d\mu_{\alpha(x)}(x'). \quad (2.27)$$

Proposition 2.0.21

(i) $H * \phi \in L^2(X)$

(ii) $||H * \phi||_{\nu} \leq ||H||_{(\nu \times_Y \nu)}||\phi||_{\nu}$

Proof. See p.130-131 of [3].

The following theorem gives some equivalent formulations of the compact extension. It is Theorem 6.13 of [3].

Theorem 2.0.22 Let $\alpha : X \rightarrow Y$ be an extension. The following are equivalent.

(C1) The functions $\{H * \phi\}$ span a dense subset of $L^2(X)$ as H ranges over bounded invariant functions in $L^2(X \times_Y X)$ and ϕ ranges over $L^2(X)$.

(C2) X is a compact extension of Y.

(C3) For every $f \in L^2(X)$ the following holds. For every $\epsilon, \delta > 0$ there exists a measurable set $B \subset Y$ with $\nu(B) > 1 - \epsilon$ and a finite set of functions $g_1 \ldots g_k \in L^2(X)$ such that if we denote by f_B the function $f_{\alpha^{-1}(B)}$, then for each $m \in \mathbb{Z}$, for a.e. $y \in Y$ min$_{1 \leq i \leq k} ||T^m f_B - g_i||_{\nu} < \delta$.

(C4) For every $f \in L^2(X)$ the following holds. For every $\epsilon, \delta > 0$ there exists a finite set of functions $g_1 \ldots g_k \in L^2(X)$ such that for each $m \in \mathbb{Z}$, min$_{1 \leq i \leq k} ||T^m f - g_i||_{\nu} < \delta$ but for a set of $y \in Y$ of measure $< \epsilon$.

\square
Definition 2.0.23 Let V be a compact extension of Y such that both of them are factors of X. Then V is the maximal compact extension of Y in X, if no extension of V which is a factor of X is compact over Y.

The following proposition states the existence of the maximal compact extension.

Proposition 2.0.24 Let $Y = (Y, \mathcal{D}, \nu, S)$ be a factor of X. Let's define the following two subsets of $L^2(X)$:

$(M1)$ Let \mathcal{H} be the closure of $\{H \ast \phi\}$ as H ranges over bounded invariant functions in $L^2(X \times_Y X)$ and ϕ ranges over $L^2(X)$.

$(M2)$ Let \mathcal{H}' be the closure of the relatively almost periodic functions. (i.e. the collection of relatively compact functions.)

Then $\mathcal{H} = \mathcal{H}'$. Moreover there is an invariant σ-algebra, \mathcal{E}, which is a sub-σ-algebra of \mathcal{B}, (and also can be seen as an extension of \mathcal{D}), such that both \mathcal{H} and \mathcal{H}' are the collection of the functions measurable with respect to \mathcal{E}.

Also (X, \mathcal{E}, μ, T) is the maximal compact extension of Y in X.

Proof. This is an immediate consequence of 2.0.19. □

Lemma 2.0.25 Let Y be a factor of X and V be a compact extension of Y in X. (i.e. V is also a factor of X) Then V is the maximal compact extension of Y in X iff $X_1 = X \times_Y X$ is relatively ergodic over $V_1 = V \times_Y V$.

Proof. The proof is based on characterization (M1) of the maximal compact extension. Let's denote the transformation on X_1 by T_1. If X_1 is relatively ergodic
over \mathcal{V}_1, then if $H \in L^2(\mathcal{X}_1)$ is T_1-invariant, then $H \in L^2(\mathcal{V}_1)$. So for any $\phi \in L^2(\mathcal{X})$, $H \ast \phi \in L^2(\mathcal{V})$. Since these are dense in the space of all compact functions, this implies that \mathcal{V} is the maximal compact extension of \mathcal{Y} in \mathcal{X}.

For the other direction we need to introduce some notation. According to Theorem 2.0.11 we assume that there are measure spaces \mathcal{Z} and \mathcal{W} such that \mathcal{X} is the skew product of \mathcal{V} and \mathcal{W}, and \mathcal{V} is the skew product of \mathcal{Y} and \mathcal{Z}. Let $\{f_i : i \in \mathbb{N}\}$ be an orthonormal base of $L^2(\mathcal{Z})$, $\{g_i : i \in \mathbb{N}\}$ be an orthonormal base of $L^2(\mathcal{Z})$ and $\{h_i : i \in \mathbb{N}\}$ be an orthonormal base of $L^2(\mathcal{W})$. Then $\{f_i(y)g_j(z_1)g_k(z_2) : i, j, k \in \mathbb{N}\}$ is a base of $L^2(\mathcal{V}_1)$, and $\{f_i(y)g_j(z_1)g_k(z_2)h_a(w_1)h_b(w_2) : i, j, k, a, b \in \mathbb{N}\}$ is a base of $L^2(\mathcal{X}_1)$. Suppose now that $H \in L^2(\mathcal{X}_1)$ is a T_1-invariant function which is not in $L^2(\mathcal{V}_1)$. Look at it's Fourier expansion

$$H(y, z_1, w_1, z_2, w_2) = \sum_{i,j,k,a,b} \alpha_{i,j,k,a,b} f_i(y)g_j(z_1)g_k(z_2)h_a(w_1)h_b(w_2).$$

(2.28)

Since $H \notin L^2(\mathcal{V}_1)$, this means that $\alpha_{i_0,j_0,k_0,a_0,b_0}$ is not 0 for some a_0, b_0 such that $h_{a_0}(w_1)h_{b_0}(w_2)$ is not constant. Without loss of generality we can assume that h_{a_0} is not constant. Let $\phi(y, z_2, w_2) = g_{b_0}(z_2)h_{b_0}(w_2)$. Then

$$H \ast \phi = \sum_{i,j,k,a,b} \alpha_{i,j,k,a,b} \int f_i(y)g_j(z_1)g_k(z_2)h_a(w_1)h_b(w_2)g_{b_0}(z_2)h_{b_0}(w_2)dz dw.$$

(2.29)

But $\int g_k h_a(w_2)g_{b_0}(z_2)h_{b_0}(w_2)dz dw$ is 1 if $(k, b) = (k_0, b_0)$ and 0 otherwise, hence

$$H \ast \phi = \sum_{i,j,a} \alpha_{i,j,k_0,a,b_0} f_i(y)g_j(z_1)h_a(w_1) = \sum_a h_a(w_1) \sum_{i,j} \alpha_{i,j,k_0,a,b_0} f_i(y)g_j(z_1).$$

(2.30)

Let $G_a = \sum_{i,j} \alpha_{i,j,k_0,a,b_0} f_i(y)g_j(z_1)$. Using the assumption that the $f_i(y)g_j(z_1)h_a(w_1)$'s are orthogonal to each other, $H \ast \phi$ can only be in $L^2(\mathcal{V})$ if all the G_a's are zero
except possibly for the a' where $h_{a'}$ is the constant function. But $\alpha_{i_0,i_0,k_0,\alpha,k_0}$ is not 0 a.e., hence (again by orthogonality), G_{α} is not zero. This shows that $H * \phi \notin L^2(V)$. Hence V is not the maximal compact extension of Y in X. □

Definition 2.0.26 A system of measure preserving systems $\{X_\alpha : \alpha \leq \eta\}$ is called a compact tower of measure preserving systems for X_η, if

(i) X_0 is the trivial one-point system,

(ii) every X_α is a factor of X_η, (let's denote the image of $L^2(X_\alpha)$ in $L^2(X_\eta)$ by H_α)

(iii) for limit $\beta \leq \eta$, H_β is the closure in H_η of $\bigcup_{\alpha < \beta} H_\alpha$,

(iv) for every $\alpha < \eta$, $X_{\alpha+1}$ is a compact extension of X_α.

Furstenberg in [3] showed that every ergodic system is either the limit of a compact tower of ergodic systems, or a weak mixing extension of a limit of a compact tower.

Definition 2.0.27 A system is called measure theoretically distal if it is the limit of a compact tower. The order of a measure distal system is the height of the shortest compact tower that reaches it from the trivial system by compact extensions.

Theorem 2.0.28 Let $X = (X, B, \mu, T)$ be a separable measure distal system. Then the height of X is a countable ordinal.

Proof. Let η be the order of X, and $\{X_\alpha : \alpha \leq \eta\}$ be a compact tower for $X = X_\eta$. Let H_α be the image of $L^2(X_\alpha)$ in $L^2(X)$. We can assume that for $\beta < \gamma \leq \eta$, $H_\beta \neq H_\gamma$, otherwise $X_\beta \sim X_\gamma$, so we can shorten the compact tower, still reaching X.
by compact extensions. Each H_α is a closed subspace of H_η. Hence $\{H_\alpha : \alpha \leq \eta\}$ is a strictly increasing wellordered sequence of closed subspaces of H_η. Since H_η is separable, the length of this sequence is countable, which shows the claim.

Lemma 2.0.29 Let (X, B, μ, T) be a measure preserving system, and $D \subset E$ be invariant σ-subalgebras of B. Then if $f \in L^2(X)$ is compact over D, then it is compact over E.

Proof. By theorem 2.0.11 there are $(X', B', \mu', T') \sim (X, B, \mu, T), (Y', D', \nu', S') \sim (X, D, \mu, T)$ and $(Z', E', \theta', U') \sim (X, E, \mu, T)$ with the $\phi : X' \to Z'$ and $\psi : Z' \to Y'$ factor maps. Let $\mu' = \int \mu'_x d\theta'(z)$ and $\mu' = \int \mu'_y d\nu'(y)$ be the disintegrations of μ' over Z' and Y' and $\theta' = \int \theta'_y d\nu'(y)$ be the disintegrations of θ' over Y'. Fix $f \in L^2(X')$ that is compact over Y'. By (U4) of Theorem 2.0.22 it is enough to show, that for any $\epsilon, \delta > 0$ there are $g_1, \ldots, g_k \in L^2(X')$ such that for all $m \in Z$, $\min_{1 \leq j \leq k} \|T^m f - g_j\|_{\nu'} < \delta$ but for a set of $z \in Z'$ of θ'-measure $< \epsilon$. Since f is compact over Y', we can choose g_1, \ldots, g_k such that that for all $m \in Z$, $\min_{1 \leq j \leq k} \|T^m f - g_j\|_{\nu'} < \delta^{1/2}/2^{1/2}$ but for a set of $y \in Y'$ of ν'-measure $< \epsilon/2$. We show that these g_i's work. Indeed, fix $y \in Y'$ such that $\min_{1 \leq j \leq k} \|T^m f - g_j\|_{\nu'} < \delta^{1/2}/2^{1/2}$, and choose j such that $\|T^m f - g_j\|_{\nu'} < \delta^{1/2}/2^{1/2}$. Let $G_y = \{z \in Z' : \psi(z) = y$ and $\|T^m f - g_j\|_{\nu'} \geq \delta\}$. Then $\theta'(G_y) < \epsilon/2$, otherwise $\|T^m f - g_j\|_{\nu'} = \int \|T^m f - g_j\|_{\nu'}^2 d\theta'(z) \geq \delta^2/2$. Let $G_1 = U\{\psi^{-1}(y) : \min_{1 \leq j \leq k} \|T^m f - g_j\|_{\nu'} \geq \delta^{1/2}/2^{1/2}\}$ and $G_2 = U\{G_y : \min_{1 \leq j \leq k} \|T^m f - g_j\|_{\nu'} < \delta^{1/2}/2^{1/2}\}$. Let $G = G_1 \cup G_2$. Then $\theta'(G) < \epsilon/2$ (by the choice of the g_i's). Also $\theta'(G_2) = \int_{G_2} \theta'_y(G_y)d\nu'(y) < \epsilon/2$. So $\theta'(G) < \epsilon$, and if $z \not\in G$, then $\min_{1 \leq j \leq k} \|T^m f - g_j\|_{\nu'} < \delta$, which is what we wanted. □
Lemma 2.0.30 Let \((X, \mathcal{B}, \mu, T)\) be a measure preserving system, \(\mathcal{D} \subset \mathcal{D}'\), \(\mathcal{E}\) be invariant \(\sigma\)-subalgebras of \(\mathcal{B}\). Suppose that \((X, \mathcal{E}, \mu, T)\) is a compact extension of \((X, \mathcal{D}, \mu, T)\). Then if \(\mathcal{E}'\) is the invariant \(\sigma\)-algebra generated by \(\mathcal{E} \cup \mathcal{D}'\), then \((X, \mathcal{E}', \mu, T)\) is a compact extension of \((X, \mathcal{D}', \mu, T)\).

Proof. Clearly every \(\mathcal{D}'\)-measurable function is compact over \(\mathcal{D}'\). On the other hand since every \(\mathcal{E}\)-measurable function is compact over \(\mathcal{D}\), by Lemma 2.0.29 they are compact over \(\mathcal{D}'\). Since the collection of relatively compact functions is \(T\)-invariant and closed under multiplication, if it contains the \(\mathcal{D}\) and \(\mathcal{E}\)-measurable functions, it should contain the \(\mathcal{E}'\)-measurable functions, which proves the claim. □

Theorem 2.0.31 Let \(\{X_\alpha = (X,B_\alpha,\mu,T): \alpha \leq \eta\}\) be a compact tower for the measure distal system \(X = X_\eta = (X,B,\mu,T)\). Suppose that for every \(\alpha < \eta\), \(X_{\alpha+1}\) is the maximal compact extension of \(X_\alpha\) in \(X\). Then the order of \(X\) is \(\eta\).

Proof. Let \(\{Y_\alpha = (X,D_\alpha,\mu,T): \alpha \leq \theta\}\) be another compact tower reaching \(X\). We have to show that \(\eta \leq \theta\). For this it is enough to show that for every \(\alpha \leq \eta\), \(\alpha \leq \theta\), \(X_\alpha\) is a factor of \(Y_\alpha\). This is true for \(\alpha = 0\). We proceed by induction. By the definition of the compact tower at limit stages, if \(\alpha\) is limit, and \(X_\beta\) is a factor of \(Y_\beta\) for all \(\beta < \alpha\), then \(X_\alpha\) is a factor of \(Y_\alpha\). Now suppose that \(X_\alpha\) is a factor of \(Y_\alpha\), i.e. \(D_\alpha \subset B_\alpha\). Then every function that is compact over \(Y_\alpha\) is also compact over \(X_\alpha\). Hence they are in \(L^2(X_{\alpha+1})\), since \(X_{\alpha+1}\) is the maximal compact extension of \(X_\alpha\) in \(X\). Since every function in \(L^2(Y_{\alpha+1})\) is compact over \(Y_\alpha\), this shows that \(L^2(Y_{\alpha+1})\) is a subset of \(L^2(X_{\alpha+1})\), which is the same as \(Y_{\alpha+1}\) is a factor of \(X_{\alpha+1}\). □
CHAPTER III

Examples of measure distal systems

3.1 Notation

In this chapter we build ergodic transformations on the infinite dimensional torus. The following are the notation used in this chapter.

Let's call a linear ordering I acceptable, if I is a countable linear ordering of \mathbb{N}, such that 0 is the smallest element, 1 is the largest element, and every $i \neq 1$ has a successor, denoted by i^+. Let $<_I$ denote the ordering.

For a fixed acceptable ordering I, let $X = \prod_{j \in I} T$. (Where T denotes the unit interval with 0 and 1 identified.)

We are looking at transformations $T : X \to X$ of the following form: $(T \vec{x})_0 = x_0 \oplus \alpha$ and $(T \vec{x})_j = x_j \oplus \sum_{i < j} t_{ij} x_i$, where \oplus denotes the mod 1 addition on T. To get a well-defined transformation, we restrict our attention to the ones where for every fixed j, $\sum_{i < j} |t_{ij}|$ is convergent. For well-ordered I's this condition is also enough to guarantee that the transformation is measure preserving. However for I's that are not well ordered we need further restrictions on the t_{ij}'s to get a measure preserving transformation. We deal with this in Theorem 3.3.3.

Let's denote $(T^m \vec{x})_j$ by x_j^m. Then $x_j^m = x_j^{m-1} \oplus \sum_{i < j} t_{ij} x_i^{m-1} = \ldots = x_j \oplus$
\[\sum_{i<j} t_j^i x_i^0 \cdots \oplus \sum_{i<j} t_j^i x_i^{m-1}. \]

Note that here only the first term depends on \(x \), i.e. we can write \(x_j^m = x_j \oplus F_{\mathbb{R}_m}(\{x_i : i < j\}) \). We will also need to see how \(x_j^{m+1} \) depends on \(x_j \) and \(x_j+ \), but only when \(t_j^i \) is an integer. \(x_j^{m+1} = x_j+ \oplus \sum_{k=0}^{m-1} \sum_{i<j} t_j^i x_i^k = x_j+ \oplus \sum_{k=0}^{m-1} t_j^i x_j^k + \sum_{k=0}^{m-1} \sum_{i<j} t_j^i x_i^k. \)

The third part does not depend on \(x \) or \(x_j+ \). Since \(t_j^i \) is an integer,

\[t_j^i x_j = t_j^i (x_j \oplus F_{\mathbb{R}_m}(\{x_i : i < j\})) = t_j^i x_j \oplus t_j^i F_{\mathbb{R}_m}(\{x_i : i < j\}), \]

(3.1)

hence for some \(G_{\mathbb{R}_m} \) that does not depend on \(x \) or \(x_j+ \),

\[x_j^{m+1} = x_j+ \oplus m t_j^i x_j \oplus G_{\mathbb{R}_m}(\{x_i : i < j\}). \]

(3.2)

Let \(A \) be the countable family of finite unions of sets of the form \(\Pi_{i \in I} O_i \) where the \(O_i \)'s are rational intervals, and for all but finitely many \(i \in I \), \(O_i = T \). Then \(A \) generates the \(\sigma \)-algebra of Borel sets. Let's say that \(S \) is a support of \(B \) if and only if for all \(\bar{x}, \bar{y} \in X \), if \(\bar{x}[S = \bar{y}]S \), then \(\bar{x} \in B \) if \(\bar{y} \in B \). Clearly for every \(B \in A \) the support of \(B \) is finite. Let \(\{(B_n, C_n) : n \in \mathbb{N}\} \) be an enumeration of pairs of elements of \(A \), such that the support of \(B_n \) or \(C_n \) is in \(\{0, \ldots, n\} \). Such an enumeration clearly exists. Note that we can fix this enumeration independently of \(I \).

Let \(Y_j = \Pi_{k<j} T, Z_j = \Pi_{k\geq j} T, X_j = X \times y_j X, \) (so \(X_j \approx Y_j \times Z_j \times Z_j \)), and \(W_j = Y_j \times T \times T \) (here \(T \) corresponds to the \(j \)'th coordinates). We will show that for every \(j \), \(Y_j+ \) is a compact extension of \(Y_j \) in \(X \).

We will need a basis for the square-integrable functions of these spaces. Let us introduce the following notation. If \(A, B \) are topological spaces, \(C = A \times B \) is the product space, \(f : A \to C, g : B \to C \), then let \(f \circ g : C \to C \) be the function \(f(a)g(b) \).
Let $H_j = \{e^{i\theta} : a_k \in 2\pi i \mathbb{Z}, \text{ and } a_k = 0 \text{ for all but finitely many } k \}$ be the usual basis of $L^2(Y_j)$, $G_j = \{e^{i\theta} : b_k \in 2\pi i \mathbb{Z}, \text{ and } b_k = 0 \text{ for all but finitely many } k \}$ be a basis of $L^2(Z_j)$, $F = \{f \otimes g : f \in H_j, g \in G_j\}$ be a basis of $L^2(X)$ and $D_j = \{f \otimes g_1 \otimes g_2 : f \in H_j, g_1, g_2 \in G_j\}$ be a basis of $L^2(X_j)$.

Let $\pi_j : X \to Y_j$ and $\rho_j : X_j \to W_j$ be the canonical projections defined by the following formulas: For $i < j$, $(\pi_j(x))_i = x_i$, $(\rho_j(y, z_1, z_2))_i = y_i$, and the last two coordinates of $\rho_j(y, z_1, z_2)$ are z^*_j and z^*_j.

Let $T^*_j : X_j \to X_j$ be the transformation on the relative product, induced by T. (cf. Lemma 2.0.15)

Let A_j be the countable family of finite unions of basic open sets of X_j. Let $\{(E_n, F_n) : n \in \mathbb{N}\}$ be an enumeration of pairs of these for all $j \in I$, such that $j < n$ and the support of E_n or F_n is in $\{0, \ldots, n\}$. We also assume (for technical reasons) that every pair appears infinitely often in the enumeration.

For $S \subseteq I$ with $0 \in S$, let $X_S = \Pi_{j \in S} T_j$ and $T_S : X_S \to X_S$ be the transformation induced by T the following way. For $j \in S$, $(T_S(x))_j = x_j + \sum_{i \in S_i < j} t^i_j x_i$. There is a corresponding $T^*_S : X \to X$ which we get from T by replacing t^i_j by 0 if not both i and j are in S. We will only look at the action of T^*_S on sets whose supports are subsets of S. On these sets there is a natural correspondence between the action of T^*_S and T_S. More precisely for an open set B if the support of B is a subset of S, then with the projection $P_S : X \to X_S$, $T_S P_S B = P_S T^*_S B$. So without confusion we will use T_S to denote both transformations. Define $Y_{S,j}$, $Z_{S,j}$, $X_{S,j}$, $W_{S,j}$ and $T^*_{S,j}$, $\pi_{S,j}$ and $\rho_{S,j}$ accordingly.
Lemma 3.1.1 Let $Y = (Y, D, \nu, S)$ be an arbitrary measure preserving system. Let X be the skew product of Y and the unit circle T, where the action T on X is defined with some measurable $\sigma : Y \to T$ by $T : (y, t) \mapsto (Sy, t + \sigma(y))$.

Then X is a compact extension of Y.

Remark. For the proof we use ideas from Section 6.2 of [3].

Proof. For $f \in L^2(T)$ let us use the notation f^α for the function $f(t + \alpha)$. First note that for any $f \in L^2(T)$ the set $\{f^\alpha : \alpha \in T\}$ is compact in $L^2(T)$.

Consider a function $f \in L^2(T)$ having the form $f(y, t) = \sum_{n=1}^N \psi_n(y)\phi_n(t)$ with $\psi_n \in L^\infty(Y)$ and $\phi_n \in L^2(T)$. Since these type of functions form a dense subset of $L^2(X)$, it is enough to show that these are almost periodic relative to Y. I.e. we have to show that for every $\delta > 0$ there are $g_1, \ldots, g_M \in L^2(X)$ such that for almost every $y \in Y$ and for every $j \in \mathbb{N}$,

$$\min_{m \leq M} \|T^jf - g_m\|_{L^2(\mu_y)} < \delta. \tag{3.3}$$

Fix $\delta > 0$ and choose K such that $K > \|\psi_n\|_\infty$ for all $n \leq N$. Choose also $h_1, \ldots, h_M \in L^2(T)$ such that if for all $n \leq N$, $|\alpha_n| < K$, then for any β_1, \ldots, β_N,

$$\min_{m \leq M} \|\sum_{n=1}^N \alpha_n\phi_n(t + \beta_n) - h_m\|_{L^2(T)} < \delta. \tag{3.4}$$

Let $g_n(y, t) = h_n(t)$ and $H_j(y, t) = (T^j f)(y, t)$. Then for almost every $y \in Y$, $H_j(y, t) = \sum_{n=1}^N \alpha_n\phi_n(t + \beta_n)$, for some β_1, \ldots, β_N and $|\alpha_n| < K$. By the choice of the h_m's we get

$$\min_{m \leq M} \|H_j - g_m\|_{L^2(\mu_y)} < \delta \tag{3.5}$$
for almost every \(y \in Y \), which completes the proof. \(\square \)

This lemma proves that for every \(j \in I \), \(Y_j \) is a compact extension of \(Y_j \). We will need the following characterization of the maximal compact extension.

Lemma 3.1.2 \(Y_j^+ \) is the maximal compact extension of \(Y_j \) in \(X \) iff

For every \(f \in D_j \), \(\phi, \psi \in \mathcal{F} \), where \(\phi(\vec{y}, \vec{z}) = e^{i \varphi \vec{z}^2} \) and \(b_k \neq 0 \) for some \(k > j \),

\[
\lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \int_{Z_j} \int_{Y_j} (T_j^*)^m(f(\vec{y}, \vec{z}^1, \vec{z}^2)) \bar{\phi}(\vec{y}, \vec{z}^1) \psi(\vec{y}, \vec{z}^2) d\vec{y} d\vec{z}^1 d\vec{z}^2 = 0 \tag{3.6}
\]

Proof. Let \(H = \omega \lim_{N \to \infty} \sum_{m=0}^{N} (T_j^*)^m(f) \). Then \(H \) is \(T_j^* \)-invariant. If \(Y_j^+ \) is the maximal compact extension of \(Y_j \) in \(X \), then \(H \psi \in L^2(Y_j^+) \). Since by assumption \(b_k \neq 0 \) for some \(k > j \), \(\phi \) is orthogonal to \(L^2(Y_j^+) \). This proves \((H \psi, \phi) = 0 \) which is just a rewriting of 3.6.

For the other direction we have to show that if \(H \) is bounded and \(T_j^* \)-invariant and \(\psi \in L^\infty(X) \) then \(H \psi \in L^2(Y_j^+) \). I.e. we have to show that for such \(H \) and \(\psi \) for any \(\phi(\vec{y}, \vec{z}) = e^{i \varphi \vec{z}^2} \), where \(b_k \neq 0 \) for some \(k > j \), \((H \psi, \phi) = 0 \).

Let \(K > \|H\|_\infty \|\psi\|_\infty \) and fix any \(\epsilon > 0 \). Choose \(\{f_l : l < L\} \subset D_j \) and \(\{\psi_l : l < L\} \subset \mathcal{F} \) so that for \(F = \sum_{l< L} \alpha_l f_l \), \(\|F - H\|_2 < \epsilon/K \), and for \(G = \sum_{l< L} \beta_l \psi_l \), \(\|G - \psi\|_2 < \epsilon/K \). For every \(l_1, l_2 < L \), 3.6 implies that

\[
\lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \int_{Z_j} \int_{Y_j} (T_j^*)^m(f_{l_1}(\vec{y}, \vec{z}^1, \vec{z}^2)) \bar{\phi}(\vec{y}, \vec{z}^1) \psi_{l_2}(\vec{y}, \vec{z}^2) d\vec{y} d\vec{z}^1 d\vec{z}^2 = 0 \tag{3.7}
\]

Hence

\[
\lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \int_{Z_j} \int_{Y_j} (T_j^*)^m(F(\vec{y}, \vec{z}^1, \vec{z}^2)) \bar{\phi}(\vec{y}, \vec{z}^1) G(\vec{y}, \vec{z}^2) d\vec{y} d\vec{z}^1 d\vec{z}^2 = 0 \tag{3.8}
\]
\[\lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \langle (T_j^*)^m(F) \ast \overline{\phi}, \overline{G} \rangle = 0. \quad (3.9) \]

But
\[\langle (T_j^*)^m(H) \ast \overline{\phi}, \overline{\psi} \rangle = \quad (3.10) \]
\[\langle (T_j^*)^m(H) \ast \overline{\phi}, \overline{\psi - G} \rangle + \langle (T_j^*)^m((H - F) \ast \overline{\phi}, \overline{G}) \rangle + \langle (T_j^*)^m(F) \ast \overline{\phi}, \overline{G} \rangle. \quad (3.11) \]

Since \((T_j^*)^m(H) = H\),
\[\langle (T_j^*)^m(H) \ast \overline{\phi}, \overline{\psi} \rangle = \langle H \ast \overline{\phi}, \overline{\psi} \rangle. \quad (3.12) \]

On the other hand, since \(||H||_\infty < K\) and \(||\phi||_\infty = 1\),
\[\langle (T_j^*)^m(H) \ast \overline{\phi}, \overline{\psi - G} \rangle \leq K||\psi - G||_2 \leq \epsilon. \quad (3.13) \]

Also
\[\langle (T_j^*)^m((H - F) \ast \overline{\phi}, \overline{G}) \rangle \leq \quad (3.14) \]
\[||(T_j^*)^m((H - F) \ast \overline{\phi}, \overline{G})||_2 \leq ||(T_j^*)^m((H - F))||_2||G||_2. \quad (3.15) \]

(Here we used that \(|\phi(\overline{y}, \overline{z'})| = 1\) for all \((\overline{y}, \overline{z'})\).)

But \(||(T_j^*)^m((H - F))||_2 = ||H - F||_2 \leq \epsilon/K\), and \(||G||_2 \leq ||\psi - G||_2 + ||\psi||_2 \leq \epsilon/K + K\). So
\[\langle (T_j^*)^m(H) \ast \overline{\phi}, \overline{\psi} \rangle \leq \epsilon + \frac{\epsilon^2}{K^2}. \quad (3.16) \]

So the limit of the averages as \(0 \leq m < N\) of the first two terms of 3.11 is less then \(2\epsilon + \epsilon^2/K^2\). We already have that
\[\lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} \langle (T_j^*)^m(F) \ast \overline{\phi}, \overline{G} \rangle = 0, \quad (3.17) \]
which gives
\[\langle H * \phi, \psi \rangle \leq \epsilon + \frac{\epsilon^2}{K^2}. \] (3.18)

Since \(\epsilon > 0 \) was arbitrary, this implies that \(\langle H * \phi, \psi \rangle = 0 \), which is what we wanted.
\[\square \]

3.2 Systems on the finite dimensional tori

In this section we give examples of ergodic systems on the finite dimensional tori, keeping in mind that we would like to put these together to ergodic systems on the infinite dimensional torus. I would like to thank Professor Benjamin Weiss for suggesting the approach we use to show the ergodicity of the systems.

Lemma 3.2.1 Let \(X = \prod_{i<n} T \) be a finite product, and \(T_l : X \to X \) be the following transformation for \(\bar{l} = \{t^i_j \neq 0 : i < j < n\} \): \((T_l \bar{x})_0 = x_0 \oplus \alpha \) for any irrational \(\alpha \), \((T_l \bar{x})_k = x_k \oplus \sum_{j<k} t^i_j x_j \) for \(0 < k < n \). Let \(X' = X \times T \) and let \(T' : X' \to X' \) be the transformation defined by \(T'(\bar{x}, x_n) = (T_l(\bar{x}), x_n \oplus \sum_{j<n} t^i_j x_j) \). Suppose that \(T_l \) is ergodic.

Then \(T' \) is not ergodic if and only if there is a measurable nonzero \(c_k : X \to \mathbb{C} \) which satisfies
\[c_k(x_0 \ldots x_{n-1}) = c_k(T_l(x_0 \ldots x_{n-1})) e^{2\pi ik \sum_{j=0}^{n-1} t^i_j x_j}, \] (3.19)

for some \(k \neq 0 \).

Proof. First we show that nonergodicity implies the existence of a nonzero measurable \(c_k \) satisfying 3.19. Suppose for a particular \(t^0_n, \ldots, t^{n-1}_n \) the extended
transformation T' is not ergodic. We show that for the extended transformation coming from this t_n^0, \ldots, t_n^{n-1} there is a measurable c_k as in 3.19. Let $f(x) = \sum_{k \in \mathbb{Z}} c_k(x_0, \ldots, x_{n-1})e^{2\pi ikx_n}$ be a nonconstant invariant function that witnesses the nonergodicity of the extended transformation. Because of the assumption that T is ergodic, c_k is almost everywhere different from 0 for some $k \neq 0$. Then using the fact that

$$k(x_n \oplus \sum_{j=0}^{n-1} t_n^j x_j) = k x_n \oplus k \sum_{j=0}^{n-1} t_n^j x_j,$$

(3.20)

and that in the exponent of e we can change expressions by an integer multiple of $2\pi i$, we get

$$T'(f)(x) = \sum_{k \in \mathbb{Z}} c_k(T_i f(x_0, \ldots, x_{n-1}))e^{2\pi ik \sum_{j=0}^{n-1} t_n^j x_j}e^{2\pi ikx_n}.$$

(3.21)

Hence the invariance of f and the uniqueness of the Fourier coefficients implies that for every $k \in \mathbb{Z}$,

$$c_k(x_0 \ldots x_{n-1}) = c_k(T_i f(x_0 \ldots x_{n-1}))e^{2\pi ik \sum_{j=0}^{n-1} t_n^j x_j}.$$

(3.22)

In particular this is true for the nonzero c_k.

Conversely if for some $k \neq 0$ there is a nonzero c_k satisfying 3.19, then

$$c_k(x_0, \ldots, x_{n-1})e^{2\pi ikx_n}$$

(3.23)

is a nontrivial T'-invariant function witnessing non-ergodicity. □

Theorem 3.2.2 Let $X = \Pi_{i \leq n} T$ be a finite product, and $T_i : X \to X$ be the following transformation for $\vec{i} = \{ t_i^j \neq 0 : i < j < n \}$: $(T_i \vec{x})_0 = x_0 \oplus \alpha$ for some irrational α, $(T_i \vec{x})_k = x_k \oplus \sum_{j < k} t_i^j x_j$ for $0 < k < n$.

(i) If all the t_j's are rational, then T_ξ is ergodic.

(ii) For almost every choice of the t_j's for $0 < i < j \leq n$, T_ξ is ergodic.

Remark. For integer coefficients this is one of the standard examples of ergodic transformations.

Proof. By induction, it is enough to show that if $T_\xi : X \to X$ is ergodic, then for almost every $(t^0_n, \ldots, t^{n-1}_n)$ and for every rational $(t^0_n, \ldots, t^{n-1}_n)$ the transformation

$$T' : (x, x_n) \mapsto (T_\xi^2 x, x_n + \sum_{j<n} t^j_j x_j)$$

is also ergodic.

Suppose that for some t^0_n, \ldots, t^{n-1}_n the extended transformation T' is not ergodic. Then according to Lemma 3.2.1 there is $\xi \neq 0$ and a nonzero measurable c_ξ satisfying

$$c_\xi(x_0 \ldots x_{n-1}) = c_\xi(T_\xi^2 x_0 \ldots x_{n-1}) e^{2\pi i k \sum_{j=0}^{n-1} t^j_j x_j}. \quad (3.25)$$

Hence if for a positive measure of t^0_n, \ldots, t^{n-1}_n the extended transformation is not ergodic, then there is a $k \neq 0$, such that for a positive measure of t^0_n, \ldots, t^{n-1}_n this is witnessed by 3.25 for this k. So fix this k, and let $B = \{(t^0_n, \ldots, t^{n-1}_n) :$ there is a measurable $c_\xi \neq 0$ as in 3.25 $\}$. Now suppose $(t^0_n, \ldots, t^{n-1}_n) \in B$ is witnessed by $c_\xi \neq 0$ and $(s^0_n, \ldots, s^{n-1}_n) \in B$ is witnessed by $d_\xi \neq 0$. Then

$$d_\xi c_\xi(x_0 \ldots x_{n-1}) = d_\xi c_\xi(T_\xi(x_0 \ldots x_{n-1})) e^{2\pi i k \sum t^j_j x_j} e^{2\pi i k \sum s^j_j x_j} = \quad (3.26)$$

$$d_\xi c_\xi(T_\xi(x_0 \ldots x_{n-1})) e^{2\pi i k \sum (t^j_j + s^j_j) x_j} \quad (3.27)$$

This shows that $d_\xi c_\xi \neq 0$ is a witness for $(t^0_n + s^0_n, \ldots, t^{n-1}_n + s^{n-1}_n) \in B$. Similarly $c_\xi/d_\xi \neq 0$ is a witness for $(t^0_n - s^0_n, \ldots, t^{n-1}_n - s^{n-1}_n) \in B$. (Note that the ergodicity of
\(T \) implies that \(|d_k|\) is constant, being invariant, hence if it is non-zero, then we can divide by it.) So \(B \) is closed under subtraction and addition. If \(\mu(B) > 0 \) then \(B - B \) contains an open neighborhood of \(\bar{0} \), and \(B + B \) enlarges it. So if \(\mu(B) > 0 \) then \(B = \mathbb{R}^n \). In particular any integer tuple is in \(B \). Using similar argument, if there is a rational tuple in \(B \) then adding this to itself \(M \) times, where \(M \) is a common multiple of the denominators, we again get an integer tuple in \(B \). So in both cases we found an integer tuple \((p_0, \ldots, p_{n-1}) \in B\), such that for some non-zero measurable \(c_k \), and for some \(k \neq 0 \)

\[
c_k(x_0 \ldots x_{n-1}) = c_k(T_l(x_0 \ldots x_{n-1})) e^{2\pi ik \sum_{j=0}^{n-1} p_j x_j}. \tag{3.28}
\]

Writing \(c_k(x_0 \ldots x_{n-1}) = \sum_l d_{k,l}(x_0 \ldots x_{n-2}) e^{2\pi i l x_{n-1}}, \tag{3.29} \) 3.28 becomes

\[
\sum_l d_{k,l}(x_0 \ldots x_{n-2}) e^{2\pi i l x_{n-1}} =
\]

\[
\sum_l d_{k,l}(T_l(x_0 \ldots x_{n-2})) e^{2\pi i l (x_{n-1} + \sum_{j=0}^{n-2} t_j x_j)} e^{2\pi ik \sum_{j=0}^{n-1} p_j x_j}. \tag{3.30}
\]

Using, that the \(p_j \)'s are integers, and that in the exponent of \(e \) we can change expressions by integer multiples of \(2\pi i \), we can replace the mod 1 addition by ordinary one, this becomes

\[
\sum_l d_{k,l}(x_0 \ldots x_{n-2}) e^{2\pi i l x_{n-1}} =
\]

\[
\sum_l d_{k,l}(T_l(x_0 \ldots x_{n-2})) e^{2\pi i \sum_{j=0}^{n-2} s_j x_j} e^{2\pi i (l + p_{n-1}) x_{n-1}}, \tag{3.31}
\]

with \(s_j = lt_{n-1} + kp_j \). So for every \(l \in \mathbb{Z} \),

\[
d_{k,l}(x_0 \ldots x_{n-2}) = d_{k,l-p_{n-1}k}(T_l(x_0 \ldots x_{n-2})) e^{2\pi i \sum_{j=0}^{n-2} s_j x_j}. \tag{3.32}
\]
Hence for every \(l \in \mathbb{Z} \), \(||d_{k,l}||_2 = ||d_{k,l-p_{n-1}}||_2 \), which is impossible, unless \(||d_{k,l}||_2 = 0 \) for every \(l \in \mathbb{Z} \). This contradicts the assumption that \(c_k \neq 0 \), which completes the proof. \(\square \)

We also would like to control the maximal compact extensions. For this we have a similar claim.

Theorem 3.2.3 Let \(X = \Pi_{i \in \mathbb{N}} T \) be a finite product, and \(T_\mathbb{R}: X \to X \) be the following transformation for \(\mathbb{R} = \{ t_j^i \neq 0 : i < j < n \} \):
\[
(T_\mathbb{R}x)_i = x_0 \oplus \alpha \text{ for some irrational } \alpha,
\]
\[
(T_\mathbb{R}x)_j = x_k \oplus \sum_{i < k} t_j^i x_j \text{ for } 0 < k < n.
\]
Let’s assume that \(T_\mathbb{R} \) is ergodic.

(i) If every \(t_j^i \) is rational, then for every \(j < n - 1 \), \(Y_{j+1} \) is the maximal compact extension of \(Y_j \) in \(X \).

(ii) For almost every choice of the \(t_j^i \)’s for every \(j < n - 1 \), \(Y_{j+1} \) is the maximal compact extension of \(Y_j \) in \(X \).

Proof. Suppose that \(X = \Pi_{i \in \mathbb{N}} T \), \(T_\mathbb{R}: X \to X \) is ergodic and for every \(j < n - 1 \), \(Y_{j+1} \) is the maximal compact extension of \(Y_j \) in \(X \). Let us extend \(T_\mathbb{R} \) to \(X \times \mathbb{T} \) by \((\mathbb{x}, y) \mapsto (T_\mathbb{R}(\mathbb{x}), y \oplus \sum_{i < n} t_j^i x_i)\) for some constants \((t_0^i, \ldots, t_{n-1}^i)\). By induction it is enough to show that for almost every \((t_0^i, \ldots, t_{n-1}^i)\) and for every rational \((t_0^i, \ldots, t_{n-1}^i)\), for every \(j < n \), \(Y_{j+1} \) is the maximal compact extension of \(Y_j \) in \(X \times \mathbb{T} \) for the extended transformation.

Suppose that for some \(j < n - 1 \), \(Y_{j+1} \) is not the maximal compact extension of \(Y_j \) in \(X \times \mathbb{T} \). Let’s use the notation \((y_0 \ldots y_j, z_1^{j+1} \ldots z_n^1, z_{j+1}^2 \ldots z_n^2)\) for the elements of \((X \times \mathbb{T}) \times_j (X \times \mathbb{T})\). According to Lemma 2.0.25 we get an invariant function \(H \) that depends on at least one of the variables \(z_{j+2}^1 \ldots z_n^1, z_{j+2}^2 \ldots z_n^2 \). Since in the induction
hypothesis we assumed that Y_{j+1} is the maximal compact extension of Y_j in X, H has to depend on either z_1^j or z_2^j, so we can write $H = \sum_{m,l \in \mathbb{Z}} d_{m,l} e^{2\pi i m z_1^j} e^{2\pi i l z_2^j}$, where $d_{m,l} \in L^2(X_j)$, and for some $(m,l) \neq (0,0)$, $d_{m,l}$ is not constantly 0 a.e. Then by the invariance of H, for every $m, l \in \mathbb{Z}$,

$$d_{m,l} = (T^*_j)(d_{m,l}) e^{2\pi i m \sum_k i^k \nu_k + \sum_k j^k i^k \nu_k} e^{2\pi i l \sum_k i^k \nu_k + \sum_k j^k i^k \nu_k}.$$

(3.34)

(Here we again replace the mod 1 addition by the ordinary one as before.) In particular this has to be true for the non-zero $d_{m,l}$. Again, the converse is also true. A witness $d_{m,l}$ as in 3.34 implies that Y_{j+1} is not the maximal compact extension of Y_j in $X \times T$.

Let B_{j,m,l,C_a} be the set of $(t_0^n, \ldots, t_{n-1}^n)$'s for which there is a measurable witness as in 3.34 which is non-zero on at least two thirds (in measure) of the basic open set C_a. If there is a witness as in 3.34 for a positive measure of the $(t_0^n, \ldots, t_{n-1}^n)$'s then there are j, m, l, C_a such that $\mu(B_{j,m,l,C_a}) > 0$. If $u_{m,l}$ witnesses that $(w_0, \ldots, w_{n-1}) \in B_{j,m,l,C_a}$ and $v_{m,l}$ witnesses that $(s_0, \ldots, s_{n-1}) \in B_{j,m,l,C_a}$, then define the following function: $d_{m,l} = u_{m,l}/v_{m,l}$ if $v_{m,l}$ is not zero, and 0 otherwise. This function is not zero where $u_{m,l}$ and $v_{m,l}$ are not zero, hence at least on one third of C_a. Also $d_{m,l}$ witnesses that for $(t_0^n, \ldots, t_{n-1}^n) = (w_0 - s_0, \ldots, w_{n-1} - s_{n-1})$, 3.34 is satisfied. So for any $(t_0^n, \ldots, t_{n-1}^n) \in B_{j,m,l,C_a} - B_{j,m,l,C_a}$, there is a non-zero measurable $d_{m,l}$ as in 3.34. If $\mu(B_{j,m,l,C_a}) > 0$ then the difference set contains an open neighborhood of 0, hence there is a rational tuple in it. So from the assumption that the measure of $(t_0^n, \ldots, t_{n-1}^n)$'s for which there is a witness $d_{m,l}$ as in 3.34 is positive, we concluded that there is a rational such tuple (q_0, \ldots, q_{n-1}). Let M be such that for every $i < n,$
\(p_i = Mq_i \) is an integer. Then multiplying \(3.34 \) \(M \) times we get

\[
d_m^M = (T_j^*)^M d_{m,l} e^{2\pi i m (\sum_{k \leq j} p_k y_k + \sum_{k > j} r_k z_k)} e^{2\pi i l (\sum_{k \leq j} p_k y_k + \sum_{k > j} r_k z_k)}.
\] (3.35)

We show that this is impossible. We use the characterization in Lemma 3.1.2 of the maximal compact extension. Let \(S \) be the transformation on \((X \times T) \times_j (X \times T)\) that corresponds to the choice \((t_0, \ldots, t_{n-1}) = (p_0, \ldots, p_{n-1})\). Let \(U \) denote the corresponding transformation on \(L^2((X \times T) \times_j (X \times T))\). Let \(F = d_m^M e^{2\pi i m t_1} e^{2\pi i z_n^2} \). Then \(F \) is invariant. Without loss of generality we can assume that \(m \neq 0 \). Look at the Fourier expansion

\[
F = \sum_{\tilde{x}, \tilde{z}} \alpha_{\tilde{x}, \tilde{z}} e^{i\tilde{x} + i\tilde{z} + i\tilde{z}_n^2}.
\] (3.36)

Consider the functions

\[
H_{\tilde{x}, \tilde{z}} = w \lim_{N \to \infty} \frac{1}{N+1} \sum_{l=0}^N U^l(e^{i\tilde{x} + i\tilde{z} + i\tilde{z}_n^2}).
\] (3.37)

These are invariant functions. We claim that \(H_{\tilde{x}, \tilde{z}} \) is trivial if \(b_n \neq 0 \). Indeed, we'll show that for any \(g = e^{i\tilde{x} + i\tilde{z} + i\tilde{z}_n^2} \), \(\langle H_{\tilde{x}, \tilde{z}}, g \rangle = 0 \).

We already saw when we introduced our special transformations in Section 3.1 that

\[
U^l(\tilde{y} + \tilde{z}^2 + c\tilde{z}^2) = \Phi(\tilde{y} + \tilde{z}^2 + c\tilde{z}^2) \odot b_{n-1}z_{n-1}^1 \odot b_{n-1}t z_{n-1}^1 \odot b_n z_{n}^1
\] (3.38)

for some function \(\Phi \) that does not depend on \(z_{n-1}^1 \) or \(z_{n}^1 \). Hence

\[
\int U^l(e^{i\tilde{x} + i\tilde{z} + i\tilde{z}_n^2}) g d\lambda = \int \int e^{(v_{n-1} + k_{n-1} + m p_n)} z_{n-1}^1 h(\tilde{y}, \tilde{z}^2, \tilde{z}^2) d\tilde{y} d\tilde{z}^2 d\tilde{z}^2,
\] (3.39)
where h does not depend on z_{n-1}^1. (Again replacing \oplus by the ordinary addition in
the exponent of e.) So we can separate the z_{n-1}^1 variable to get

$$\int U^t(e^{q_{n-1}+\epsilon n_1} + e^{q_{n-1}+\epsilon n_1})g d\lambda = \int e^{(v_{n-1}+b_{n-1}+tn_{n-1})z_{n-1}^1}d\lambda = \int \epsilon d\lambda. \quad (3.40)$$

Since $b_n \neq 0$, the exponent of e can be 0 for at most one t. For the others the first
integral is 0, so $\int U^t(e^{q_{n-1}+\epsilon n_1} + e^{q_{n-1}+\epsilon n_1})g d\lambda = 0$ for all but at most one t. So $\langle H_{\alpha,b,\epsilon}, g \rangle = 0$.

Since this is true for every g, this shows that $H_{\alpha,b,\epsilon} = 0$ if $b_n \neq 0$. But then

$$F = \lim_{N \to \infty} \frac{1}{N+1} \sum_{i=0}^N U^iF = \sum_{\alpha,\beta,\xi} \alpha_{\alpha,\beta,\xi} H_{\alpha,b,\epsilon} \quad (3.41)$$

would not depend on z_{n}^1 which contradicts the assumption that $m \neq 0$. \qed

Finally let's state the conclusion of these theorems that we will use to build the
systems on the infinite torus.

Corollary 3.2.4 Let S be a finite linear ordering of $\{0, \ldots, k-1\}$ with 0 as the
smallest element. Let $X = \Pi_{i \in S} \mathbb{T}$, and $T : X \to X$ be the transformation defined
by $(T\vec{x})_0 = x_0 \oplus \alpha$, for some irrational α, and $(T\vec{x})_j = x_j \oplus \sum_{i < s_j} t_j^i x_i$ for rational
non-zero t_j^i's. Let S' be an extension of S on $\{0, \ldots, k\}$, and let $0 < \epsilon_j'$ be fixed for
all $i < s_j$ such that either $i = k$ or $j = k$.

Then we can extend T to T' on $X' = \Pi_{i \in S'} \mathbb{T}$ which is defined by $(T'\vec{x})_0 = x_0 \oplus \alpha$,
and $(T'\vec{x})_j = x_j \oplus \sum_{i < s_j} t_j^i x_i$, where the new t_j^i's are arbitrarily chosen rationals from
the interval $(0, \epsilon_j')$, such that T' is ergodic, and for all $j < k$, Y_j' is the maximal
compact extension of Y_j' in X'. \qed
3.3 Systems on the infinite dimensional torus

In this section we use the notation introduced in the first section without any further reference. Recall for example that \mathcal{A} denotes the countable family of finite unions of basic open sets of X and \mathcal{A}_j denotes the countable family of finite unions of basic open sets of X_j.

Lemma 3.3.1 Let I be a linear ordering with first element, and $S \subseteq I$ be a finite subset containing this first element. Let $B \in \mathcal{A}$ be a set such that the support of B is a subset of S. Let $Q_S : X \to X$ be the transformation $\bar{x} \mapsto (x_0 \oplus x_1 \oplus \ldots \oplus \sum_{i \in I} q_i^j x_i, \ldots)$, where $q_i^j = 0$ if not both i and j are in S.

Then for every fixed $m \in \mathbb{N}$ and $0 < \delta < \mu(B)$, there are $\epsilon_j^i > 0$ for all $i < j$, such that if $T : X \to X$ is such that $|t_j^i - q_j^i| < \epsilon_j^i$, then $\mu(Q_S^n B \Delta T^m B) < \delta$.

Proof. First look at the case $m = 1$. Let C_1, \ldots, C_n be disjoint basic open sets such that for $C = \bigcup_{i=1}^n C_i$, $\mu(C \Delta QS B) < \delta/8$. The projection of each C_i to the j'th coordinate is an interval, let us denote the measure of it by $a_{i,j}$. Hence $\mu(C_i) = \Pi_j a_{i,j}$. Choose $\delta_j > 0$ such that for all $i \leq n$, $\Pi_j(1 + 2\delta_j/a_{i,j}) \leq 1 + \delta/16\mu(B)$.

For any $C' \subseteq X$ let $C' = \{ \bar{x} + \bar{y} : \bar{x} \in C', |y_i| < \delta_i \text{ for all } i \in I \}$. Then $\mu(C_i \Delta \bar{x}) \leq \Pi_j(a_{i,j} + 2\delta_j) = \Pi_j a_{i,j}(1 + 2\delta_j/a_{i,j}) = \mu(C_i)\Pi_j(1 + 2\delta_j/a_{i,j}) < \mu(C_i)(1 + \delta/16\mu(B))$.

Hence $\mu(C_i \Delta \bar{x} \setminus C_i) < \mu(C_i)(\delta/16\mu(B))$. Since $C_k \setminus C \subseteq \bigcup_{i=1}^n (C_i \setminus C_i)$, so $\mu(C_k \setminus C) \leq \mu(C)\delta/16\mu(B) \leq (\mu(B) + \delta/8)\delta/16\mu(B) = \delta/16 + \delta^2/128\mu(B) < \delta/8$. Hence $\mu(C_k \setminus QS B) \leq \mu(C_k \setminus C) + \mu(C \Delta QS B) < \delta/4$. Choose $\epsilon_j^i > 0$ so that for all j, $\sum_{i \in I} |\epsilon_j^i| < \delta_j$. Let $|t_j^i - q_j^i| < \epsilon_j^i$. Then for all $\bar{x} \in X$ and $j \in I$, $|(Q_S \bar{x})_j - (T \bar{x})_j| < \delta_j$.

So for all \mathbf{x} such that $Q_S \mathbf{x} \in C$, $T \mathbf{x} \in C$. Let $B_1 = B \cap Q_S^{-1} C$. Since Q_S is measure preserving, $\mu(B_1) \geq \mu(B) - \delta/8$. So $\mu(TB_1) \geq \mu(TB) - \delta/8$. But $TB_1 \subseteq C$, so $\mu(TB_1 \setminus QSB) \leq \mu(C \setminus QSB) \leq \delta/4$. Hence $\mu(TB \setminus QSB) \leq \delta/4 + \delta/8 < \delta/2$. So $\mu(TB \setminus QSB) < \delta$.

For $m > 1$ let's apply the previous case to $\delta' = \delta/m$ and $B, QSB, \ldots QS^{m-1}B$. We get that we can choose the c_i's so that for all $0 \leq k < m$, $\mu(QS^{k+1}B \triangle TQS^kB) < \delta'$. But $\mu(QS^{k+1}B \triangle TQS^kB) = \mu(T^lQS^kB \triangle T^{l+1}QS^kB)$ for any l, in particular for $l+k = m-1$. Hence $\mu(QS^{m}B \triangle TQS^{m-1}B) < \delta'$, $\mu(TQS^{m-1}B \triangle T^2QSB^mB) < \delta'$,

$\mu(T^{m-1}QSB \triangle T^mB) < \delta'$, and putting these together $\mu(QS^mB \triangle T^mB) < m\delta' = \delta$. □

This lemma with the equivalent formulation of ergodicity will enable us to build an ergodic flow by induction, each step specifying a finite approximation to it. We have a similar claim for transformations on relative products, to make sure that the factors and maximal compact extensions of the final flow are exactly what we want.

Lemma 3.3.2 Let I be a linear ordering with first element, and $S \subseteq I$ be a finite subset containing this first element. Let $E \in A_j$ be a set such that the support of E is a subset of S. Suppose also that $j \in S$. Let $Q_S : X \rightarrow X$ be the transformation $x \mapsto (x_0 \oplus a_1 \ldots x_j \oplus \sum_{i<j} q_i^j x_i, \ldots)$, where $q_i^j = 0$ if not both i and j are in S.

Then for every fixed $m \in \mathbb{N}$ and $\delta > 0$, there are $\varepsilon_i^j > 0$ for all $i < j$, such that if $T : X \rightarrow X$ is such that $|t_i^j - q_i^j| < \varepsilon_i^j$, then $\mu((Q_{S,j})^m(E) \triangle (T_j^m)^m(E)) < \delta$.

Proof. Same as of the previous lemma. □

We would like to get a "uniform" constructions of ergodic flows on $\prod_{i \in I} T$ for acceptable linear orderings I. We look at these linear orderings as orderings of the
natural numbers, i.e. there is the natural ordering of natural numbers of the elements of I other then the $<_I$-ordering. By "uniformity" of the construction we mean, that if I and J are two orderings, such that for all $i, j < k$, $i <_I j$ iff $i <_J j$, then for all $i, j < k$ the coefficients t_{ij}' corresponding to the transformations are the same.

In Chapter 4 our goal will be to give a Borel map from the space of linear orderings to the space of measure preserving transformations which reduces the wellorderings to the measure distal transformations. We use the next theorem to construct this map. The uniformity of our construction is the reason why the reduction map in Theorem 4.1.5 is continuous on the Borel set of acceptable linear orderings.

Theorem 3.3.3 For any acceptable I there is an ergodic $T : X \to X$ where every Y_{j^*} is the maximal compact extension of Y_j in X.

Proof. Recall that on $X = \Pi_{i \in I} T$ we are looking at transformations of the form $(T\vec{x})_0 = x_0 \oplus \alpha$ and $(T\vec{x})_j = x_j \oplus \sum_{i < j} t_{ij}'x_i$. We construct the transformation $T : X \to X$ inductively. To carry out the induction, at the k'th step we also choose an $\epsilon_j(k)$ for each i, j, and $m_k, n_k, s_k, \delta_k, \eta_k, \nu_k, \kappa_k$. Let $S_k = \{0, \ldots, k\}$, and $T_{Sk} : X_{Sk} \to X_{Sk}$ be the corresponding transformation. Recall that we already have an enumeration of the pairs of the basic open sets of A, $\{(B_k, C_k) : k \in \mathbb{N}\}$ with the property that the support of B_k and C_k are in S_k. Also we have an enumeration of the pairs of the basic open sets of the A_j's, $\{(E_k, F_k) : k \in \mathbb{N}\}$ with the property that the support of E_k and F_k are in S_k. Also if j_k denotes the index for which $(E_k, F_k) \in A_{j_k} \times A_{j_k}$, then $j_k < k$. By induction we show that we can choose the t_{ij}''s, $\epsilon_j(k)$'s and the other constants to satisfy the following conditions.
(A) Every t^i_j is a non-zero rational,

(B) If $i \leq k$ then $t^i_k < \epsilon^i_k(k - 1)$,

(C) If $k < i$ then $t^i_k < \epsilon^i_k(k - 1)$,

(D) m_k is the smallest m such that $\mu(T^{m_k}_{S_k}B_k \cap C_k) > \frac{1}{2} \mu(B_k)\mu(C_k)$, and $\mu(T^{m_k}_{S_k}B_k \cap C_k) - \frac{1}{2} \mu(B_k)\mu(C_k) = \delta_k$.

(E) If $q^i_j = t^i_j$ for all $i, j \leq k$, $q^i_j < \epsilon^i_j(k)$ otherwise and $Q : X \to X$ is the transformation defined by $Q(x)_0 = x_0 \oplus \alpha$ and $Q(x)_j = x_j \oplus \sum_{i<j} q^i_jx_i$, then $\mu(T^{m_k}_{S_k}B_k \Delta Q^{m_k}B_k) < \delta_k$.

(F) η_k is the largest η such that there are $E'_k, F'_k \subset W_{S_k,j_k}$ such that

(i) $\mu(E'_k), \mu(F'_k) \geq (1 - \eta)\mu(\rho_{S_{k,j_k}}(F_k))$,

(ii) for every $w \in E'_k$, $\mu(\rho_{S_{k,j_k}}^{-1}(w) \cap E_k) \geq \eta$, and

(iii) for every $w \in F'_k$, $\mu(\rho_{S_{k,j_k}}^{-1}(w) \cap F_k) \geq \eta$.

(G) If there is an m such that $\mu(T^{m_k}_{S_{k,j_k}}(E_k) \cap F_k) > \frac{1}{2} \eta^2 \mu(\rho_{S_{k,j_k}}(F_k))$, then n_k is the smallest such m, and ν_k is the difference.

(H) If $q^i_j = t^i_j$ for all $i, j \leq k$ and $q^i_j < \epsilon^i_j(k)$ otherwise and we defined n_k in (G) and $Q : X \to X$ is the transformation defined by $Q(x)_0 = x_0 \oplus \alpha$ and $Q(x)_j = x_j \oplus \sum_{i<j} q^i_jx_i$, then $\mu((T^{m_k}_{S_{k,j_k}}(E_k) \Delta (Q^{m_k}_{S_{k,j_k}}(E_k))) < \nu_k$.

(I) If there is an m such that $\mu(\rho_{S_{k,j_k}}(T^{m_k}_{S_{k,j_k}}(E_k)) \cap \rho_{S_{k,j_k}}(F_k)) < (1 - \eta_k)\mu(\rho_{S_{k,j_k}}(F_k))$, then s_k is the smallest such m, and κ_k is the difference.

(J) If $q^i_j = t^i_j$ for all $i, j \leq k$, $q^i_j < \epsilon^i_j(k)$ otherwise and we defined s_k in (I) and $Q : X \to X$ is the transformation defined by $Q(x)_0 = x_0 \oplus \alpha$ and $Q(x)_j = x_j \oplus \sum_{i<j} q^i_jx_i$, then $\mu((T^{s_k}_{S_{k,j_k}}(E_k) \Delta (Q^{s_k}_{S_{k,j_k}}(E_k))) < \kappa_k$.

(K) $\epsilon_j^i(k) \leq \epsilon_j^i(k - 1)$

(L) T_{S_k} is ergodic and for every $j < k$ if $j^+ < k$, then Y_{S_k,j^+} is the maximal compact extension of $Y_{S_k,j}$ in X_{S_k}.

(M) If $q_j^i = t_j^i$ for all $i, j \leq k$, $q_j^i < \epsilon_j^i(k)$ otherwise and $Q : X \to X$ is the transformation defined by $Q(x)_0 = x_0 \oplus \alpha$ and $Q(x)_j = x_j \oplus \sum_{i<j} q_j^i x_i$, then $\mu(T_{S_k} B_k \Delta QB_k) < 1/k$.

Now we show by induction that we can choose the t_j^i's and $\epsilon_j^i(k)$'s and the other constants so that these conditions are satisfied. Let us start with the transformation $x_0 \mapsto x_0 \oplus \alpha$ for some irrational α.

Let's assume now that we have everything satisfied up to $k - 1$. Since $\epsilon_j^i(k - 1) > 0$, we can choose the positive rational t_j^i or t_k^i below $\epsilon_j^i(k - 1)$ or $\epsilon_k^i(k - 1)$. Hence (A), (B) and (C) can obviously be satisfied. Note also that (L) is a consequence of (A) using Corollary 3.2.4.

To choose an m_k as in (D), all we need is that there exist some m such that $\mu(T_{S_k}^m B_k \cap C_k) > \frac{1}{2} \mu(B_k) \mu(C_k)$. But this is a consequence of the ergodicity of T_{S_k}.

Once we have m_k, we can certainly choose δ_k to satisfy the second part of (D).

According to Lemma 3.3.1 we can choose $(\epsilon_1)_j^i(k)$ so that if $q_j^i < (\epsilon_1)_j^i(k)$ for all i, j, then $\mu(T_{S_k}^m B_k \Delta Q^m B_k) < \delta_k$, and also $\mu(T_{S_k} B_k \Delta QB_k) < 1/k$. Hence if $\epsilon_j^i(k) \leq (\epsilon_1)_j^i(k)$, then (E) and (M) are also satisfied.

(F) can be viewed as the definition of η_k.

Since we already know (L), Lemma 2.0.17 guarantees the existence of an m such that either $\mu(T_{S_k,j^h}^m (E_k) \cap F_k) > \frac{1}{2} \eta_k^2 \mu(\rho_{S_k,j^h}(F_k))$, or $\mu(\rho_{S_k,j^h}(T_{S_k,j^h}^m (E_k)) \cap \rho_{S_k,j^h}(F_k)) <$
Indeed, the first inequality for some \(m \) is the conclusion of (RE).
If that does not hold for any \(m \), then (RE1-4) are contradicting each other. Since in (F) we assumed that \(\eta_k \) is such that (RE1-3) hold, this means that (RE4) should be false. But this is the same as for some \(m \) the second inequality holds. This shows that we can find \(n_k \) and \(\nu_k \) to satisfy (G), or \(s_k \) and \(\kappa_k \) to satisfy (I).

According to Lemma 3.3.2 we can choose \((\epsilon_2)^i_j(k) \) so that if \(q^i_j < (\epsilon_2)^i_j(k) \) for all \(i, j \) and if we defined \(n_k \) in (G), then \(\mu((T^m_{\epsilon_2} S_{\epsilon_2} \cdots)^m(E_k) \triangle (T^m_{\epsilon_2} S_{\epsilon_2} \cdots)^m(E_k)) < \nu_k \). Also we can choose \((\epsilon_3)^i_j(k) \) so that if \(q^i_j < (\epsilon_3)^i_j(k) \) for all \(i, j \) and if we defined \(s_k \) in (I), then \(\mu((T^m_{\epsilon_3} S_{\epsilon_3} \cdots)^m(E_k) \triangle (T^m_{\epsilon_3} S_{\epsilon_3} \cdots)^m(E_k)) < \kappa_k \). Hence if \(\epsilon_3^i_j(k) \) is not greater than \((\epsilon_2)^i_j(k) \) and \((\epsilon_3)^i_j(k) \), then (H) and (J) are satisfied.

According to these, \(\epsilon_3^i_j(k) = \min\{(\epsilon_1)^i_j(k), (\epsilon_2)^i_j(k), (\epsilon_3)^i_j(k), \epsilon_3^i_j(k - 1)\} \) will work, and also satisfies (K).

Hence we defined \(t^i_j \) for all \(i < j \), so we can look at the transformation \(T : X \rightarrow X \) defined by \(T(x) = x_0 \oplus \alpha \) and \(T(x)_j = x_1 \oplus \sum_{i < j} t^i_j x_i \).

We claim that this \(T \) satisfies the conclusion of the theorem.

First we show that it is measure preserving. It is enough to show that for every \(B \in \mathcal{A} \), \(\mu(TB) = \mu(B) \). For the \(k \)'s such that \(B = B_k \), by (M) \(\mu(T_{S_k} B) \triangle TB < 1/k \).

Since \(T_{S_k} \) is measure preserving and \(B = B_k \) for infinitely many \(k \), this proves that \(\mu(B) = \mu(TB) \).

Next we prove that it is ergodic. Indeed, let \((B, C) \in \mathcal{A} \times \mathcal{A}\). We have to show that there is an \(m \) such that \(\mu(T^m B \cap C) \geq 1/2 \mu(B) \mu(C) \). But \((B, C) = (B_k, C_k)\) for some \(k \).

Then by (D) and (E), \(\mu(T^{m_k}_{S_k} B \cap C) = \frac{1}{2} \mu(B) \mu(C) = \delta_k > 0 \), \(\mu(T^{m_k}_{S_k} B \triangle T^{m_k}_{S_k} B < \delta_k \),
hence \(\mu(T_{n,k}^* B \cap C) > \frac{1}{2} \mu(B) \mu(C) \).

To show that for every \(j \), \(Y_{j+} \) is the maximal compact extension of \(Y_j \) in \(X \), we have to show that for any \((E,F) \in \mathcal{A}_j \times \mathcal{A}_j\) whenever the hypothesis of (RE) in Lemma 2.0.17 are satisfied, then the conclusion also holds. We do this by showing that either the conclusion of (RE) holds, or (RE1-4) are contradicting to each other. The pair \((E,F)\) is \((E_k,F_k)\) for infinitely many \(k \). Choose a \(k \) which is bigger than \(j \) and \(j^+ \). Then in the \(k' \)th step of our construction, if (i-iii) of (F) were satisfied for \(T_{S_{k,j}} \), then there are two cases. Either by (G) and (H) \(\mu(T_{S_{k,j}}^* (E_k) \cap F_k) - \frac{1}{2} \eta_k^2 \mu(\rho_{S_{k,j}}(F_k)) = \nu_k > 0, \mu(T_{S_{k,j}}^* (E_k) \triangle T_{S_{k,j}}^* (E_k)) < \nu_k \), hence \(\mu(T_{S_{k,j}}^* (E_k) \cap F_k) > \frac{1}{2} \eta_k^2 \mu(\rho_{S_{k,j}}(F_k)) \). Or if there is no \(m \) such that \(\mu(T_{S_{k,j}}^* (E_k) \cap F_k) > \frac{1}{2} \eta_k^2 \mu(\rho_{S_{k,j}}(F_k)) \), then by (I) and (J), \(\mu(\rho_{S_{k,j}}(T_{S_{k,j}}^* (E_k) \cap \rho_{S_{k,j}}(F_k)) < (1 - \eta_k) \mu(\rho_{S_{k,j}}(F_k)) \). Since this is true for the largest possible \(\eta_k \) with which (RE1-3) can be satisfied, (RE4) cannot hold with parameters satisfying (RE1-3). This completes the proof that (RE) holds for the transformation \(T \). \(\square \)
CHAPTER IV

The complexity of the collection of measure distal transformations

4.1 Lower bound

Theorem 4.1.1 Suppose \((X, B, \mu, T)\) is ergodic and suppose that \(\{B_\beta : \beta \leq \eta\}\) are sub-\(\sigma\)-algebras of \(B\) such that \(B_0\) is the trivial algebra, \(B_\eta = B\), \((X, B_{\beta+1}, \mu, T)\) is the maximal compact extension of \((X, B_\beta, \mu, T)\) in \((X, B, \mu, T)\), and for limit \(\gamma\), \(B_\gamma\) is the \(\sigma\)-algebra generated by \(\bigcup\{B_\beta : \beta < \gamma\}\).

Also let \(\mathcal{I}\) be an acceptable linear ordering. Let \(\{C_i : i \in I\}\) be sub-\(\sigma\)-algebras of \(B\) such that \(C_0\) is the trivial algebra, \(C_1 = B\), \((X, C_{j+1}, \mu, T)\) is the maximal compact extension of \((X, C_j, \mu, T)\) in \((X, B, \mu, T)\), and for limit \(j\), \(C_j\) is the \(\sigma\)-algebra generated by \(\bigcup\{C_i : i <_I j\}\).

Then \(\mathcal{I}\) is well-ordered in order-type \(\eta + 1\), and if \(j_\beta\) denotes the \(\beta\)'th element of \(\mathcal{I}\), then \(B_\beta = C_{j_\beta}\).

Proof. Let \(J\) be the maximal well-ordered initial segment of \(\mathcal{I}\). Note that \(\omega\) is an initial segment of \(\mathcal{I}\). Let \(\theta\) be the order-type of \(J\). Then since both the maximal compact extension and the inverse limit are unique, if we denote the \(\beta\)'th element of \(J\) by \(j_\beta\), then \(B_\beta = C_{j_\beta}\). If \(I \setminus J\) is nonempty, then it does not have a smallest element.
Indeed, if \(j \) were the smallest element of \(I \setminus J \), then \(J \cup \{j\} \) would be a wellordered initial segment of \(I \), contradicting the maximality of \(J \).

By transfinite induction on \(\alpha \leq \eta \) we show that for every \(i \in I \setminus J \), \(B_\alpha \) is a sub-\(\sigma \)-algebra of \(C_i \). This is clearly true for \(\alpha < \theta \). Also if it is true below a limit ordinal \(\gamma \), then by the definition of the inverse limit, it is true for \(\gamma \). Let us now suppose that it is true for \(\beta \) and let \(\alpha = \beta + 1 \). Fix \(i \in I \setminus J \) and choose \(j \in I \setminus J \) such that \(j <_I i \) and \(j^+ <_I i \). (Such a \(j \) exists since \(I \setminus J \) has no minimal element.) Since \(L^2(B_\beta) \subseteq L^2(C_j) \), every function of \(L^2(B_\alpha) \) is also compact over \((X,C_j,\mu,T) \). Hence since \(C_{j^+} \) gives the maximal compact extension, \(B_\alpha \subseteq C_{j^+} \subseteq C_i \), which proves what we wanted.

But then \(B \subseteq C_i \) for every \(i \in I \setminus J \), which is a contradiction. □

Theorem 4.1.2 The transformation \(T : X \to X \) constructed in Theorem 3.3.3 for the acceptable linear ordering \(I \) is measure distal iff \(I \) is a well-ordering.

Proof. If \(I \) is a well-ordering, then the corresponding transformation is clearly measure distal. The converse is the consequence of Theorem 4.1.1. □

Let us now introduce the coding of linear orderings of natural numbers in the Polish space \(2^{\mathbb{N}} \). Every \(f \in 2^{\mathbb{N}} \) codes a binary relation on \(\mathbb{N} \): \(R_f = \{ (n,m) : f((n,m)) = 1 \} \).

Proposition 4.1.3 \(LO = \{ f : R_f \text{ is a linear ordering } \} \), and \(ALO = \{ f : R_f \text{ is an acceptable linear ordering } \} \) are Borel sets in \(2^{\mathbb{N}} \).

Proof. \(f \) codes a linear ordering iff for all \(n \neq m \), \(f((n,m)) = 1 \) iff \(f((m,n)) = 0 \), and for all \(n \), \(f((n,n)) = 1 \), and for all \(n,m,k \), \(f((n,m)) = 1 \) and \(f((m,k)) = 1 \) implies \(f((n,k)) = 1 \). This gives a Borel definition of \(LO \).
Proposition 4.1.4 \(\text{WO} = \{f: R_f \text{ is a well-ordering} \} \) is a complete coanalytic set.

Proof. See e.g. [7] or [8]. \(\square\)

Theorem 4.1.5 The set of measure distal transformations is a \(\Pi^1_1\)-hard set.

Proof. In Theorem 3.3.3 we proved that for every acceptable ordering \(I\) there is an ergodic transformation \(T\) on \(X = \Pi_{i \in I} T\) such that for every \(j \in I\), \(Y_j^+\) is the maximal compact extension of \(Y_j\) in \(X\). We also proved in Theorem 4.1.2 that this transformation is measure distal if and only if \(I\) is a wellordering. We use the construction of the proof of Theorem 3.3.3 to give a continuous function \(F: ALO \rightarrow MPT\). This is enough to prove the claim. Indeed, since \(ALO\) is a Borel subset of \(2^{\mathbb{N}}\), we can extend \(F\) to a Borel map \(G: 2^{\mathbb{N}} \rightarrow MPT\) by assigning a fixed weakly mixing (and hence not measure distal) transformation to each \(f \not\in ALO\). According to Theorem 4.1.2 this \(G\) reduces the set of well-orderings to the set of measure distal transformations, which is what we need.

Let us look at the following tree. On the \(k\)'th level of the tree we put the permutations of \(\{0, \ldots, k\}\). The ordering is defined by \((n_0, \ldots, n_s) \leq (m_0, \ldots, m_t)\) if and only if there is an increasing \(f: (0, \ldots, s) \rightarrow (0, \ldots, t)\) such that for all \(i \leq s\), \(n_i = m_{f(i)}\).
We assign an ergodic transformation on a finite dimensional torus to each node of the tree. This transformation has the usual form: $(T^i)_{0} = x_0 \oplus \alpha$, $(T^i)_{j} = x_j \oplus \sum t^j_i(x)x_i$, where the summation ranges over the node's preceeding j in \vec{s}. By induction(similar to the one we used in the proof of Theorem 3.3.3) we can show that for every node \vec{s} of the tree we can choose $t^j_i(\vec{s})$ if i preceeds j in \vec{s} and $c^j_i(\vec{s})$ for all i, j to satisfy the following conditions

(A) Every $t^j_i(\vec{s})$ is a non-zero rational,

(B) If i preceeds j in \vec{p} and $\vec{p} \leq \vec{s}$ then $t^j_i(\vec{s}) < c^j_i(\vec{p})$,

(D) $m_{|\vec{s}|}$ is the smallest m such that $\mu(T^m_{\vec{s}} B_{|\vec{s}|} \cap C_{|\vec{s}|}) > \frac{1}{2}\mu(B_{|\vec{s}|})\mu(C_{|\vec{s}|})$, and

$\mu(T^m_{\vec{s}} B_{|\vec{s}|} \cap C_{|\vec{s}|}) - \frac{1}{2}\mu(B_{|\vec{s}|})\mu(C_{|\vec{s}|}) = \delta_{|\vec{s}|}$,

(E) If $q^j_i = t^j_i(\vec{s})$ for all $i, j \leq k$, $q^j_i < c^j_i(\vec{s})$ otherwise and $Q : X \rightarrow X$ is the transformation defined by $Q(x)_0 = x_0 \oplus \alpha$ and $Q(x)_j = x_j \oplus \sum_{i<i^j} q^j_i x_i$, then

$\mu(T^m_{\vec{s}} B_{|\vec{s}|} \Delta Q^m_{|\vec{s}|} B_{|\vec{s}|}) < \delta_{|\vec{s}|}$,

(F) $\eta_{|\vec{s}|}$ is the largest η such that there are $E^i_{|\vec{s}|}, F^i_{|\vec{s}|} \subset W_{q^j_{ij}, q^j_{ij}}$ such that

(i) $\mu(E^i_{|\vec{s}|}), \mu(F^i_{|\vec{s}|}) \geq (1 - \eta)\mu(\rho_{x_{ij}}(F_{|\vec{s}|}))$,

(ii) for every $w \in E^i_{|\vec{s}|}$, $\mu(\rho_{x_{ij}}^{-1}(w) \cap E_{|\vec{s}|}) \geq \eta$, and

(iii) for every $w \in F^i_{|\vec{s}|}$, $\mu(\rho_{x_{ij}}^{-1}(w) \cap F_{|\vec{s}|}) \geq \eta$.

(G) If there is an m such that $\mu(T^m_{x_{ij}} (E_{|\vec{s}|}) \cap F_{|\vec{s}|}) > \frac{1}{2}\eta_{|\vec{s}|}^2 \mu(\rho_{x_{ij}}(F_{|\vec{s}|}))$, then $m_{|\vec{s}|}$ is the smallest such m, and $\nu_{|\vec{s}|}$ is the difference.

(H) If $q^j_i = t^j_i(\vec{s})$ for all $i, j \leq k$, $q^j_i < c^j_i(\vec{s})$ otherwise and $Q : X \rightarrow X$ is the transformation defined by $Q(x)_0 = x_0 \oplus \alpha$ and $Q(x)_j = x_j \oplus \sum_{i<i^j} q^j_i x_i$ and if we defined $m_{|\vec{s}|}$ in (G), then

$\mu((T^m_{x_{ij}})^n_{|\vec{s}|}(E_{|\vec{s}|}) \Delta (Q^m_{x_{ij}})^n_{|\vec{s}|}(E_{|\vec{s}|})) < \eta_{|\vec{s}|}$.
(I) If there is an m such that

$$\mu(p_{x,j}^{m}(T_{x,j}^{m}(E[n])) \cap p_{x,j}(F[n])) < (1 - \eta[n])\mu(p_{x,j}(F[n]))$$

(4.1)

then $s[n]$ is the smallest such m, and $\kappa[n]$ is the difference.

(J) If $q_j^i = t_j^i(\vec{s})$ for all $i, j \leq k$, $q_j^i < \epsilon_j^i(\vec{s})$ otherwise and $Q : X \to X$ is the transformation defined by $Q(\vec{x})_0 = x_0 \oplus \alpha$ and $Q(\vec{x})_j = x_j \oplus \sum_{i < j} q_j^i x_i$ and if we defined $s[n]$ in (I), then $\mu((T_{x,j}^{m})^{\text{un}}(E[n]) \Delta (Q_{j}^{m})^{\text{un}}(E[n])) < \kappa[n].$

(K) If $\vec{p} \leq \vec{s}$ then $\epsilon_j^i(\vec{s}) \leq \epsilon_j^i(\vec{p}).$

(L) $T_{x,j}^i$ is ergodic and for every $j \in \vec{s}$ if we denote the successor of j in \vec{s} by j^+, then Y_{x,j^+} is the maximal compact extension of $Y_{x,j}$ in $X_{x,j}.$

(M) If $q_j^i = t_j^i(\vec{s})$ for all $i, j \leq k$, $q_j^i < \epsilon_j^i(\vec{s})$ otherwise and $Q : X \to X$ is the transformation defined by $Q(\vec{x})_0 = x_0 \oplus \alpha$ and $Q(\vec{x})_j = x_j \oplus \sum_{i < j} q_j^i x_i,$ then for every $k \in \vec{s},$ $\mu(T_{x,j}^{m}(B_k) \Delta T(B_k)) < 1/|\vec{s}|.$

(N) If $\vec{s} \leq \vec{p}$ and i preceeds j in \vec{s} (and hence in $\vec{p},$ too) then $t_j^i(\vec{s}) = t_j^i(\vec{p}).$

The only difference here compared to the proof of Theorem 3.3.3 is that we added the extra conditions (M) and (N). Like (H) and (J), (M) is also a condition for an upper bound for the $\epsilon_j^i(\vec{s})$'s. Using Lemma 3.3.1 it can be satisfied similar to (H). (N) is trivially satisfied in the proof of Theorem 3.3.3, since we only choose the new t_j^i's.

Given this tree and the assigned values of $t_j^i(\vec{s}),$ let us now define the function $F : ALO \to MPT.$ Any acceptable linear ordering I gives a branch through our tree, namely the collection of the \vec{s}'s, where i preceeds j in \vec{s} if and only if $i <_I j.$ For $i <_I j$ let us then define $t_j^i = t_j^i(\vec{s})$ for any \vec{s} that contains both i and $j.$ Because of (N) this is well defined. We thus have the transformation $T : X \to X$ defined as usual.
by \(T(\bar{x})_0 = x_0 \oplus \alpha \) and \(T(\bar{x})_j = x_j \oplus \sum_{i<j} t_i^j x_i \). Hence we defined \(F : ALO \to MPT \).

All we need to show that this map is continuous on \(ALO \). It is enough to show that for any \(f \in 2^{\mathbb{N}^2} \cap ALO \), for any \(\epsilon > 0 \) and for any \(k > 0 \), there is an \(N \) such that for any \(g \in 2^{\mathbb{N}^2} \cap ALO \) such that for every \(n, m \leq N \), \(f((n,m)) = g((n,m)) \),

\[
\mu(T_f B_i \Delta T_g B_i) < \epsilon \quad \text{for every} \quad i \leq k.
\]

Fix \(k \) and \(\epsilon \), and let \(N \) be bigger than \(k \) and \(2/\epsilon \). We show that this \(N \) works.

Let \(g \) be such that \(f((n,m)) = g((n,m)) \) for all \(n, m < N \). This means that for the orderings coded by \(f \) and \(g \), \(n < f m \) if and only if \(n < g m \) for all \(n, m < N \). Hence the branches corresponding to the orderings coded by \(f \) and \(g \) coincide until the \(N \)th level of our tree. By condition (M) of the construction, \(\mu(T_f B_i \Delta T_{f,s} B_i) < 1/N < 1/2\epsilon \),

\[
\mu(T_g B_i \Delta T_{g,s} B_i) < 1/N < 1/2\epsilon \quad \text{for every} \quad i \leq k.
\]

So \(\mu(T_f B_i \Delta T_g B_i) < \epsilon \). This completes the proof. \(\square \)

4.2 Upper bound

In this section we give a \(\Pi_1^1 \) definition of measure distality, and hence show

Theorem 4.2.1 The set of measure distal transformations form a complete coanalytic set in the space of measure preserving transformations.

Lemma 4.2.2 The system \((X, B, \mu, T)\) is measure distal iff for every \(\mathcal{D} \) invariant \(\sigma \)-subalgebra of \(B \), which is not equivalent to \(B \), there is a non-\(\mathcal{D} \)-measurable relatively compact function over \(\mathcal{D} \) in \(L^2(B) \).

Proof. If \(X \) is not measure distal, then there is a \(Y \) proper factor such that \(X \) is a weakly mixing extension of \(Y \). Then \(L^2(Y) \subset L^2(X) \). Let \(\mathcal{D} \) be the smallest
σ-algebra that measures all functions of $L^2(Y)$. It is clearly invariant and a proper σ-subalgebra of B. Since X is a weakly mixing extension of Y, there are no relatively compact functions, other than those in $L^2(Y)$, which are D-measurable.

For the other direction suppose that X is measure distal. Let $\{X_\xi : \xi \leq \eta\}$ be the compact tower reaching X. Let $B_\xi \subset B$ be the σ-algebra corresponding to X_ξ. Let ξ be the smallest ordinal such that $D \not\supset B_\xi$. Such exists, otherwise $B = D$. This ξ is a successor ordinal by the definition of the compact tower at limit stages. Let $\xi = \nu + 1$. Then since X_ξ is a compact extension of X_ν, every function in $L^2(B_\xi)$ is compact over B_ν, and hence over D. Since $D \not\supset B_\xi$, not every $f \in L^2(X_\xi)$ is D-measurable. This finishes the proof. □

In the Lemma 4.2.4 we will need the following well-known fact

Proposition 4.2.3 Let X be a measure space and $\mathcal{H} \subset L^2(X)$. Suppose that \mathcal{H} is a closed subspace which is also closed under the operation $f \mapsto \min(f, 1)$. Also suppose that if $f, g \in \mathcal{H}$ are such that $fg \in L^2(X)$ then $fg \in \mathcal{H}$. Let D be the smallest σ-algebra that measures all functions from \mathcal{H}. Then $\mathcal{H} = L^2(D)$.

Proof. $\mathcal{H} \subset L^2(D)$ is obvious. For the other direction let $f \in L^2(D)$. We need to show that $f \in \mathcal{H}$. For any rational p let $D_p = \{x : f(x) < p\}$. It is enough to show that the characteristic functions χ_{D_p} are in \mathcal{H}. (Indeed, we can approximate f by finite linear combinations of these, and we assumed that \mathcal{H} is closed.) The set D_p is in the smallest σ-algebra that measures every function in \mathcal{H}. I.e. there are countably many sets R_1, \ldots, R_n, \ldots such that $R_i = \{x : f_i < \alpha_i\}$ for some $f_i \in \mathcal{H}$ and $\alpha_i \in \mathbb{R}$, and we can get D_p in countably many steps from the R_n's.
using countable intersections, unions and taking complements. If \(\chi_A, \chi_B \in \mathcal{H} \) then
\(\chi_{A \cap B} = \chi_A \chi_B \in \mathcal{H} \). If \(\chi_{A_n} \in \mathcal{H} \) for all \(n \in \mathbb{N} \) then \(\chi_{\bigcup_{n \in \mathbb{N}} A_n} \in \mathcal{H} \) because \(\mathcal{H} \) is closed. If \(\chi_A \in \mathcal{H} \) and \(B \) is the complement of \(A \) then clearly \(\chi_B \in \mathcal{H} \). From these if \(\chi_{A_n} \in \mathcal{H} \) for all \(n \in \mathbb{N} \) then \(\chi_{\bigcup_{n \in \mathbb{N}} A_n} \in \mathcal{H} \). But using the closure of \(\mathcal{H} \) under \(f \mapsto \min(f, 1) \), and that \(\mathcal{H} \) is a subspace, \(\chi_{H_n} \in \mathcal{H} \) for all \(n \). These imply that \(\chi_{D_n} \in \mathcal{H} \), which completes the proof. \(\Box \)

Lemma 4.2.4 Let \((X, B, \mu, T)\) be an ergodic measure preserving system. Let \(\mathcal{H} \subset L^2(X) \) be a closed proper invariant subspace, which is closed under the operation \(f \mapsto \min(f, 1) \). Also suppose that if \(f, g \in \mathcal{H} \) are such that \(fg \in L^2(X) \) then \(fg \in \mathcal{H} \). Let \(F = \{ f_n : n \in \mathbb{N} \} \) be an enumeration of a dense set of \(L^2(X) \), consisting of bounded functions. Then the following are equivalent.

1. There is an \(f \in L^2(X) \) which is not in \(\mathcal{H} \), but relatively compact over \(\mathcal{H} \).

2. There is a bounded invariant \(H \in L^2(X \times \mathcal{H} X) \) and a bounded \(\phi \in L^2(X) \) such that \(H \ast \phi \notin \mathcal{H} \).

3. There are bounded \(f \in L^2(X \times \mathcal{H} X) \) and \(\phi \in L^2(X) \) such that

\[
(w \lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} T^m(f) \ast \phi) \notin \mathcal{H}
\]

4. There are \(g_1, \ldots, g_n, h_1, \ldots, h_n, \phi \in F \) and \(a_1, \ldots, a_n \in \mathbb{R} \), such that

\[
(w \lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} T^m(\sum_{i=1}^{n} a_ig_i \otimes h_i)) \ast \phi \notin \mathcal{H}
\]
There are \(g, h, \phi \in \mathbb{F} \), such that

\[
(w \lim_{N \to \infty} \frac{1}{N+1} \sum_{m=0}^{N} T^m(g \otimes h)) \ast \phi \notin \mathcal{H}
\]

(4.4)

Proof. (5) \(\rightarrow \) (4) \(\rightarrow \) (3), and (2) \(\rightarrow \) (1) are trivial.

(1) \(\rightarrow \) (2): The functions of the form \(H \ast \phi \) span the space of relatively compact functions as \(H \) ranges over the invariant \(L^\infty(X \times \mathcal{H} X) \) functions, and \(\phi \) ranges over \(L^\infty(X) \). So if (1) holds, then it cannot be true that all of these are in \(\mathcal{H} \), which proves (2).

(2) \(\leftrightarrow \) (3): This equivalence follows, since every invariant \(H \) is of the form

\[
w \lim_{N \to \infty} \sum_{m=0}^{N} T^m f,
\]

(e.g., with \(f = H \)), and every such weak limit is invariant.

(3) \(\rightarrow \) (4): Let \(f_N = \frac{1}{N+1} \sum_{m=0}^{N} T^m f \). Let \(\delta > 0 \) be the distance of \((w \lim f_N) \ast \phi \) and \(\mathcal{H} \). Fix \(\epsilon > 0 \) so that \(\epsilon(||w \lim f_N||_\infty + ||\phi||_\infty + \epsilon) < \delta \). Let \(g \in L^2(X \times \mathcal{H} X) \) and \(\psi \in L^2(X) \) be such that \(||f - g||_2 < \epsilon \) and \(||\psi - \phi||_\infty < \epsilon \). Let \(g_N = \frac{1}{N+1} \sum_{m=0}^{N} T^m g \).

Then for all \(N \),

\[
||g_N - f_N||_2 < \epsilon.
\]

Hence \(||w \lim f_N - w \lim g_N||_2 < \epsilon \). But then

\[
||((w \lim f_N) \ast \phi - (w \lim f_N) \ast \psi)||_2 \leq \epsilon(||w \lim f_N||_\infty + ||\phi||_\infty + \epsilon) \leq \epsilon(||w \lim f_N||_\infty + ||\phi||_\infty + \epsilon) < \delta.
\]

This means that for any such \(g \) and \(\psi \), \((w \lim g_N) \ast \psi \notin \mathcal{H} \). But the finite linear combinations of functions of the form \(f_i \otimes f_j \) are dense in \(L^2(X \times \mathcal{H} X) \), this proves (4).

(4) \(\rightarrow \) (5): This follows from the fact that \(\mathcal{H} \) is closed under linear combinations, and that

\[
[w \lim_{N \to \infty} \sum_{m=0}^{N} T^m(\sum_{i=0}^{n} a_i g_i \otimes h_i)] \ast \phi = \sum_{i=1}^{n} a_i [w \lim_{N \to \infty} \sum_{m=0}^{N} T^m(g_i \otimes h_i)] \ast \phi.
\]

(4.5)
Combining these two lemmas, we get the following description of a measure distal transformation. Let $F = \{ f_i : i \in \mathbb{N} \}$ be an enumeration of a dense subset of $L^2(T)$, consisting of bounded functions.

Then T is measure distal iff for every H proper T-invariant closed subspace of $L^2(T)$, which is closed under multiplication and the operation $f \mapsto \min(f, 1)$, there are $g, h, f \in F$ such that $w \lim_{N \to \infty} \sum_{m=0}^{N} T^m(g \otimes h) * f \notin H$.

With the discrete topology on $F, F = F^{\mathbb{N}^2}$ is a Polish space. Then $F \times MPT$ is also a Polish space. Let's look at the following sets of this space.

$$MD_1 = \{(\tilde{h}, T) \in F \times MPT: \text{for all } i \in \mathbb{N}, \{h_{i,j} : j \in \mathbb{N}\} \text{ is a Cauchy sequence}\}$$

Let $h_i = \lim_{j \to \infty} h_{i,j}$.

$$MD_2 = \{(\tilde{h}, T) \in MD_1: \text{for all } i \in \mathbb{N} \text{ there is a } j \in \mathbb{N} \text{ such that } Th_i = h_j\}$$

$$MD_3 = \{(\tilde{h}, T) \in MD_1: \text{for all } i \in \mathbb{N} \text{ there is a } j \in \mathbb{N} \text{ such that } \min(h_i, 1) = h_j\}$$

$$MD_4 = \{(\tilde{h}, T) \in MD_1: \text{for all } i, j \in \mathbb{N} \text{ there is a } k \in \mathbb{N} \text{ such that } h_i h_j = h_k\}$$

$$MD_5 = \{(\tilde{h}, T) \in MD_1: \text{there are } l, q \in \mathbb{N} \text{ such that for all } i \in \mathbb{N}, ||h_i - f_i||_2 > 1/q\}$$

$$MD_6 = \{(\tilde{h}, T) \in MD_1: \text{there are } i, j, k, p \in \mathbb{N} \text{ such that for all } l \in \mathbb{N},\
||w \lim_{N \to \infty} \sum_{m=0}^{N} T^m(f_i \otimes f_j) * f_k - h_l||_2 > 1/p\}$$

Every closed invariant H can be given by an invariant countable dense set. Every element of this dense set is the limit of a Cauchy-sequence of f_i's from F. Hence T is measure distal iff for every $\tilde{h} \in F$, if $(\tilde{h}, T) \in MD_1 \cap MD_2 \cap MD_3 \cap MD_4 \cap MD_5$, then $(\tilde{h}, T) \in MD_6$. To show that this describes a coanalytic set, it is enough to show that MD_1-6 are Borel sets.
Let $\text{MD}i = \{(\bar{h}, T) \in F \times \text{MPT}: \{h_{i,j} : j \in \mathbb{N}\} \text{ is a Cauchy sequence }\}$. Then $\text{MD} = \bigcap_{i \in \mathbb{N}} \text{MD}i$, hence MD is Borel if all the $\text{MD}i$'s are Borel. $\text{MD}i = \{(\bar{h}, T): \forall n \exists m \forall j, k > m, ||h_{i,j} - h_{i,k}||_2 < 1/n = \bigcap_n \bigcup_m \bigcap_{j,k>m} \{(\bar{h}, T): ||h_{i,j} - h_{i,k}||_2 < 1/n\}$.

Since $\{(\bar{h}, T): ||h_{i,j} - h_{i,k}||_2 < 1/n\}$ is open, $\text{MD}i$ and hence MD is Borel.

$\text{MD}2 = \{(\bar{h}, T) \in \text{MD}1: \forall i,j \forall n \in \mathbb{N} \forall \bar{h}, k > m, ||T h_{i,k} - h_{i,j}||_2 < 1/n\}$. To show that this is a Borel set, suppose that $||T h_{i,k} - h_{i,j}||_2 < 1/n$, and let δ be the difference. Choose $\sum_{p=0}^{N} a_p \chi_{O_p} = h$ such that $||h - h_{i,k}||_2 < \delta/3$, where the O_p's are basic open sets. Then clearly there is an $\epsilon > 0$ such that if $d(S, T) < \epsilon$, then $||Sh - Th||_2 < \delta/3$. Hence $||Sh_{i,k} - h_{i,j}||_2 < ||Sh_{i,k} - Sh||_2 + ||Sh - Th||_2 + ||Th - Th_{i,k}||_2 + ||T h_{i,k} - h_{i,j}||_2 < \delta + (1/n - \delta) = 1/n$. This shows that $\text{MD}2 = \{(\bar{h}, T) \in \text{MD}1: ||T h_{i,k} - h_{i,j}||_2 < 1/n\}$ is open. Indeed, if $(\bar{h}, T) \in \text{MD}2$, then $U = \{(\tilde{h}', S): h_{i,k}' = h_{i,k}, h_{i,j}' = h_{i,j}, d(S, T) < \epsilon\}$ is an open neighborhood of (\bar{h}, T) inside $\text{MD}2$. Hence $\text{MD}2$ is Borel.

$\text{MD}3 = \{(\bar{h}, T) \in \text{MD}1: \forall i \exists j \forall n \in \mathbb{N} \forall \bar{h}, k > m, ||\min(h_{i,k}, 1) - h_{i,j}||_2 < 1/n\}$. Since $\{(\bar{h}, T): ||\min(h_{i,k}, 1) - h_{i,j}||_2 < 1/n\}$ is open, $\text{MD}3$ is Borel.

$\text{MD}4 = \{(\bar{h}, T) \in \text{MD}1: \forall i,j,k \exists l \forall n \in \mathbb{N} \forall \bar{h}, b, c > m, ||h_{i,l} - h_{j,k} - h_{i,j}||_2 < 1/n\}$. Since $\{(\bar{h}, T): ||h_{i,l} - h_{j,k} - h_{i,j}||_2 < 1/n\}$ is open, $\text{MD}4$ is Borel.

$\text{MD}5 = \{(\bar{h}, T) \in \text{MD}1: \exists l,p \forall i \exists j \forall n \forall \bar{h}, k > m, ||f_l - h_{i,j}||_2 > 1/p\}$. Since $\{(\bar{h}, T): ||f_l - h_{i,j}||_2 > 1/p\}$ is open, $\text{MD}5$ is Borel.

For $\text{MD}6$ it is enough to show that for fixed i, j, k, l, p, q, $\text{MD}6' = \{(\bar{h}, T) \in \text{MD}1: ||w \lim_{N \to 1} \frac{1}{N} \sum_{m=0}^{N} T^m(f_i \otimes f_j) + f_k - f_{i,q}||_2 > 1/p^2\}$ is Borel. Let $G^T_m = T^m(f_i \otimes f_j)$, and $G^T = w \lim_{N \to 1} \frac{1}{N} \sum_{m=0}^{N} G^T_m$. Then

$$||G^T \ast f_k - h_{i,q}||_2^2 = ||G^T \ast f_k||_2^2 - \langle G^T \ast f_k, h_{i,q} \rangle - \langle h_{i,q}, G^T \ast f \rangle + ||h_{i,q}||_2^2. \quad (4.6)$$
Now look at

\[\langle G^T \ast f_k, h_{i,q} \rangle = \int (G^T \ast f_k)(x)\overline{h_{i,q}(x)}d\mu(x) = \quad (4.7) \]

\[\int \left(\lim_{M \to \infty} \frac{1}{M+1} \sum_{m=0}^{M} G^T_m(x, x')f_k(x')d\mu_{\alpha}(x)(x') \right)\overline{h_{i,q}(x)}d\mu(x) = \quad (4.8) \]

\[\int \left(\lim_{M \to \infty} \frac{1}{M+1} \sum_{m=0}^{M} G^T_m(x, x')f_k(x')\overline{h_{i,q}(x)}d\mu_{T \times \mu}(x) = \quad (4.9) \]

\[\lim_{M \to \infty} \frac{1}{M+1} \sum_{m=0}^{M} \int (G^T_m(x, x')f_k(x')\overline{h_{i,q}(x)}d\mu_{T \times \mu}(x), \quad (4.10) \]

where \(H \) is the closed subspace of \(L^2(T) \) which is spanned by the \(h_i \)'s. Similarly

\[\langle h_{i,q}, G^T \ast f_k \rangle = \lim_{M \to \infty} \frac{1}{M+1} \sum_{m=0}^{M} \int h_{i,q}(x)\overline{G^T_m(x, x')}f_k(x')d\mu_{T \times \mu}(x) = \quad (4.11) \]

Also similarly

\[\langle G^T \ast f_k, G^T \ast f_k \rangle = \int (G^T \ast f_k)(x)\overline{G^T \ast f_k(x)}d\mu(x) = \quad (4.12) \]

\[\int \left(\lim_{M \to \infty} \frac{1}{M+1} \sum_{m=0}^{M} G^T_m(x, x')f_k(x')d\mu_{\alpha}(x)(x') \right)\overline{G^T \ast f_k(x)}d\mu(x) = \quad (4.13) \]

\[\lim_{M \to \infty} \frac{1}{M+1} \sum_{m=0}^{M} \int \left(\int G^T_m(x, x')f_k(x')d\mu_{\alpha}(x)(x') \right)\overline{G^T \ast f_k(x)}d\mu(x) = \quad (4.14) \]

\[\lim_{M \to \infty} \frac{1}{M+1} \sum_{m=0}^{M} \lim_{N \to \infty} \frac{1}{N+1} \sum_{n=0}^{N} \int \left[\int G^T_m(x, x')f_k(x')d\mu_{\alpha}(x)(x') \right] \overline{G^T_n(x, x')f_k(x')d\mu_{\alpha}(x)(x')} \right]d\mu(x), \quad (4.15) \]

Let \(U^T_m(x, x')f_k(x')\overline{h_{i,q}(x)}d\mu_{T \times \mu}(x) \), and \(W^T_m(x) = \int G^T_m(x, x')f_k(x')d\mu_{\alpha}(x)(x') \).

Let

\[P^T = \lim_{M, N \to \infty} \frac{1}{M+1} \frac{1}{N+1} \sum_{m=0}^{M} \sum_{n=0}^{N} \int W^T_m(x)W^T_n(x)d\mu(x), \quad (4.17) \]
Then

\[\text{MD6'} = \{(h, T) \in \text{MD1} : P^T > 1/p^2\}. \]

Suppose that \((h, T) \in \text{MD6}'\). We'll show that there is an \(\epsilon > 0\) such that

\[\{(h', S) : h_i' = h_i, d(S, T) < \epsilon\} \]

is an open neighborhood of \((h, T)\) in \(\text{MD6}'\). This will show that \(\text{MD6}'\) is open and hence \(\text{MD6}\) is Borel. Let \(\delta = P^T - 1/p^2\). From the definitions

\[U_m^T = \int G_m^T(x, x')f_k(x')h_{i,q}(x)d\mu_{x,T}, \]

and

\[G_m^T(x, x') = T_m(f_i \otimes f_j) \]

it is clear that there is an \(\epsilon_1 > 0\) such that if \(d(S, T) < \epsilon_1\) then \(\|G_m^T - G_m^S\|_1 < \delta/2\|f_kh_{i,q}\|_\infty\). For such an \(S\), \(|U_m^T - U_m^S| < \delta/2\).

Also recall the definition \(W_m^T(x) = \int G_m^T(x, x')f_k(x')d\mu_{x}(x')\), and look at

\[\int W_m^T(x) \overline{W_m^T(x)} - W_m^S(x) \overline{W_m^S(x)}d\mu(x) = \]

\[\int W_m^T(x) (W_m^T(x) - W_m^S(x))d\mu(x) + \int \overline{W_m^S(x)}(W_m^T(x) - W_m^S(x))d\mu(x). \]

If \(K\) is a bound for \(\|f_i\|_\infty\), \(\|f_j\|_\infty\) and \(\|f_k\|_\infty\) then \(\|G_m^T\|_\infty = \|G_m^S\|_\infty < K^2\). Also \(\|W_m^T\|_\infty < K^3\) and \(\|W_m^S\|_\infty < K^3\). But

\[W_m^T(x) - W_m^S(x) = \int (G_m^T(x, x') - G_m^S(x, x'))f_k(x')d\mu_{x}(x'). \]
There is an \(\epsilon_2 > 0 \) such that if \(d(S, T) < \epsilon_2 \) then \(\|G^T_n - G^S_n\|_1 < \delta/2K^4 \). Then for such an \(S \),

\[
\|W^T_n(x) - W^S_n(x)\|_1 = \int \int (G^T_n(x, x') - G^S_n(x, x')) f_n(x') d\mu_n(x) d\mu(x) < \delta/2K^3,
\]

hence

\[
\int W^S_n(W^T_n(x) - W^S_n(x)) d\mu(x) < \delta/2.
\]

Similarly there is an \(\epsilon_3 > 0 \) such that if \(d(S, T) < \epsilon_3 \) then

\[
\int W^T_n(W^T_n(x) - W^S_n(x)) d\mu(x) < \delta/2.
\]

Hence if \(\epsilon = \min(\epsilon_1, \epsilon_2, \epsilon_3) \) and \(d(S, T) < \epsilon \) then

\[
\left| \lim_{M,N \to \infty} \frac{1}{M+1} \frac{1}{N+1} \sum_{m=0}^{M} \sum_{n=0}^{N} \int W^T_n(x) W^T_n(x) d\mu(x) \right| + \|h_{t,q}\|_2^2 < \left(\frac{\delta}{2} \right)^2. \tag{4.30}
\]

\[
\left| \lim_{M,N \to \infty} \frac{1}{M+1} \frac{1}{N+1} \sum_{m=0}^{M} \sum_{n=0}^{N} \int W^S_n(x) W^S_n(x) d\mu(x) \right| + \|h_{t,q}\|_2^2 < \left(\frac{\delta}{2} \right)^2. \tag{4.31}
\]

\[
\left| \lim_{M,N \to \infty} \frac{1}{M+1} \frac{1}{N+1} \sum_{m=0}^{M} \sum_{n=0}^{N} (U^T_n + U^S_n) \right| < \left(\frac{\delta}{2} \right) \tag{4.32}
\]

\[
\left| \lim_{M,N \to \infty} \frac{1}{M+1} \frac{1}{N+1} \sum_{m=0}^{M} \sum_{n=0}^{N} (U^S_n + U^T_n) \right| < \left(\frac{\delta}{2} \right) \tag{4.33}
\]

\[
\left| \lim_{M,N \to \infty} \frac{1}{M+1} \frac{1}{N+1} \sum_{m=0}^{M} \sum_{n=0}^{N} \delta + \left| \lim_{M,N \to \infty} \frac{1}{M+1} \frac{1}{N+1} \sum_{m=0}^{M} \delta \right| = \delta. \tag{4.34}
\]

This shows that if \((\tilde{t}, T) \in MD\delta' \) then if \(S \) is in the \(\epsilon \)-neighborhood of \(T \) and \(h_{t,q} = h_{t,q} \)

then \((\tilde{t}', S) \in MD\delta' \), which is what we wanted.

Proof of Theorem 4.2.1. We just showed that the set of measure distal transformations is coanalytic, and since it is \(\Pi^1_1 \)-hard, it is a complete coanalytic set. \(\Box \)
BIBLIOGRAPHY

