INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
Hypergroups and semiproper functions

Craighead, Robert Lincoln, Jr., Ph.D.
The Ohio State University, 1991
HYPERGROUPS AND SEMIPROPER FUNCTIONS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

by

Robert Lincoln Craighead, Jr., B.S., M.S.

* * * * *

The Ohio State University
1991

Dissertation Committee:
F. W. Carroll
B. M. Baishanski
H. H. Glover

Approved by

Adviser
Department of Mathematics
To My Father
ACKNOWLEDGMENTS

There are a number of people I would like to thank. First, I was fortunate that Professor Carroll advised me through this dissertation. He has been very gracious with his time and has helped in other matters as well. I would like to express my gratitude to my committee members, Professor B. Baishanski and Professor H. Glover. They have also helped me in ways outside of the dissertation. Finally the following people have encouraged me during my studies at Ohio State and I thank each of them: Professors R. Bojanic, W. Davis, A. Dynin, G. Edgar, N. Falkner, R. Gold, J. Leitzel, H. Moscovici, A. Parson, S. Sehgal, D. Shapiro, R. Solomon, R. Stanton, and B. Waits.
VITA

May 31, 1941.................................Born - Nashville, Tennessee

1964...B.S., Tennessee A & I State University, Nashville, Tennessee

1964-1984......................................Officer, United States Air Force

1970...M.S., University of Wyoming, Laramie, Wyoming

1984-Present.................................Graduate Teaching Associate, The Ohio State University, Columbus, Ohio

Fields of Study

Major Field: Mathematics

Studies in Complex Analysis under Professor Francis W. Carroll
TABLE OF CONTENTS

DEDICATION .. ii
ACKNOWLEDGMENTS ... iii
VITA ... iv
LIST OF FIGURES .. vi
LIST OF SYMBOLS .. vii

CHAPTER PAGE

I. INTRODUCTION .. 1
II. SEMIPROPER FUNCTIONS ... 2
III. HYPERGROUPS ... 8
IV. EXAMPLES AND FURTHER RESULTS ..34

LIST OF REFERENCES ...52
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Relationship of h, f, g, \mathcal{W}_h and the pair (ϕ, ψ)</td>
</tr>
<tr>
<td>3.2</td>
<td>Definition of $(\phi_1, \psi_1) \otimes (\phi_2, \psi_2)$</td>
</tr>
<tr>
<td>3.3</td>
<td>The pair (ϕ_1, ψ_1) generated by h_1</td>
</tr>
<tr>
<td>3.4</td>
<td>Equivalence of (ϕ_1, ψ_1) and (ϕ_2, ψ_2)</td>
</tr>
<tr>
<td>3.5</td>
<td>The germ $[h_\alpha, z]$ covered by \tilde{z}</td>
</tr>
<tr>
<td>3.6</td>
<td>The germ $\sigma \circ \omega(\tilde{z})$ covered by \tilde{z}</td>
</tr>
<tr>
<td>3.7</td>
<td>The extension of figure 3.6 to include the germ $[h_\beta, z] = \sigma \circ \omega(\tilde{z})$</td>
</tr>
<tr>
<td>3.8</td>
<td>Using base of topology to extend figure 3.5</td>
</tr>
<tr>
<td>3.9</td>
<td>Construction of h as related to given f_0 and f_r to be found and to $\mathcal{W}_{f^{-1}}$</td>
</tr>
<tr>
<td>3.10</td>
<td>Relationship of γ with the lifts $\tilde{\gamma}$ and Γ and the image curve $H^*(\tilde{\gamma})$</td>
</tr>
<tr>
<td>3.11</td>
<td>Required continuation and equality of curves $f \circ \gamma$ and $f \circ H^* \circ \tilde{\gamma}$</td>
</tr>
<tr>
<td>3.12</td>
<td>The function g as related to the surface $\mathcal{W}_{g^{-1}}$ and the maps $p^$ and $G^$</td>
</tr>
<tr>
<td>3.13</td>
<td>Relationship between g and \mathcal{W}_h when h continues to domain in \mathcal{U}</td>
</tr>
<tr>
<td>FIGURES</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3.14</td>
<td>Relationship between g and U when h continues to all of U</td>
</tr>
<tr>
<td>4.1</td>
<td>Curves γ_i with initial points w_i</td>
</tr>
<tr>
<td>4.2</td>
<td>Example of lifted curves</td>
</tr>
<tr>
<td>4.3</td>
<td>Example of lifted curves showing domains D_i and V</td>
</tr>
<tr>
<td>4.4</td>
<td>Riemann surface of example 4.4</td>
</tr>
<tr>
<td>4.5</td>
<td>The structure of every $h = f^{-1} \circ f$</td>
</tr>
<tr>
<td>4.6</td>
<td>Lift of curve in $(\mathcal{W}_{f^{-1}})_2$ and image under $F^{-1\ast}$</td>
</tr>
<tr>
<td>4.7</td>
<td>Surface for example 4.4</td>
</tr>
<tr>
<td>4.8</td>
<td>Example of a cover for the surface in example 4.4</td>
</tr>
<tr>
<td>4.9</td>
<td>Computation for 0 in example 4.6</td>
</tr>
<tr>
<td>4.10</td>
<td>Computation for .5 in example 4.6</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>MEANING</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.e.</td>
<td>Almost everywhere</td>
<td>4</td>
</tr>
<tr>
<td>a.u.</td>
<td>Almost uniformly</td>
<td>6</td>
</tr>
<tr>
<td>$B(z_0,R)$</td>
<td>${ z \in \mathbb{C} \mid</td>
<td>z - z_0</td>
</tr>
<tr>
<td>br(E)</td>
<td>Boundary of E</td>
<td>50</td>
</tr>
<tr>
<td>C</td>
<td>Complex plane</td>
<td>3</td>
</tr>
<tr>
<td>$C(0,R)$</td>
<td>Circle centered at 0 with radius R</td>
<td>4</td>
</tr>
<tr>
<td>cl(E)</td>
<td>Closure of E</td>
<td>3</td>
</tr>
<tr>
<td>$H \times H$</td>
<td>Cartesian product of the set H with itself</td>
<td>8</td>
</tr>
<tr>
<td>$H^\infty(U)$</td>
<td>Set of bounded analytic functions on the unit disk</td>
<td>5</td>
</tr>
<tr>
<td>H^*</td>
<td>Evaluation map associated with the function h</td>
<td>10</td>
</tr>
<tr>
<td>(h,D)</td>
<td>Function element</td>
<td>10</td>
</tr>
<tr>
<td>$[h,z]$</td>
<td>Germ</td>
<td>10</td>
</tr>
<tr>
<td>$[h,D]$</td>
<td>Set of germs $[h,z]$ with $z \in D$</td>
<td>11</td>
</tr>
<tr>
<td>$\lim_{r \to 1^-} f(re^{i\theta})$</td>
<td>Radial limit of the function f with respect to the angle θ</td>
<td>4</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>Set of Möbius transformations on the unit disk</td>
<td>12</td>
</tr>
<tr>
<td>N_z</td>
<td>Neighborhood of z</td>
<td>17</td>
</tr>
<tr>
<td>N</td>
<td>Natural numbers</td>
<td>3</td>
</tr>
<tr>
<td>$P(H)$</td>
<td>Power set of the set H</td>
<td>8</td>
</tr>
<tr>
<td>p^*</td>
<td>Projection map</td>
<td>10</td>
</tr>
<tr>
<td>\mathcal{P}_f</td>
<td>Hypergroup of the function f</td>
<td>14</td>
</tr>
<tr>
<td>SYMBOL</td>
<td>MEANING</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>(\mathcal{R})</td>
<td>Riemann surface</td>
<td>9</td>
</tr>
<tr>
<td>(S)</td>
<td>Riemann surface</td>
<td>43</td>
</tr>
<tr>
<td>(\mathcal{U})</td>
<td>Unit disk</td>
<td>2</td>
</tr>
<tr>
<td>(\text{ucm})</td>
<td>Universal covering map</td>
<td>10</td>
</tr>
<tr>
<td>(V_{\bar{z}})</td>
<td>Neighborhood of (\bar{z})</td>
<td>11</td>
</tr>
<tr>
<td>(\mathcal{W}_h)</td>
<td>Riemann surface generated by the function (h)</td>
<td>10</td>
</tr>
<tr>
<td>(X - A)</td>
<td>Complement of (A) in the topological space (X)</td>
<td>27</td>
</tr>
<tr>
<td>(\chi)</td>
<td>The identity element of (\mathcal{M})</td>
<td>29</td>
</tr>
<tr>
<td>((\phi, \psi))</td>
<td>Pair of analytic functions or principal pair</td>
<td>9</td>
</tr>
<tr>
<td>((\phi, \psi))</td>
<td>Equivalence class of the principal pair ((\phi, \psi))</td>
<td>12</td>
</tr>
<tr>
<td>(\prec)</td>
<td>Subordinate</td>
<td>12</td>
</tr>
<tr>
<td>(\sim)</td>
<td>Equivalent</td>
<td>12</td>
</tr>
<tr>
<td>(\simeq)</td>
<td>Conformal</td>
<td>26</td>
</tr>
<tr>
<td>(\otimes)</td>
<td>Product in the hypergroup (\mathcal{P}_f)</td>
<td>14</td>
</tr>
<tr>
<td>■</td>
<td>End of proof or example</td>
<td>3</td>
</tr>
<tr>
<td>[4]</td>
<td>Fourth reference</td>
<td>1</td>
</tr>
<tr>
<td>[4, th. 6.8, p. 19]</td>
<td>Fourth reference, theorem 6.8 (lm-lemma, pr-proposition or property ex-exercise or example), page 19</td>
<td>3</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

Frederic Marty first introduced hypergroups in his 1936 paper Sur les Groups et Hypergroups Attachés à une Fraction Rationelle [10]. Kenneth Stephenson used Marty’s definition of hypergroup to study compositions of inner functions and presented the results in his 1982 paper Analytic Functions and Hypergroups of Function Pairs [14]. We will use some definitions and theorems from Stephenson pertaining to hypergroups of function pairs to develop a theory for hypergroups of semiproper functions. Chapter II develops the theory of semiproper functions and Chapter III is devoted to hypergroups. One of the main results is in Chapter III and asserts that every semiproper function with a finite number of branch points has a hypergroup. Chapter IV contains the examples. In particular, an example from Stephenson shows that there is a function with no hypergroup. Chapter IV also contains the second important result which establishes conditions for expressing a finite Blaschke product as a composition of two Blaschke products of lower order.
Proper functions are functions under which the inverse image of each compact set is compact. The only proper analytic functions defined from the unit disk \mathcal{U} into the unit disk are finite Blaschke products. If we only require that each component of the inverse image of a compact set be compact, then we get a broader class of functions, which we call semiproper functions. As far as we are aware, semiproper functions have not been studied previously. New results in this chapter include Proposition 2.5 (Annular functions are semiproper), Theorem 2.8 (Blaschke products are the only possible semiproper functions from \mathcal{U} onto \mathcal{U}), and Example 2.11 (There exist semiproper infinite Blaschke products).

Definition 2.1. Let X and Y be Hausdorff topological spaces and f a continuous function from X into Y.

(i) The function f is said to be proper if for every compact K in Y, $f^{-1}(K)$ is compact.

(ii) The function f is said to be semiproper if for every compact K in Y, each component of $f^{-1}(K)$ is compact.

When we study proper and semiproper functions in the context of complex functions, we shall implicitly assume that we are considering only analytic functions.
Proposition 2.2. If $f : X \to Y$ is proper, then f is semiproper.

Proof. Let K be compact in Y. If C is a component of $f^{-1}(K)$, then $f^{-1}(K)$ compact implies $C \subseteq \text{cl}(C) \subseteq f^{-1}(K)$. Since C is a component of $f^{-1}(K)$, $C = \text{cl}(C)$. Now $f^{-1}(K)$ compact implies C is compact. ■

Definition 2.3. An analytic function from the unit disk \mathcal{U} into the complex plane \mathbb{C} is said to be annular if there exists a sequence of Jordan curves $\{J_n\}_{n=1}^{\infty}$ such that

(i) J_n is contained in the interior of J_{n+1},

(ii) For every $\epsilon > 0$, there is an $M \in \mathbb{N}$ such that $n \geq M$ implies $J_n \subseteq \{z \mid 1 - \epsilon < |z| < 1\}$ and

(iii) $\min\{|f(z)| \mid z \in J_n\} = m(f, J_n) \to \infty$.

An excellent source for annular functions is [3]. We shall state a result from [3] that will be needed to show that every annular function is semiproper and not proper.

Proposition 2.4. [3, pr. 3.2, p. 30] If $f : \mathcal{U} \to \mathbb{C}$ is annular then $\{z \mid f(z) = a\}$ is countably infinite for every complex number $a \neq \infty$.

Proposition 2.5. If $f : \mathcal{U} \to \mathbb{C}$ is annular then f is semiproper and f is not proper.

Proof. Let K be compact in \mathbb{C}. If $w_0 \in K$, then $f^{-1}\{w_0\}$ is countably infinite and contained in \mathcal{U}. Hence, there is a limit point z_0 of $f^{-1}(K)$ which
cannot be in U. Therefore $|z_0| = 1$, $f^{-1}(K)$ is not closed in C and hence $f^{-1}(K)$ cannot be compact. Since $f^{-1}(K)$ is not compact, f cannot be proper.

To show that f is semiproper, let C be a component of $f^{-1}(K)$. There is an $N \in \mathbb{N}$ such that $f^{-1}(K) \cap J_n = \emptyset$ for all $n \geq N$. Since C is connected, $C \subseteq B(0,R)$ for some R, $0 < R < 1$. If x_0 is a limit point of C then x_0 is in U and $x_0 \in f^{-1}(K)$ since $f^{-1}(K)$ is closed in U. Therefore $C = \text{cl}(C) \subseteq f^{-1}(K)$. Hence, C closed and bounded in C implies C is compact. ■

Definition 2.6. An analytic function $f : U \to U$ has a radial limit α with respect to θ if $\lim_{r \to 1^-} f(re^{i\theta}) = \alpha$.

When we want to emphasize the point $z = e^{i\theta}$ on the unit circle $C(0,1)$ rather than the angle, we say f has a radial limit α at z.

Definition 2.7. An analytic function $f : U \to U$ is said to be an inner function if the radial limits $\lim_{r \to 1^-} f(re^{i\theta})$ have modulus one a.e. θ, $0 \leq \theta < 2\pi$.

Theorem 2.8. If f is a semiproper function from U into U then f is a finite or infinite Blaschke product.

Proof. Case 1. The function f is an inner function. Write f as the product of a Blaschke product B and a singular function S. Since S is singular, S has at least one radial limit 0. See [9, p. 73] and [12, ex. 17, p. 383]. WLOG, let $\lim_{r \to 1^-} f(r) = 0$. Let $K = \{f(x) \mid 0 \leq x < 1\} \cup \{0\}$. Then K is compact. Since $[0,1)$ is contained in one component C of $f^{-1}(K)$ and $1 \not\in C$, C is
not compact. This is a contradiction unless the singular factor S is trivial. Therefore, f is a Blaschke product.

Case 2. The function f is not inner. Now $f \in H^\infty(\mathcal{U})$ implies by Fatou's theorem that $\lim_{r \to 1^-} f(re^{i\theta})$ exists a.e. Since f is not inner, $\lim_{r \to 1^-} f(re^{i\theta}) = a$ with $|a| < 1$ exists on a set of measure greater than 0. Proceed as before. ■

This theorem has a partial converse in that every finite Blaschke product is semiproper. In fact, for K compact and f a finite Blaschke product, $f^{-1}(K) \subseteq B(0, R)$ for some R, $0 < R < 1$. This implies that $f^{-1}(K)$ is closed in \mathbb{C} and hence compact. It follows that f is proper and by proposition 2.2 f is semiproper. If f is an infinite Blaschke product then f cannot be proper. The inverse image of the singleton $\{0\}$ is not compact. We have proved the following corollary to theorem 2.8.

Corollary 2.9. [13, p. 300] A function $f : \mathcal{U} \to \mathcal{U}$ is proper if and only if f is a finite Blaschke product.

The converse of Theorem 2.8 is false. The class of infinite Blaschke products contains examples of both semiproper functions and examples of functions that are not semiproper. Frostman [8] gave the example $B(z) = \prod_{n=1}^{\infty} \frac{(1-1/n^2) - z}{1-(1/n^2)z}$ of an infinite Blaschke product that has radial limit zero at one. See also Rudin [12, ex 13, p 341]. A similar proof to that of theorem 2.8 can be used to conclude that B cannot be semiproper.

The following proposition generalizes the property that causes the above function B not to be semiproper.
Proposition 2.10. Let f be a continuous function from the unit disk into the unit disk. If E is connected, $\text{cl}(E) \cap C(0,1) \neq \emptyset$ and $\text{cl}(f(E)) \subseteq U$, then f is not semiproper.

Proof. The set $\text{cl} f(E)$ is compact and let C be the component of $f^{-1}(\text{cl} f(E))$ with $E \subseteq C$. Since $C \subseteq U$ and a limit point of C is in $C(0,1)$, C cannot be compact. □

The following is an example of a semiproper infinite Blaschke product.

Example 2.11. There exists a sequence $\{x_\nu\}$, $0 < x_1 < x_2 < \ldots < 1$ such that the infinite Blaschke product $B(z) = \prod_{\nu=1}^{\infty} \frac{x_{\nu} - z}{1 - x_{\nu} z}$ is semiproper. We will choose the sequences $\{x_\nu\}$ and $\{R_\nu\}$ inductively so that if $B_n(z) = \prod_{\nu=1}^{n} \frac{x_{\nu} - z}{1 - x_{\nu} z}$, then $|B_n(z)| > 1 - \frac{2}{\nu^2}$ on $|z| = R_\nu$, $\nu = 1, 2, \ldots, n$. Let $x_1 = \frac{1}{2}$, $B_1(z) = \frac{1 - z}{1 - z/2}$. Choose R_1 so that $|z| \geq R_1$ implies $|B_1(z)| > 3/4$.

Suppose x_1, \ldots, x_n; have been chosen so that

$$|B_n(z)| > 1 - \frac{2}{\nu^2}; \quad |z| = R_\nu, \quad \nu = 1, 2, \ldots, n.$$

Consider the function $f_t(z) = \frac{t - z}{1 - t^2}$, where t is a real parameter not yet specified, with $\max\{x_n, 1 - 2^{-n}\} < t$. As $t \to 1$, $\frac{t - z}{1 - t^2} \to 1$ on U. Hence $f_t(z)B_n(z) \to B_n(z)$ as $t \to 1$ a.u. on U. So for all t close enough to 1 we have

$$|f_t(z)B_n(z)| > 1 - \frac{2}{\nu^2}, \quad |z| = R_\nu, \quad \nu = 1, 2, \ldots, n.$$

Let x_{n+1} be one of these t's and define B_{n+1} by

$$B_{n+1}(z) = f_{x_{n+1}}(z)B_n(z).$$
Then
\[|B_{n+1}(z)| > 1 - \frac{2}{\nu^2}, \quad |z| = R_\nu, \quad \nu = 1, 2, \ldots, n. \]

We need \(|B_{n+1}(z)| > 1 - \frac{2}{(n+1)^2}, \quad |z| = R_{n+1} \), to complete the induction.

Since \(B_{n+1}(z) \) is a finite Blaschke product there is an \(R = R_{n+1} \) such that
\[|z| \geq R \Rightarrow |B_{n+1}(z)| > 1 - \frac{2}{(n+1)^2}. \]
Hence \(|B_{n+1}(z)| > 1 - \frac{2}{\nu^2} \) for \(|z| = |R_\nu|, \quad \nu = 1, 2, \ldots, n+1 \). Define \(B(z) = \prod_{\nu=1}^{\infty} \frac{x_\nu - z}{1 - x_\nu z} \). Since \(x_{n+1} \) was chosen such that
\[\max\{x_n, 1 - 2^{-n}\} < x_{n+1} \]
we have that \(\sum_{\nu=1}^{\infty} 1 - |x_\nu| < \infty \) and
\[\prod_{\nu=1}^{\infty} \frac{x_\nu - z}{1 - x_\nu z} \]
is an analytic function in \(U \).

We assert that \(B \) is semiproper.

Let \(K \) be a compact set in \(U \) with \(C \) a component of \(B^{-1}(K) \). If \(C \) is not compact, then there is a limit point \(a_0 \) of \(C \) on \(C(0,1) \). Since \(C \subset U \) is connected and has \(a_0 = e^{i\phi} \) in its closure, the sequence \(\{a_n \mid a_n = R_n e^{i\phi}\} \) satisfies \(\lim_{n \to \infty} a_n = a_0 \). Since \(|B_n(a_n)| \to 1, \ B_n(a_n) \not\in K \) if \(n \) is sufficiently large. The contradiction establishes the result. \(\blacksquare \)
CHAPTER III
HYPERGROUPS

The first part of this chapter introduces hypergroups of function pairs. It is not automatic that when given a function $f: U \rightarrow \mathcal{R}$, the function pairs will form a hypergroup. Example 4.4 in chapter IV demonstrates this failure and the property not satisfied is associativity. Analytic continuation is important in this example and plays a central role in the theory developed in the second part of this chapter. This theory is used to prove theorem 3.16. If f is semiproper with a finite number of branch points, then the function pairs always form a hypergroup. The remaining part of the chapter contains results which show the interplay between the function, analytic continuation and the function pairs. We begin with a few definitions from Stephenson [14].

Definition 3.1. Let H be a nonempty set and m a function $m : H \times H \rightarrow P(H)$, the power set of H. H is a hypergroup under m if

(i) m is associative in that for any three elements a, b, c of H,

$$\bigcup\{m(d, c) \mid d \in m(a, b)\} = \bigcup\{m(a, d) \mid d \in m(b, c)\}$$

(ii) There is an identity element $i \in H$ such that for every $a \in H$ $m(i, a) = m(a, i) = \{a\}$
(iii) For every $a \in H$, there is a unique element a^{-1} in H such that $(a^{-1})^{-1} = a$ and $i \in m(a, a^{-1}) \cap m(a^{-1}, a)$.

Definition 3.2. Let $\mathcal{U} = \{z \mid |z| < 1\}$ be the unit disk and f and g nonconstant analytic functions from \mathcal{U} into a Riemann surface \mathcal{R}.

(i) A pair (ϕ, ψ) of analytic functions from \mathcal{U} into \mathcal{U} is said to be an f-g pair if it satisfies the functional equation $f \circ \phi = g \circ \psi$. If $f = g$ then the pair (ϕ, ψ) is called an f pair or a function pair for f.

(ii) A pair (ϕ, ψ) of analytic functions from \mathcal{U} into \mathcal{U} is said to match w_1 to w_2 if there is a z in \mathcal{U} with $\phi(z) = w_1$ and $\psi(z) = w_2$.

The following theorem establishes the existence of f-g pairs. In particular, when $f = g$ we have the existence of f pairs (ϕ, ψ), the elements needed to establish the hypergroup of f. We will state the theorem and briefly discuss how a pair is constructed. The construction is important since it shows the relationship between the functions f and g, the intermediate surface created from continuations and the unit disk. A detailed proof of this theorem can be found in Stephenson [14, p. 850].

Theorem 3.3 (Stephenson). Let f and g be nonconstant analytic functions from \mathcal{U} into a Riemann surface \mathcal{R}. If z_1 and z_2 are points of \mathcal{U} with $f(z_1) = g(z_2)$, then there exists an f-g pair (ϕ, ψ) which matches z_1 to z_2.

First, assume that f and g are smooth at z_1 and z_2 respectively. Choose domains D_1 and D_2 such that $z_i \in D_i$, f is one-to-one from D_1 onto Δ and g is $1-1$ from D_2 onto Δ. Define $h = g^{-1} \circ f$ where g^{-1} is the local inverse
of g from Δ onto D_2. Taking all analytic continuations (h_α, D_α) of (h, D_1) with the restriction $|z| < 1$ and $|h_\alpha(z)| < 1$ for all $z \in D_\alpha$ leads to a Riemann surface we will denote by W_h. W_h is a Riemann surface which serves as the domain for two functions p^* and H^* defined as follows:

$$p^*([h_\alpha, z_\alpha]) = z_\alpha \quad \text{projection}$$

$$H^*([h_\alpha, z_\alpha]) = h_\alpha(z_\alpha) \quad \text{evaluation.}$$

Since p^* is bounded and nonconstant from W_h into \mathcal{U}, W_h is hyperbolic and has \mathcal{U} as its universal cover [2, p 156].

Designate by ρ the universal covering map (ucm) of W_h and define the f-g pair (ϕ, ψ) by the formulas $\phi = p^* \circ \rho$ and $\psi = H^* \circ \rho$. We have the following diagram:

![Diagram]

Figure 3.1: Relationship of h, f, g, W_h and the pair (ϕ, ψ).
Notice that \(h \) may continue to a subdomain of \(U \) in one situation, and in another may continue to \(U - \{ \text{branch points} \} \) but be multivalued.

We check that \((\phi, \psi)\) satisfies \(f \circ \phi = f \circ \psi \) and that \((\phi, \psi)\) matches \(z_1 \) to \(z_2 \).

The domain \([h,D_1]\) in \(\mathcal{W}_h \) is conformal to \(D_1 \) in \(U \) when \(p^* \) is restricted to \([h,D_1]\). Since \(\rho \) is ucm, there is a \(\tilde{z} \) over \([h,z_1]\) in \([h,D_1]\) and a neighborhood \(V_\tilde{z} \) of \(\tilde{z} \) such that \(V_\tilde{z} \to \mathcal{W}_h \in [h,D'_1] \subseteq [h,D_1] \). The two computations
\[
\phi(\tilde{z}) = p^* \circ \rho(\tilde{z}) = p^*([h,z_1]) = z_1 \quad \text{and} \\
\psi(\tilde{z}) = H^* \circ \rho(\tilde{z}) = H^*([h,z_1]) = \psi(z_1) = z_2
\]
show that \((\phi, \psi)\) matches \(z_1 \) to \(z_2 \). If \(\tilde{z} \in V_\tilde{z} \), then
\[
\begin{align*}
\phi(z) &= f \circ \phi(z) = f \circ p^* \circ \rho(z) = f \circ p^*([h,z']) = f(z') \\
\psi(z) &= g \circ \psi(z) = g \circ H^* \circ \rho(z) = g \circ H^*([h,z']) = \\
g \circ \psi(z) &= g \circ (g^{-1} \circ f)(z') = f(z').
\end{align*}
\]
By the principle of analytic continuation,
\[
f \circ \phi = g \circ \psi \quad \text{on} \quad U.
\]
If \(f \) has a branch point at \(z_1 \) and/or \(g \) has a branch point at \(z_2 \), then we can choose small neighborhoods \(V_{z_1} \) and \(V_{z_2} \) about \(z_1 \) and \(z_2 \) where \(f \) is an \(n \) to \(1 \) mapping and \(g \) is an \(m \) to \(1 \) mapping and these neighborhoods contain no other branch points. Now choose \(z_1' \) and \(z_2' \) in \(V_{z_1} \) and \(V_{z_2} \) respectively where \(f \) and \(g \) are smooth. Repeat the above construction for these points and obtain through analytic continuation an \(f - g \) pair \((\phi, \psi)\) matching the original branch.
points z_1 to z_2. We remark that each pair (ϕ, ψ) constructed from smooth points is unique up to the choice of the universal covering map ρ. Changing this universal covering map leads to an equivalent pair as defined in 3.4 (iii) below. The pairs constructed from branch points are not unique and may lead to nonequivalent pairs.

We will need some other results from Stephenson [14] in order to begin proving our main theorem. These results will be terminology and the definition of the hypergroup \mathcal{P}_f of a function f.

Definition 3.4. Let f and g be nonconstant analytic functions from the unit disk U into a Riemann surface \mathcal{R}.

(i) An f-g pair (ϕ, ψ) constructed as in theorem 3.3 is called a principal f-g pair. When $f = g$, the pair (ϕ, ψ) is called a principal f pair.

(ii) The pair (ϕ, ψ) of analytic functions from U into U is said to be subordinate to the pair (α, β) if there is an analytic function ω from U into U such that $\phi = \alpha \circ \omega$ and $\psi = \beta \circ \omega$. We denote this by $(\phi, \psi) \prec (\alpha, \beta)$.

(iii) The pair (ϕ, ψ) of analytic functions from U into U is said to be equivalent to (α, β) if there is a $\sigma \in \mathfrak{M}$, the group of Möbius transformations of U, such that $\phi = \alpha \circ \sigma$ and $\psi = \beta \circ \sigma$. We denote this by $(\alpha, \beta) \sim (\phi, \psi)$ and designate by (ϕ, ψ) the equivalence class containing (ϕ, ψ).

Theorem 3.5. [14, th. 4, p. 852] If (α, β) is an f-g pair, then there is a principal f-g pair (ϕ, ψ) such that $(\alpha, \beta) \prec (\phi, \psi)$. The pair (ϕ, ψ) is unique up to the universal covering map in Theorem 3.3.
To define multiplication let (ϕ_1, ψ_1) be a principal f pair matching z_1 to z_2 and (ϕ_2, ψ_2) be a principal f pair matching z_2 to z_3; say $\phi_1(w_1) = z_1$, $\psi_1(w_1) = z_2$, $\phi_2(w_2) = z_2$ and $\psi_2(w_2) = z_3$. See figure 3.2 below. From Theorem 3.3, there is a $\psi_1 \cdot \phi_2$ pair (α, β) matching w_1 to w_2.

We assert that $(\phi_1 \circ \alpha, \psi_2 \circ \beta)$ is an f pair matching z_1 to z_3. The two computations

\[(\phi_1 \circ \alpha)(x) = \phi_1(w_1) = z_1 \quad \text{and} \quad (\psi_2 \circ \beta)(x) = \psi_2(w_2) = z_3\]

show that $(\phi_1 \circ \alpha, \psi_2 \circ \beta)$ does match z_1 to z_3. Since (ϕ_1, ψ_1) and (ϕ_2, ψ_2) are principal f pairs,

\[f \circ \phi_1 \circ \alpha = f \circ \psi_1 \circ \alpha \quad \text{and} \quad f \circ \phi_2 \circ \beta = f \circ \psi_2 \circ \beta.\]

Now, (α, β) is a principal $\psi_1 \cdot \phi_2$ pair so that $f \circ \psi_1 \circ \alpha = f \circ \phi_2 \circ \beta$ and hence

\[f \circ \phi_1 \circ \alpha = f \circ \phi_2 \circ \beta.\]
By Theorem 3.5 there is a unique principal f pair (ϕ_3, ψ_3) matching z_1 to z_3 such that $(\phi_1 \circ \alpha, \psi_2 \circ \beta) \prec (\phi_3, \psi_3)$. Define the product of (ϕ_1, ψ_1) and (ϕ_2, ψ_2) by

$$(\phi_1, \psi_1) \otimes (\phi_2, \psi_2) = (\phi_3, \psi_3).$$

Definition 3.6. Let $f : U \to \mathcal{R}$ be a nonconstant analytic function. Define the set \mathcal{P}_f of equivalence classes by

$$\mathcal{P}_f = \{ (\phi, \psi) \mid (\phi, \psi) \text{ is a principal } f \text{ pair} \}.$$

If (ϕ_1, ψ) and (ϕ_2, ψ_2) belong to \mathcal{P}_f, define $(\phi_1, \psi_1) \otimes (\phi_2, \psi_2)$ by the set

$$\langle \phi_1, \psi_1 \rangle \otimes \langle \phi_2, \psi_2 \rangle = \{ (\phi, \psi) \mid (\phi, \psi) = (\alpha_1, \beta_1) \otimes (\alpha_2, \beta_2), \ (\alpha_i, \beta_i) \in \langle \phi_i, \psi_i \rangle \}.$$

Any element of this last set is called a determination of the product

$$\langle \phi_1, \psi_1 \rangle \otimes \langle \phi_2, \psi_2 \rangle.$$

When \mathcal{P}_f exists, we will say that \mathcal{P}_f is the hypergroup of f under \otimes.

The preliminary definitions and theorems are in place to begin proving that a semiproper function with a finite number of branch points has a hypergroup.

Definition 3.7. The function $h = f^{-1} \circ f$ is said to generate the principal pair (ϕ, ψ) if (ϕ, ψ) results from the construction stemming from h as outlined in the discussion following theorem 3.3.

Proposition 3.8. Let h_i generate (ϕ_i, ψ_i), $i = 1, 2$. If $h_2 \circ h_1$ is defined, then $h_2 \circ h_1$ generates $(\phi_1, \psi_1) \otimes (\phi_2, \psi_2)$.
Proof. WLOG, we can assume that the domain of h_2 is equal to the range of h_1. Let D_1, D_2 and D_3 be the domain of h_1, the domain of h_2 and the range of h_2 respectively. See figure 3.2. Let $z_i \in D_i$, f smooth on D_i, $h_1(z_1) = z_2$ and $h_2(z_2) = z_3$. We have that $h_1(z_1) = f^{-1}(f(z_1)) = z_2$ which implies $f(z_1) = f(z_2)$. Also $h_2(z_2) = f^{-1}(f(z_2)) = z_3$ implies $f(z_2) = f(z_3)$.

From the definition of \otimes, $(\phi_1, \psi_1) \otimes (\phi_2, \psi_2)$ was chosen as the principal pair matching z_1 to z_3. When f is smooth at z_1, z_2 and z_3, the pair is unique up to the universal covering map chosen. For our case, $h_2 \circ h_1$ is of the form $f^{-1} \circ f$ and $f(z_1) = f(z_3)$. Since f is smooth at z_1 and z_3, the principal pair generated by $h_2 \circ h_1$ is equivalent to $(\phi_1, \psi_1) \otimes (\phi_2, \psi_2)$. ■

Proposition 3.9. For $i = 1, 2$ let h_i generate the principal pair (ϕ_i, ψ_i) and let (h_i, D_i) be function elements with $z_i \in D_i$. The following are equivalent:

(i) h_1 and h_2 generate the same equivalence class (ϕ, ψ) of principal f pairs.

(ii) $\mathcal{W}_{h_1} = \mathcal{W}_{h_2}$.

(iii) (h_1, D_1) and (h_2, D_2) are analytic continuations via (h_t, D_t), $t \in [1, 2]$ along γ connecting $z_1 \in D_1$ and $z_2 \in D_2$ such that for every $z \in D_t$, $|z| < 1$ and $|h_t(z)| < 1$.

Proof (i) ⇒ (ii). The functions h_1 and h_2 generate the same equivalence class (ϕ, ψ) iff there is $\omega \in \mathcal{M}$ s.t.

$$\phi_1 = \phi_2 \circ \omega \quad \text{and} \quad \psi_1 = \psi_2 \circ \omega. \quad (1)$$
Moreover, from the construction in Stephenson [14] we have the following com-
mutative diagrams relating the equivalence of \((\phi_1, \psi_1)\) and \((\phi_2, \psi_2)\).

Figure 3.3: The pair \((\phi_1, \psi_1)\) generated by \(h_1\).

Figure 3.4: Equivalence of \((\phi_1, \psi_1)\) and \((\phi_2, \psi_2)\).

The equations involving the pairs, the evaluation and projection maps are

\[
\begin{align*}
\phi_1 &= p_1^* \circ \rho, & \psi_1 &= H_1^* \circ \rho, & \phi_2 &= p_2^* \circ \sigma, & \psi_2 &= H_2^* \circ \sigma
\end{align*}
\]

where \(\rho\) and \(\sigma\) are universal covering maps.

We show that \(W_{h_1} \subseteq W_{h_2}\). The idea is to start with \([h_\alpha, \bar{z}]\) in \(W_{h_1}\) and show that this germ is also in \(W_{h_2}\). First, we have to locate a germ \(\sigma \circ \omega(\bar{z})\) in \(W_{h_2}\) and establish that this germ is at \(z\). Then we must show that the function defining the germ \(\sigma \circ \omega(\bar{z})\) agrees with \(h_\alpha\) near \(z\). After some preliminary arranging, the appropriate domain will be \(D_\alpha\) as defined below.

Let \([h_\alpha, z] \in W_{h_1}\). Since \(\rho\) and \(\sigma\) are universal and \(\omega\) conformal there is a \(\bar{z} \in \mathcal{U}\) and a neighborhood \(N_{\bar{z}}\) of \(\bar{z}\) such that
The element $\sigma \circ \omega(\tilde{z})$ of W_{h_2} is at z since
\[p_2^* \circ \sigma \circ \omega(\tilde{z}) = \phi_2 \circ \omega(\tilde{z}) = \phi_1(\tilde{z}) = p_1^* \circ \rho(\tilde{z}) = p_1^*([h_\alpha, z]) = z. \]

Hence we may write $[h_\beta, z]$ for $\sigma \circ \omega(\tilde{z})$. Since sets of the form $[g, D]$ with $D \subseteq U$ form a base for the topology in W_{h_2}, [2, p 99], we may extend figure 3.6 to

\[
\begin{align*}
\tilde{z} &\in N_{\tilde{z}} \\
\omega \downarrow &\quad \omega \downarrow \\
[\alpha_1, z] &\in N[\alpha_1, z] \\
\sigma &\downarrow \quad \sigma \downarrow \\
\sigma \circ \omega(\tilde{z}) &\in \sigma \circ \omega(N_{\tilde{z}})
\end{align*}
\]

Figure 3.5: The germ $[h_\alpha, z]$ covered by \tilde{z}.

Figure 3.6: The germ $\sigma \circ \omega(\tilde{z})$ covered by \tilde{z}.

Figure 3.7: The extension of figure 3.6 to include the germ $[h_\beta, z] = \sigma \circ \omega(\tilde{z})$.
where $\sigma \circ \omega^{-1}([h_\beta, D_\beta]) \cap N_{\tilde{x}}$ is a neighborhood of \tilde{x}. Hence

$$
\rho(\sigma \circ \omega^{-1}([h_\beta, D_\beta]) \cap N_{\tilde{x}})
$$

is a neighborhood of $[h_\alpha, z]$, and there exists a domain $[h_\alpha, D_\alpha]$ such that figure 3.5 extends to

$$
\tilde{x} \in \rho^{-1}([h_\alpha, D_\alpha]) \cap (\sigma \circ \omega^{-1}([h_\beta, D_\beta]) \cap N_{\tilde{x}}) \subseteq (\sigma \circ \omega^{-1}([h_\beta, D_\beta]) \cap N_{\tilde{x}}) \subseteq N_{\tilde{x}}
$$

Let $\tilde{V} = \rho^{-1}([h_\alpha, D_\alpha]) \cap (\sigma \circ \omega^{-1}([h_\beta, D_\beta]) \cap N_{\tilde{x}})$. We assert that $h_\alpha = h_\beta$ on D_α.

If $x \in D_\alpha$ then $[h_\alpha, x] \in [h_\alpha, D_\alpha] \Rightarrow \exists \tilde{x} \in \tilde{V}$ such that $\rho(\tilde{x}) = x$. But $\tilde{x} \in \tilde{V} \Rightarrow \sigma \circ \omega(\tilde{x}) \in [h_\beta, D_\beta]$ and $\sigma \circ \omega(\tilde{x})$ is at x since $p_2^* \circ \sigma \circ \omega(\tilde{x}) = \phi_2 \circ \omega(\tilde{x}) = \phi_1(\tilde{x}) = x$. Hence $\sigma \circ \omega(\tilde{x}) \in [h_\beta, D_\beta]$ at x means $\sigma \circ \omega(\tilde{x}) = [h_\beta, x]$ by definition of $[h_\beta, D_\beta]$. Also $\sigma \circ \omega(\tilde{x}) = [h_\beta, x] \in [h_\beta, D_\beta] \Rightarrow x \in D_\beta$. Also, $h_\beta(x) = H_2^*([h_\beta, x]) = H_2^* \circ \sigma \circ \omega(\tilde{x}) = \psi_2 \circ \omega(\tilde{x}) = \psi_1(\tilde{x}) = H_1^* \circ \rho(\tilde{x}) = H_1^*([h_\alpha, \chi]) = h_\alpha(x)$. Therefore, $D_\alpha \subseteq D_\beta$ and $h_\alpha = h_\beta$ on $D_\alpha \Rightarrow h_\alpha$ agrees with h_β near z. Hence $[h_\alpha, z] = [h_\beta, z]$ and $W_{h_1} \subseteq W_{h_2}$.

If $W_{h_1} \subseteq W_{h_2}$, then h_1 is a continuation of h_2 and so $W_{h_1} = W_{h_2}$.
(ii) \Rightarrow (i). This is clear since if the universal map ρ is fixed, then the same pair will be constructed.

(ii) and (iii) are equivalent since the component of $p^*(-1)(U) \cap H^*{-1}(U)$ containing the germ $[h_1, z_1]$ is \mathcal{W}_{h_1}. Since (h_2, D_2) is a continuation of (h_1, D_1) with the restriction $|z| < 1$ and $|h_t(z)| < 1$, $[h_2, z_2] \in \mathcal{W}_{h_1}$ and so $\mathcal{W}_{h_1} = \mathcal{W}_{h_2}$. See also [14, p. 850].

The following definition and proposition are from Conway [6, p. 241] with some minor changes. \mathbb{C} has been replaced by \mathcal{R}, a Riemann surface and disks in \mathbb{C} are replaced by parametric disks. The proof of the proposition will not be given.

Definition 3.10. Let G be a region in \mathbb{C} and $G \xrightarrow{f} \mathcal{R}$, an analytic smooth function. If $a \in G$, and $f(a) = \alpha$, let (g, D) be a function element such that $\alpha \in D$ and $f(g(z)) = z$ for z in D. The complete analytic function \mathcal{F} obtained from (g, D) will be called the complete analytic function of local inverses of f. We will deliberately abuse notation and let $\mathcal{W}_{f^{-1}}$ denote the Riemann surface over $f(G) \subseteq \mathcal{R}$ as well as the set of germs $[f^{-1}, w]$ in \mathcal{F} with $w \in f(G)$.

Proposition 3.11. Let G be a region in \mathbb{C} and $G \xrightarrow{f} \mathcal{R}$ an analytic smooth function. Let $a, b \in G$, $f(a) = \alpha$, $f(b) = \beta$ and let Δ_0 and Δ_1 be parametric disks about α and β respectively such that there are analytic functions $g_0 : \Delta_0 \rightarrow G$, $g_1 : \Delta_1 \rightarrow G$ with $g_0(\alpha) = a$, $g_1(\beta) = b$, $f(g_0(\zeta)) = \zeta$ for ζ in Δ_0 and $f(g_1(\zeta)) = \zeta$ for ζ in Δ_1. Then there is a curve σ in $f(G) \subseteq \mathcal{R}$ from...
\(\alpha \) to \(\beta \) such that \((g_1, \Delta_1)\) is a continuation of \((g_0, \Delta_0)\) along \(\sigma \). The curve \(\sigma \) is \(f \circ \gamma \) where \(\gamma \) is any curve in \(G \) with initial point \(\alpha \) and terminal point \(b \).

Also, there is a curve \(\tilde{\sigma} \) in \(\mathcal{W}_{f^{-1}} \) over \(\sigma \) with initial point \([g_0, \alpha]\) and terminal point \([g_1, \beta]\).

Proposition 3.12. Let \(G \) be a region in \(\mathcal{U} \) and \(G \xrightarrow{f} \mathcal{R} \) a smooth analytic function. Let the function element \((h_0, D_0) = (f_0^{-1} \circ f, D_0)\) generate \((\phi_0, \psi_0)\) and the function element \((h_1, D_1) = (f_1^{-1} \circ f, D_1)\) generate \((\phi_1, \psi_1)\).

If \((\mathcal{W}_{f^{-1}}, p^*)\) has the curve lifting property then \((\phi_0, \psi_0) \otimes (\phi_1, \psi_1)\) is defined.

Proof. Proposition 3.8 says the product will exist if \(h_1 \circ h_0 \) is defined. Since we are not given the existence of \(h_1 \circ h_0 \), we have to find an analytic continuation \((h, \Omega_0)\) of \((h_1, D_1)\) such that \(h \circ h_0 \) is defined. We can use proposition 3.9 to conclude that the product \((\phi_0, \psi_0) \otimes (\phi_1, \psi_1)\) exists.

The following diagram shows the relationship between the functions \(h_0, h_1, h = f^{-1}_r \circ f_0 \) and \(\mathcal{W}_{f^{-1}} \). We will show that \((h_1, D_1)\) has an analytic continuation to a function element \((h, \Omega_0)\) where \(\Omega_0 = h_0(D_0) \). We remark that we have subscripted all \(f \)'s to distinguish among the various germs.
We are to find f^{-1}_τ. Let γ be any curve in G with initial point $z_1 \in D_1$ and terminal point $\zeta_0 \in \Omega_0$. The curve $f \circ \gamma$ is in \mathcal{R} and by hypothesis lifts to the curve $\tilde{f} \circ \gamma$ in $(\mathcal{W}_{f^{-1}})_2$ with initial point $[f^{-1}_\beta, w_1]$ and some terminal point $[f^{-1}_\tau, w_0]$. Hence, we have a continuation of (f^{-1}_1, Δ_1) to (f^{-1}_τ, Δ_0) along $f \circ \gamma$.

We assert that $(f^{-1}_\tau \circ f_0, \Omega_0)$ is an analytic continuation of $(f^{-1}_1 \circ f_\beta, D_1)$ along γ.

Let $(f^{-1}_\beta, \Lambda_1)$ be the continuation of (f^{-1}_β, Δ_1) to (f^{-1}_0, Δ_0) along $f \circ \gamma$ and (f^{-1}_τ, Γ_1) be the continuation from (f^{-1}_1, Δ_1) to (f^{-1}_τ, Δ_0) along $f \circ \gamma$.

Figure 3.9: Construction of h as related to given f_0 and f_τ to be found and to $\mathcal{W}_{f^{-1}}$.

We assert that $(f^{-1}_\tau \circ f_0, \Omega_0)$ is an analytic continuation of $(f^{-1}_1 \circ f_\beta, D_1)$ along γ.
We will show that \((f^{-1}_{tt} \circ f_\beta, f^{-1}_{\beta t}(\Lambda_t \cap \Gamma_t))\) is an analytic continuation from
\((f^{-1}_{1t} \circ f_\beta, f^{-1}_{\beta 0}(\Lambda_0 \cap \Gamma_0))\) to
\((f^{-1}_{r} \circ f_0, f^{-1}_{\beta 1}(\Lambda_1 \cap \Gamma_1))\). See [6, p 216]. We remark that the above functions \(f^{-1}_{tt}\) are appropriate local inverses and are \(1-1\).

Let \(t \in [0,1]\). Then \(f \circ \gamma(t) \in \Lambda_t\) and \(f \circ \gamma(t) \in \Gamma_t\). Hence \(f(\gamma(t)) \in \Lambda_t \cap \Gamma_t\), and \(\gamma(t) \in f^{-1}_{\beta t}(\Lambda_t \cap \Gamma_t)\). Also, there are \(\delta_1\) and \(\delta_2\) such that:

(i) \(|s - t| < \delta_1 \Rightarrow f \circ \gamma(s) \in \Lambda_t\) and \(f^{-1}_{\beta s} = f^{-1}_{\beta t}\) near \(f(\gamma(s))\), say on \(B(f(\gamma(s)), \epsilon_1)\).

(ii) \(|s - t| < \delta_2 \Rightarrow f \circ \gamma(s) \in \Gamma_t\) and \(f^{-1}_{ts} = f^{-1}_{tt}\) near \(f(\gamma(s))\), say on \(B(f(\gamma(s)), \epsilon_2)\).

For \(|s - t| < \delta = \min\{\delta_1, \delta_2\}\) we have

\[f \circ \gamma(s) \in \Lambda_t \cap \Gamma_t, \quad \text{and so} \quad \gamma(s) \in f^{-1}_{\beta t}(\Lambda_t \cap \Gamma_t). \]

And for

\[z \in f^{-1}_{\beta t}(B(f(\gamma(s)), \epsilon_1)) \cap B(f(\gamma(s)), \epsilon_2) \]

we have

\[f^{-1}_{1t} \circ f_{\beta t}(z) = f^{-1}_{1t} \circ f_{\beta s}(z) = f^{-1}_{1s} \circ f_{\beta s}(z). \]

Hence the definition for analytic continuation is satisfied. Define the function \(h\) by \(h(z) = f^{-1}_r \circ f_0(z)\). Now \(h \circ h_0\) is defined and by proposition 3.9 the product \((\phi_0, \psi_0) \otimes (\phi_1, \psi_1)\) is defined. ■
Proposition 3.13. Let G be a domain in U and $G \xrightarrow{f} \mathcal{R}$ be analytic and smooth with D_0 and D_1 domains of G such that (h_0, D_0) analytically continues along $\gamma \subseteq G$ to (h_1, D_1). If h_0 is of the form $f_0^{-1} \circ f$ and $h_t(\gamma(t)) \in G$ for the function elements (h_t, D_t) defining the analytic continuation, then h_1 is of the form $f_1^{-1} \circ f$ and the curve $f \circ \gamma$ lifts to $\mathcal{W}_{f^{-1}}$ with initial point $[f_0^{-1}, w_0]$ where $h_0(\gamma(0)) = f_0^{-1}(w_0)$.

Proof. Let h_0 generate the principal f pair (ϕ, ψ). Since (h_0, D_0) continues to (h_1, D_1), γ lifts to \mathcal{W}_{h_0} with initial point $[h_0, \gamma(0)]$ and terminal point $[h_1, \gamma(1)]$. Designate this lift by $\tilde{\gamma}$. If ρ is the ucm of \mathcal{W}_{h_0}, designate by Γ the lift of $\tilde{\gamma}$ in (U, ρ). See figure 3.10.

![Figure 3.10](image-url)
In completing the proof, it would be notationally convenient to distinguish between the restrictions of f as they pertain to h_0 and h_1.

Let $h_0 = f_{0}^{-1} \circ f_{\alpha}$. We want to find functions f_{β} and f_{1} such that $f_{1}^{-1} \circ f_{\beta} = h_{1}$. See figure 3.11.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure3_11.png}
\caption{Required continuation and equality of curves $f \circ \gamma$ and $f \circ H^* \circ \tilde{\gamma}$.}
\end{figure}

It is enough to show that $f \circ \gamma = f(H^*(\tilde{\gamma}))$. We can define f_β using f near $\gamma(1)$. Say that f_β is defined from D_1, $1-1$ and onto Ω_1. By proposition 3.11 we have a continuation of $(f_{\alpha}^{-1}, \Omega_0)$ to $(f_{\beta}^{-1}, \Omega_1)$ along $f \circ \gamma$. Since $h_t(\gamma(t)) \in G$ for each h_t in the function elements (h_t, D_t), $H^*(\tilde{\gamma}) \subseteq G$. Therefore, for the curve $f(H^*(\tilde{\gamma}))$, there is a continuation from (f_0^{-1}, Ω_0) to (f_1^{-1}, Ω_1') along $f(H^*(\tilde{\gamma}))$. If $f \circ \gamma = f(H^*(\tilde{\gamma}))$, then we can just as well say $\Omega_1 = \Omega_1'$. Using the same ideas as in proposition 3.12, $(f_1^{-1} \circ f_{\beta}, D_1)$ is an analytic continuation of $(f_0^{-1} \circ f_{\alpha}, \Omega_0)$ along γ. Note that the continuation
from \((f^{-1}_0, \Omega_0)\) to \((f^{-1}_1, \Omega'_1)\) and the assumption that \(f \circ \gamma = f(H^*(\tilde{\gamma}))\) say that \(f \circ \gamma\) lifts to \(W_{f^{-1}}\) with initial point \([f^{-1}_0, w_0]\) where \(f^{-1}_0(w_0) = h_0(\gamma(0))\). In order to show that \(f \circ \gamma = f \circ H^*(\tilde{\gamma})\) we have to verify that \(f \circ \phi = f \circ \psi\) on a domain containing \(\Gamma\). Since \(H^*(\tilde{\gamma}) \subseteq G\) and \(\gamma \subseteq G\), \(\tilde{\gamma}\) is contained in some component \(C\) of the open set \(p^*\Gamma \cap H^*(G)\). Since \(C\) is open, \(\rho^{-1}(C)\) is open and \(\Gamma\) is contained in a component \(\tilde{C}\) of \(\rho^{-1}(C)\). Just as in the discussion following theorem 3.3, \(f \circ \phi = f \circ \psi\) on a small disk containing \(\Gamma(0)\), so by the principle of analytic continuation \(f \circ \phi = f \circ \psi\) on \(\tilde{C}\). We complete the proof with

\[
f \circ \gamma = f \circ p^* (\tilde{\gamma}) = f \circ p^* \rho (\Gamma) = f \circ \phi (\Gamma) = f \circ \psi (\Gamma) = f \circ H^* \circ \rho (\Gamma) = f \circ H^*(\gamma).
\]

The above proposition shows that we can use \(W_{f^{-1}}\) to compute the analytic continuation of any \(h\) of the form \(f^{-1} \circ f\).

Corollary 3.14. If \(W_{h_0}\) is the surface generated from the continuation in \(G\) then \(W_{h_0}\) is conformal to \(W_{h_0^{-1}}\).

Proof. Define \(\Lambda : W_{h_0} \to W_{h_0^{-1}}\) by \(\Lambda([h_\alpha, z]) = [h_\alpha^{-1}, h_\alpha(z)]\). Use figure 3.11 to observe that \(h_1 = f_1^{-1} \circ f_\beta\) is an analytic continuation of \(h_0 = f_0^{-1} \circ f_\alpha\) along \(\gamma\) if and only if \(h_0^{-1}\) continues analytically to \(h_1^{-1}\) along the curve \(H^*(\tilde{\gamma})\). This says that if \(h_\alpha\) is a continuation of \(h_0\), then \(h_\alpha^{-1}\) is a continuation of \(h_0^{-1}\) and hence \(\Lambda\) is well defined. It also says that \(\Lambda\) is \(1-1\). To show that \(\Lambda\) is onto, let \([g_\tau, x] \in W_{h_0^{-1}}\). Since \(\gamma\) and \(H^*(\tilde{\gamma})\) are contained in \(G\), by proposition 3.13, \(g_\tau\) is of the form \(f^{-1} \circ f\). Applying the observation again, \(g_\tau^{-1}\) is an analytic continuation of \(h_0\). Hence \(\Lambda([g_\tau^{-1}, g_\tau(x)]) = [g_\tau, x]\).
Finally, we assert that A is analytic. The atlas of the Riemann surface \mathcal{W}_{h_0} is the set $\{p^* \uparrow [h_\alpha, D_\alpha]\}$. See [2, p. 99]. We show that the function $\Lambda_{\beta \alpha} = p^* \circ A \circ p^{-1}$ defined on $p^*([h_\alpha, D_\alpha] \cap \Lambda^{-1}([h_\beta^{-1}, D_\beta])) \subseteq \mathcal{U}$ is holomorphic. Since $h_\alpha = h_\beta = h$ on $D_\alpha \cap h_\beta^{-1}(D_\beta)$, for every $z \in D_\alpha \cap h_\beta^{-1}(D_\beta)$ we have

$$\Lambda_{\beta \alpha}(z) = \Lambda_{\beta \alpha}(p^*([h,z])) = p^* \circ A \circ p^{-1}((p^*([h,z]))) = p^*([h^{-1}, h(z)]) = h(z).$$

Hence, each $\Lambda_{\beta \alpha}$ is holomorphic and so A is analytic. See [2, p. 57]. ■

The notation for corollary 3.14 will be $\mathcal{W}_{h_0} \simeq \mathcal{W}_{h_0^{-1}}$.

Corollary 3.15. If h_0 generates (ϕ, ψ) then h_0^{-1} generates (ψ, ϕ).

Proof. Let $D_0 \xrightarrow{h_0} \Delta$ and ρ the ucm for the surface \mathcal{W}_{h_0}. Since $\mathcal{W}_{h_0} \simeq \mathcal{W}_{h_0^{-1}}$, $\Lambda \circ \rho$ is ucm for $\mathcal{W}_{h_0^{-1}}$. Let (α, β) be the principal pair associated with $(\mathcal{W}_{h_0^{-1}}, \Lambda \circ \rho)$ and \mathcal{D}' in \mathcal{U} over a subset $[h_0, D_0']$ of $[h_0, D_0]$ where ρ is 1–1. If $\tilde{z} \in \mathcal{D}'$ then $\alpha(\tilde{z}) = p^* \circ \Lambda \circ \rho(\tilde{z}) = p^* \circ \Lambda([h_0, z]) = p^*([h_0^{-1}, h_0(z)]) = h_0(z)$ and $\psi(\tilde{z}) = H^* \circ \rho(\tilde{z}) = H^*([h_0, z]) = h_0(z)$. By the principle of analytic continuation $\alpha = \psi$. Similarly, $\beta(\tilde{z}) = H^* \circ \Lambda \circ \rho(\tilde{z}) = H^* \circ \Lambda([h_0, z]) = H^*([h_0^{-1}, h_0(z)]) = z$ and $\phi(\tilde{z}) = p^* \circ \rho(\tilde{z}) = p^*([h_0, z]) = z$ show that $\beta = \phi$. That is, $(\alpha, \beta) = (\psi, \phi)$. ■

We now state and prove our main result.

Theorem 3.16. If $\mathcal{U} \xrightarrow{f} \mathcal{R}$ is a nonconstant semiproper analytic function with a finite number of branch points, then f has a hypergroup \mathcal{P}_f under \otimes.
Proof. The idea is to replace \(f \) by a function \(g \) such that \(g \) is semiproper with no branch points. We can then show that \(g \) lifts curves and has the same hypergroup as \(f \). Let

\[V = \{ z \in \mathcal{U} | z \text{ is not the preimage of the image of a branch point of } f \} . \]

If we define \(g = f \upharpoonright V \), then \(V \to \mathcal{R} \) is smooth, \(\mathcal{U} - V \) is countable and if \(z_0 \in \mathcal{U} - V \) then there is \(\delta \) such that \(B(z_0, \delta) \cap \mathcal{U} - V = \{ z_0 \} \). Furthermore, \(\mathcal{U} - V \) is closed in \(\mathcal{U} \), \(V \) is open in \(\mathcal{C} \) and \(g(V) \) is open in \(\mathcal{R} \). Hence \(g(V) \) is a Riemann surface.

We assert that \(V \to \mathcal{R}_g = g(V) \) is semiproper. Let \(K \) be compact in \(\mathcal{R}_g \). Then \(K \) is compact in \(\mathcal{R} \) and \(K \cap f(\{ z \in \mathcal{U} | z \text{ is a branch point of } f \}) = \emptyset \). If \(z \in f^{-1}(K) \) then \(f(z) \in K \subseteq \mathcal{R}_g \) and \(f(z) \) is not the image of a branch point. Therefore \(z \) is not the preimage of the image of a branch point which implies \(z \in V \). That is, \(f^{-1}(K) \subseteq g^{-1}(K) \). Hence, \(g^{-1}(K) = f^{-1}(K) \). Since the components of \(f^{-1}(K) \) are compact because \(f \) is semiproper, we have that \(g \) is semiproper.

We now assert that \(V \to \mathcal{R}_g \) lifts curves. Let \(w \in \mathcal{R}_g \). Since \(\mathcal{R}_g \) is a Riemann surface, there is a parametric disk \(Q_w \) in \(\mathcal{R}_g \) such that:

(i) \(w \in \cl(Q_w) \),

(ii) \(\cl(Q_w) \) does not contain the image of any branch point of \(f \) and

(iii) \(\cl Q_w \) is compact.

Since \(g \) is semiproper, the components of \(g^{-1}(\cl(Q_w)) \) are compact. By [2, th. 7.4.5], \(V \to \mathcal{R}_g \) lifts curves. But if \(V \to \mathcal{R}_g \) lifts curves, and \(G^{-1} \) is \(1 - 1 \) in the diagram
we must have that \((W_{g^{-1}}, p^*)\) lifts curves. Since \((W_{g^{-1}}, p^*)\) lifts curves, we can apply proposition 3.12 to any two pairs \((\phi_1, \psi_1)\), and \((\phi_2, \psi_2)\) to conclude that the product \((\phi_1, \psi_1) \otimes (\phi_2, \psi_2)\) exists. If we designate by \(\mathcal{P}_g\) the equivalence classes from \(g\), then we have immediately that \(\mathcal{P}_g \subseteq \mathcal{P}_f\). Now if \(\langle \phi, \psi \rangle \in \mathcal{P}_f\), then \((\phi, \psi)\) was generated from some \(h = f^{-1} \circ f\) defined on smooth points of \(f\). Hence \(h = g^{-1} \circ g\) and generates a principal \(g\) pair \((\alpha, \beta)\) that is equivalent to \((\phi, \psi)\). Therefore \(\langle \phi, \psi \rangle = \langle \alpha, \beta \rangle \in \mathcal{P}_g\) and we conclude that \(\mathcal{P}_f = \mathcal{P}_g\).

We now show that \(\mathcal{P}_g\) is a hypergroup under \(\otimes\). Let \(\langle \phi_i, \psi_i \rangle \in \mathcal{P}_g\), \(i = 1, 2, 3\). There is \(h_1\) which generates \((\phi_1, \psi_1)\) by theorem 3.3 and the discussion following theorem 3.3. By proposition 3.12 there is an \(h_2\) such that \(h_2 \circ h_1\) is defined and by proposition 3.8. \(h_2 \circ h_1\) generates \((\phi_1, \psi_1) \otimes (\phi_2, \psi_2)\). Similarly there is an \(h_3\) such that \(h_3 \circ (h_2 \circ h_1)\) is defined and \(h_3 \circ (h_2 \circ h_1)\) generates \(((\phi_1, \psi_1) \otimes (\phi_2, \psi_2)) \otimes (\phi_3, \psi_3)\). Since \((\phi_1, \psi_1) \otimes (\phi_2, \psi_2) \in (\phi_1, \psi_1) \otimes (\phi_2, \psi_2)\) by definition, we have \(((\phi_1, \psi_1) \otimes (\phi_2, \psi_2)) \otimes (\phi_3, \psi_3) \subseteq ((\phi_1, \psi_1) \otimes (\phi_2, \psi_2)) \otimes (\phi_3, \psi_3)\). Since \(\circ\) is associative and \((h_3 \circ h_2) \circ h_1\) is defined we may repeat the argument above to conclude that \((h_3 \circ h_2) \circ h_1\) generates equivalent pairs, we

\[\begin{align*}
W_{g^{-1}} \xrightarrow{G^{-1}} p^* & \xrightarrow{g} \mathcal{P}_g \\
V & \xrightarrow{g} R_g
\end{align*}\]

Figure 3.12: The function \(g\) as related to the surface \(W_{g^{-1}}\) and the maps \(p^*\) and \(G^*\).
have that \((\phi_1, \psi_1) \otimes ((\phi_2, \psi_2) \otimes (\phi_3, \psi_3)) = ((\phi_1, \psi_1) \otimes (\phi_2, \psi_2)) \otimes (\phi_3, \psi_3) \). That is, \(\otimes \) is associative.

We assert that \((\chi, \chi) \) is the identity and the only \(h \) that can generate \((\alpha, \beta) \in (\chi, \chi) \) is the identity. The principal pair \((\alpha, \beta) \sim (\chi, \chi) \) iff there is \(\sigma \in \mathcal{M} \) such that \(\alpha = \chi \circ \sigma \) and \(\beta = \chi \circ \sigma \). Hence \(\alpha = \beta = \sigma \). By construction, we have \(\sigma = p^* \circ \rho = H^* \circ \rho \). Since \(\sigma \) is \(1-1 \), \(\rho \) is \(1-1 \) and \(p^* \) is onto. Similarly \(H^* \) is onto. Since \(\rho \) is ucm, \(\rho \) is onto and hence \(\sigma \) being \(1-1 \) implies \(p^* \) and \(H^* \) are \(1-1 \). If \((h,D) \) is any generator of \((\alpha, \beta) = (\sigma, \sigma) \) then on \(D \subseteq \mathcal{U} \) we have

\[
h(z) = H^*([h, z]) = H^* \circ \rho(\tilde{z}) = p^* \circ \rho(\tilde{z}) = p^*([h, z]) = z.
\]

If \((\sigma, \sigma) \in (\chi, \chi) \) and \((\mu, \nu) \in (\phi, \psi) \) then \((\sigma, \sigma) \otimes (\mu, \nu) \) is equivalent to \((\phi, \psi) \) since the only \(h \) that can generate \((\sigma, \sigma) \) is the identity. Hence \((\chi, \chi) \otimes (\phi, \psi) = \{(\phi, \psi)\} \). Similarly \((\phi, \psi) \otimes (\chi, \chi) = \{(\phi, \psi)\} \).

Now let \((\phi, \psi) \in \mathcal{P}_g \). We will show that the hypothesis of proposition 3.13 is satisfied. We can then apply corollary 3.15 to conclude \((\psi, \phi) \) is the inverse of \((\phi, \psi) \). We have to prove that if \((h, D) = (g_{\alpha_0}^{-1} \circ g_0, D_0) \) has a continuation along \(\gamma \subseteq V \), then \(H^*(\tilde{\gamma}) \subseteq V \) where \(\tilde{\gamma} \) is the lift of \(\gamma \) in \(\mathcal{W}_h \). Since \((\mathcal{W}_{g^{-1}}, p^*) \) lifts curves, \(g \circ \gamma \) lifts to \(\Gamma_1 \) and \(\Gamma_2 \) in \(\mathcal{W}_{g^{-1}} \) with initial points \([g_0^{-1}, g_0(\gamma(0))] \) and \([g_{\alpha_0}^{-1}, g_0(\gamma(0))] \) respectively. This leads to a continuation of \((h, D) \) expressed in terms of \(g \). If the analytic continuation is defined by \((g_{\alpha t}^{-1} \circ g_t, D_t) \) then

\[
H^*(\tilde{\gamma}) = H^*([g_{\alpha t}^{-1} \circ g_t, \gamma(t)]) = \{g_{\alpha t}^{-1}(g_t(\gamma(t)))\} = G^{-1*}(\{[g_{\alpha t}^{-1}, g_t(\gamma(t))]\}) = G^{-1*}(\Gamma_2) \subseteq V.
\]
Hence by corollary 3.15, h^{-1} generates $\langle \psi, \phi \rangle$. We can conclude that

$$\langle \chi, \chi \rangle \in \langle \phi, \psi \rangle \otimes \langle \psi, \phi \rangle \cap \langle \psi, \phi \rangle \otimes \langle \phi, \psi \rangle.$$

To show uniqueness of $\langle \psi, \phi \rangle$, let $(\chi, \chi) \in \langle \phi, \psi \rangle \otimes \langle \alpha, \beta \rangle$. WLOG there exist h_1 and h_2 such that h_1 generates (ϕ, ψ), h_2 generates (α, β) and $h_2 \circ h_1$ generates $(\phi, \psi) \otimes (\alpha, \beta) \sim (\chi, \chi)$. From above, the only $g^{-1} \circ g$ that can generate an element in (χ, χ) is the identity. Hence, $h_2 \circ h_1 = \chi$ which implies $h_2 = h_1^{-1}$. That is, $(\alpha, \beta) = (\psi, \phi)$.

Since $\mathcal{P}_g = \mathcal{P}_f$ we have that \mathcal{P}_f is a hypergroup under \otimes. ■

Stephenson [14] gets the following corollary through inner functions. We get the result using semiproper functions.

Corollary 3.17. [14, th. 10, p. 870] If B is a finite Blaschke product, then \mathcal{P}_B is a hypergroup under \otimes.

Proof. By corollary 2.6 B is proper. ■

The following two results along with proposition 3.13 will be used to study the examples.

Proposition 3.18. Let $U \xrightarrow{f} \mathcal{R}$ and $f(z_1) = f(z_2)$ with f smooth at z_1 and z_2. Let $h = f^{-1} \circ f$ such that $h(z_1) = z_2$ with $D_1 \xrightarrow{h} D_2$, $z_i \in D_i$. Suppose that the continuations of h are single-valued and there is $D(\subseteq U) \xrightarrow{g} U$ with the following properties:

(i) $D_1 \subseteq D$ and $g \upharpoonright D_1 = h$,

that the continuations of \(h \) are single-valued and there is \(D(\subseteq U)^{\rightarrow U} \) with the following properties:

(i) \(D_1 \subseteq D \) and \(g \upharpoonright D_1 = h \),

(ii) \(z \in D \Rightarrow |g(z)| < 1 \) and

(iii) Either \((g, D)\) cannot be analytically continued across the boundary of \(D \) or if it can be analytically continued across the boundary of \(D \) to \((\bar{g}, \Delta)\) then for every \(z \in \Delta - D \) either \(|z| \geq 1 \) or \(|\bar{g}(z)| \geq 1 \).

Then \(W_h \) is conformal to \(D \). In this case the pair \((\phi, \psi)\) generated by \(h \) is \((\rho, g \circ \rho)\) where \(\rho \) is a universal covering map of \(D \).

Proof. By hypothesis, the function pair \((g, D)\) is an analytic continuation of \((h, D_1)\). Hence, \(D \subseteq U \) and \(z \in D \Rightarrow |g(z)| < 1 \) means that \([g,D] \subseteq W_h\).

To show that \(W_h \subseteq [g,D] \) let \([h_\alpha, z_\alpha] \in W_h\). If \((h_\alpha, D_\alpha) \in [h_\alpha, z_\alpha]\), then \((h_\alpha, D_\alpha)\) is an analytic continuation of \((h, D_1)\) and hence a continuation of \((g, D)\). We want to show that \([h_\alpha, z_\alpha] \in [g,D]\). This amounts to showing that \(z_\alpha \in D \) and \(h_\alpha = g \) near \(z_\alpha \). If the boundary of \(D \) is the natural boundary of \(g \) and \((h_\alpha, D_\alpha)\) is an analytic continuation of \((g, D)\) then \(D_\alpha \subseteq D \). Since the continuations of \((h, D_1)\) are single valued, \(h_\alpha = g \) near \(z_\alpha \). Hence \([h_\alpha, z_\alpha] \in [g,D]\).

Suppose that \((h_\alpha, D_\alpha)\) is a continuation across the boundary of \(D \). If \(z_\alpha \in D_\alpha - D \) then either \(|z_\alpha| \geq 1 \) or \(|h_\alpha(z_\alpha)| \geq 1 \). Either one would contradict \([h_\alpha, z_\alpha] \in W_h\). Hence \(z_\alpha \in D \). Again \((h, D_1)\) has only single valued continuations means that \(h_\alpha = g \) near \(z_\alpha \). Hence \([h_\alpha, z_\alpha] \in [g,D]\) and \(W_h \subseteq [g,D]\).
Therefore, the function pair \((\phi, \psi) = (p^* \circ p^{*-1} \circ \rho, H^* \circ p^{*-1} \circ \rho)\) reduces to \((\rho, H^* \circ p^{*-1} \circ \rho)\). Finally, \(g \circ p^* = H^*\) implies \(g = H^* \circ p^{*-1}\) since the diagram commutes. Hence \((\phi, \psi) = (\rho, g \circ \rho)\). ■

Figure 3.13: Relationship between \(g\) and \(W_h\) when \(h\) continues to domain in \(U\).

Corollary 3.19. The function \(h\) generates the principal \(f\) pair \((\chi, \psi)\) iff \(h\) can be continued analytically to \(\psi\) defined on all of \(U\) with \(|\psi(z)| < 1\). In this case \(U\) is conformally equivalent to \(W_h\).

Proof. Let \((\chi, \psi)\) be a principal \(f\) pair. We have the following diagram:
Figure 3.14: Relationship between \(g \) and \(\mathcal{U} \) when \(h \) continues to all of \(\mathcal{U} \).

Since \(\chi = p^* \circ \rho \), \(\rho \) is 1 - 1. Since \(\rho \) is onto, \(\mathcal{W}_h \simeq \mathcal{U} \). Also \(\rho \) onto \(\Rightarrow p^* \) is 1 - 1. Since \(p^* \) is onto by \(\chi = p^* \circ \rho \), we have that \(\rho = p^{*-1} \). We have \(H^* \circ p^{*-1} = \psi \) by construction and \((H^* \circ p^{*-1}) \upharpoonright D = h \) by the commutative diagram. Hence \((\psi, \mathcal{U}) \) is an analytic continuation of \((h, D) \).

Conversely, let \((h, D) \) continue to \((\psi, \mathcal{U}) \) with \(|\psi(z)| < 1 \). We check the hypothesis of 3.18. Since \((h, D) \) continues to all of \(\mathcal{U} \) and \(\mathcal{U} \) is simply connected, the analytic continuations of \((h, D) \) are single valued. Proposition 3.18 (i), (ii) and (iii) are satisfied so that \(\mathcal{U} \) is conformal to \(\mathcal{W}_h \). Since \(\chi \) is a universal map of \(\mathcal{U} \) we have \((\chi, \psi \circ \chi) = (\chi, \psi) \) a principal \(f \) pair. \(\blacksquare \)
CHAPTER IV
EXAMPLES AND FURTHER RESULTS

The finite Blaschke products are good examples of semiproper functions. We will discuss the nature of the hypergroup of some finite Blaschke products using the theorems developed in Chapter III. Also, we will find the actual elements of the hypergroups when the formula of the Blaschke product lends itself to such computation.

The Riemann surface $W_{f^{-1}}$ of a function f will be needed as the theoretical tool for studying some of these examples. In conjunction with proposition 3.13, the surface $W_{f^{-1}}$ provides insight into the nature of the surface W_h; that is, the number of sheets and the location and number of branch points. The surface $W_{f^{-1}}$ appears in another example besides that of a finite Blaschke product. This is Stephenson's [14] counterexample to the existence of a hypergroup of a function f and is presented in terms of $W_{f^{-1}}$ alone.

We begin with our approach to constructing the Riemann surface of a finite Blaschke product.

Theorem 4.1. (The Riemann Surface of a Finite Blaschke Product). Let B be a finite Blaschke product of order n. Then U can be decomposed into domains D_1, \ldots, D_n with boundaries β_1, \ldots, β_n such that:
(i) the D_i's are mutually disjoint

(ii) each D_i is simply connected

(iii) B is $1 - 1$ on each D_i

(iv) each β_i has an arc belonging to $C(0,1)$.

(v) each subarc of β_i with initial point and terminal point the only points on $C(0,1)$ contains exactly one branch point, and all of the branch points are on the β_i.

Proof. Counting multiplicities, B' has $n - 1$ zeros in \mathcal{U} [11, pr. 192, p. 142]. Let z_1, \ldots, z_k be the distinct zeros of B' with multiplicities m_1, \ldots, m_k respectively. The set $\{f(z_i)\}_{i=1}^k$ contains at least 1 but at most k points. Let these points be w_1, \ldots, w_j. Arrange the notation so that

$$f(z_i) = w_1, \quad 1 \leq i \leq J_1;$$

$$f(z_i) = w_2, \quad 1 + J_1 \leq i \leq J_2;$$

$$\vdots$$

$$f(z_i) = w_j, \quad 1 + J_{k-1} \leq i \leq k$$

Let $\gamma_1, \ldots, \gamma_j$ be curves in the range of B in \mathcal{U} such that

(i) the initial point of γ_i is w_i,

(ii) the γ_i's are nonintersecting,

(iii) the γ_i's are simple and

(iv) the terminal point of each γ_i is on $C(0,1)$ and the terminal points are distinct.
Now z_1 is over w_1 and B is an $m_1 + 1$ mapping in a neighborhood N_{z_1} of z_1. Hence, for a point ζ_{11} close to w_1 there are $m_1 + 1$ preimages in N_{z_1} where curves can initiate over the portion of γ_1 beginning at ζ_{11}. B is a semiproper function so we may obtain unique lifts as in the proof of theorem 3.16. Allow ζ_{11} to approach w_1 and the result is $m_1 + 1$ curves with initial point z_1 and terminal points on $C(0,1)$. Since curve lifting is unique, the only point common to the curves lying over γ_1 is z_1.

This give us $m_1 + 1$ curves and $m_1 + 1$ domains. One of the domains Δ contains z_2. We repeat the process and obtain $m_2 + 1$ nonintersecting curves in Δ ending at distinct points on $C(0,1)$. These curves do not intersect themselves and they do not intersect any of the $m_1 + 1$ curves obtained above. All terminal
points on $C(0,1)$ are distinct. We now have $m_1 + 1 + m_2 + 1$ curves and $m_1 + (m_2 + 1)$ domains. If we continue this process we will have $(\sum_{i=1}^{k} m_i) + 1 = n$ domains and $(\sum_{i=1}^{j} m_i) + j$ nonintersecting curves that terminate at distinct points on $C(0,1)$. The domains are all simply connected and the boundary of D_i is β_i. By construction, the domains D_i are mutually disjoint. Figure 4.2 above has 7 domains with domain number 2 outlined by arrows.

We claim that B is $1-1$ on each domain D_i. The image of D_i will be contained in a simply connected domain whose boundary consists of $C(0,1)$ and the image curves γ_j of the curve β_i containing the branch points. Figure 4.3 shows domain D_i and a domain V containing the image.

![Figure 4.3: Example of lifted curves showing domains D_i and V.](image)

We will prove that D_i is mapped onto V and that $B \upharpoonright D_i$ lifts curves. Since V is simply connected $B \upharpoonright D_i$ will be one to one. Now, $B(D_i) \subseteq V$ and D_i is contained in some component of $B^{-1}(V)$. But if the component contained points not in D_i then any path from inside D_i to this point would have to intersect the boundary β_i. Hence D_i is a component of $B^{-1}(V)$. Since
\(D_i = \text{cl}(D_i) \cap B^{-1}(V)\) we have \(B(D_i) = B(\text{cl}(D_i)) \cap V = \text{cl}B(D_i) \cap V\) and so \(B(D_i)\) is closed in \(V\). But \(D_i\) open \(\Rightarrow B(D_i)\) is open in \(V\) and so \(B(D_i) = V\).

There are no branch points in \(D_i\) so that \(B\) is smooth on \(D_i\). For each point \(y\) in \(V\), there are a finite number of points \(x_1, \ldots, x_p\) such that \(B(x_i) = y\). Therefore we can find a neighborhood \(N_y\) about \(y\) such that the components of \(B^{-1}(N_y)\) are compact. Hence by Beardon [2, th. 7.4.5, p. 103] \(B \upharpoonright D_i\) lifts curves. Since \(V\) is simply connected, \(B\) is \(1-1\) on \(D_i\).

By making the proper cuts and identifications along the curves constructed, we can build the Riemann surface of each finite Blaschke product.

The next theorem is due to Stephenson [14, cor, p. 873]. In this corollary, Stephenson also proves that the hypergroup of a finite Blaschke product \(B\) is cyclic. We will not use this result and the following proof of \(|\mathcal{P}_B| \leq n\) follows the theme of semiproper functions.

Theorem 4.2. If \(B\) is a finite Blaschke product of order \(n\), then \(|\mathcal{P}_B| \leq n\).

Proof. Let \(D_1, D_2, \ldots, D_n\) be as in theorem 4.1 and \(\Delta_1\) a small disk in \(D_1\). There are exactly \(n\) simply connected domains \(\Delta_i \subseteq D_i, \ i = 1, 2, \ldots, n\) such that \(B(\Delta_i) = B(\Delta_1)\) and \(B \upharpoonright \Delta_i\) is \(1-1\) for every \(i\). If we define \(h_i = (B \upharpoonright \Delta_i)^{-1} \circ B\) from \(\Delta_1\) onto \(\Delta_i\), then \(h_i\) generates an element \(\langle \phi_i, \psi_i \rangle\) in \(\mathcal{P}_B\). Hence \(|\langle \phi_i, \psi_i \rangle | i = 1, 2, \ldots, n\| \subseteq \mathcal{P}_B\). Let \((h, \Delta)\) be any function element such that \(h\) is of the form \(B^{-1} \circ B\). By the proof of theorem 3.12 \((h, \Delta)\) continues to some function element \(\langle \tilde{h}, \Delta_1 \rangle\). By proposition 3.13, \(\tilde{h}\) is of the form \(B^{-1} \circ B\) and so must agree with \((B \upharpoonright \Delta_i)^{-1} \circ B = h_k\) for some
For this k, h_k and h generate the same element (ϕ_k, ψ_k) in \mathcal{P}_B. Hence $|\mathcal{P}_B| \leq n$.

Example 4.3. Let $f(z) = \frac{z^{0.1} - 1}{1 - z^{0.1}}$. We want to compute \mathcal{P}_f and interpret \otimes in \mathcal{P}_f. The branch point of f is $2 - \sqrt{3}$ and $B(2 - \sqrt{3}) = -.0718$. The function f is two to one near $(2 - \sqrt{3})$ so according to theorem 4.1 we have two curves $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ with initial point $2 - \sqrt{3}$, over the curve γ from -0.0718 to -1. The terminal points of $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ are $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ and $\frac{1}{2} - i\frac{\sqrt{3}}{2}$ respectively.

Our surface is

\begin{figure}
 \centering
 \includegraphics[width=\textwidth]{example4.4.png}
 \caption{Riemann surface of example 4.4.}
\end{figure}
Let h be defined such that $h : D_1 \rightarrow D_2$ where D_1 and D_2 are shown in figure 4.4. The function h is of the form $f^{-1} \circ f$ where $D_1 \xrightarrow{f^{-1}} \Delta = p^*(\Delta_i) \xrightarrow{f^{-1}} D_2$. Figure 4.5 shows the structure of every h of the form $f^{-1} \circ f$. The subscripts 1 and 2 distinguish between the portions of the figure dealing with f and f^{-1} respectively. The function $h = F_2^{-1} \circ p_{*}^{-1} \circ p^* \circ F_1^{-1}$ with appropriate restrictions on p^* and F^{-1}.

![Diagram](image)

Figure 4.5: The structure of every $h = f^{-1} \circ f$.

We assert that h continues to all of \mathcal{U} single valuedly. The only point that could possibly be a branch point resulting in h being multivalued is $2 - \sqrt{3}$. For computational purposes we can delete $2 - \sqrt{3}$ and its image from the surface and use proposition 3.13 to test $2 - \sqrt{3}$ as a multivalued type branch point for h. Figure 4.6 is a version of figure 4.5 which shows the computation of the analytic continuation of $h : D_1 \rightarrow D_2$ along γ.
The curve γ begins at a point in D_1, circuits $2 - \sqrt{3}$ and returns to the same point in D_1. Now apply proposition 3.13 to lift $f \circ \gamma$ to a curve Γ_2 in $(W_{f^{-1}})_2$ with initial point $[f_2^{-1}, f(\gamma(0))]$. Notice that the curve $f \circ \gamma$ also lifts to a curve Γ_1 in $(W_{f^{-1}})_1$, with initial point $[f_1^{-1}, f(\gamma(0))]$. Now $F_2^{-1*}(\Gamma_2)$ begins and ends at the same point in D_2. Hence $2 - \sqrt{3}$ is not a branch point, and h continues to $U - \{2 - \sqrt{3}\}$ single valuedly. But in this case $2 - \sqrt{3}$ becomes a removable singularity and h continues to all of U. By corollary 3.19 $(\chi, h) \in \mathcal{P}_f$ where h
is the continuation. By theorem 4.2 \(P_f = \{(\chi, \chi), (\chi, h)\} \). The pair \((h, \chi) \) is the inverse of \((\chi, h) \) and so \((\chi, h) \) and \((h, \chi) \) must be equal. That is, there exists an \(\omega \in \mathcal{M} \) such that \(\chi = h \circ \omega \) and \(h = \chi \circ \omega \). Hence \(h = \omega = h^{-1} \in \mathcal{M} \).

Since \((\chi, h) \in P_f \), we have \(f = f \circ h \). Hence
\[
\frac{h(z)(h(z) - 1/2)}{(1 - h(z)/2)} = \frac{z(z - 1/2)}{(1 - z/2)}.
\]
Simplifying we have
\[
h(z) = \frac{1 - z^2 \pm \sqrt{z^4 - 8z^3 + 18z^2 - 8z + 1}}{4(1 - 1/2)}.
\]
Assume one of the branches will give use \(h(z) = z \) and knowing \(h \in \mathcal{M} \) we assume
\[
\frac{1 - z^2 + \sqrt{z^4 - 8z^3 + 18z^2 - 8z + 1}}{4(1 - 1/2)} = z.
\]
Solving for \(\sqrt{z^4 - 8z^3 + 18z^2 - 8z + 1} \) we find
\[
\sqrt{z^4 - 8z^3 + 18z^2 - 8z + 1} = -z^2 + 4z - 1.
\]
Checking, we see that \((z^2 - 4z + 1)^2 \) does equal \(z^4 - 8z^3 + 18z^2 - 8z + 1 \).

We can now calculate a formula for \(h(z) \):
\[
h(z) = \frac{(1 - z^2) \pm (z^2 - 4z + 1)}{4(1 - 1/2z)}.
\]
The plus sign yields \(h(z) = \frac{1 - 2z}{2z} \) and the minus sign gives \(h(z) = z \).

Finally \((\chi, \chi) \otimes (\chi, h) = (\chi, h) \) since \(h \circ \chi = h \) so that \(\otimes \) is composition.

The next example is a every elegant one from Stephenson which shows that not all functions have hypergroups. The property that fails is associativity.
Example 4.4. [14, ex. 5, p. 863]. In figure 4.7 the surface S is over C and projects to C via p^*. The universal cover of this surface is U since the analytic function p^* is bounded and nonconstant. Let $f = p^* \circ \rho$. The surface for f is S and so we can label this surface $W_{f^{-1}}$. Since $W_{f^{-1}}$ is simply connected, ρ is $1 - 1$. Figure 4.8 shows one representative cover for $W_{f^{-1}}$.

Region 1 (R_1) maps $1 - 1$ and onto the upper square over 0 (U_0) and region 2 (R_2) maps $1 - 1$ and onto the lower square over 0 (L_0). Regions 3 and 4 (R_3 and R_4) map $1 - 1$ and onto the lower and upper square, respectively, over 1 (L_1 and U_1). Define h_0 by

$$R_1 \xrightarrow{\rho^{-1}} U_0 \xrightarrow{p^*} C \xrightarrow{p^*^{-1}} L_0 \xrightarrow{\rho^{-1}} R_2$$

and let (ϕ, ψ) be the principal pair generated by h_0.

We assert that $(\phi, \psi) \otimes (\phi, \psi)$ does not exist. Since the range of h_0 is R_2 we need to find an h_1 defined on R_2 such that h_1 is an analytic continuation of h_0 and the defining function elements (h_t, D_t) satisfy $|z| < 1$ and $|h_t(z)| < 1$ for every $t \in [0, 1]$. This last condition must be satisfied if h_1 is to generate a pair equivalent to (ϕ, ψ). Let γ be a curve in U along which h_0 may continue to R_2. See figure 4.8. Since $\gamma \subseteq U$ and we have assumed $|h_t(z)| < 1$, we can apply proposition 3.13 to obtain that $f \circ \gamma$ lifts to Γ in $W_{f^{-1}}$ with initial point $[f^{-1}, f \circ \gamma(0)]$. This germ corresponds to L_0 not U_0 and the curve Γ falls off the edge of $W_{f^{-1}}$. See figure 4.7. Since $f \circ \gamma$ does not lift, h_0 cannot be continued into region R_2 and at the same time satisfy $|h_t(z)| < 1$. Hence $h_1 \circ h_0$ cannot be defined and $(\phi, \psi) \otimes (\phi, \psi)$ does not exist. If h is defined in some region other than the regions R_1, R_2, R_3, or R_4, then this h can only
Figure 4.7: Surface for example 4.4.

$W_{f-1} = S$

Figure 4.8: Example of a cover for the surface in example 4.4.
generate \((\chi, \chi)\). Now, \(h_0^{-1}\) generates \((\psi, \phi)\) and \(((\phi, \psi) \otimes (\phi, \psi)) \otimes (\psi, \phi)\) is not defined while \((\phi, \psi) \otimes ((\phi, \psi) \otimes (\psi, \phi)) = (\phi, \psi)\).

Example 4.5. Let \(f(z) = \left(\frac{z - \alpha}{1 - \overline{\alpha} z}\right)^n, |\alpha| < 1\).

We will find \(P_f\) and interpret \(\otimes\) in \(P_f\). For every \(h\), \(h = f^{-1} \circ f\) or \(f = f \circ h\) for an appropriate restriction of \(f\). This gives

\[
\left(\frac{z - \alpha}{1 - \overline{\alpha} z}\right)^n = \left(\frac{h(z) - \alpha}{1 - \overline{\alpha} h(z)}\right)^n
\]

which implies

\[
\frac{h(z) - \alpha}{1 - \overline{\alpha} h(z)} = \epsilon \frac{z - \alpha}{1 - \overline{\alpha} z}, \quad \epsilon = n^{th} \text{ root of unity.}
\]

Solving for \(h(z)\) we have

\[
h(z) = \frac{\alpha(z - 1) - (\epsilon - |\alpha|^2)z}{(\epsilon|\alpha|^2 - 1) - \overline{\alpha}(\epsilon - 1)z} = \frac{\epsilon|\alpha|^2 - 1}{\epsilon - |\alpha|^2} \left[\frac{\overline{\alpha}(\epsilon - 1)}{\epsilon|\alpha|^2 - 1} - \frac{z}{1 - \overline{\alpha}(\epsilon - 1)/\epsilon|\alpha|^2 z}\right].
\]

Now, \(\epsilon|\alpha|^2 - 1\) and \(\epsilon - |\alpha|^2\) have the same modulus and the conjugate of \(\frac{\overline{\alpha}(\epsilon - 1)}{\epsilon|\alpha|^2 - 1}\) is \(\frac{\alpha(\epsilon - 1)}{\epsilon - |\alpha|^2}\). Hence \(h(z) = e^{i\theta} \left[\frac{\beta - z}{1 - \beta z}\right]\) with \(\beta = \frac{\alpha(\epsilon - 1)}{\epsilon|\alpha|^2 - 1}\). That \(|\beta| < 1\) can be checked by showing that

\[|\alpha(\epsilon - 1)|^2 < |\epsilon| |\alpha|^2 - 1|^2.\]

The left side reduces to \(2|\alpha|^2\) and the right side reduces to \(|\alpha|^4 + 1\). But \((|\alpha|^2 - 1)^2 > 0\).

Now \(h\) analytically continues to all of \(U\) single valuedly and so \((\chi, e^{i\theta} \left[\frac{\beta - z}{1 - \beta z}\right]) \in P_f\). The \(h\) that solves equation (4.1) on some small neighborhood with a fixed \(n^{th}\) root of unity will not solve the equation with another \(n^{th}\)
root of unity. Hence, there must be n such principal pairs generated. Multiplication \otimes is composition since $\sigma_2 \circ \sigma_1$ generates $(\chi, \sigma_1) \otimes (\chi, \sigma_2)$ by proposition 3.8. ■

Example 4.6 is from Stephenson. It shows that a finite Blaschke product of order n may not have a hypergroup with n elements.

Example 4.6. [14, ex. 7, p. 864]. Let $f(z) = z^{2(z-1/2)}$. The branch points of f are 0 and .344 and their images are 0 and -.0223 respectively. The preimages of the images of the branch points are 0,.5,.344 and -.188. These are the only possible branch points of any h of the form $f^{-1} \circ f$. By theorem 4.2 we know that $|\mathcal{P}_f| \leq 3$. The points 0 and .344 are not branch points of $h : D_1 \to D_2$ while .5 and -.188 are. We show the details of 0 and .5 in figures 4.9 and 4.10 respectively. In both figures, we have deleted the surface $(\mathcal{W}_{f^{-1}})_1$ since the continuations are computed on $(\mathcal{W}_{f^{-1}})_2$. In figure 4.9, γ is a curve initiating in D_1 and circuits once around 0 and returns to the same point in D_1. The curve $f \circ \gamma$ is lifted to Γ in $(\mathcal{W}_{f^{-1}})_2$ with initial point $[f^{-1}, f(\gamma(0))]$ where $f^{-1}(f(\gamma(0)))$ does not equal $\gamma(0)$ and is an element of D_2. Justification for this is proposition 3.13. The continuation $F^{-1} \circ \Gamma$ is computed in \mathcal{U} terminating at its original point in D_2. Hence 0 is not a branch point.

In Figure 4.10 γ is a curve initiating in D_1, circuiting about .5 and returning to the same point in D_1. The curve $f \circ \gamma$ is lifted to Γ in $(\mathcal{W}_{f^{-1}})_2$ and the continuation $F^{-1} \circ \Gamma$ is computed in \mathcal{U}. In this situation the continuation did not return to its original position so that .5 is a branch point. Hence the original h defined from region I to region II continues to an \tilde{h} defined from region I to region III and so must generate the same pair (ϕ, ψ). The other pair is (χ, χ). Therefore $\mathcal{P}_f = \{(\chi, \chi), (\phi, \psi)\}$. ■
Figure 4.9: Computation for 0 in example 4.6.
Figure 4.10: Computation for .5 in example 4.6.
The final result, theorem 4.9, is an application of two theorems in Stephenson [14, Lem 1, p. 847] and [14, th 5, p 854] which we have not yet stated. The first theorem gives necessary and sufficient conditions for the composition of two functions to be inner and the second theorem relates subhypergroups of \(\mathcal{P}_f \) with the decompositions of \(f \).

Theorem 4.7 (Stephenson). Let \(f, g \) and \(h \) be analytic from \(U \) into \(U \) with \(h = f \circ g \). Then \(h \) is inner if and only if \(f \) and \(g \) are inner.

Theorem 4.8 (Stephenson). Suppose that \(F : U \to \mathcal{R} \) and \(f_1 : U \to S \) are analytic from the unit disk into the Riemann surfaces \(\mathcal{R} \) and \(S \) respectively. Then \(\mathcal{P}_{f_1} \) is a subhypergroup of \(\mathcal{P}_F \) if and only if there is a function \(f_2 \) from the range of \(f_1 \) into the range of \(F \) such that \(F = f_2 \circ f_1 \).

Theorem 4.9. Let \(B \) be a Blaschke product of order \(km, \ k \geq 2 \) and \(m \geq 2 \). Suppose that \(h \in \mathcal{M} \) such that

(i) \((\chi, h) \in \mathcal{P}_B \),

(ii) \(h(\gamma) = \gamma \), for some \(\gamma \), \(|\gamma| < 1 \), and

(iii) \(h^k = h \circ h \circ h \cdots \circ h \ (k \text{ times}) = \chi, \ h^\nu \neq \chi \ \nu = 1, 2, \ldots, k - 1 \).

Then there exist Blaschke products \(B_1 \) and \(B_2 \) of orders \(k \) and \(m \) respectively such that \(B = B_2 \circ B_1 \). Moreover we may choose \(B_1(z) = \left(\frac{z-\gamma}{1-\gamma \zeta} \right)^k \) and then \((\chi, h) \in \mathcal{P}_{B_1} \).
Proof. Since \(\gamma \) is a fixed point of \(h \) we have

\[
\frac{h(z) - \gamma}{1 - \overline{\gamma}h(z)} = c \left(\frac{z - \gamma}{1 - \overline{\gamma}z} \right), \quad \text{for some } c, \quad |c| = 1.
\]

See [9, p 4].

Hence

\[
\frac{h(h(z)) - \gamma}{1 - \overline{\gamma}h(h(z))} = c \left(\frac{h(z) - \gamma}{1 - \overline{\gamma}h(z)} \right) = c^2 \left(\frac{z - \gamma}{1 - \overline{\gamma}z} \right)
\]

and inductively we have

\[
\frac{h^k(z) - \gamma}{1 - \overline{\gamma}h^k(z)} = c^k \left(\frac{z - \gamma}{1 - \overline{\gamma}z} \right).
\]

Since \(h^k(z) = z \), this means that \(c^k = 1 \). If we raise each side of equation 4.2) to the \(k \)th power, we have

\[
\left(\frac{h(z) - \gamma}{1 - \overline{\gamma}h(z)} \right)^k = c^k \left(\frac{z - \gamma}{1 - \overline{\gamma}z} \right)^k = \left(\frac{z - \gamma}{1 - \overline{\gamma}z} \right)^k.
\]

That is, \(B_1(z) = B_1(h(z)) \) and hence \(\langle x, h \rangle \in \mathcal{P}_{B_1} \). Now \(|\mathcal{P}_{B_1}| = k \) since \(\langle x, h \rangle^\nu = \langle x, h^\nu \rangle \neq \langle x, x \rangle \) if \(1 \leq \nu < k \). Furthermore, \(\mathcal{P}_{B_1} \) is a subhypergroup of \(\mathcal{P}_B \). By theorem 4.8 there is an \(f_2 \) such that \(f_2 \) is analytic from the unit disk into the range of \(B_1 \) and \(B = f_2 \circ B_1 \). Since \(B \) is inner, \(f_2 \) is inner by theorem 4.7. We assert that \(f_2 \) is a finite Blaschke product. If it is not a Blaschke product, then there is a path \(\sigma \) in \(\mathcal{U} \) going to \(\text{br}(\mathcal{U}) \) such that

\[
\lim_{w \to \text{br}(\mathcal{U})} f_2(w) = \kappa, \quad |\kappa| < 1 \quad \text{[11, ex. 17, p. 383]}.\]

WLOG, \(\sigma \) does not intersect the images of the branch points of \(B_1 \). Since \(B_1 \) is semiproper, we may lift \(\sigma \) to \(\tilde{\sigma} \) in \(\mathcal{U} \). Since \(B_1 \) is a finite Blaschke product,
going toward the boundary means \(\sigma \) must also approach the boundary of \(\mathcal{U} \).

Hence \(\lim_{z \to \sigma \in \partial \mathcal{U}} B(z) = \kappa \). This is a contradiction since \(B \) is a finite Blaschke product. It follows that \(f_2 \) is a Blaschke product which we will now denote by \(B_2 \). Since \(B \) is a Blaschke product of order \(km \) and \(B_1 \) is a Blaschke product of order \(k \), it follows that \(B_2 \) is a Blaschke product of order \(m \). \(\blacksquare \)
LIST OF REFERENCES

