INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in "sectioning" the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University
Microfilms
International

300 N. ZEEB ROAD, ANN ARBOR, MI 48106
18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND
KAHN, JEFFRY NED
LOCALLY PROJECTIVE-PLANAR LATTICES WHICH
SATISFY THE BUNDLE THEOREM.

THE OHIO STATE UNIVERSITY, PH.D., 1979
LOCALLY PROJECTIVE-PLANAR LATTICES
WHICH SATISFY THE BUNDLE THEOREM

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of The Ohio State University

By
Jeffry Ned Kahn, B.S.

* * * * *

The Ohio State University
1979

Reading Committee:
Dijen K. Ray-Chaudhuri
Thomas A. Dowling
G. Neil Robertson
Ronald Solomon
Jill C.D.S. Yaqub

Approved by

Dijen K. Ray-Chaudhuri
Adviser
Department of Mathematics
ACKNOWLEDGEMENTS

While I have been at The Ohio State University, a large number of people have contributed to my mathematical growth, and I will not try to mention all of them. I do especially want to thank my advisor, Professor Dijen K. Ray-Chaudhuri, for his help and guidance throughout the time that I have spent here.

Other people to whom I am indebted for assistance in the present work are Professors Jill Yaqub and Bill Johnson of The Ohio State University and Professor Alan Hoffman of IBM. My thanks are due also to the reading committee for their efforts.

I would also like to take this opportunity to acknowledge the support of the College of Mathematical and Physical Sciences in the form of a grant in aid during part of the time that I was engaged in this research.

Finally, I want to thank Jno. Moore for typing this dissertation expertly, and usually on short notice.
VITA

February 24, 1950 Born - Brooklyn, New York

1971 B.S., Rensselaer Polytechnic Institute,
Troy, New York

1973-1974 Teaching Associate, Department of Sta-
tistics, The Ohio State University,
Columbus, Ohio

1974-1979 Teaching Associate, Department of Mathe-
matics, The Ohio State University,
Columbus, Ohio

PUBLICATIONS

1. Proof of a conjecture of Katona and Tarján, to appear in Periodica

2. On the maximum number of diagonals in a graph, (with R.P. Gupta
and N. Robertson), to appear in Discrete Math.

3. Inversive planes satisfying the bundle theorem, to appear in J.
Combinatorial Theory (A).

FIELDS OF STUDY

Major Field: Mathematics

Studies in Combinatorics, Group Theory, and related areas:
Professors D.K. Ray-Chaudhuri, E. Bannai, T.A. Dowling,
R.P. Gupta, D.R. Hughes, G.N. Robertson, R. Solomon and
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>VITA</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1. Some Background</td>
<td>1</td>
</tr>
<tr>
<td>2. The Main Theorem</td>
<td>6</td>
</tr>
<tr>
<td>II. PROOF OF THE MAIN THEOREM</td>
<td>10</td>
</tr>
<tr>
<td>3. Points</td>
<td>10</td>
</tr>
<tr>
<td>4. Basic Properties of S</td>
<td>15</td>
</tr>
<tr>
<td>5. Two Lemmas</td>
<td>22</td>
</tr>
<tr>
<td>6. Lines in the Infinite Case</td>
<td>30</td>
</tr>
<tr>
<td>7. Lines in the Finite Case</td>
<td>40</td>
</tr>
<tr>
<td>8. Planes</td>
<td>48</td>
</tr>
<tr>
<td>III. COROLLARIES AND EXAMPLES</td>
<td>56</td>
</tr>
<tr>
<td>9. Corollaries for Circle-Planes</td>
<td>56</td>
</tr>
<tr>
<td>10. A Class of Examples</td>
<td>74</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>76</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Desargues' Configuration</td>
<td>23</td>
</tr>
<tr>
<td>2.</td>
<td>Construction for Lemma 5.5</td>
<td>25</td>
</tr>
<tr>
<td>3.</td>
<td>Hypotheses for Lemma 5.6</td>
<td>29</td>
</tr>
<tr>
<td>4.</td>
<td>Case Involving A' in the Proof of Lemma 7.6</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>Construction for Lemma 8.6</td>
<td>52</td>
</tr>
<tr>
<td>6.</td>
<td>The Bundle Theorem</td>
<td>71</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1. Some Background

This investigation originated with a question about inversive planes, which was answered in [25] and [26]. The present work includes those results, as well as their analogues for Laguerre and Minkowski planes, but deals with a more general class of objects - here called "locally projective-planar lattices" - in which some properties particular to one or more of the above mentioned planes are dispensed with. Our main theorem will be introduced in section 2; we begin here with some discussion of the classical examples.

An inversive plane is an incidence structure (see chapter II) \(J = (\emptyset, \mathcal{C}) \) (elements of \(\mathcal{C} \) are called circles) which satisfies:

(0) Circles are nonempty.

(1) For each \(P \in \emptyset \), \(\mathcal{J}_P \) is an affine plane (where \(\mathcal{J}_P \) is the "internal" structure whose points are the points of \(\emptyset \) other than \(P \), whose blocks are the circles of \(\mathcal{C} \) which contain \(P \), and whose incidence is that inherited from \(J \)).

The order of \(J \) is the (common) order of the affine planes \(\mathcal{J}_P \).

Inversive planes arise quite naturally in geometry in the following way. Let \(K \) be a skewfield and \(\emptyset \) an ovoid in \(\text{PG}(3,K) \). (I.e., \(\emptyset \) is a set of points satisfying: (1) no three points of \(\emptyset \) are
collinear, and (2) if $P \in \mathcal{G}$, then the union of all lines meeting \mathcal{G} only in P is a plane. $PG(3,K)$ denotes three-dimensional projective space over K.) Then the following incidence structure, $\mathcal{A}(\mathcal{G})$, is an inversive plane:

The points of $\mathcal{A}(\mathcal{G})$ are the points of \mathcal{G}.

The circles of $\mathcal{A}(\mathcal{G})$ are those planes which meet \mathcal{G} in more than one point.

Incidence is inclusion.

An inversive plane is said to be egglike\(^1\) if it is isomorphic to some $\mathcal{A}(\mathcal{G})$.

Laguerre and Minkowski planes satisfy slightly more complicated, but similar, sets of axioms; their orders are defined as for inversive planes; and we may define in each instance the egglike planes to be those arising from a construction analogous to that given above for $\mathcal{A}(\mathcal{G})$. For simplicity of exposition, all of this discussion is postponed until chapter III. (Actually, in chapter III we adopt the terminology of Benz [3], according to which the inversive planes defined above are inversive planes "in the narrow sense". For purposes of the present discussion, however, we will use the more traditional definitions: inversive planes will be as defined above, and Laguerre planes will be those objects which in chapter III are called Laguerre planes "in the narrow sense".)

We will speak of inversive, Laguerre and Minkowski planes collectively as circle-planes (although this term is used elsewhere in a much

\(^1\) This term is due to Dembowski and Hughes [5].
broader sense, e.g., in [3], page 2).

The role which the egglike planes play in the study of circle-planes is similar, especially in the inversive and Laguerre cases, to the role of the Desarguesian planes in the theory of projective planes. In fact, this analogy - pointed out by both Hesselbach [22] and van der Waerden and Smid [33] - goes much further, and since it provided much of the initial motivation for the present work, I will dwell on it a little here.

For inversive and Laguerre planes the correspondence runs as follows. The role of the Pappian planes is taken by the subclass of egglike planes for which K (as above) is commutative, and a non-ruled quadric (inversive case), or a cone with vertex deleted (Laguerre case). Van der Waerden and Smid [33] gave substance to this analogy by proving that the inversive and Laguerre planes belonging to these subclasses are precisely those which satisfy the "theorem of Miquel" (again see [33], or in the case of inversive planes see [14], p. 255).

This configurational proposition, then, corresponds to the theorem of Pappus.

In the same paper, the authors discuss a second axiom - the "Möschelsatz", or bundle theorem (see section III) - which holds in all egglike planes, and which is accordingly a candidate for the role of Desargues' theorem.

The bundle theorem does not hold in all inversive planes (see [20], for example), but it does hold in all inversive geometries of dimension greater than two ([23], [28]). Mäurer's theorem [28], which
implies that all such geometries are egglike\(^2\), relies heavily on this fact. All of this is, of course, precisely analogous to the situation for projective planes and higher dimensional projective spaces. (I do not know to what extent analogues of these statements have been investigated for Laguerre planes.

The principal missing link in the above analogy is supplied by the following two theorems, which we obtain in chapter III as corollaries of our main result.

THEOREM 1. All inversive planes which satisfy the bundle theorem are egglike.

THEOREM 2. All Laguerre planes which satisfy the bundle theorem are egglike.

In an early attack on this problem, Hesselbach [22] was able to prove theorem 1, and also van der Waerden - Smid's result, for the special case of "topological" inversive planes. (His paper, which predates [31], contains the earliest mention that I have seen of the bundle theorem, although for some reason van der Waerden and Smid seem generally to be given credit for first formulating the axiom.) Hesselbach also showed (for inversive planes) that the bundle theorem

\(^2\) I.e., the spheres of the inversion geometry are the intersections of an ovoid with flats in \(PG(d,K)\).
can be derived directly from Miquel's theorem, which corresponds to the fact that Desargues' theorem can be derived directly from Pappus'.

One other feature of the analogy deserves mention. A famous result of Segre [30] states that any oval in $\mathbb{P}G(2,q)$, q odd, is a conic; and Barlotti [1] used Segre's theorem to show that any ovoid in $\mathbb{P}G(3,q)$, q odd, is a quadric. These results imply respectively that a Laguerre or inversive plane of finite odd order which satisfies the bundle theorem must also satisfy Miquel's theorem, a fact which may be seen as a partial analogue of Wedderburn's theorem (a finite Desarguesian projective plane is Pappian). (The full analogue is false: examples are known of egglike inversive and Laguerre planes of finite even order which do not satisfy Miquel's theorem. They correspond respectively to the ovoids discovered by Tits [32] in $\mathbb{P}G(3,2^{2k+1})$, $k \geq 1^3$, and to any of the oval cones (section III) based on ovals which are not conics (see [14], page 51, and accompanying references).)

The situation for Minkowski planes is a sort of homomorphic (as opposed to isomorphic) image of the projective-inversive-Laguerre situation. Kaerlein [24] defines Miquel's theorem in Minkowski planes and proves an analogue of van der Waerden - Smid's results (with a hyperbolic quadric taking the place of the non-ruled quadric or cone). Also, as in the previous cases, egglike planes are characterized by the bundle theorem:

3 The smallest of these had been constructed earlier by Segre [31].
THEOREM 3. All Minkowski planes which satisfy the bundle theorem are egglike.

The difference in the Minkowski case is that the classes of egglike and Miquelian planes turn out to coincide, a consequence of the fact that hyperbolic quadrics are actually characterized by those of their properties which are used in the construction of Minkowski planes.

2. The Main Theorem

As will be shown in chapter III, each circle-plane \(\Pi \) determines a lattice \(L = L(\Pi) \) with the following properties:

(L) \(L \) is a semimodular rank 4 lattice. (Semimodular means that if \(x, y \in L \) cover \(x \land y \), then they are covered by \(x \lor y \). For lattice definitions see [7]. The rank 0, 1, 2, 3 and 4 elements of \(L \) are called "0", "points", "lines", "planes" and "1" respectively.)

(LPP) For each point \(P \) of \(L \), the interval \([P, 1]\) is a projective plane.

Lattices which satisfy (L) and (LPP) are called locally projective-planar or LPP-lattices.

If \(L \) is an LPP-lattice, and if \(P \) and \(Q \) are distinct points of \(L \), then \(P \lor Q \) is a line (by (L)), hence a point of both \([P, 1]\) and \([Q, 1]\). The order of \([P, 1]\) (\([Q, 1]\)) being one less than (so equal to if infinite) the number of planes on \(P \lor Q \), it follows that all of the projective planes \([P, 1]\) have the same order. This common
order is also defined to be the order of L.

If \mathcal{U} is an egglike circle-plane, then $L = L(\mathcal{U})$ also satisfies the "bundle theorem":

(BT) If l_1, l_2, l_3, l_4 are lines, no three on a common plane, and no two on a common point, and if five of the six pairs \(\{l_i, l_j\}, \ 1 \leq i \neq j \leq 4 \), are coplanar, then the sixth pair is also.

More generally, let K be a skewfield, and $S = \text{PG}(3,K)$, thought of as the subspace lattice of a four-dimensional vector space over K. For any nonempty subset \mathcal{G} of the point set of S, let $L = L(\mathcal{G})$ be the lattice whose elements are $\{0\}$ and those elements of S which contain points of \mathcal{G}, ordered as in S. Then L is an LPP-lattice which satisfies the bundle theorem.

It is not true in general that an LPP-lattice satisfying (BT) must be isomorphic to an $L(\mathcal{G})$ (see section 10), but we are able to establish such an isomorphism if we assume that \mathcal{G} is (in some sense) fairly large. For $n \in \{2,3,4,\ldots\}$, let

\[
f(n) = \max\{1, \left\lfloor \frac{\sqrt{n-1}}{2} \right\rfloor \}.
\]

Our main result is the following.

Theorem 4. Let L be an LPP-lattice which satisfies (BT) and (BE) for each point P of L there is a subset $T(P)$ of the planes on P with

\[
|T(P)| < \infty \quad \text{if} \ L \ \text{is infinite}
\]

\[
\leq f(n) \quad \text{if} \ L \ \text{has finite order} \ n,
\]
and such that any line whose only point is \(P \) lies on some plane of \(T(P) \).

Then \(L \) is isomorphic to some \(L(\mathfrak{g}) \) (with \(\mathfrak{g} \) a subset of the point set of some \(\text{PG}(3, K) \)).

Remark. As mentioned earlier, I obtained the proof of theorem 1 some time ago. My principal aim in formulating theorem 4 was to see whether the same result could be proved without relying upon the specific structures of the circle planes. In the finite case, the function \(f \) has been chosen to be at least one in all cases, so that theorem 4 will include theorems 1-3; actually, I think that it should be possible in general to prove the theorem with a much larger \(f \), but I have not attempted to do so.

The proof of theorem 4 is achieved by constructing a three-dimensional projective space in which the lattice \(L \) is suitably embedded. The points of the space (which we call \(S \)) are defined by means of the bundle theorem in section 3. (This is the only role which the bundle theorem plays in the proof.) In section 4, we derive some of the easier properties of \(S \).

The two lemmas of section 5, especially 5.5, exhibit what is perhaps the underlying idea of the proof. This involves exploiting connections in the "local" structure of lines and planes containing some given point, and corresponding configurations in the structure of \(S \) itself.
The existence of lines (called "near-lines") is proved for the infinite case in section 6, and in section 7 we supply those additional details needed to obtain near-lines in the finite case. This organization is intended to allow the reader to see the main line of argument uncluttered by the more precise arguments which the finite case occasionally requires.

Finally, in section 8, we prove that the system of points and near-lines satisfies "Pasch's axiom", and the theorem follows.

The new ideas in this proof are to be found mostly in sections 6, 7 and 8. The material of section 3 is essentially the same as that in section 2 of [25], though given here in a more general context, and much of sections 4 and 5 (and some of 8) is taken with only slight modification from [26].
CHAPTER II

PROOF OF THE MAIN THEOREM

An incidence structure (see [11], p.1) is usually defined as a triple \((P, B, I)\), with \(P\) a set of "points", \(B\) a set of "blocks", and \(I \subseteq P \times B\) (or \(I\) a symmetric subset of \((P \times B) \cup (B \times P)\)). In what follows, we will frequently think of a block as a subset of the point set, and when \((P, b) \in I\), we will say "\(P \in b\)", "\(b\) contains \(P\)", etc. Incidence structures will be denoted simply \((P, B)\).

In a poset, "<" will always denote the order relation. If \(x < y\) then we will say "\(x\) is on \(y\)"; "\(y\) is on \(x\)", etc. In a lattice, we use "\(\lor\)" and "\(\land\)" for join and meet respectively (see [7], p.6).

Two sets are called tangent if they have intersection size one.

For sets \(A\) and \(B\), \(A \setminus B\) is the set of elements of \(A\) which are not in \(B\).

Throughout chapter II, \(L\) is an LPP-lattice satisfying (BT) and (BE). The sets of points, lines and planes of \(L\) are denoted \(\emptyset\), \(\mathcal{L}\), and \(\delta\) respectively. The minimum element of \(L\) is \(0\), and the maximum element is \(1\).

3. Points

DEFINITION. A bundle complex \((BC)\) is a subset \(\Sigma\) of \(\mathcal{L} \cup \delta\) satisfying

\((BCL)\) Each \(P \in \emptyset\) is on exactly one line of \(\Sigma\). (This line is denoted \(\Sigma(P)\).)
(BC2) Any two lines of Σ are on a plane.

(BC3) A plane is in Σ iff it contains a line of Σ.

(Notice that by (BC3) the plane of (BC2) belongs to Σ.)

The idea here is that a BC should consist of all those lines and planes of L which contain some fixed point outside \emptyset in the reconstructed projective space.

We point out one consequence of the above definition:

If $P \in \emptyset$, $\pi \in \mathcal{G}$, $P < \pi$, and if Σ is a BC containing π, then $\Sigma(P) < \pi$.

\[(3.1)\]

(For there is, by (BC3), some $l \in \Sigma \cap L$ with $l < \pi$. If $P < l$, then by (BC1) $\Sigma(P) = l < \pi$. Otherwise, $\pi' = \Sigma(P) \cup l$ is a plane by (BC2), and we have $\pi = P \cup l \leq \Sigma(P) \cup l = \pi'$. Thus $\pi' = \pi$.)

Remark 3.2. A set of lines Σ' will be $\Sigma \cap L$ for some BC Σ iff it satisfies (BC1) and (BC2). When this happens, the BC Σ is unique and is given by

$$\Sigma = \Sigma' \cup \{P \in \mathcal{G} : \exists l \in \Sigma' \text{ with } l < \pi\}.$$

(In [25] and [26], a bundle complex was defined as a set of lines satisfying (BC1) and (BC2). As indicated by 3.2, there is not much difference between the two definitions, and the present one is adopted solely for expository purposes.)

The bundle theorem (BT) is used to guarantee the existence of BC's:
LEMMA 3.3. Let \(l_1, l_2 \in \mathcal{L} \), \(l_1 \lor l_2 \in \mathcal{D} \), and \(l_1 \land l_2 = 0 \).

Then there is a unique \(\mathcal{B} \mathcal{C} \) containing \(l_1 \) and \(l_2 \).

Proof. By 3.2, it is sufficient to show that there is a unique set of lines \(\Sigma' \) containing \(l_1 \) and \(l_2 \) and satisfying (BC1) and (BC2). Notice that for \(\ell \) and \(m \) distinct lines, and \(A \) a point \(\neq \ell \lor m \), the planes \(\ell \lor A \) and \(m \lor A \) are distinct, and so meet in a line by (LPP). If in addition, \(\ell, m \in \Sigma' \), and \(\Sigma' \) satisfies (BC1) and (BC2), then \(A < \Sigma'(A) \) and \(\Sigma'(A) \lor \ell, \Sigma'(A) \lor m \in \mathcal{L} \) force

\[
\Sigma'(A) = (\ell \lor A) \land (m \lor A).
\]

This remark (eventually) proves uniqueness, since, as we will see, each of the lines \(\Sigma'(A) \) in the set \(\Sigma' \) constructed below is defined according to (*) (using lines \(\ell \) and \(m \) already known to be in \(\Sigma' \)).

Let \(\ell_1 \lor \ell_2 = \pi \). If \(\pi \neq P \in \mathcal{G} \), let \(\Sigma'(P) := (\ell_1 \lor P) \land (\ell_2 \lor P) \).

We remark that if \(Q < \Sigma'(P) \), then \(Q \neq \pi \) and \(\Sigma'(Q) = \Sigma'(P) \). (For

\[
\Sigma'(P) \land \pi = (\ell_1 \lor P) \land (\ell_2 \lor P) \land \pi
\]

\[
= [(\ell_1 \lor P) \land \pi] \land [(\ell_2 \lor P) \land \pi]
\]

\[
= \ell_1 \land \ell_2
\]

Thus, \(Q < (\ell_1 \lor P) \) implies \(\ell_1 \lor Q = \ell_1 \lor P \), \(i = 1, 2 \), so that \(\Sigma'(Q) = \Sigma'(P) \). Moreover, if \(\pi \neq P \), \(R \in \mathcal{G} \) and \(\Sigma'(P) \neq \Sigma'(R) \), then (BT) applied to \(\ell_1, \ell_2 \), \(\Sigma'(P) \) and \(\Sigma'(R) \) shows that \(\Sigma'(P) \) and \(\Sigma'(R) \) are coplanar.

Now fix \(P \neq \pi \). (Such a \(P \) exists: Suppose \(P < \pi \) for every \(P \in \mathcal{G} \). Fix \(P \in \mathcal{G} \). If \(\ell \) is any line with \(P < \ell \neq \pi \), then \(P \) is the only point on \(\ell \), and there is some \(\pi' \in T(P) \) with \(\ell < \pi' \).
Thus, \(T(P) \cup \{\pi\} \) is a set of lines of the projective plane \([P,1]\) whose union contains all points of \([P,1]\). It follows that \(T(P) \cup \{\pi\} \) is infinite if \([P,1]\) (and hence \(L\)) is infinite, and \(|T(P) \cup \{\pi\}| \geq n + 1 \) if \([P,1]\) (and hence \(L\)) has finite order \(n\). But according to (BE), we have

\[
|T(A) \cup \{\pi\}| < \infty \quad \text{if } L \text{ is infinite}
\]

\[
\leq f(n) + 1 < n + 1 \quad \text{if } L \text{ has finite order } n.
\]

This is a contradiction in either case, and proves the existence of \(P \neq \pi \). For \(X \neq \pi \), define \(\Sigma'(X) = (\Sigma'(P) \lor X) \land \pi \). (Since \(l_1 \land \bar{l}_2 = 0 \), we must have \(X \not\subseteq l_1 \) or \(X \not\subseteq \bar{l}_2 \). Say \(X \not\subseteq l_1 \). Then

1. \((\Sigma'(P) \lor l_1) \land \pi = \bar{l}_1 \) implies \(X \not\subseteq \Sigma'(P) \lor l_1 \), and

2. \(l_1 \lor X = \pi \), so that our definition of \(\Sigma'(X) \) is just a special case of \((*)\). It will turn out, incidentally, that this definition does not depend on the choice of \(P \).

Suppose \(X \neq \pi \) and \(Y \leq \Sigma'(X) \). Then, \(Y \neq \pi \) implies \(Y \not\subseteq \Sigma'(P) \)

(as noted earlier), so that \(Y \leq \Sigma'(X) \leq \Sigma'(P) \lor X \Rightarrow \Sigma'(P) \lor Y = \Sigma'(P) \lor X \Rightarrow \Sigma'(Y) = \Sigma'(X) \). Moreover, if \(X \not\subseteq l_i \), then

\[
\Sigma'(P), X \not\subseteq l_i \lor P \Rightarrow \Sigma'(P) \lor X = l_i \lor P \Rightarrow l_i \leq (\Sigma'(P) \lor X) \land \pi = \Sigma'(X) \Rightarrow l_i = \Sigma'(X) \ (i = 1,2).
\]

Let \(\Sigma' \) consist of all the lines \(\Sigma'(A) \) defined above. Then, \(l_1, l_2 \in \Sigma' \), and \(\Sigma' \) satisfies (BCL) (since we have shown \(A \not\subseteq \Sigma'(B) \) implies \(\Sigma'(A) = \Sigma'(B) \)). We have also seen that \(\Sigma'(A) \) and \(\Sigma'(B) \)
are (equal or) coplanar when $A, B \not\in \pi$. To prove that Σ' satisfies (BC2), it thus remains to show that $\Sigma'(A)$ and $\Sigma'(B)$ are coplanar when $A < \pi$, $B \not\in \pi$ (the case $A, B < \pi$ being trivial). We may assume that $\Sigma'(B) \neq \Sigma'(P)$. If $A < \ell_1$, then $\Sigma'(A) = \ell_1$ and $\Sigma'(A) \lor \Sigma'(B) = \ell_1 \lor B$. If $A \not\in \ell_1$, then we may apply (BT) to the lines ℓ_1, $\Sigma'(A)$, $\Sigma'(B)$, $\Sigma'(P)$ to show that $\Sigma'(A)$ and $\Sigma'(B)$ are coplanar (since $\ell_1 \lor \Sigma'(A) = \pi$, $\ell_1 \lor \Sigma'(B) = \ell_1 \lor B$, $\ell_1 \lor \Sigma'(P) = \ell_1 \lor P$, $\Sigma'(A) \lor \Sigma'(P) = \Sigma'(P) \lor A$, and we have already shown that $\Sigma'(B)$ and $\Sigma'(P)$ are coplanar).

This completes the proof of 3.3. □

Corollary 3.4. If $\ell \in \xi$, $\pi \in \delta$, and $\ell \land \pi = 0$, then there is a unique BC containing ℓ and π.

Proof. Let $X < \pi$ and let Σ be a BC with $\ell, \pi \in \Sigma$. Then (1) $X \not\in \ell$ and $\ell \lor X \leq \ell \lor \Sigma(X) \in \delta$ imply $\ell \lor X = \ell \lor \Sigma(X) > \Sigma(X)$ and (2) $\Sigma(X) < \pi$ (by (3.1)), so that $\Sigma(X) = (\ell \lor X) \land \pi$. Σ must therefore be the unique BC containing ℓ and $(\ell \lor X) \land \pi$ (which is a BC containing ℓ and π). □

We now extend the lattice L to a poset S by adding the set of elements $[\Sigma; \Sigma$ is a BC] and the relations $0 < \Sigma < 1$ and $\Sigma < x$ whenever Σ is a BC and x is (a line or plane) in Σ. (This gives a partial ordering by (BC3).) We set $P = \emptyset \cup [\Sigma; \Sigma$ is a BC]. All elements of P are now called points and denoted by capital letters.
The order of L is also taken to be the order of S. Whenever this order is finite, it will be denoted by n.

4. Basic Properties of S.

From now on, we will usually think of lines and planes as subsets of F, although we will still have some occasion to use the order relation, $<$, of S, and the lattice operations, \lor and \land, of L. (It is not hard to see that distinct elements of $L \cup F$ are distinct as subsets of P. They are not, in general, distinct as subsets of \emptyset.) A line $l \in L$ is called a tangent if $|l \cap F| = 1$, and a secant if $|l \cap F| \geq 2$.

DEFINITION. A Δ-system is a family of sets having pairwise the same intersection. This common intersection is called the kernel of the Δ-system.

As might be expected, our main task is to show that if $P \neq Q$ are in P, then the set of planes containing P and Q is a Δ-system.

Remark 4.1. (a) If $P \in \emptyset$ and $P \neq Q \in P$, then there is a unique line (denoted PQ) which contains P and Q.

(b) If $P,Q \in P$, $P \neq Q$, then there is at most one line containing P and Q.
((a) follows from the semimodularity of L if $Q \in \varnothing$, and from
(BCL) if $Q \in P \setminus \varnothing$. When $P, Q \in P \setminus \varnothing$, (b) follows from the uniqueness in lemma 3.3.)

PROPOSITION 4.2. Let $\ell \in \mathcal{L}$ and $\pi \in \mathcal{S}$.

(a) $|\ell| \geq 2$.
(b) $\ell \prec \pi \Rightarrow \ell \subseteq \pi \Rightarrow |\ell \cap \pi| \geq 2$.
(c) If $\ell \not\in \pi$, then $|\ell \cap \pi| = 1$.

Proof. We prove (c) first. If $\ell \cap \pi \cap \varnothing = \varnothing$, then (c) follows from 3.4. It is therefore sufficient to show that if there are distinct $P, Q \in \ell \cap \pi$, with $P \in \varnothing$, then $\ell \prec \pi$. But if $Q \in P \setminus \varnothing$ (i.e., Q is a BC), this follows from (3.1); while if $Q \in \varnothing$, then P, Q, ℓ, π are elements of L, and we have $\ell = P \lor Q \prec \pi$. This proves (c).

Let $P \in \varnothing$, $P < \ell$. Since there is a plane $\pi \not\in P$ (there exist $Q \in \varnothing \setminus \{P\}$ by (BE), and $\pi \in \mathcal{S}$ with $Q \prec \pi \not\in Q \lor P$ by (LPP)), (c) implies (a). Finally, to prove (b), we note that $\ell \prec \pi \Rightarrow \ell \subseteq \pi$ is obvious, that $\ell \subseteq \pi \Rightarrow |\ell \cap \pi| \geq 2$ follows from (a), and that $|\ell \cap \pi| \geq 2 \Rightarrow \ell \prec \pi$ follows from (c). □

PROPOSITION 4.3. If P, Q, R are distinct points with $P \in \varnothing$ and $PQ \not\in PR$, then there is a unique plane (denoted PQR) which contains P, Q and R.

Proof. By 4.2(b), a plane π contains P, Q, R iff $PQ, PR \not\in \pi$. Since $P < PQ, PR$, and $PQ \not\in PR$, there is exactly one such plane (by (L)). □
COROLLARY 4.4. (a) If \(\ell \) is a line and \(Q \in P \setminus \ell \), then there is a unique plane (denoted \(Q\ell \)) which contains \(\{Q\} \cup \ell \).

(b) If \(\ell, m \) are distinct, intersecting lines, then there is a unique plane (denoted \(Qm \)) which contains \(\ell \) and \(m \).

Proof. (a) Let \(P \in \ell \cap \Theta \). A plane \(\pi \) contains \(\{Q\} \cup \ell \) iff \(\pi \supset \ell, PQ \) (by 4.2(b)), and there is exactly one such plane (by (L)).

(b) Let \(\ell \cap m = \{P\} \) and \(Q \in m \setminus \{P\} \). (Q exists by 4.2(a).) Then, a plane contains \(\ell \) and \(m \) iff it contains \(\{Q\} \cup \ell \) (by 4.2(b)), and there is exactly one such plane by (a). □

DEFINITION. The intersection of two distinct planes is called a 2-line.

PROPOSITION 4.5. The lines are precisely the 2-lines which meet \(\Theta \).

Proof. If \(\pi_1 \) and \(\pi_2 \) are distinct planes, and there exists \(P \in \pi_1 \cap \pi_2 \cap \Theta \), then \(\pi_1 \cap \pi_2 \) is a line \(\ell \) by (LPP). If there exists \(Q \in (\pi_1 \cap \pi_2) \setminus \ell \), then \(\{Q\} \cup \ell \not\subseteq \pi_1, \pi_2 \Rightarrow \pi_1 = Q\ell = \pi_2 \) (by 4.4(a)), a contradiction. Thus, \(\ell = \pi_1 \cap \pi_2 \).

On the other hand, if \(\ell \) is a line, then by (LPP), there exist distinct planes \(\pi_1, \pi_2 \) with \(\ell = \pi_1 \cap \pi_2 \), from which it follows (as above) that \(\ell = \pi_1 \cap \pi_2 \). □

PROPOSITION 4.6. The number of points on any 2-line is one more than (so equal to if infinite) the order of \(S \).
Proof. Let m be a 2-line. If π, π' are distinct planes with $m = \pi \cap \pi'$, and if there exists $P \in (\pi \setminus m) \cap \emptyset$, then by 4.1(a) and 4.2(b),(c), the map $Q \mapsto P Q$ defines a bijection of the points of m and the lines on P in π. The number of points on m is thus equal to the number of points on the line π of $[P,1]$ (which is the number we want). But there always exist such π, π', P. For, if $m = \pi_1 \cap \pi_2$, and $\pi_1 \cap \emptyset \subseteq m$, then m is a line. In this case, we may choose any $P \in \emptyset \setminus m$, and take $\pi = P m$ (see 4.4(a)), and π' any other plane on m (and then $m = \pi \cap \pi'$ by 4.5).

Proposition 4.7. If π_1, π_2, π_3 are distinct planes, then

$$| (\pi_1 \cap \pi_2) \setminus \pi_3 | = | (\pi_1 \cap \pi_3) \setminus \pi_2 | .$$

Proof. If $| \pi_1 \cap \pi_2 \cap \pi_3 | \leq 1$, this follows from 4.6, so assume $| \pi_1 \cap \pi_2 \cap \pi_3 | \geq 2$.

If there exists $P \in \pi_1 \cap \emptyset \cap \pi_2$ (or π_3), then $\ell := \pi_1 \cap \pi_2$ is a line (4.5), so $| \ell \cap \pi_3 | \geq 2$ $\Rightarrow \ell \subseteq \pi_3$ (4.2(b)) $\Rightarrow \pi_1 \cap \pi_3 = \ell$. (4.5). Thus, $| (\pi_1 \cap \pi_2) \setminus \pi_3 | = | (\pi_1 \cap \pi_3) \setminus \pi_2 | = 0$.

We may therefore assume the existence of $P \in \pi_1 \cap \emptyset$ with $P \notin \pi_2, \pi_3$. Then for $i = 2,3$, the map $s_i : \pi_1 \cap \pi_1 \rightarrow \{ m : m \text{ is a line through } P \text{ in } \pi_1 \}$, defined by $s_i(Q) = P Q$, is a bijection (by 4.1(a) and 4.2(b),(c)). In particular, $s_3^{-1} s_2$ induces a bijection of $(\pi_1 \cap \pi_2) \setminus \pi_3$ and $(\pi_1 \cap \pi_3) \setminus \pi_2$.

Corollary 4.8. If π_1, π_2, π_3 are distinct planes with $\pi_1 \cap \pi_2 \subseteq \pi_3$, then $\{ \pi_1, \pi_2, \pi_3 \}$ is a Δ-system.
COROLLARY 4.9. If \(\ell \) and \(m \) are respectively a line and a 2-line contained in a plane \(\pi \), then \(\ell \cap m \neq \emptyset \).

Proof. Let \(m = \pi_1 \cap \pi_2 \subseteq \pi \), and assume \(\pi_1 \neq \pi \). Then
\[
\emptyset \neq \ell \cap \pi_1 \quad \text{(by 4.2(c))} = \ell \cap \pi \cap \pi_1 = \ell \cap \pi_1 \cap \pi_2 \quad \text{(by 4.8 if} \\
\pi \neq \pi_2 \quad \text{)} = \ell \cap m.
\]
\[\square\]

DEFINITION. A near-line is a 2-line (\(m \)) which satisfies the following two equivalent conditions:

\((N_1)\) Any plane containing at least two points of \(m \) contains \(m \).

\((N_2)\) For all \(P \in \emptyset \setminus m \), there is a (necessarily unique) plane, \(Pm \), which contains \(\{P\} \cup m \).

(That \((N_1) \Rightarrow (N_2)\) is immediate from 4.3. Conversely, suppose \(m \) satisfies \((N_2)\), and let \(\pi \) be a plane containing points \(Q, R \) of \(m \). Let \(P \in \pi \cap \emptyset \). If \(P \in m \), then \(m \) is a line by 4.5, and satisfies \((N_1)\) by 4.2(b). If \(P \notin m \), then both \(\pi \) and the plane of \((N_2)\) contain \(P, Q, R \), and they must therefore be equal (4.3.).)

Remark 4.10. Every line is a near-line (by 4.5 and 4.2(b)).

Remark 4.11. If \(\ell \) is a near-line, then the set of planes meeting \(\ell \) at least twice (i.e., containing \(\ell \)) is a D-system with kernel \(\ell \). (For let \(\ell = \pi_1 \cap \pi_2 \), and suppose \(\pi_3 \) and \(\pi_4 \) are distinct planes containing \(\ell \). Then, if we assume \(\pi_3 \neq \pi_1 \), we may apply 4.8 (twice) to show \(\ell = \pi_1 \cap \pi_2 = \pi_1 \cap \pi_3 = \pi_2 \cap \pi_4 \).)
In particular,

there is at most one near-line containing a pair

of distinct points \(X \) and \(Y \). \(^{(4.12)}\)

If this near-line exists, we denote it \(XY \).

Proposition 4.13. If \(m \) is a near-line and \(\pi \) a plane, then
either \(|m \cap \pi| = 1\) or \(m \subseteq \pi \).

Proof. We just have to show \(m \cap \pi \neq \emptyset \). Suppose \(P \in \pi \cap \theta \)
(and \(P \notin m \)). Then by 4.9, \(\emptyset \neq (Pm \cap \pi) \cap m \subseteq \pi \cap m \). \(\square \)

Corollary 4.14. If \(m \) and \(t \) are respectively a near-line and a
2-line contained in a plane \(\pi \), then \(m \cap t \neq \emptyset \).

Proof. Same as proof of 4.9. \(\square \)

Proposition 4.15. Let \(\pi_1, \pi_2, \pi_3 \) be distinct planes with
\(|\pi_1 \cap \pi_2 \cap \pi_3| \geq 2\). Let \(X \in (\pi_1 \cap \pi_2) \backslash \pi_3 \). Then
(a) Each near-line through \(X \) in \(\pi_1 \) meets \((\pi_1 \cap \pi_3) \backslash \pi_2 \).
(b) The number of near-lines through \(X \) in \(\pi_1 \) is at most
\(|(\pi_1 \cap \pi_2) \backslash \pi_3|\).

Proof. (a) Let \(m \) be a near-line on \(X \) in \(\pi_1 \). By 4.13, \(m \)
contains a point \(Y \) of \(\pi_1 \cap \pi_3 \). If \(Y \in \pi_2 \), then \(m = \pi_1 \cap \pi_2 \) by
4.11. But then, since \(\pi_3 \) contains at least two points of \(m \), (NL)
implies \(\pi_1 \cap \pi_2 = m \subseteq \pi_3 \), contrary to assumption. Thus,
\(Y \in (\pi_1 \cap \pi_3) \backslash \pi_2 \).
(b) By (a) and 4.12, distinct lines through X in π_1 meet $(\pi_1 \cap \pi_3) \setminus \pi_2$ in distinct points. The number of such near-lines is thus at most $|\pi_1 \cap \pi_3| \setminus \pi_2|$, which by 4.7 is equal to $|\pi_1 \cap \pi_3|$.

PROPOSITION 4.16. Let π_1, π_2, π_3 be distinct planes, and suppose that for some $i \in \{1,2,3\}$, there exists $P \in \pi_i \cap \theta$ with $\pi_i \notin T(P)$.

Assume

$$|\pi_1 \cap \pi_2| \setminus \pi_3| < \infty$$

if S is infinite

$$< \sqrt{n+2 - f(n)}$$

if S has finite order n.

Then, $\{\pi_1, \pi_2, \pi_3\}$ is a Δ-system.

Proof. Since $|\pi_1 \cap \pi_j| \setminus \pi_k| := c$ is constant for $(i,j,k) = \{1,2,3\}$ (by 4.7), we may assume that there exists $P \in \pi_1 \cap \theta$ with $\pi_1 \notin T(P)$.

Suppose first that $c \geq 2$. Let $X,Y \in (\pi_1 \cap \pi_3) \setminus \pi_2$. If X,Y are on a near-line m, then $m = \pi_1 \cap \pi_3$ (by 4.11). But then $|\pi_2 \cap m| \geq 2$ implies $\pi_1 \cap \pi_3 = m \subset \pi_2$ (by (N1)), a contradiction.

The near-lines containing X are thus distinct from those containing Y. Each $Q \in \pi_1 \cap \theta$ is on lines (near-lines) QX and QY in π_1, and since these lines are not equal, they meet only in Q (by 4.1(a)). It follows that $|\pi_1 \cap \theta| \leq xy \leq c^2$, where x (resp. y) is the number of near-lines on X (resp. Y) in π_1. (Note $x,y \leq c$ by 4.15(b).)

On the other hand, all but at most $|T(P)|$ of the lines through P in π_1 are secants (by (BE)). So in the infinite case, $\pi_1 \cap \theta$ must be infinite, which contradicts $|\pi_1 \cap \theta| \leq c^2$; and in the finite case, we
have \((n + 1 - f(n)) + 1 \leq |\pi_1 \cap \emptyset| \leq c^2 < n + 2 - f(n)\), which is again a contradiction.

We are reduced to the case \(c = 1\). Let \(X \in (\pi_1 \cap \pi_3) \setminus \pi_2\). By 4.15(b), there can be no near-line other than \(PX\) on \(X\) in \(\pi_1\). But then \(\pi_1 \cap \emptyset \subseteq PX\), which surely contradicts \(\pi_1 \notin T(P)\). □

5. Two Lemmas

DEFINITION. \(W \in P\) is called a near-point if for each \(Y \in P \setminus \{w\}\), \(W\) and \(Y\) lie on a near-line.

Notice that, by 4.1(a) and 4.10,

points of \(\emptyset\) are near-points. \hspace{1cm} (5.1)

(Near-points are weaker than points of \(\emptyset\) in that 4.3 does not hold if \(P\) is only assumed to be a near-point. We return to this difficulty in section 8.)

DEFINITION. In a projective plane, \(\pi\), let the 6-tuple \((C, U, V, W, Z, Z_1)\) satisfy

\begin{align*}
C, U, V, W, Z, Z_1 &\text{ are distinct points}, \\
C, Z, Z_1 &\text{ are on a line } k, \\
U, V, W &\text{ are on a line } \ell, \\
Z, Z_1 &\notin \ell, \\
V, W &\notin k.
\end{align*} \hspace{1cm} (5.2)
Figure 1. Desargues' Configuration
We say that \(\pi \) is \textit{Desarguesian with respect to} \((C, U, V, W, Z, Z_1)\) if for each \(Y \in WZ \setminus \{W, Z\} \), \(Y \notin CU \), we have \(Y_1 \in WZ_1 \), where \(Y_1 \) is defined by:

\[
\begin{align*}
X & := UY \cap VZ, \\
X_1 & := CX \cap VZ_1, \\
Y_1 & := UX_1 \cap CY.
\end{align*}
\] (5.3)

(See Figure 1. Notice that \(X, X_1 \) and \(Y_1 \) represent points, not sets. This particular notational abuse will be common from now on.)

\textbf{DEFINITION.} For \(P \in \emptyset \), we denote by \(S/P \) the incidence structure whose points and lines are respectively the lines and planes of \(S \) which contain \(P \), incidence being inclusion. \(S/P \) is easily seen to be a projective plane with order equal to the order of \(S \). (In fact it is essentially the same as the projective plane \([P,1]\).) Elements of \(S/P \) are denoted by lower bars, using capital letters for points and lower case letters for lines. (We allow some ambiguity: \(X \) is used both for a point of \(S/P \) and for a line through \(P \) (in \(S \)), and similarly for \(\ell \). The intended meaning should usually be clear from the context.)

Let the 7-tuple \((P,C,U,V,W,Z,Z_1)\) satisfy (see figure 2):

\[
\begin{align*}
(i) & \quad P, C, U, V, W, Z, Z_1 \text{ are distinct points of } S. \\
(ii) & \quad P, C, U \in \emptyset. \\
(iii) & \quad V \text{ is a near-point.} \\
(iv) & \quad C, Z, Z_1 \text{ lie on a line } k.
\end{align*}
\] (5.4)

Figure 2. Construction for Lemma 5.5
(v) U, V, W lie on a line ℓ.

(vi) $k \cap \ell = \emptyset$.

(vii) P does not lie on any of the planes UWZ, UWZ_1, CZV, CZW.

(viii) P, C, U are not collinear.

(ix) (CWZ, UWZ, FWZ) is a Δ-system.

(Note: Both of the designations CZW and CWZ have been used above, although they represent the same plane. Similar abuses will, unfortunately, be common from now on.) Define points $C = PC, U = PU, ...$ $Z_1 = PZ_1$ and lines $k = Pk, \ell = Pl$ of S/P. It is straightforward to check that (C, U, V, W, Z, Z_1) satisfies conditions (5.2).

$(C \neq U$ by (viii). The second and third conditions of (5.2) come from (iv) and (v) respectively. The last two conditions and the remaining inequalities between the points are consequences of (vii).)

Lemma 5.5. (With notation as above) S/P is Desarguesian with respect to (C, U, V, W, Z, Z_1) iff (CWZ_1, UWZ_1, FWZ_1) is a Δ-system.

Proof. Let $m = CWZ \cap UWZ (\subseteq WZ$ by (ix)). If we associate with each $Y \in m$ the point $Y := PY$ of S/P, then by 4.9 we have a bijection of m and (the line) WZ. Denote by Y_o the point of m associated with the intersection point, Y_o, of WZ and CU.

If for each $Y \in m$ we let Y_1 be the unique point of $ CY \cap UWZ_1$, then $Y \rightarrow Y_1$ is, according to 4.9, a bijection of m and $CWZ_1 \cap UWZ_1$. Notice that $W \rightarrow W$ and $Z \rightarrow Z_1$.
We can obtain the restriction of this bijection to $m \setminus \{W, Z\}$ in another way: For $Y \in m \setminus \{W, Z\}$, let X be the intersection point of the near-lines UY and VZ (which meet by 4.14, since both lie in the plane UWZ). Let X_1 be the intersection of the near-lines CX and VZ_1 (which lie in the plane CVZ). Finally, the lines UX_1 and CY lie in the plane CUY, so they meet in a point which, since it lies on $UX_1 \subseteq UWZ_1$, can only be Y_1.

Now, starting with (C, U, V, W, Z, Z_1) and $Y := PY$, $Y \neq Y_0$, define the points X, X_1 and Y_1 of S/P according to (5.3). Then we have

\[
X = UY \cap VZ \subseteq UY \cap VZ := X; \\
X_1 = CX \cap VZ_1 \subseteq CX \cap VZ_1 := X_1; \\
Y_1 = UX_1 \cap CY \subseteq UX_1 \cap CY := Y_1.
\]

In particular, $Y_1 \in Y_1$, so that $Y_1 \in WZ_1$ is equivalent to $Y_1 \in PWZ$ (by 4.2(b)). Thus S/P is Desarguesian with respect to (C, U, V, W, Z, Z_1)

\[
\Rightarrow \forall Y \in WZ \setminus \{W, Z, Y_0\}, \ Y_1 \in WZ_1 \\
\Rightarrow \forall Y \in m \setminus \{W, Z, Y_0\}, \ Y_1 \in PWZ_1 \\
\Rightarrow PWZ_1 \ni (CWZ_1 \cap UWZ_1) \setminus \{(Y_1)\}.
\]

To complete the proof, it is now sufficient to show

\[
PWZ_1 \ni (CWZ_1 \cap UWZ_1) \setminus \{(Y_1)\} \Rightarrow [CWZ_1, UWZ_1, PWZ_1] \text{ is a } \Delta\text{-system.}
\]

The latter statement trivially implies the former. To prove the reverse implication, notice that $U(Y_o)_1$ and $V(Y_o)_1$ are distinct near-lines on $(Y_o)_1$ in UWZ_1 (since if $U(Y_o)_1 = V(Y_o)_1$, then $(Y_o)_1 = UV \cap CWZ_1 = W$, which is false). Thus by 4.15(b),
\[(\gamma_0)_1 \in (CW_z \cap UW_z) \setminus FW_z\] is incompatible with
\[|(CW_z \cap UW_z) \setminus FW_z| \leq 1.\] In particular, \(FW_z \geq (CW_z \cap UW_z) \setminus \{(\gamma_0)_1\}\) implies \(FW_z \geq CW_z \cap UW_z\), which by 4.8 implies that \((CW_z, UW_z, FW_z)\) is a \(\Delta\)-system.

\textbf{Lemma 5.6.} Let \((B_1, B_2, B_3, B_4, B_5, B_6, B_7, h)\) satisfy (see figure 3):

(a) \(B_1, B_2, \ldots, B_7\) are distinct points and \(h\) is a

secant;

(b) \(B_1, B_2 \in \mathcal{G}\);

(c) Each of the triples \(\{B_1, B_4, B_6\}, \{B_1, B_5, B_7\}, \{B_2, B_4, B_5\}, \{B_2, B_6, B_7\}\) is collinear;

(d) \(B_2 \notin B_1 B_4\) (i.e., the only collinear triples contained

in \(\{B_1, B_2, B_4, B_5, B_6, B_7\}\) are those in (c));

(e) \(B_3 \notin B_1 B_2 B_4\);

(f) \(B_3 \in h\), \(h\) meets none of the lines \(B_1 B_4, B_1 B_7, B_2 B_4, B_2 B_7\);

(g) At least two points of \(h \cap \mathcal{G}\) do not lie on the

line \(B_1 B_2\);

(h) \(\{B_2, B_3, B_4, B_5, B_6, B_7, h\}\) and \(\{B_2, B_3, B_5, B_6, B_7, h\}\) are

\(\Delta\)-systems.

Then \(\{B_2, B_3, B_4, B_5, B_6, B_7, h\}\) is a \(\Delta\)-system iff \(\{B_2, B_3, B_5, B_6, B_7, h\}\) is

a \(\Delta\)-system.

\textbf{Proof.} If \(B_3 \notin \mathcal{G}\), the result follows from 4.11. (In this case, both triples are \(\Delta\)-systems.) Suppose, then, that \(U, V \notin B_3\) are
Figure 3. Hypotheses for Lemma 5.6
distinct points of \(h \cap \mathcal{G} \) not lying on \(B_1 B_2 \). Since \(|h \cap B_1 B_2 B_4| = 1 \) (by (e),(f)), we may assume \(V \notin B_1 B_2 B_4 \). Then, it is straightforward to verify that each of the 7-tuples \((B_1, B_2, U, V, B_3, B_5, B_7)\) and \((B_1, B_2, U, V, B_3, B_5, B_7)\) satisfies the hypotheses (5.4). We observe that if we define \(B_4 = B_1 B_4 \), \(B_5 = B_1 B_5 \), \(B_6 = B_1 B_6 \) and \(B_7 = B_1 B_7 \), then \(B_4 = B_6 \) and \(B_5 = B_7 \). Thus, a double application of 5.5 yields:

\[
\{B_2, B_3, B_5, U, B_7 = B_1 h, B_2 B_3 B_5\} \text{ is a \(\Delta \)-system}
\]

\(S/B_1 \) is Desarguesian with respect to

\[
(B_2, U, V, B_3, B_5, B_7) = (B_2, U, V, B_3, B_5, B_7)
\]

\(\{B_2, B_3, B_5, U, B_7, = B_1 h, B_2 B_3 B_5\} \text{ is a \(\Delta \)-system.} \]

6. Lines in the Infinite Case

Suppose \(\pi_1 \) and \(\pi_2 \) are affine planes on the same point set, \(X \). We call a subset of \(X \) a constant line if it is a line of both \(\pi_1 \) and \(\pi_2 \), and a \(\pi_i \)-line if it is a line of \(\pi_i \), but not of \(\pi_3 \) (\(i = 1,2 \)). Similarly, for \(i = 1,2 \), a parallel class of \(\pi_1 \) is called a \(\pi_i \)-class if it contains \(\pi_i \)-lines, and a constant class otherwise.

Lemma 6.1. Let \(\pi_1 \) and \(\pi_2 \) be affine planes on the same point set, \(X \). Let \(b \) be the number of \(\pi_1 \)-classes (in \(\pi_1 \)), and suppose that
\[
\begin{align*}
b & < \infty \quad \text{if } \pi_1 \text{ is infinite} \\
& < \sqrt{n} + 1 \quad \text{if } \pi_1 \text{ is of finite order } n.
\end{align*}
\]
then \(b = 0\) (i.e., \(\pi_1 = \pi_2\)).

Proof. For \(P, Q \in X\), \(P \neq Q\), let \((PQ)_1\) denote the line joining \(P\) and \(Q\) in \(\pi_1\) \((i = 1, 2)\). Let \(b_2\) be the number of \(\pi_2\)-classes (in \(\pi_2\)).

If \(P, Q\) are distinct points, then \((PQ)_1\) is in a \(\pi_1\)-class iff \((PQ)_2\) is in a \(\pi_2\)-class. (Notice this does not preclude \((PQ)_1 = (PQ)_2\).)

So if \(\ell\) is a (constant) line of a constant class, and \(P \notin \ell\), then
\[
\begin{align*}
b &= |\{Q \in \ell: (PQ)_1 \text{ is in a } \pi_1\text{-class}\}| \\
&= |\{Q \in \ell: (PQ)_2 \text{ is in a } \pi_2\text{-class}\}| \\
&= b_2.
\end{align*}
\]

Let \(\ell_1\) and \(\ell_2\) be a \(\pi_1\)-line and a \(\pi_2\)-line respectively. We may suppose without loss of generality (because \(b = b_2\)) that there is some \(P \in \ell_2 \setminus \ell_1\). Then, the lines \((PA)_1\) with \(A \in \ell_1 \cap \ell_2\) are all \(\pi_1\)-lines (since \(P, A\) are on the \(\pi_2\)-line \(\ell_2\)), and are all distinct (since any two such \(A\) are on the \(\pi_1\)-line \(\ell_1\), which does not contain \(P\)). Moreover, these lines are in distinct \(\pi_1\)-classes (any two intersect), and not in the \(\pi_1\)-class containing \(\ell_1\). It follows that
\[
|\ell_1 \cap \ell_2| \leq b - 1.
\]

Again, let \(\ell_1\) be any \(\pi_1\)-line, and let \(Y \in \ell_1\). Any point of \(\ell_1 \setminus \{Y\}\) is joined to \(Y\) by a \(\pi_2\)-line, which meets \(\ell_1\) in at most \(b - 2\) points other than \(Y\). Since the number of \(\pi_2\)-lines on \(Y\) is at most \(b\), we have

5 J. Yaqub has pointed out that in the finite case this is due to Bruck [8].
\[|\ell_1| \leq 1 + b(b - 2) < \infty \quad \text{if } \pi_1 \text{ is infinite} \]
\[< n \quad \text{if } \pi_1 \text{ has finite order } n. \]

In either case, this is a contradiction, and we conclude that \(\pi_1 \)-lines (and \(\pi_2 \)-lines) do not exist. \(\square \)

Lemma 6.1 can sometimes be used to prove the equality of projective planes of a type which we now describe.

Let \(\pi \in \delta \), and \(P \in \Theta \setminus \pi \). If for each line \(\ell \) and plane \(\pi' \) on \(P \), we map

\[\alpha: \begin{cases} \ell & \to \ell \cap \pi \\ \pi' & \to \pi' \cap \pi, \end{cases} \]

then by 4.2(b),(c), \(\alpha \) is an isomorphism of \(S/P \) and the projective plane - called \(\pi^P \) - whose points are the points of \(\pi \), and whose lines are the 2-lines \(\pi' \cap \pi \) with \(P \in \pi' \in \delta \).

If \(\ell \) is a line of a projective plane \(\pi \), then \(\pi^\ell \) denotes the affine plane obtained from \(\pi \) by deleting \(\ell \) and all of its points.

Lemma 6.2. Suppose \(\ell \in \ell \), \(\ell \subseteq \pi \subseteq \pi \), and \(E,H \in \Theta \setminus \pi \).

Suppose, moreover, that for all but at most \(b \) points \(W \) of \(\ell \) we have

\[EWZ \cap \pi = HWZ \cap \pi \quad \forall Z \in \pi \setminus (W), \tag{6.3} \]

where

\[b < \infty \quad \text{if } S \text{ is infinite} \]
\[< \sqrt{n} + 1 \quad \text{if } S \text{ has finite order } n. \]

Then, \(E = H \).
Proof. By lemma 6.1, the affine planes \((\pi^E)^{\ell}\) and \((\pi^H)^{\ell}\) are equal, since each \(W \in \ell\) which satisfies (6.3) corresponds to a constant class of \((\pi^E)^{\ell}\). Choose \(Y \in \pi \setminus \ell\) such that \(Y \notin \pi'\) \(\forall \pi' \in T(E)\). (Such a \(Y\) surely exists by (BE).) For any \(Z \in \pi \setminus \ell \setminus \{Y\}\), we have \(EYZ \cap (\pi \setminus \ell) = HYZ \cap (\pi \setminus \ell) = 1\). So \(EYZ \neq T(E)\) implies, by 4.16, that \(EYZ \cap \pi = HYZ \cap \pi\). It follows that \(EYW \cap \pi = HYW \cap \pi\) also holds for all \(W \in \ell\). Finally, for \(W \in \ell\) and \(X \in \pi \setminus \ell\), let \(m\) be the (affine) line of \(\pi^E)^{\ell} = (\pi^H)^{\ell}\) which contains \(X\) and is parallel or equal to the line \((EYW \cap \pi) \setminus \{W\} = (HYW \cap \pi) \setminus \{W\}\). Then, \(EWX \cap \pi = m \cup \{W\} = HWX \cap \pi\). \(\square\)

COROLLARY 6.4. Let \(\ell\) be a line and suppose that at most \(b\) points of \(\ell\) are not near-points, where

\[
\begin{align*}
\text{if } S \text{ is infinite} & \quad b < \infty \quad \text{if } S \text{ is finite order } n. \\
< \sqrt{n} + 1 & \quad \text{if } S \text{ has finite order } n.
\end{align*}
\]

Then, all points of \(\ell\) are near-points.

Proof. Let \(W \in \ell\), \(Y \in P \setminus \ell\), and \(\pi = Y\ell\). If \(E \in \Theta \setminus \pi\), then \(EYW \cap \pi\) satisfies (N2). So given \(W \in \ell\), there is, for each \(Y \in P \setminus \ell\), a near-line containing \(W\) and \(Y\). Since \(\ell\) is a near-line (4.5) containing \(W\) and any \(Y \in \ell \setminus \{W\}\), \(W\) is a near-point. \(\square\)
For the remainder of section 6, \(S \) is assumed to be infinite.

Let \(l \) be a line (of \(S \)) and \(W \) a point of \(l \), \(W \notin \emptyset \). Let \(E, H \in \emptyset, E, H \notin l, H \notin E \), and suppose \(EW \) and \(HW \) are secants.

Set

\[
M = \{ \pi \in \emptyset: E, H \notin \pi \supset l \}.
\]

For \(\pi \in M \), a point \(X \) of \(\pi \setminus \{W\} \) is called \textit{good} if \(EWX \cap \pi = HWX \cap \pi \), and \textit{bad} otherwise.

Fix \(Q \in \pi \cap \emptyset \), and for each \(\pi \in M \), let \(m(\pi) \) be the line \(\pi \cap QEH \). (Notice \(Q \in m(\pi) \neq l \).) Define

\[
M^* = \{ \pi \in M: m(\pi) \text{ contains infinitely many good points} \},
\]

\[
M^{**} = \{ \pi \in M: m(\pi) \text{ contains only finitely many bad points} \}.
\]

Clearly, \(M^{**} \subset M^* \) (see 4.6).

Lemma 6.5. With notation as above, assume

(i) \(M^* \) is infinite,

(ii) \(M^{**} \neq \emptyset \).

Then if \(\pi \in M^* \), \(\pi \) contains no bad points.

Proof. Observe first that if \(\pi \in M \), \(X, Y \in \pi \setminus \{W\} \), and \(Y \in EWX \), then \(X \) is good iff \(Y \) is good. It follows (from 4.9) that to prove 6.5 we need only prove

if \(\pi \in M^* \), then \(m(\pi) \) contains no bad points. \((*)\)

We first show that

if \(\pi \in M^{**} \), \(\pi' \in M^* \), and \(X \) is a good point of \(m(\pi) \), then both \(EX \cap m(\pi') \) and \(HX \cap m(\pi') \) are good \((**)\) points.
We may assume $X \not\in Q$, $X \not\in EH$, and $\pi \not\in \pi'$, since otherwise (**) is trivial. For each $Y \in m(\pi)$, let $Y' = EY \cap m(\pi')$. Then $Y \mapsto Y'$ is a bijection of $m(\pi)$ and $m(\pi')$ (by 4.9, 4.1, 4.2(b)). Choose $Y \in m(\pi)$ satisfying

\begin{align*}
Y &\not\in Q, X, \\
Y &\not\in EH, \\
Y &\text{ is good}, \\
Y' &\text{ is good}.
\end{align*}

(Such a Y exists: of the infinitely many $Y \in m(\pi)$ for which Y' is good, three are ruled out by the first two conditions, and since $\pi \in M^{**}$, only finitely many are ruled out by the third.) It is then straightforward to verify that $(Q, E, W, X, X', Y, Y'; HW)$ satisfies the hypotheses of lemma 5.6, and that $(EWY', QWY' = \pi', HWY')$ is a Δ-system. (E.g., (a) HW secant was assumed; (g) $HW \cap QE = \emptyset$ because $H \not\in E\ell$; (h) X, Y are assumed to be good.) Thus, lemma 5.6 implies that (EWX', π', HWX') is a Δ-system, i.e., $X' = EX \cap m(\pi')$ is good. That $HX \cap m(\pi')$ is good is, of course, shown in the same way. So we have (**) now.

Now, fix $\pi \in M^{**}$ and let π' be any plane of M^*. By (**), (and again 4.9, 4.1, 4.2(b)), the bad points of $m(\pi')$ are contained in the set $(EX \cap m(\pi'): X$ is a bad point of $m(\pi)}$. It follows that M^* is contained in, hence equal to, M^{**}. Thus (again using (**)):

If $\pi, \pi' \in M^* (= M^{**})$, and if X is a bad point of $m(\pi)$, then $EX \cap m(\pi')$ and $HX \cap m(\pi')$ are also bad. (***)
Suppose that for some $\pi \in M^*$, there is a bad point, X, on $m(\pi)$, and let $k (< \infty)$ be the number of bad points on $m(\pi)$. Let $\pi = \pi_0, \pi_1, \ldots, \pi_k$ be distinct planes of M^*. (This is possible by (i).) For $i = 0, 1, \ldots, k$, define $X_i = EX \cap m(\pi_i)$, and $X_i = HX_i \cap m(\pi)$. By (**), we have X bad $\Rightarrow X_1$ bad $\Rightarrow X_1$ bad, $i = 0, 1, \ldots, k$. Since X bad implies $X \notin Q$, we have $X = X_0, X_1, \ldots, X_k$ are distinct points of EX. Suppose that for some $i \neq j$, $X_i = X_j$. Then $HX_i = HX_i = HX_j = HX_j$ is a line containing X_i and X_j, and must therefore be equal to EX (by 4.1(b)). But this implies $X \in EH$, which is impossible if X is bad. Thus, X_0, X_1, \ldots, X_k must be $k+1$ distinct bad points of $m(\pi)$, a contradiction which completes the proof of (*) and of the lemma.

Let ℓ be a line, $F \in \ell \cap \Theta$, and E, H distinct points of Θ satisfying

$$EH \cap \ell = \emptyset, \quad \ell \notin \pi \forall \pi \in T(P) \cup T(E) \cup T(H).$$

Let $F \notin Q \in \ell \cap \Theta$. All of these objects will be fixed until the end of lemma 6.17.

Suppose $W \in \ell \setminus \Theta$ satisfies

$$W \notin \pi \forall \pi \in T(E) \cup T(H).$$

We remark that because of (6.7) and (BE)

only finitely many $W \in \ell$ fail to satisfy (6.8). (6.9)

Let $E \notin F \in EW \cap \Theta$, $H \notin G \in HW \cap \Theta$, and $A = EH \cap FG$. (Notice that $W \notin \Theta$ implies $W \notin P, Q, F, G$.)
LEMMA 6.10. (With notation as above:) For all but finitely many $Z \in QA$, $[EWZ, HWZ, PAW]$ is a Δ-system.

Proof. Let $Z \in QA$ satisfy
\begin{align*}
Z &\neq A, Q, \\
Z &\notin PEG, \\
PZ &\text{ is a secant.}
\end{align*}

Then, $(G, E, Z, A, H, F, W; PZ)$ is easily (tediously) seen to satisfy conditions (a)-(g) of lemma 5.6. (E.G., (e) $Z \notin GEA$, since otherwise $Z, A \in GEA \Rightarrow Q \in GEA$, and then $W \in GEA = E \subseteq GEA \Rightarrow EH \cap E \neq \emptyset$;
\begin{itemize}
 \item[(g)] $PZ \cap GE = \emptyset$ follows from $Z \notin PEG$.\end{itemize}
In fact, (h) also holds: $ZA (= QA)$ and ZF being lines (since $Q, F \in G$), it follows from 6.11 that $\{EZA, GZA, PZA\}$ and $\{EZF, GZF, PZF\}$ are Δ-systems. Moreover, $\{EZH, GZH, PZH\}$ is a Δ-system (ZH is a line). Thus 5.6 implies that $\{EWZ, GWZ, HWZ, FWZ = PAW\}$ is a Δ-system whenever Z satisfies (6.11). But since $|PEG \cap QA| = 1$, and $PAW \notin T(P)$, there are at most finitely many $Z \in QA$ for which (6.11) does not hold. \[\square\]

COROLLARY 6.12. If $W \in \ell$ satisfies (6.8) and
\begin{align*}
\text{the number of planes on } \ell \text{ which contain infinitely} & \\
\text{many lines through } W \text{ is infinite,} & \tag{6.13}
\end{align*}
then, for any plane π such that $E, H \notin \pi \supset \ell$, π contains infinitely many lines through W, $\{EWZ, HWZ, \pi\}$ is a Δ-system $\forall Z \in \pi \setminus \{W\}$.

Proof. For $W \in \mathcal{G}$, this follows from $4.1(a), 4.10$ and 4.11.

For $W \notin \mathcal{G}$, we obtain the present result as a special case of lemma 6.5: Any plane which satisfies conditions (6.14) is in \mathcal{M}^*, so that (6.13) gives condition (i) of 6.5. And since W satisfies (6.8), lemma (6.10) implies $M^{**} \neq \emptyset$, which is condition 6.5(ii).

(Notice that, with A as in 6.10, $QA = m(PAW)$ and $PAW \in M^{**}$.) So if π satisfies (6.14) (i.e., $\pi \in \mathcal{M}^*$), then all points of $\pi \setminus [W]$ are good, which is the desired result. □

Remark 6.15. If π is a plane containing ℓ, then there is at most one point of ℓ which does not lie on infinitely many lines in π.

Proof. Suppose X, Y are distinct points of ℓ, each lying on only finitely many lines in π. If x and y are the numbers of lines of π other than ℓ on X and Y respectively, then $|((\pi \setminus \ell) \cap \emptyset| \leq xy < \infty$. Thus there are infinitely many tangents on P in π, a contradiction since by (6.7), $\pi \notin T(P)$. □

We note that, in view of 6.15,

there is at most one $W \in \ell$ which fails to satisfy

(6.16)

LEMMA 6.17. If π is any plane with $E, H \notin \pi \supset \ell$, then $E = H$.

Proof. By 6.12, if $W \in \ell$ satisfies (6.8) and (6.13), and if W is on infinitely many lines in π, then $E_{WZ} \cap \pi = H_{WZ} \cap \pi$ $\forall Z \in \pi \setminus \{W\}$. But according to (6.9), (6.16), and 6.15, this is true of all but finitely many $W \in \ell$. 6.17 now follows from lemma 6.2. □

We now allow P, Q, E, H and ℓ to vary.

COROLLARY 6.18. If π is a plane, $P \in \pi \cap \emptyset$, $\pi \not\in T(P)$, and if $E, H \in \emptyset$, $\not\in \pi$, then $E = H = \pi$.

Proof. First suppose $P \not\in E \cap H$. Since only finitely many of the lines on P in π are on planes of $T(P) \cup T(E) \cup T(H)$, there is some line ℓ satisfying $P \in \ell \subset \pi$, $\ell \cap EH = \emptyset$, and $\ell \not\in \pi'$ $\forall \pi' \in T(P) \cup T(E) \cup T(H)$. The result then follows from 6.17.

Now, suppose $P \in E \cap H$. By (BE) (applied to P), we may choose $P \in \emptyset$, $P \not\in \pi \cup EH$. Then, the preceding argument gives $E = F = H$. □

COROLLARY 6.19. Let P, W, Y be distinct points with $P \in \emptyset$, $Y \not\in PW$, and $PW \not\in T(P)$. Then W and Y are on a near-line.

Proof. Let $E \in \emptyset$, $\not\in PW$. Then by 6.18, $EWY \cap PWY$ satisfies (N2). □

COROLLARY 6.20. If $W \in \emptyset$, and there is some $P \in \emptyset$ such that $W \not\in \pi$ $\forall \pi \in T(P)$, then W is a near-point.
Proof. If $Y \not\in \ell W$, then W,Y are on a near-line by 6.19. If $Y \in \ell W \setminus \{W\}$, then W,Y are on the near-line ℓW. \hfill \Box$

COROLLARY 6.21. All points are near-points. (Any two points lie on a near-line.)

Proof. Given $W \in \mathcal{P}$, choose $P,Q \in \mathcal{G}$ with $W \notin PQ$ and $Q \notin \pi \forall \pi \in T(P)$. (Choose P first and use (BE).) Then, any $\pi \in T(P)$ contains just one point of QW. Thus, all but finitely many points of QW are near-points (by 6.20). So all points of QW (and W in particular) are near-points (by 6.4). \hfill \Box

7. Lines in the Finite Case

In this section, we assume that S has finite order n. Until we reach corollary 7.16, we will assume that n is at least 4, in order to have enough elements to work with. As will be shown, 7.16 is obtained quite easily when $n = 2, 3$, without the aid of any of the earlier results of this section.

As in the discussion preceding lemma 6.5, let ℓ be a line, $W \notin \ell$, $W \notin \mathcal{G}$. Assume that $E,H \in \mathcal{G}$, $E,H \notin \ell$, $H \notin \mathcal{E} \ell$, and that EW and HW are secants. Assume further that there exists $P \in \ell \cap \mathcal{G}$ with $\ell \notin \pi \forall \pi \in T(P)$. Set

$$M = \{ \pi \in \mathcal{G} : E,H \notin \pi \supset \ell \} ,$$

and for $\pi \in M$, let a point X of $\pi \setminus \{W\}$ be called good if
$E \cap \pi = H \cap \pi$, and \textit{bad} otherwise. Let $Q \in \ell \cap \Theta$, and for each
$\pi \in M$, let $m(\pi) = \pi \cap QEH$.

\textbf{Lemma 7.1.} (With notation as above) Let t be a nonnegative integer, and suppose
\[\text{there is some } \pi_0 \in M \text{ for which the number of bad points on } m(\pi_0) \text{ is at most } t.\]
(7.2)

(a) Suppose M contains at least $t + 1$ planes π (one of which may be π_0) for which
\[\text{the number of good points on } m(\pi) \setminus (Q \cup \Theta) \text{ is at least } t + 2.\]
(7.3)

Then if $\pi \in M$ satisfies (7.3), π contains no bad points.

(b) If $t = 0$, then no $\pi \in M$ contains any bad points.

\textbf{Proof.} The proof of (a) is the same as the proof of lemma 6.5.

Proof of (b): We may assume that W is not a near-point, since
otherwise the result follows from 4.11. We first remark that if π
is any plane containing ℓ, then π contains at least two lines on
W other than ℓ. For if $(\pi \setminus \ell) \cap \Theta \subseteq k$ for some line k on W,
then $\pi \notin T(\Theta)$ implies that there are at least $n - f(n)$ points of
Θ on k, so that (by (5.1)) at most $f(n) + 1 < \sqrt{n} + 1$ points of
k are not near-points. But then by 6.4, all points of k (including
W) are near-points, contrary to assumption. Since for any $\pi \in M$,
each line of π on W meets $m(\pi)$ in a good point, (b) now follows
from (a).
COROLLARY 7.4. Under the hypotheses of 7.1(a), no $\pi \in \mathcal{M}$ contains any bad points.

Proof. 7.1(a) guarantees the existence of a π_0 which satisfies (7.2) with $t = 0$, so the result follows from 7.1(b). □

As in the discussion preceding lemma 6.10, let ℓ be a line, $P \in \ell \cap \Theta$, and E, H distinct points of Θ satisfying (6.6) and (6.7). Let $P \neq Q \in \ell \cap \Theta$. All of these elements will be fixed until the end of lemma 7.13.

Suppose $W \in \ell \setminus \Theta$ satisfies (6.8). (Notice that (6.7) and (BE) imply that

$$\text{at most } 2 f(n) \ W \ \text{fail to satisfy (6.8).} \quad (7.5)$$

Let $E \neq F \in EW \cap \Theta$, $H \neq G \in HW \cap \Theta$, and define $A = EH \cap FG$, $A' = EG \cap FH$.

LEMMA 7.6. With notation as above, for all but at most $f(n)$ $Z \in QA$, (EWZ, HWZ, PAW) is a Δ-system.

Proof. Let $Z_o = QA \cap PEG$, and suppose that PZ_o is a secant. (Notice that $Z \neq Q, A$.) Each of the systems $(G, E, Z_o, A, H, F, W; PZ_o)$ and $(H, F, Z_o, A, G, E, W; PZ_o)$ is easily seen to satisfy all of the hypotheses of 5.6, with the possible exception of (g). (This is as in lemma 6.10. Z_o satisfies (6.11) except for the condition $Z_o \notin PEG$, which in 6.10 was used to obtain 5.6(g).)
Suppose first that 5.6(g) is satisfied by (at least) one of these systems. Then \((E^{WZ}_o, G^{WZ}_o, P^{WZ}_o) \) is shown to be a \(\Delta \)-system as in the proof of 6.10. (Notice that \(E^{WZ}_o = F^{WZ}_o \) and \(G^{WZ}_o = H^{WZ}_o \).) 7.6 now follows: The proof of lemma 6.10 shows that \((E^{WZ}_o, H^{WZ}_o, P^{WZ}_o) \) is a \(\Delta \)-system whenever \(Z \in QA \) satisfies conditions (6.11). But the same result holds trivially when \(Z = A \), and by 4.11 when \(Z = Q \); and as indicated above, it also holds when \(Z \in PEG \), provided \(PZ \) is a secant. Thus, the only points \(Z \) of \(QA \) for which \((E^{WZ}_o, H^{WZ}_o, P^{WZ}_o) \) may fail to be a \(\Delta \)-system are those for which \(PZ \) is a tangent. This gives 7.6.

Now suppose that neither system satisfies 5.6(g). That \((g) \) fails for the system \((G, E, Z_o, A, H, F, W; P^{Z}_o) \) implies that the only two points of \(P^{Z}_o \cap G \) are \(P \) and \(P^{Z}_o \cap GE \). Similarly, since \((g) \) fails for the second system, \(P^{Z}_o \) and \(HF \) must intersect in the only point of \(P^{Z}_o \cap G \) other than \(P \). Since this point lies on \(GE \) and \(HF \), it must be \(A' \), and in particular we have \(A' \in G \) and \(P^{A'} = P^{A} \) (see figure 4).

Since \(n \geq 4 \), we may choose in \(P^{A} \) a secant \(m \) on \(P \) with \(m \neq \ell, P^{A}, P^{A'} \) (using (BE)). Then, whenever \(Z \in m \setminus \{ P \} \) and \(Z \neq m \cap EH \), the system \((G, F, Z, A', H, E, W; P^{Z}) \) satisfies the hypotheses of lemma 5.6. (The advantage of having \(A' \in G \) is that \(ZA' \) is automatically a line, whereas previously we needed \(Z \in QA \) to force \(ZA \) to be a line.) Again, as in the proof of 6.10, \((F^{WZ} = E^{WZ}, H^{WZ}, P^{A} = P^{A}) \) is a \(\Delta \)-system. Of course, this is also true if \(Z = P \) or \(Z = m \cap EH \) (trivially in the latter case). But as
Figure 4. Case Involving A' in the Proof of Lemma 7.6
observed earlier (see the first paragraph of the proof of 6.5),
\{\text{EWZ,HWZ,PAW}\} is a Δ-system for each $Z \in m$ iff \{\text{EWZ,HWZ,PAW}\} is a Δ-system for each $Z \in \text{PAW} \setminus \{W\}$.

This completes the proof of 7.6. \square

COROLLARY 7.7. With notation as in lemma 7.6, if $f(n) = 1$ then \{\text{EWZ,HWZ,PAW}\} is a Δ-system $\forall Z \in \text{PAW} \setminus \{W\}$.

Proof. By 7.6, there is at most one ($= f(n)$) $Z \in \text{QA}$ for which \{\text{EWZ,HWZ,PAW}\} is not a Δ-system. If such a Z (say Z_0) exists, then by 4.9, we have for $X \in \text{PAW} \setminus \{W\}$:

$$X \in \text{EWZ}_0 \Rightarrow X \notin \text{EWZ} \forall Z \in \text{QA} \setminus \{Z_0\}$$

$$\Rightarrow X \notin \text{HWZ} \forall Z \in \text{QA} \setminus \{Z_0\}$$

$$\Rightarrow X \in \text{HWZ}_0.$$ That is, \text{EWZ}_0 \cap \text{PAW} = \text{HWZ}_0 \cap \text{PAW}. This completes the proof. \square

The next two corollaries are derived from 7.4, 7.6 and 7.1(b), 7.7 respectively in the same way as 6.12 was derived from 6.5, 6.10.

COROLLARY 7.8. Let $f(n) \geq 2$. If $W \in \ell$ satisfies (6.8) and the number of planes on ℓ which contain at least

$$f(n) + 2$$

lines $\notin \ell$ through W is at least

$$f(n) + 1,$$

then for any plane π with $E,H \notin \pi \ni \ell$, \{\text{EWZ,HWZ,}π\} is a Δ-system $\forall Z \in \pi \setminus \{W\}$.

COROLLARY 7.10. Let \(f(n) = 1 \). If \(W \in \mathcal{L} \) satisfies (6.8), then for any plane \(\pi \) with \(E, H \not\in \pi \supseteq \mathcal{L} \), \(\{ EW, HW, Z \} \) is a \(\Delta \)-system \(\forall Z \in \pi \setminus \{ W \} \).

Remark 7.11. Let \(f(n) \geq 2 \). If \(\pi \) is a plane containing \(\mathcal{L} \), then there is at most one point of \(\mathcal{L} \) which lies on less than \(f(n) + 2 \) lines other than \(\mathcal{L} \) in \(\pi \).

Proof. Since \(P \) lies on at least \(n - f(n) \) secants other than \(\mathcal{L} \) in \(\pi \), there is at most one \(W \in \mathcal{L} \) for which the number of lines \(\not\in \mathcal{L} \) on \(W \) in \(\pi \) is \(< \sqrt{n - f(n)} \) (see proof of 6.15). But

\[
\sqrt{n - f(n)} > f(n) + 1 \Rightarrow n - f(n) > (f(n))^2 + 2f(n) + 1
\]

\[
\Rightarrow (f(n))^2 + 3f(n) + 1 < n.
\]

Since the last inequality is always true if \(f(n) \geq 2 \), this proves 7.11.

From 7.11, it follows that

there is at most one \(W \in \mathcal{L} \) which fails to satisfy 7.9. \(\quad (7.12) \)

(here we are using (1) the number of planes on \(\mathcal{L} \) is \(n-1 \), and

(2) \(f(n) < \frac{1}{2}(n+1) \).)

LEMMA 7.13. If \(\pi \) is any plane with \(E, H \not\in \pi \supseteq \mathcal{L} \), then \(\pi^E \sim \pi^H \).

Proof. First let \(f(n) \geq 2 \). By 7.8, we have \(EWZ \cap \pi = HWZ \cap \pi \forall Z \in \pi \setminus \{ W \} \), provided \(W \in \mathcal{L} \) satisfies (6.8) and (7.9). By (7.5) and (7.12), this holds for all but at most \(2f(n) + 1 < \sqrt{n+1} \) \(W \in \mathcal{L} \), and the result follows from 6.2.
If \(f(n) - 1 \), then by 7.10, \(W \in \ell \) need only satisfy (6.8) to insure that \(\text{EWZ} \cap \pi = \text{HWZ} \cap \pi \quad \forall Z \in \pi \setminus \{W\} \). By 7.5, there are at most \(2 < \sqrt{n} + 1 \) \(W \in \ell \) which fail (6.8), and again we may apply 6.2. \(\square \)

We now allow \(P, Q, E, H \) and \(\ell \) to vary.

Corollary 7.14. If \(\pi \) is a plane, \(P \in \pi \cap \Theta \), \(\pi \not\subset T(P) \), and \(E, H \in \Theta \), \(\notin \pi \), then \(\pi^E = \pi^H \).

Proof. Same as 6.18. We make use of the fact that \(3f(n) + 1 < n + 1 \), and in particular the assumption \(n \geq 4 \). \(\square \)

Corollary 7.15. Let \(P, W, Y \) be distinct points with \(P \in \Theta \), \(Y \notin PW \), and \(PWY \notin T(P) \). Then \(W, Y \) are on a near-line.

Proof. Same as 6.19.

We now drop the assumption \(n \geq 4 \).

Corollary 7.16. If \(W \in \Theta \) and there is some \(P \in \Theta \) such that \(W \notin \pi \quad \forall \pi \in T(P) \), then \(W \) is a near-point.

Proof. Same as 6.20 if \(n \geq 4 \). If \(n = 2 \) or \(3 \), then \(PW \) a secant implies that there are at most two points on \(PW \) which are not near-points. The result then follows from 6.4. \(\square \)

Corollary 7.17. All points are near-points. (Any two points lie on a near-line.)
Proof. Same as 6.21, using the fact that \(f(n) < \sqrt{n} + 1 \). \(\square \)

8. Planes

In this section, we place no restriction on the order of \(S \).

For any two points \(X, Y \), we may now write \(XY \) for the near-line containing \(X \) and \(Y \).

Remark 8.1. If \(\pi \) is a plane and \(P, Q \in \Theta \), \(\not\in \pi \), then

\[\pi^P = \pi^Q. \]

(The lines of this projective plane are the near-lines contained in \(\pi \).)

Lemma 8.2. Let \(P \in \Theta \), and suppose that in \(S/P \) the 6-tuple

\((C, U, V, W, Z, Z_1) \)

satisfies (5.2). If each of (the lines) \(C, U \) is a secant, then \(S/P \) is Desarguesian with respect to \((C, U, V, W, Z, Z_1) \).

Proof. This will follow from lemma 5.5 if we can find \(C, U, V, W, Z, Z_1 \in \mathcal{P} \) such that \(C = PC, \ldots, Z_1 = PZ_1 \), and

\((P, C, U, V, W, Z, Z_1) \)

satisfies conditions (i),(ii) and (iv)-(viii) of (5.4). (Conditions (iii) and (ix) and the fact that \(\{CW_1, UW_1, PW_1\} \)

is a \(\Delta \)-system are guaranteed by 6.21, 7.17.) To do this, choose

\(C \in (C \cap \Theta) \setminus \{P\} \), and \(U \in (U \cap \Theta) \setminus \{P\} \). Let \(\ell \) be a line on \(U \)

in \(U \setminus V \) with \(P, C \not\in \ell \), and let \(V = V \cap \ell \), \(W = W \cap \ell \). Let \(k \) be

a line on \(C \) in \(CZ \) with \(P \not\in k \), \(k \cap \ell = \emptyset \), and let \(Z = Z \cap k \), \(Z_1 = Z_1 \cap k \). Then conditions (5.4)(i),(ii),(iv)-(vi) and (viii) are
obvious, and condition (vii) follows from the last two conditions of 5.2 (applied to \((C, U, V, W, Z, Z_1)\)). □

Lemma 8.3. \(S/P\) is Desarguesian for all \(P \in \mathcal{P}\).

Proof. If the order of \(S\) is 2 (actually if it's \(\leq 3\)), there is nothing to prove, so assume that the order of \(S\) is at least 3. By 8.1, it is sufficient to prove that \(S/P\) is Desarguesian for some \(P \in \mathcal{P}\). (For if \(S/P\) is Desarguesian, and \(Q \in \mathcal{P} \setminus \{P\}\), then we can choose a plane \(\pi\) not containing \(P, Q\), and we have \(S/P \cong \pi^P = \pi^Q = S/Q\).)

Fix \(P, Q \in \mathcal{P}\) with \(P \notin \pi \forall \pi \in T(Q)\). We show that \(S/P\) is Desarguesian by showing that it is Desarguesian with respect to \((C, U, V, W, Z, Z_1)\) whenever this 6-tuple satisfies conditions (5.2).

Given such a 6-tuple, we first show that we can choose points \(C \in C \setminus \{P\}\), \(U \in U \setminus \{P\}\) and a plane \(\pi\) such that \(C, U \notin \pi' \forall \pi' \in T(Q)\), \(U \notin QC\), \(C, U \in \pi\), and \(P, Q \notin \pi\). Notice that by our choice of \(P\) and \(Q\), any \(\pi' \in T(Q)\) meets each line through \(P\) in just one point (this point being \(Q\) if the line in question is \(PQ\)). It follows that there exist points \(C_1, C_2 \in C \setminus \{P\}\) and \(U_1, U_2 \in U \setminus \{P\}\) which do not lie on any plane of \(T(Q)\). (In the finite case, the assumption \(n \geq 3\) implies \(n - f(n) \geq 2\).) At least two of the near-lines \(C_1U_1, C_1U_2, C_2U_1, C_2U_2\) (say \(C_1U_1\) and \(C_2U_2\)) do not contain \(Q\). It is possible to find some \(R \in \mathcal{P} \setminus PCU\) which does not lie on at least one of \(QC_{1U_1}, QC_{2U_2}\) (since otherwise
\(\theta \in PCU \cup (QC, U_1 \cap QC, U_k) \) violates (BE) applied to \(P \). Say \(R \notin QC, U_1 \).

Then \(C = C_h, U = U_1 \) and \(\pi = RCU \) have the desired properties.

With \(C, U, \pi \) as above, set \(V = V \cap \pi, W = W \cap \pi, Z = Z \cap \pi \) and \(Z_1 = Z_1 \cap \pi \). Then

\[
S/P \text{ is Desarguesian with respect to } (C, U, V, W, Z, Z_1)
\]

\[
\Rightarrow \pi^P = \pi^Q \text{ is Desarguesian with respect to } (C, U, V, W, Z, Z_1)
\]

\[
\Rightarrow S/Q \text{ is Desarguesian with respect to } (QC, QU, QV, QW, QZ, QZ_1).
\]

But the last statement is, because of our choice of \(C \) and \(U \), a consequence of 8.2. This completes the proof of the lemma. \(\Box \)

DEFINITION. A point \(A \) will be called **planar** if whenever the 5-tuple \((A, B, C, D, E)\) satisfies

\[
A, B, C, D, E \text{ are distinct points,}
\]

\[
C \in AB,
\]

\[
E \in AD,
\]

\[
AB \neq AD,
\]

the lines \(BD \) and \(CE \) intersect.

Remark 8.5. All points of \(\theta \) are planar.

If \(A, B, C \in \varnothing \) do not lie on a near-line, then they are contained in at most one plane, since the intersection of two distinct planes
containing A and B is AB. It will be convenient to let ABC denote this common plane when it exists, and the empty set when there is no plane containing A, B and C.

Lemma 8.6. If $U \in \mathcal{P}$, and if for some $X \in \mathcal{G}$ $(X \notin U)$, the line XU contains some planar point $Y \notin X$, then U is planar.

Proof. Of course, we may assume $Y \notin U$. Suppose (U,V,W,X_1,Y_1) satisfies (8.7). We must show that $VX_1 \cap WY_1 \neq \emptyset$. We may assume that

the only coplanar triples from \(\{U,V,W,X_1,Y_1\} \)

are \(\{U,V,W\} \) and \(\{U,X_1,Y_1\} \), \hspace{1cm} (8.7)

since otherwise, the whole configuration is easily seen to lie in a plane, and the result follows from 4.14. At this point, the reader may find it helpful to refer to figure 5.

Let $Z = XV \cap YW$ and $C = XX_1 \cap YY_1$. $(XV,YW \subseteq XVU$, and $XX_1,YY_1 \subseteq XU_1$, so Z and C exist.) By the planarity of X and Y respectively, there exist points $Z_1 = ZC \cap VX_1$ and $Z_2 = ZC \cap WY_1$. Notice at this point that if S has order 2, then $Z_1,Z_2 \in ZC \setminus \{Z,C\}$ implies $Z_1 = Z_2 \subseteq VX_1 \cap WY_1$ (by 4.6), which is the desired conclusion.

For the remainder of the proof, we assume that the order of S is at least 3.

Suppose there exists $P \in \mathcal{G}$ such that $P \notin XVU \cup XU_1 \cup XV_1 \cup WY_1$. (Recall that $WY_1 := \emptyset$ if Y, W, Y_1 do not lie on a plane.) Notice that according to (8.7), the planes PUV, PU_1, PV_1, and PW_1 are
Figure 5. Construction for Lemma 8.6
distinct. Now if in S/P we set $U = FU$, $V = PV$, etc., then in view of lemma 8.3, the lines ZC, VX_1 and WY_1 must be concurrent. But this implies

$$PZ_1 = ZC \cap VX_1 = ZC \cap WY_1 = PZ_2.$$

If $Z_1 \neq Z_2$, then $P \in Z_1Z_2 = ZC \subseteq VX_1$, contrary to assumption.

We conclude that $Z_1 = Z_2$ is the desired intersection point of VX_1 and WY_1.

Thus $VX_1 \cap WY_1 = \emptyset$ forces

$$\emptyset \subseteq XUV \cup UX_1 \cup VX_1 \cup WY_1; \quad (8.8)$$

and by interchanging V and X_1 with W and Y_1 respectively and repeating the above argument, we see that the nonintersection of VX_1 and WY_1 implies

$$\emptyset \subseteq XUV \cup UX_1 \cup WY_1 \cup YV_1. \quad (8.9)$$

Assume $VX_1 \cap WY_1 = \emptyset$. Then the combination of (8.8) and (8.9) yields

$$\emptyset \subseteq XUV \cup UX_1 \cup (VX_1 \cap WY_1) \cup (YV_1 \cap WY_1)$$

$$\cup (VX_1 \cap YV_1 = VX_1) \cup (WY_1 \cap YW_1 = WY_1).$$

Observing that $\emptyset \cap VX_1 = \emptyset \cap WY_1 = \emptyset$ (by 8.7), that $VX_1 \cap WY_1 = XZ_2$, and that $YV_1 \cap WY_1 = YZ_1$ or \emptyset (depending on whether at least one of YV_1, WY_1 is empty), we find that

$$\emptyset \subseteq XUV \cup UX_1 \cup XZ_2 \cup YZ_1. \quad (8.10)$$

In particular, $J = T(X) \cup \{XUV, UX_1, XYZ_1\}$ is a set of planes whose
union contains all lines through X except possibly XZ_2, and furthermore,

$$|J| < \infty \quad \text{if } S \text{ is infinite}$$

$$\leq f(n) + 3 \quad \text{if } S \text{ has finite order } n.$$

In the infinite case, this is clearly impossible. For the finite case, let $N = |\{(t, \pi) : X \in t \subseteq \pi \in J\}|$. Noting that some line on X must lie in more than one $\pi \in J$, we have $(f(n) + 3)(n + 1) \geq N > n^2 + n = f(n) > n - 3$, a contradiction if n is at least 4.

When $n = 3$, we get a similar contradiction with a little more work:

First, observe that XZ_1 is a tangent (since $XZ_1 \cap \pi \subseteq (XZ_1 \cap XUV) \cup (XZ_1 \cap XU_1) \cup (XZ_1 \cap XZ_2) \cup (XZ_1 \cap YZ_1) = \{X, Z_1\}$, and $Z_1 \not\in \pi$ by (8.7)). Let $UZ_2 \setminus \{U, Z_2\} = \{A, B\}$. The lines XA, XB are tangents by (8.10) (since $XUZ_2 \cap XUV = XUZ_2 \cap XU_1 = XUZ_2 \cap XYZ = XU$).

But then each of the three noncoplanar lines XZ_1, XA, XB lies on a plane of $T(X)$, which is impossible since $|T(X)| \leq f(3) = 1$.

We conclude that $WX_1 \cap WY_1 \neq \emptyset$, which proves the lemma. □

COROLLARY 8.11. All points are planar.

Proof. Give $W \in P$, choose $P, Q \in G$ with $W \notin PQ$ and $Q \notin \pi \forall \pi \in T(P)$. Then QW contains some point $Z \notin Q$, which does not lie on any $\pi \in T(P)$. Since PZ contains a point of G other than P, Z is planar by 8.6. But then a second application of 8.6 shows that, since QW contains the planar point $Z \notin Q$, W must be planar. □
It is well known (see [14], pp. 27-28) that an incidence structure
\((\mathcal{X}, \mathcal{R})\) with \(|\mathcal{R}| \geq 2\) either is a projective plane or is isomorphic
to the point-line incidence structure of a projective geometry over
some skew field \(K\), provided it satisfies the following three axioms:

Any two distinct \(X, Y \in \mathcal{X}\) are on exactly
one \(l \in \mathcal{R}\). \hspace{1cm} (8.12)

\(|l| \geq 3\) for each \(l \in \mathcal{R}\). \hspace{1cm} (8.13)

If \(a, b, c, d, e\) are distinct elements
of \(\mathcal{R}\), no three containing a common \(X \in \mathcal{X}\),
if \(a\) meets \(b\), and if each of \(a, b\) meets
each of \(c, d\), then \(c\) meets \(d\). \hspace{1cm} (8.14)

Let \(\mathcal{M}\) be the set of near-lines of \(S\). We have already seen
that \((\mathcal{P}, \mathcal{M})\) satisfies (8.12)-(8.14) (see 6.21 and 7.17, 4.6, and 8.11).
We may therefore take \(\mathcal{P}\) and \(\mathcal{M}\) to be the point and line sets of a
projective geometry \(S^*\) of dimension at least two. If \(\pi \in \mathcal{S}\),
then \(\pi\) contains any near-line which it meets in at least two points,
and any two near-lines in \(\pi\) intersect (4.14), so \(\pi\) is a plane of
\(S^*\). Then \(\mathcal{P} \neq \pi\) and the fact that \(\pi\) meets every near-line (see
4.13) implies that the dimension of \(S^*\) is 3.

Since the near-lines and planes of \(S^*\) which meet \(\mathcal{S}\) are precisely
the lines of \(L\) and the planes of \(\mathcal{S}\) (by 4.5 and 4.3 respectively),
it follows that our original lattice \(L\) is the lattice \(L(\mathcal{S})\) defined
by the subset \(\mathcal{S}\) of the point set of \(S^*\).

This completes the proof of Theorem 4.
CHAPTER III
COROLLARIES AND EXAMPLES

9. Corollaries for Circle-planes

In this section, we define three types of "circle-planes" - inversive, Laguerre and Minkowski planes - and give canonical constructions. We then show how each circle plane might be embedded in an LPP-lattice $L(W)$. Any circle plane has an affine plane naturally associated with each of its points. These affine planes, which may be seen as the essential link between the different types of circle-planes, are pointed out in connection with the lattices $L(W)$. Since the lattices $L(W)$ all satisfy (BE), it is a simple matter to obtain theorem 3 and generalizations of theorems 1 and 2 as corollaries of theorem 4. All of this is quite straightforward, and is included here mainly because, as mentioned in the introduction, the circle planes provided the initial motivation for the present study.

Throughout this section, W will denote an incidence structure (G,C), and the blocks of W will be called circles. The letters x and y are reserved for circles. Circles x and y are tangent at the point P if $x \cap y = \{P\}$. If x, y are distinct circles with $|x \cap y| \geq 2$, then $x \cap y$ is called a trail. The letters s and t are reserved for trails. If $P, Q \in G$, and either $P = Q$, or no circle contains both P and Q, then P is parallel to Q.

56
(written $P \parallel Q$). Trails s and t are parallel (written $s \parallel t$) if each $S \in s$ is parallel to some $T \in t$ and vice versa. (The notion of a trail is useful in the discussion of inversive and Laguerre planes, while parallelism of points occurs in Laguerre and Minkowski planes.)

Π (as above) is called an inversive plane if it satisfies:

(I1) Any three points are on at least one circle. If $x, y, z \in C$ and $|x \cap y \cap z| \geq 2$, then $x \cap y = y \cap z = z \cap x$.

(I2) If P and Q are points, and x a circle containing P but not Q, then there is a unique circle which contains Q and is tangent to x at P.

(I3) Circles are nonempty. There exist four points which do not lie on a common circle.

An inversive plane Π is an inversive plane in the narrow sense if each trail contains exactly two points. (Equivalently, Π satisfies (I2), (I3) and

(I1') Any three distinct points are on exactly one circle.

These definitions are easily seen to be equivalent to the definition of inversive plane given in section 1. For example, if we assume (I1'), (I2), (I3), let $P \in \Theta$ and define Π_P as J_P in section 1, then (a) If $Q \neq R$ are points distinct from P, and x the unique
circle containing \(P, Q, R \), then in \(\mathbb{P} \), \(x \) is the unique line containing \(Q \) and \(R \); (b) if \(x \) is a circle through \(P \), and \(Q \) a point not on \(x \), then in \(\mathbb{P} \), the circle given by (I2) is the unique line through \(Q \) parallel to \(x \); (c) the existence of a triangle in \(\mathbb{P} \) is guaranteed by (I3).

For \(\mathbb{P} \) an inversive plane, we make a few elementary observations:

If \(P \) and \(Q \) are distinct points, there is a unique trail, denoted \((PQ) \), which contains \(P \) and \(Q \); any circle containing \(P \) and \(Q \) contains \((PQ) \). If \(t \) is a trail and \(P \in \mathbb{C} \setminus t \), then there is a unique circle containing \(P \) and \(t \); or put another way, if \(s \) and \(t \) are distinct, intersecting trails, then there is a unique circle containing \(s \) and \(t \). For each \(P \in \mathbb{C} \), tangency (at \(P \)) defines an equivalence relation on the circles through \(P \). (For if \(x, y, z \) are distinct circles with \(x \cap y = x \cap z = \{P\} \), and if \(P \neq Q \in y \cap z \), then \(y \) and \(z \) are distinct circles containing \(Q \) and tangent to \(x \) at \(P \), which violates (I2).) The equivalence classes under this relation are called pencils (at \(P \)). If \(t \) is a trail, \(P \in t \), and \(\beta \) a pencil at \(P \), then there is a unique \(x \in \beta \) with \(t \subset x \).

Much of the above discussion of inversive planes is drawn from [3], to which the reader is referred for further details.

\(\mathbb{P} \) is called a Laguerre plane if it satisfies:

(Ll) a) Any two distinct, non-parallel points \(P, Q \) are on a unique trail (denoted \((PQ) \)).
b) If P, Q, R are distinct points with $Q \parallel P \parallel R$, and if there is no circle containing P, Q and R, then $(PQ) \parallel (PR)$.

(L2) If P and Q are non-parallel points, and x a circle containing P but not Q, then there is a unique circle which contains Q and is tangent to x at P.

(L3) If $P \in \mathcal{O}$, $x \in C$, and $P \not\in x$, then there is a unique $Q \in x$ with $P \parallel Q$.

(L4) There exists a circle x and a point P with $|x| \geq 3$ and $P \not\in x$.

A Laguerre plane Π is called a Laguerre plane in the narrow sense if each trail contains exactly two points. (Equivalently, Π satisfies (L2), (L3), (L4) and (L1))

(L1) Any three pairwise non-parallel points are on a unique circle.)

Let Π be a Laguerre plane. We note some elementary properties:

Parallelism of points is an equivalence relation whose equivalence classes are called generators. For $P \in \mathcal{O}$, g_P is the generator containing P. Every circle meets every generator in a unique point. Similarly, parallelism of trails is an equivalence relation. The equivalence class containing the trail t is denoted g_t.
Also: If P and Q are distinct points, and x a circle containing P and Q (i.e., $P \parallel Q$), then $(PQ) \subseteq x$. If P, Q, R are pairwise non-parallel points with $(PQ) \parallel (PR)$, then there is a unique circle containing P, Q and R (i.e., containing $(PQ) \cup (PR)$).

If s and t are non-parallel trails, then there is at most one generator which meets both s and t. (Proof: let $s = (PQ)$, $t = (P_1Q_1)$ with $P \parallel P_1 \parallel Q \parallel Q_1$. Then (L1)b) implies $(PQ) \parallel (P_1Q_1) \parallel (P_1Q_1)$.) For each $P \in \mathcal{C}$, tangency (at P) defines an equivalence relation on the circles through P. The equivalence classes are called pencils (at P). If t is a trail, $P \in t$, and β a pencil at P, then there is a unique $x \in \beta$ with $t \subseteq x$.

Much of the above discussion and a great deal of additional information on Laguerre planes, may be found in [6].

Finally, \mathcal{U} is called a Minkowski plane if there exist two equivalence relations, \parallel_+ and \parallel_-, on \mathcal{C} such that

(M1) If $P \parallel Q$ then either $P \parallel_+ Q$ or $P \parallel_- Q$.

(M2) If $P, Q \in \mathcal{C}$, then there is a unique point R for which $P \parallel_+ R \parallel_- Q$.

(M3) If $P \in \mathcal{C}$, $x \in \mathcal{C}$, then there exist unique points $Q, R \in x$ with $Q \parallel_+ P \parallel_- R$.

(M4) Any three pairwise non-parallel points are on a unique circle.
(M5) If \(P \) and \(Q \) are non-parallel points, and \(x \) a circle containing \(P \) but not \(Q \), then there is a unique circle which contains \(Q \) and is tangent to \(x \) at \(P \).

(M6) There exist four pairwise non-parallel points which do not lie on a common circle.

Equivalence classes under \(\parallel_+ \) and \(\parallel_- \) are called \((+)-\)generators and \((-)-\)generators respectively (and a generator is an equivalence class of either type). The \((+)-\) and \((-)-\)generators containing \(P \in \mathcal{G} \) are denoted \(g^+_P \) and \(g^-_P \) respectively. Any two points of a generator are parallel, and every circle meets every generator (both by (M3)). If \(P, Q \in \mathcal{G} \) satisfy \(P \parallel_+ Q \) and \(P \parallel_- Q \), then \(P = Q \). As in the inversive and Laguerre cases, for each \(P \in \mathcal{G} \), tangency (at \(P \)) defines an equivalence relation on the circles through \(P \). The equivalence classes are again called \textit{pencils} (at \(P \)).

Canonical examples of circle-planes are obtained by taking plane sections of various objects in projective 3-space. We first need to define these objects.

Let \(K \) be a skewfield and \(S = \text{PG}(d,K) \) for some \(d \geq 2 \). A subset \(\mathcal{G} \) of the point set of \(S \) is called a \textit{semi-ovoid} (see [9]) if for each \(P \in \mathcal{G} \) the union of all lines meeting \(\mathcal{G} \) only in \(P \) is a hyperplane. If \(d = 2 \), a semi-ovoid is also called a \textit{semi-oval}. A semi-ovoid (semi-oval) is called an \textit{ovoid (oval)} if no three of its
points are collinear. (Ovoids in $PG(3,K)$ were defined in section 1.)

Let $d = 3$. If π is a plane of S, u a semi-oval in π, and V a point of S not lying on π, then the union of all lines which contain V and meet u is called a semi-oval cone (or an oval cone if u is an oval). V is called the vertex of the cone.

Suppose that $d = 3$ and K is commutative. Θ is a hyperbolic quadric if it is, with respect to some choice of coordinates, the set of points satisfying the equation $x_0x_3 = x_1x_2$. If Θ is a hyperbolic quadric, then the set of lines contained in Θ consists of two disjoint sets of pairwise skew lines, say R and R', such that $\Theta = \bigcup \ell = \bigcup m$. If $\ell \in R$ and $m \in R'$, then ℓ and m meet in a unique point. R and R' are called the rulings of Θ. The converse of these observations is given by the following proposition. (I assume that this fact is in the literature, but have been unable to locate it.)

PROPOSITION 9.1. Let Θ be a subset of the point set of $PG(3,K)$, K a skewfield, and suppose that $\Theta = \bigcup \ell = \bigcup m$, where R and R' are distinct sets of pairwise skew lines, and every line of R meets every line of R' (in a necessarily unique point). Then K is commutative and Θ is a hyperbolic quadric.

Proof. Let ℓ_∞, ℓ_0, ℓ_1 be distinct lines of R, and m_∞, m_0, m_1 distinct lines of R'. We may assign homogeneous coordinates as follows: $\ell_\infty \cap m_\infty = (0,0,0,1)$, $\ell_0 \cap m_\infty = (0,0,1,0)$, $\ell_\infty \cap m_0 = (0,1,0,0)$,
Let $a, b \in K \setminus \{0\}$, and let X be the intersection point of l_a and m_b. Multiplying by scalars on the right, we have

$$(1, a, c, ac) = X = (1, d, b, bd)$$

for some $c, d \in K$. But this implies $c = b$, $d = a$, and $ab = ba$.

Since a and b were arbitrary in $K \setminus \{0\}$, K is commutative.

And with respect to the above choice of coordinates, Θ is the set of points satisfying $x_0x_3 = x_1x_2$.

We may now construct our canonical examples. Again, let $S = PG(3, K)$, K a skewfield. Let Θ be a subset of the point set of S.

If Θ is a semi-ovoid, then the following incidence structure, $\Pi(\Theta)$, is an inversive plane:

The points of $\Pi(\Theta)$ are the points of Θ.

The circles of $\Pi(\Theta)$ are the planes which contain at least two points of Θ.

Incidence is containment.

$\Pi(\Theta)$ is an inversive plane in the narrow sense iff Θ is an ovoid.

If Θ is a semi-oval cone with vertex V, then the following incidence structure, $\Pi(\Theta)$, is a Laguerre plane:

The points of $\Pi(\Theta)$ are the points of Θ other than V.
The circles of $\Pi(\mathcal{G})$ are the planes which do not contain V. Incidence is containment.

(The lines through V which lie in \mathcal{G} turn out to be the generators of $\Pi(\mathcal{G})$.) $\Pi(\mathcal{G})$ is a Laguerre plane in the narrow sense iff \mathcal{G} is an oval cone.

If \mathcal{G} is a hyperbolic quadric, then the following incidence structure, $\Pi(\mathcal{G})$, is a Minkowski plane:

The points of $\Pi(\mathcal{G})$ are the points of \mathcal{G}.

The circles of $\Pi(\mathcal{G})$ are the planes which do not contain rulings of \mathcal{G}.

Incidence is containment.

(The rulings of \mathcal{G} turn out to be the generators of $\Pi(\mathcal{G})$.)

A circle plane will be called egglike if it is isomorphic to a circle plane arising from one of the above constructions. The reader should find it helpful to keep these models in mind during the discussion of the lattices associated with the circle-planes.

Remark. At this point, we can see that proposition 9.1 justifies the statement, made at the end of section 1, that the egglike Minkowski planes are no more general than the Miquelian ones.
Before defining the lattices \(L(\mathbb{U}) \), we mention one rather obvious lemma, which is sometimes useful in checking that a given poset is a semimodular lattice.

Lemma 9.2. Let \(L \) be a poset having a lower bound, 0. (Elements of \(L \) which cover 0 are called points.) Suppose

(i) If \(P \) and \(Q \) are distinct points, then their least upper bound exists and covers \(P, Q \).

(ii) For each point \(P \), the set of elements \(\geq P \), ordered as in \(L \), forms a semimodular lattice (denoted \(L^P \)).

(iii) Any element of \(L \setminus \{0\} \) is in \(L^P \) for some point \(P \).

Then \(L \) is a semimodular lattice. (All definitions may be found in [7].)

Proof. We first show the existence of least upper bounds (l.u.b.'s). Let \(x, y \in L \setminus \{0\} \). If there is a point \(P \) with \(x, y \geq P \), then \(x \) and \(y \) have a l.u.b. in \(L^P \), and this is clearly a l.u.b. in \(L \) as well. If no such \(P \) exists, let \(X, Y \) be points with \(x \geq X, y \geq Y \). Then \(z \geq x, y \Rightarrow z \geq x, y, x \lor y \Rightarrow z \geq x \lor (x \lor y), y \) (noting that \(x \lor (x \lor y) \) exists since \(x, x \lor y \in L \)) \(x \lor y \Rightarrow z \geq (x \lor (x \lor y)) \lor y \).

The latter is thus a l.u.b. for \(x \) and \(y \).

We next show that there exist greatest lower bounds (g.l.b.'s). Let \(x, y \in L \). If there is a point \(P \) with \(x, y \geq P \), then \(x \) and \(y \) have a g.l.b., \(w \), in \(L^P \), and \(w \) is also a g.l.b. for \(x \) and \(y \) in \(L \). (For \(z \leq x, y \) implies \(P \lor z \leq x, y \), which gives
z ≤ P \lor z ≤ w .) Of course if there is no such point \(P \), then \(0 \) is the only lower bound for \(x \) and \(y \) (so it is a g.l.b.). We have shown that \(L \) is a lattice.

Finally, let \(x, y ∈ L \) cover \(x \land y \). If there is a point \(P \) with \(x, y ≥ P \), then \(x \lor y \) covers \(x, y \) by the semimodularity of \(\text{L}^P \). But if \(x \land y = 0 \), then \(x \) and \(y \) must be points, so that \(x \lor y \) covers \(x \) and \(y \) by (ii). Thus \(L \) is semimodular. □

If \(\mathbb{W} = (\mathcal{G}, \mathcal{C}) \) is a circle-plane, and \(\beta \) a pencil of \(\mathbb{W} \), then \(\beta \) denotes the point which the circles of \(\beta \) have in common. If \(P ∈ \mathcal{G}, x ∈ \mathcal{C}, \) and \(P ∈ x \), then \([P, x] \) denotes the pencil at \(P \) which contains \(x \). In what follows, an affine or projective plane may be thought of as an incidence structure, a lattice, or a poset (with \(P < \ell \) if \(P \) is a point lying on the line \(\ell \)). There is, of course, no essential difference between these points of view, and we will use them interchangeably.

We next define LPP-lattices associated with the various circle planes.

First, let \(\mathbb{W} \) be an inversive plane. We may regard \(\mathbb{W} \) as a poset consisting of the points, trails and circles of \(\mathbb{W} \), ordered by containment, i.e., with
\[
\begin{align*}
P < t & \quad \text{if} \quad P ∈ t, \\
P < x & \quad \text{if} \quad P ∈ x, \\
t < x & \quad \text{if} \quad t ≤ x,
\end{align*}
\]
whenever P is a point, T a trail, and x a circle. For each $P \in \Theta$, the set of elements $> P$, equipped with this ordering, is an affine plane, which we denote Π_P. (See [3]. For affine plane axioms, see [14], p.116. That the Π_P are affine planes is immediate from our remarks following the definition of inversive plane. For inversive planes in the narrow sense, these affine planes are essentially the same as the affine planes which appear in the definition of inversive plane given in section 1.)

Since the parallel classes of Π_P are the pencils at P, Π may be extended to an LPP-lattice $L(\Pi)$ as follows: The elements of $L(\Pi) \setminus \Pi$ are the pencils of Π, a "tangent plane", $\langle P \rangle$, for each $P \in \Theta$, a minimum element, 0, and a maximum element, 1. The additional relations are:

$$P < [P,x] < x \quad \text{if} \quad P \in x,$$
$$P < \langle P \rangle,$$
$$[P,x] < \langle P \rangle \quad \text{if} \quad P \in x,$$
$$0 < \alpha < 1,$$

whenever $P \in \Theta$, $x \in C$, and $\alpha \in L(\Pi)$. That $L(\Pi)$ is an LPP-lattice is easily checked using 9.2. (Notice that distinct points P,Q are covered by their l.u.b., $\langle PQ \rangle$, and that for each point P, $[P,1]$ is the projective plane obtained by adjoining ideal elements to Π_P.) $L(\Pi)$ also satisfies (BE) with $T(P) = \{\langle P \rangle\}$, since the only lines tangent to Θ at P are the pencils at P.
Next let \(\Pi \) be a Laguerre plane. We regard \(\Pi \) as a poset whose elements are the points, trails, \(\|\)-equivalence classes of trails, and circles of \(\Pi \), with
\[
P < t, e_t \quad \text{if} \quad P \in t,
\]
\[
P < x \quad \text{if} \quad P \in x,
\]
\[
t < e_t,
\]
\[
t < x \quad \text{if} \quad t \subseteq x,
\]
whenever \(P \) is a point, \(t \) a trail, and \(x \) a circle. For each \(P \in \emptyset \), the set of elements \(> P \), with the above ordering, is an affine plane (see [6]), which we denote \(\Pi_P \).

One of the parallel classes of \(\Pi_P \) is the set \(\{e_t : t \text{ a trail, } P \in t\} \), and the remaining classes are the pencils at \(P \). This leads to a natural extension of \(\Pi \) to an LPP-lattice, \(L(\Pi) \), as follows: The elements of \(L(\Pi) \setminus \Pi \) are the pencils and generators of \(\Pi \), a "tangent plane", \(\langle g \rangle \), for each generator \(g \), a minimum element, \(0 \), and a maximum element, \(1 \). The additional relations are:
\[
P < [P,x] \quad \text{if} \quad P \in x,
\]
\[
P < e_P, \langle e_P \rangle,
\]
\[
[P,x] < x, \langle e_P \rangle \quad \text{if} \quad P \in x,
\]
\[
e_P < \langle e_P \rangle,
\]
\[
e_P < e_t \quad \text{if} \quad P \in t,
\]
\[
0 \leq \alpha \leq 1,
\]
whenever \(P \in \emptyset \), \(x \in \mathcal{C} \), \(t \) is a trail, and \(\alpha \in L(\Pi) \). Again \([P,1] \) is a projective completion of the affine plane \(\Pi_P \), and \(L(\Pi) \) is easily seen (using 9.2) to be an LPP-lattice. \(L(\Pi) \) also satisfies
(BE) with $T(P) = \{g_{P}\}$, since the only lines tangent to C at P are the pencils at P.

Finally, if \mathcal{W} is a Minkowski plane, then we define the full lattice $L(\mathcal{W})$ as follows: Elements of $L(\mathcal{W})$ are $\emptyset \cup \mathcal{L} \cup \delta \cup \{0,1\}$, with

$$\mathcal{L} = \{(P,Q) : P,Q \in \emptyset, \ P \parallel Q\} \cup \{\beta : \beta \text{ is a pencil of } \mathcal{W}\} \cup \{g : g \text{ is a generator of } \mathcal{W}\},$$

$$\delta = C \cup \{\langle P \rangle : P \in \emptyset\}.$$

Relations in $L(\mathcal{W})$ are:

- $P < \{P,Q\}$ if $P \parallel Q$,
- $P < \beta$ if $\beta = \{P\}$,
- $P < g_{P}^{+}, g_{P}^{-}$,
- $P < x$ if $P \in x$,
- $P < \langle P \rangle$,
- $\{P,Q\} < x$ if $P,Q \in x (P \neq Q)$,
- $\{P,Q\} < \langle R \rangle$ if $P \parallel_{+} R \parallel_{-} Q, P \parallel Q$,
- $\beta < x$ if $x \in \beta$,
- $\beta < \langle P \rangle$ if $\beta = \{P\}$,
- $g < \langle P \rangle$ if $P \in g$,
- $0 \leq \alpha \leq 1$,
whenever \(P, Q \) and \(R \) are points, \(x \) a circle, \(\beta \) a pencil, \(g \) a generator, and \(\alpha \in L(\Pi) \). Again it is straightforward to check that \(L(\Pi) \) is an LPP-lattice (see following remark). As before, \(L(\Pi) \) satisfies (BE), in this case with \(T(P) = \langle P \rangle \).

Remark. For each \(P \in \mathcal{P} \), \([P, l]\) is a projective plane, the projective completion of an affine plane, \(\Pi_P \), consisting of \(P \), \(l \), the pairs \(\{P, Q\} \), the circles containing \(P \), and the planes \(\langle Q \rangle \) with \(P \not\parallel Q \parallel P \), ordered as in \(L(\Pi) \). In other words, \(\Pi_P \) consists of \(P \) and all \(\alpha \in L(\Pi) \) with \(P < \alpha \not\in \langle P \rangle \). \(\Pi_P \) may also be (and usually is) thought of as the incidence structure whose points are the points of \(\Pi \) not parallel to \(P \), and whose lines are the circles containing \(P \) and the generators not containing \(P \), with the natural incidence.

DEFINITION. A circle plane, \(\Pi \), is said to satisfy the **bundle theorem** if the corresponding lattice, \(L(\Pi) \), satisfies (BT).

Remark. Equivalent formulations can, of course, be made without reference to the lattices. This becomes rather cumbersome for Laguerre and Minkowski planes; for inversive planes in the narrow sense, one case of the bundle theorem is exhibited in figure 6. The hypotheses of the bundle theorem may also be weakened in various ways. For example, Benz [2], dealing with inversive and Laguerre planes in the narrow sense, confines his statement of the bundle theorem to the
Figure 6. The Bundle Theorem
case when all of the \(l_i \) (see (BT)) are trails (i.e., point pairs). This can be shown (but not without a fair amount of tedious work) to imply the bundle theorem as we have stated it.

We can now obtain theorem 3 and the following two results as corollaries of theorem 4.

COROLLARY 9.3. All inversive planes which satisfy the bundle theorem are egglike.

COROLLARY 9.4. All Laguerre planes which satisfy the bundle theorem are egglike.

Of course theorem 1 is a special case of 9.3 (but not the same as 9.3, since theorem 1 referred to what we are now calling inversive planes in the narrow sense). Similarly, theorem 2 is a special case of 9.4.

As a consequence of theorem 4, we find that if \(\mathcal{H} = (\emptyset, \mathfrak{C}) \) is a circle-plane satisfying the bundle theorem, then we may identify \(\emptyset \) with a subset of the point set of some three-dimensional projective space, \(S^* \), and \(L(\mathcal{H}) \) with the lattice \(L(\emptyset) \). In this context, when we speak of a line or plane, \(\alpha \), of \(L(\mathcal{H}) \) as a set of points, we mean the set of all points of \(S^* \) on \(\alpha \) (i.e., not just the points of \(\emptyset \) on \(\alpha \)).

To prove the above results, it only remains to show that \(\emptyset \) is (in \(S^* \)) a point set of the desired type (i.e., \(\emptyset \) is a semi-ovoid,
a semi-oval cone, or a doubly ruled quadric if \(\Pi \) is an inversive, Laguerre, or Minkowski plane respectively). Notice that by the definition of \(L(\mathcal{Q}) \), the lines and planes of \(S^* \), which meet \(\mathcal{Q} \) are precisely the lines and planes of \(L(\mathcal{Q}) = L(\Pi) \).

First, let \(\Pi \) be an inversive plane, and \(P \in \mathcal{Q} \). By the definition of \(L(\Pi) \), we see that the tangents to \(\mathcal{Q} \) through \(P \) are the pencils at \(P \), and that these are also precisely the lines through \(P \) which lie in \(\langle P \rangle \). Thus \(\mathcal{Q} \) is a semi-ovoid, which proves 9.3.

Next let \(\Pi \) be a Laguerre plane. First notice that any two generators are coplanar (since if \(g_p \neq g_q \) are generators, they lie on the plane \(g_{(PQ)} \)). It follows that there is a point \(V \notin \mathcal{Q} \) of \(S^* \) which lies on all of the generators. We assert that
\[
\mathcal{Q}^* := \mathcal{Q} \cup \{V\} \text{ is a semi-oval cone.}
\]

The lines of \(L(\Pi) \) are the generators, trails and pencils of \(\Pi \). From the definition of \(L(\Pi) \), we see that if \(g \) is a generator, then any trail or pencil coplanar with \(g \) has a point of \(\mathcal{Q} \) in common with \(g \). Thus any BC containing \(g \) consists entirely of generators, i.e., is equal to the point \(V \). But the points of \(S^* \) are the points of \(\mathcal{Q} \) and the BC's of \(L(\Pi) \), so that \(g \setminus \{V\} \varsubsetneq \mathcal{Q} \).

It follows that if \(x \) is any plane not containing \(V \) (i.e., \(x \) is a circle of \(\Pi \)), then \(\mathcal{Q}^x \) is the union of the lines which contain \(V \) and meet \(x \cap \mathcal{Q} \). Thus to prove that \(\mathcal{Q}^* \) is a semi-oval cone, we have only to show that \(x \cap \mathcal{Q} \) is a semi-oval. Let \(P \in x \cap \mathcal{Q} \). Then (again checking the definition of \(L(\Pi) \)) the lines on \(P \) in \(x \)
are the trails t with $P \in t \subseteq x$, and the pencil $[P,x]$. The latter is thus the unique tangent to $x \cap \emptyset$ through P in x. This proves 9.4.

Finally, let \mathcal{U} be a Minkowski plane. We first observe that if g is a generator, then (checking the definition of $L(\mathcal{U})$) any line of $L(\mathcal{U})$ coplanar with g also has a point in common with g. It follows (by an argument similar to one given in the Laguerre case) that $g \subseteq \emptyset$. But then by 9.1, \emptyset is clearly a hyperbolic quadric with rulings the set of $(+)$-generators and the set of $(-)$-generators. This proves theorem 3.

10. A Class of Examples

Suppose L is an LPP-lattice satisfying (BT). (As usual \emptyset, \mathcal{L} and δ are the point, line and plane sets of L.) Let $P \in \emptyset$, and let $J(P)$ be the set of planes whose only point is P.

Let L' be a poset obtained from L by deleting the elements of $J(P)$, and adding a new set of elements, $J'(P)$, in such a way that

(1) If $\alpha \in J'(P)$, then the relations involving α are $\alpha < l$, $0 < \alpha$, $P < \alpha$, and $L < \alpha$ for each L in some $\mathcal{L} \subseteq \{ L \in \mathcal{L}: P < L \land Q \not\in L \land Q \in \emptyset \setminus \{ P \} \}$.

(2) The interval from P to 1, say $[P,1]'$, in L' is a projective plane.
Then L' is again an LPP-lattice satisfying (BT). (That L' is an LPP-lattice is easily seen using 9.2. That it satisfies (BT) is a triviality, since if l_1, l_2, l_3, l_4 satisfy the hypotheses of (BT), then any two of them contain at least two distinct points, and so are coplanar in L' iff they are coplanar in L.

If \mathcal{G} is a sufficiently small set of points in $\text{PG}(3, K)$, then the above construction may be applied to $L(\mathcal{G})$ to obtain examples of LPP-lattices satisfying (BT) which are not isomorphic to any $L(\mathcal{G})$. In particular, we can do this whenever there is some $P \in \mathcal{G}$ for which the "partial plane" $[P, 1] \setminus J(P)$ can be completed to a non-Desarguesian plane.

Obviously, one can weaken (BE) considerably without admitting any of the examples described in the preceding paragraph. For example, I would not be surprised if theorem 4 still holds when (BE) is replaced by the following condition.

\[\text{(BE')} \quad \text{For each } P \in \mathcal{G}, \ [P, 1] \setminus J(P) \text{ can be extended to a projective plane by addition of lines in only one way (up to isomorphism).}\]

Here $J(P)$ is, as above, the set of planes of L whose only point is P. I have not investigated the possibility of proving theorem 4 under this weaker assumption.
BIBLIOGRAPHY

