EISEN, Marvin Barry, 1942-
RESISTANCE TO TEMPTATION IN PREADOLESCENTS AS
A FUNCTION OF SELF-ESTEEM, PERCEIVED SITUATIONAL
CONSISTENCY AND PERFORMANCE EXPECTANCY.

The Ohio State University, Ph.D., 1971
Psychology, experimental

University Microfilms, A XEROX Company, Ann Arbor, Michigan
RESISTANCE TO TEMPTATION IN PREADOLESCENTS AS A FUNCTION OF SELF-ESTEEM, PERCEIVED SITUATIONAL CONSISTENCY AND PERFORMANCE EXPECTANCY

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

by

Marvin Barry Eisen, B. A., M. A.

The Ohio State University

Approved by

Adviser
Department of Psychology
ACKNOWLEDGMENTS

In the process of thinking about, then conceptualizing, then carrying out an individual research problem; it is, in fact, never an individual enterprise. Several professors, graduate students, and undergraduates played major parts in this undertaking. As he has through my whole tenure at Ohio State, Dr. George G. Thompson listened, reacted, and counseled me as he would a colleague—which I perceive to be the highest honor he could accord me. Dr. Malcolm M. Helper labored over, teased-out, and ultimately helped make whatever sense there is to be found in the relationships among the variables in "the data" for three experiments. There is no doubt his efforts were "above and beyond the call..." Dr. Philip M. Clark gave very generously of his time, read several drafts of papers and experiments "in progress," and helped clarify my thinking on several major points and theoretical issues. Dr. Timothy C. Brock contributed immeasurably to the growth of my ideas regarding psychological research and experimentation, the conceptualization and importance of theoretical issues in general and with regard to cognitive consistency in particular. Moreover, he could be counted upon to play the role of devil's advocate and thus provide a sounding board and strong check upon my apparent passion for ambiguity in theorizing. Dr.
Thomas M. Ostrom has provided much of the enjoyment involved in pursuing an education in this department; there is no doubt that he must be considered "a force for good in the community..." Moreover, his knack of finding a statistic for any and every "strange" dependent variable I pondered was pure genius.

Lynne Gregory was involved in the process from the very beginning, in every phase and through all the "crises." As will be evident, her data and her theorizing literally led to this undertaking. There is no legitimate method of separating her notions from my own, except to say that if bad judgement is manifest, I must have yelled loudest and longest. Mike Allen should be commended for putting up with endless discussions--theoretical, pragmatic, and statistical--and for responding so generously of his time for computer-related operations.

Finally, my research assistants--Sara Wynn, Kerry Wohlstein, Diana Ankrim, and Laurie Chun--put up with much and yet managed to complete, and indeed accelerate, the entire data collection and analyses beyond my belief. There is no doubt they will never wish to hear another "deadline" date again.
VITA

December 8, 1942 . . . Born - Los Angeles, California
1964 B.A., University of California, Berkeley
1967 M.A., University of California, Los Angeles
1967-1968 Special Student (Psychology) University of California, Santa Barbara
1968-1969 Teaching Assistant, Department of Psychology, The Ohio State University, Columbus, Ohio
1969-1970 Teaching Associate, Department of Psychology, The Ohio State University, Columbus, Ohio
1970-1971 Teaching Assistant, Department of Psychology, The Ohio State University, Columbus, Ohio

FIELDS OF STUDY

Major Field: Developmental Psychology

Studies in Development. Professors George G. Thompson, John E. Horrocks, Philip M. Clark, and Malcolm M. Helper
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
VITA iv
LIST OF TABLES vi
LIST OF FIGURES vii

Chapter

I. INTRODUCTION 1
 Theoretical Considerations and
 Previous Research
 Aims of the Present Research
 Hypotheses
 The Theoretical Model

II. METHOD 23
 Subjects
 Materials
 Procedure

III. RESULTS 33

IV. DISCUSSION 42

V. SUMMARY 50

APPENDIX 52
REFERENCES 55
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Distribution of Cheating by Consistency and Expectancy</td>
<td>35</td>
</tr>
<tr>
<td>2.</td>
<td>Distribution of Cheating by Self-Esteem and Expectancy</td>
<td>37</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1. Percentage of Cheaters as a Function of Self-Esteem and Expectancy</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
Chapter I
INTRODUCTION

Within the last ten years there has been much interest in the nature of self-concept and the antecedents of self-esteem (e.g., Coopersmith, 1967), instruments and research methodology regarding self-concept (e.g., Crowne and Stephens, 1961; Wylie, 1961, 1968), and experimentation with a developmental emphasis (e.g., Katz and Zigler, 1967). In addition, there has been some very recent interest in the behavioral correlates of self-esteem (e.g., Lekarczyk and Hill, 1969).

For many years there has been great interest in socialization processes in general (e.g., Hartshorne and May, 1928-1930), and child-rearing practices in particular (e.g., Sears, Maccoby, and Levin, 1957; Sears, Rau, and Alpert, 1965), especially as they have been hypothesized as antecedents of moral development. It is of interest to note, however, that developmentally oriented researchers investigating personality correlates of morality have not previously attempted to relate measures of self-esteem to moral behavior.¹

The present study, which grew out of two earlier
investigations of possible relationships between characteristic self-esteem and moral behavior (Eisen, 1969 and Gregory, 1970), was an attempt to replicate, extend, and clarify the findings suggesting a positive relationship between high self-esteem and resistance to temptation among preadolescents in a routine, on-going classroom situation.

Theoretical Considerations and Previous Research

The acquisition of moral behavior in children is generally attributed to the interaction of development and processes of socialization. Ultimately, mastery of this dimension of human behavior is noted by the child's acquisition of the ability to regulate his own behavior in socially approved ways in the absence of external surveillance and constraints. This ability, in turn, has traditionally been characterized as one of the primary outcomes of internalization—both cognitively and affectively—of ethical and moral values, rules, and behaviors.

Most investigations of the development of moral behavior have sought to tease out the antecedent variables in terms of socialization practices or aspects of the socialization process itself which lead to consequent behaviors. Implicit in the design of the majority of these studies is the assumption that the child's responses will generalize over a variety of nominally similar
situations.

On the basis of this implicit assumption, much research on the development of moral behavior has focused upon parental child-rearing practices, the child's cognitive-developmental level, or various indices of the child's "ego strength" (e.g., the ability to delay gratification) as the most relevant independent variables.

In terms of dependent variables, researchers have focused upon at least three somewhat distinct indices of moral development. First, moral judgments and verbal decisions about what is "right" and "wrong" in various situations (e.g., Piaget, 1948; Cowan, Langer, Heavenrich, and Nathanson, 1969; Bandura and McDonald, 1963; and Kohlberg, 1963). The moral judgment aspect of the development of morality is concerned with the assessment and inferred rationale of the child's answers given in hypothetical moral dilemmas and situations involving intentionality. Such findings have been theoretically related to the child's level of cognitive functioning. Emphasis on moral judgments as a possible indicator of moral behavior derives from the conception that a moral act is the result of a decision made according to an internalized set of standards and values.

A second influence on moral behavior that has been frequently investigated is the role of affect via expressions of guilt and remorse after transgressions—
both hypothetical and real (e.g., Aronfreed, 1964; Sears, Maccoby, and Levin, 1957). Those who have chosen to examine this class of responses reason that the child comes to associate anxiety with transgressions and experiences guilt following deviant behavior because wrongdoing and punishment have been paired in the past. The strength of the guilt reaction is postulated to vary with the strength of conscience (cf., Levin, and Fleishman, 1968 for a discussion and critique of this view; and Brock, 1969 for a cogent argument against the utility of the concept of guilt). Guilt, usually identified by the offering of confessions and self-critical statements, has been measured by the use of various psychological indices, self-reports, and observers' judgments.

Third, and most interesting in the present writer's view, behavioral conformity and adherence to the rules in temptation-provoking situations has received both early research attention and broad theoretical interest (e.g., Grinder, 1962; Hartshorne and May, 1928; Mischel and Gilligan, 1964). In temptation experiments a child is exposed to a situation in which he is forced to make a choice between two behaviors under conditions that he perceives as involving low or seemingly no surveillance. He can either perform an immoral or unethical act, such as cheating, to gain a reward; or he can conform to
socially approved behavior, thereby relinquishing the possibility of receiving a reward. Resistance to temptation under such conditions is presumed to be an expression of moral behavior.

The latter two indices of morality, affect via guilt after transgression and resistance to temptation, are generally hypothesized as developing hand in hand. The anxiety or feeling of guilt associated with transgression moves forward in the behavioral sequence and becomes attached to the instigation of the transgression. Theoretically, the anxiety can be alleviated by resisting temptation. However, researchers who have sought to relate variables in the socialization process or specific socialization practices (e.g., maternal behavior) to moral behavior in terms of guilt reactions and resistance to temptation have, at best, obtained only equivocal results. They have been plagued by inconsistencies in correlations between variables from one study to the next, as well as by the generally low order of the correlations.

For example, Sears, et al. (1957), using mothers' interviews as a source of information about child-rearing practices and the amount of guilt their children exhibited following transgression, found that maternal warmth was positively related to the development of
internalized standards of behavior as evidenced by guilt reactions. Love withdrawal as a means of punishment was also associated with conscience development, but only among mothers classified as warm. On the other hand, Burton, Maccoby, and Allinsmith (1961) found that punitive, nonreasoning discipline seemed to be related to resistance among four and five year olds in their variation of a temptation situation.

Investigators who have attempted to relate personality variables such as aggression, and dependency, to cheating behavior have been handicapped by the same kind of problems and, in general, have obtained the same conflicting results. Many of the difficulties associated with replicating findings in this area may very well be methodological and procedural in nature (e.g., the assessment of parental attitudes on the basis of answers to questionnaires administered several years earlier correlated with children's current behavior in a single experimentally simulated resistance to temptation situation).

Another traditional approach to moral development has involved the notion of delineating "moral character." The classic study in the "moral character" tradition was the Inquiry into Character Education by Hartshorne and May (1928-1930). Several thousand children of school-age
were exposed to situations in which they could cheat, lie, or steal under conditions that were perceived as involving low surveillance. It was expected that the person whose moral behavior is regulated by an internalized set of social standards would respond in a morally consistent way across most situations. The investigators found, however, that as similarity between tasks decreased, the intercorrelations among responses to the various temptations were radically reduced. For example, there was little relationship between cheating at home and at school. The probability of punishment in the immediate situation seemed to be the most important variable influencing cheating; nearly all subjects cheated, but they varied in the degree to which risk and effort were related to their cheating (cf. the work of Rettig and his associates, especially Rettig and Pasamanick, 1964 for a recent empirical verification). The early experimenters (Hartshorne and May) concluded that moral behavior is situation bound and cannot be explained by a unitary "honesty" trait.

Some thirty years later in a reanalysis of the Hartshorne and May data, Burton (1963) factor analyzed the results of the most reliable tests used by Hartshorne and May and found a first principle factor which accounted for 40% of the common variance. He concluded that
Hartshorne and May's emphatic statement about the lack of correspondence between situations could be rejected and that their data were evidence for at least a weak trait of "moral character." Burton's (1963) analysis has been criticized because the measures for the different tasks were not obtained from the same subjects in all cases (e.g., Mischel, 1968). Moreover, the original report did not state the sample sizes for the correlations.

More recently, Nelson, Grinder, and Mutterer (1969), did a partial replication of the Hartshorne and May (1928) study. Sixth-grade boys and girls were exposed to six temptation situations with incentives varying from candy to the posting of names on a "top-of-the-class" sheet for outstanding performance. A factor analysis of their data yielded a first principle which accounted for 35% to 40% of the variance—a finding similar to Burton's (1963). The authors concluded that their data provided evidence for a generalized disposition toward honesty across situations.

Some researchers believe that instead of searching for evidence substantiating a "moral character," it is more profitable to focus upon the products of socialization—the child's present behavior—in terms of individual difference factors rather than traits or dispositions per se. Mischel (1968), who works from a social learning
orientation in a more general context, maintains that there may be few, if any, demonstrable personality traits or states. However, if there are any, they are essentially cognitive in nature such as intelligence or a certain cognitive "style" or orientation to stimuli.

Interestingly, Kohlberg (1969), who theorizes and conducts research from a cognitive-developmental orientation, maintains that individual differences in "moral character" and behavior may well be functions of such non-moral "ego strength factors as intelligence, anticipation of future events (e.g., ability to delay gratification), control over fantasy, and self-esteem." An ego strength interpretation of moral behavior would seem to imply that the consistencies across situations are due to decision-making abilities involving a large cognitive element, rather than to fixed personality traits or "moral character."

Two of the four non-moral ego strength factors postulated by Kohlberg (1969)—intelligence and control over fantasy (e.g., attentional factors)—seemed to be combinations of innate and experientially derived attributes. The other two factors—anticipation of future events and self-esteem—would seem to be primarily or exclusively experientially derived and thus the outcomes or products of the socialization process (i.e., individual difference
factors). The present author would argue that what Kohlberg has called non-moralego strength factors might, indeed, be considered personality correlates of moral behavior--perhaps capable of yielding a weak "honesty" trait across situations. There are some findings in the resistance to temptation literature that point clearly in this direction.

Hartshorne and May (1928-1930) and almost every investigator who has used intelligence as an independent variable has found it related to resistance to temptation either in a single test or across situations. In addition to intelligence, attentional factors have been found to correlate with cheating behavior on tasks similar to those used by Hartshorne and May (Grim, Kohlberg, and White, 1968). Attention, as measured by standard deviations in reaction time, correlated positively (r = .50 to .60) with cheating. The authors speculated that the subject who has a highly variable reaction time is easily distracted from the task at hand and begins to look about for more interesting and novel ways to complete it. Stable attention then might promote resistance because it leads to a higher threshold for distracting thoughts about the possibility of cheating. Grim, et al. (1968) note that if attention and intelligence are partialled out, the low to moderate correlations among the
experimental cheating measures approaches zero.

The ability to delay gratification has been found to be related to resistance to temptation in a shooting gallery game for sixth-grade boys (Mischel and Gilligan, 1964). Boys who preferred to wait for a larger reward later instead of a small reward immediately were less likely to cheat in this situation.

Both induced and characteristic self-esteem have been shown to be related to moral behavior. Aronson and Mettee (1968) found that induced self-esteem levels predicted cheating among college women. Working from a cognitive consistency orientation, they hypothesized that high self-esteem should deter immoral behavior because the latter would be inconsistent with one's self-concept. On the other hand, low self-esteem should not necessarily act as a barrier against cheating, since deviant behavior would not necessarily be inconsistent with one's self-image. They found that more subjects who were given false negative feedback about an aspect of their personality cheated than those given either neutral or positive feedback. Further, it was noted that chronic self-esteem, as assessed by a personality inventory used as a cover in the study, predicted cheaters in the neutral feedback condition consistent with the overall experimental results, i.e., there were
slightly more low characteristic self-esteem subjects who cheated than high self-esteem subjects.

Following from the earlier findings of Aronson and Mettee (1968) and the theorizing of self-consistency advocates such as Lecky (1945), Eisen (1969) extended the relationship between self-esteem and resistance to temptation by focusing upon characteristic self-esteem in young subjects of both sexes and under two incentive conditions. Employing a cognitive consistency formulation (Aronson and Mettee, 1968; partially derived from Lecky, 1945), he hypothesized that children with low self-esteem should be less likely to resist temptation than children with high self-esteem. Moreover, since specific situational factors have been shown to affect resistance (e.g., Hartshorne and May, 1928), it was predicted that there would be more high incentive cheaters (name announced in front of the class and an "attractive" plastic puzzle awarded for outstanding performance) than low incentive cheaters (name announced in front of the class only). No sex differences were hypothesized.

The results indicated no significant differences in resistance between low self-esteem and high self-esteem subjects, a significant difference in cheating by incentive level with high incentive subjects more likely to cheat than low incentive subjects, and no significant
difference in cheating by sex. However, there was a sex x self-esteem interaction and a sex x incentive interaction. More low self-esteem boys cheated than high self-esteem boys, while there was no significant difference among the girls. More high incentive boys cheated than low incentive boys, while there was no significant difference for the girls. Thus the boys were primarily responsible for the incentive main effect. It appears that the attractiveness of the prize mediated the relationship between self-esteem and resistance to temptation. Furthermore, the additional prize in the high incentive condition (a plastic puzzle) was apparently more "attractive" to boys than girls, hence the sex x incentive interaction. When point biserial correlations were computed between self-esteem scores and honesty for both sexes separately within each incentive condition, there was no significant correlation for either sex or incentive condition. Thus the raw score data did not substantiate the frequency data.

Gregory (1970) attempted a partial replication of Eisen's (1969) experiment in an effort to determine whether there were sex differences in the attractiveness of his prize in the high incentive condition and whether not requiring subjects to put their names on the self-esteem tests might change the pattern of the correlations.
Employing one prize condition, she offered the children either a plastic puzzle or a box of stationery (found to be highly attractive to girls during pretesting) as a prize for outstanding performance in the identical resistance situation.

Gregory (1970) used the same dependent variable that Eisen (1969) had used (whether a subject changed or falsified any items on the criterion test) and found no significant difference in resistance between low self-esteem and high self-esteem subjects, no differences between boys and girls, and no sex x self-esteem interaction. Close inspection of her data revealed that more low self-esteem subjects (40%) than high self-esteem subjects (14%) falsified enough answers to win a prize, but unexpectedly, more high self-esteem subjects (30%) than low self-esteem subjects (14%) falsified only a few answers, though not enough to qualify for a prize. Thus there were no large differences in the proportion of cheaters by self-esteem level, and therefore no significant difference on the cheat—non-cheat dependent variable.

However, when the data were analyzed in terms of whether a subject changed or falsified enough answers to win the prize of his choice, there was a significant difference in cheating by self-esteem level ($p < .02$), no sex difference, and no sex x self-esteem interaction.
Again, there was a nonsignificant correlation between self-esteem and honesty for boys and girls when analyzed separately, but a significant correlation when the subjects were combined ($r_{pb} = .22, df = 96, p < .05$), which does support the frequency data main effect on self-esteem.

It appears that low self-esteem did not serve as a deterrent to cheating to win a prize, while high self-esteem did seem to serve as such a deterrent, although not inhibiting all cheating for a large proportion of high self-esteem subjects. Gregory (1970) speculated that this unexpected finding might well be related to some form of expectation of success on the criterion trial which had been elicited by the temptation situation itself.

Because of an easy first or warm up trial, most subjects probably had high expectations of success on the second or criterion trial in spite of being warned that it was harder. Then when they began seeing several wrong answers as they corrected their own papers, one can speculate, that it might have been surprising and that it disconfirmed their expectation of another (and more instrumental in terms of gaining a prize) success. For high self-esteem subjects especially, this might lead to a feeling of "failure" and be considered extremely negative and unpleasant, since they probably perform well in academic and school-related situations ordinarily
(an inference based on their high self-esteem). One way of restoring a positive feeling would be to change some answers in order to appear more successful, but not so many as to gain a prize by dishonest means. A second possibility is that high self-esteem children were deterred from cheating to win a prize because of the rather large number of answers which would need to be falsified (most subjects would have had to change about eight/twenty answers to win). Thus they might have been deterred by what they perceived as the great effort involved in cheating to win.

Mussen, et al. (1970) also have attempted to demonstrate a positive relationship between self-esteem and honesty among sixth-graders of both sexes in the shooting gallery game. Unfortunately, they do not report either the number of boys and girls who cheated or the correlations between self-esteem scores and honesty. However, on the basis of the individual items from the self-esteem inventory (comprising many of the same items used by Eisen (1969) and Gregory (1970) in virtually the same format) that were found to be correlated with cheating, it appears that more items were significantly related for girls than boys. But because the shooting gallery game itself has been shown to elicit large sex differences in motivation and interest (e.g.,
Dixon, 1968), the more numerous individual items correlated significantly with honesty for girls may well have been due to an artifact of the smaller number of girls who would ordinarily cheat in that resistance to temptation situation.

Given the evidence cited above, Kohlberg's (1969) notion that anticipation of future events, control over fantasy, self-esteem, and intelligence are predictive of resistance to temptation warrants further, more systematic investigation. However, even if it is assumed that self-esteem is an important individual difference factor, the studies conducted thus far give no indication whether it would be operative, independent of intelligence, across experimental manipulations within the same general stimulus situation, let alone across several different paradigms.

Aims of the Present Research

The present study, an extension of the work of Eisen, (1969) and Gregory, (1970) sought to impose two experimental manipulations upon the same general stimulus situation in
an effort to assess their effects upon resistance to temptation when they are made to interact with self-esteem and intelligence. The two situational factors are the amount of perceived consistency between the warm up and the criterion trial and the effects of an easy versus a hard warm up trial on subjects' subsequent performance expectancy (Aronson and Carlsmith, 1962). They are of some theoretical interest in their own right since they, like the hypothesis for self-esteem, are derived from cognitive consistency theory, and in addition, may help to clarify the motives for the cheating behavior among the high self-esteem children in Gregory's (1970) study. Moreover, by reducing the number of necessary falsifications to win a prize, an attempt was made to control what might have been an artifact in Gregory's design leading to the perceived effort interpretation of her findings.

Hypotheses

Following from cognitive consistency theory, Aronson and Nette's (1968) findings on induced self-esteem in college women, Eisen (1969) and Gregory's (1970) findings on characteristic self-esteem in elementary school-aged children, it was predicted that there would be more cheating among low self-esteem subjects than among high self-esteem subjects. In addition, following
from the work of Aronson and Carlsmith (1962) on performance expectancy and Gregory's (1970) speculation regarding the role of performance expectancy in her results, it was hypothesized that there would be more cheating among high expectancy subjects than low expectancy subjects. Finally, though there was no known empirical evidence on which to base such an expected finding, it was predicted that there would be no significant difference in cheating between high and low consistency cheaters, but that consistency effects would be contingent upon interaction with performance expectancy and self-esteem.

The Theoretical Model

The prediction of cheating in this two-trial resistance to temptation situation is based upon a subject's relevant cognitions about his self-image and about the consistency or inconsistency of his expected and actual performance on the second trial, in the light of the perceived situational consistency or inconsistency of trials one and two. These cognitions are assumed to be weighted in importance and interactive, and therefore probably not strictly additive in nature. The model supports postulations that a person:

1) places highest priority on maintaining consistent cognitions about the self, i.e., high self-esteem should
act as a barrier against cheating because the two are inconsistent in the dominant American subculture; however, low self-esteem should not act as an effective barrier against cheating to gain an attractive prize because the two are not necessarily inconsistent.

2) places some priority on maintaining consistent cognitions in situations perceived to be highly consistent as opposed to those perceived to be somewhat inconsistent.

3) places high priority on maintaining consistent cognitions about his "expected" performance on trial #2 (based on trial #1) and his actual performance on trial #2 (programmed "failure"), if he perceives the two trials to be highly consistent situations. However, if he perceives the trials to be somewhat inconsistent, he places no particular priority on maintaining consistent cognitions about his "expected" and actual performance on trial #2.

Whether a person cheats in this resistance-to-temptation situation is hypothesized to be a function of the sum of the pressures for cheating minus the sum of the pressures against cheating. Thus immoral behavior should be predictable from combining elements of characteristic self-esteem (High SE or Low SE), perceived situational consistency (High C or Low C) and performance
expectancy \((\text{High E or Low E})\) in the following manner:

A) LSE subjects in the HE condition (easy trial #1—"success") followed by a HC condition (valid trial #1) trial #2: Pressures for cheating (LSE + HC + HE) minus pressures against cheating (None) = most likely to cheat (1st).

B) LSE subjects in the HE condition followed by a LC condition (equipment failure which voids trial #1) trial #2: (LSE + HE) with LC neutral minus (None) = 2nd.

C) LSE subjects in the LE condition (hard trial #1—"failure") followed by a LC trial #2: (LSE) with LC neutral minus (LE) = 3rd.

D) HSE subjects in the HE condition followed by a HC trial #2: (HC + HE) minus (HSE) = 4th.

E) LSE subjects in the LE condition followed by a HC trial #2: (LSE) minus (HC + LE) = 5th.

F) HSE subjects in the HE condition followed by a LC trial #2: (HE) with LC neutral minus (HSE) = 6th.

G) HSE subjects in the LE condition followed by a LC trial #2: (None) with LC neutral minus (HSE + LE) = 7th.

H) HSE subjects in the LE condition followed by a HC trial #2: (None) minus (HSE + HC + HE) = 8th.
FOOTNOTES

1. Aronson and Mettee (1968) reported a study involving induced self-esteem and dishonesty among college women; and Mussen, Rutherford, Harris, and Keasey (1970) also attempted to relate self-esteem and honesty among children. However, the first study (Eisen, 1969) was designed and the data were collected prior to the publication of the latter report.

2. Present author's own parentheses.
Subjects

Ten sixth-grade classes from five Columbus, Ohio, elementary schools participated in the study. Of the ten classes, two were omitted from the final sample because they served as pilot groups for testing the consistency manipulation.

In the final sample there were 129 boys ranging in chronological age from 11 through 12 years. 1 At least 95% of the Ss were Caucasian and all were from lower-middle-class to middle-class homes.

Materials

Self-esteem was assessed by the Self-Esteem Inventory (Coopersmith, 1959). Half of the items were stated in a positive form and half in a negative way. The subjects were instructed to read each statement and to indicate by a check mark in the "Like Me" column if it was how they usually felt or in the "Unlike Me" column if it was not how they usually felt. Scoring followed Coopersmith's system whereby "correct" answers yielded two points and "incorrect" answers yielded zero points. There were fifty items and thus 100 possible points.
Intelligence measures were obtained from school records. The California Short Form Test of Mental Maturity raw scores were available for 98 of the children in the final sample. Thus it was possible to use partial correlations to estimate the influence of intelligence, if any, on correlations between self-esteem and moral behavior.

A dot-counting contest devised by Mills (1958) and modified by Silverman (1967) was further modified for use as a temptation situation. The contest allows the detection of cheating without the Ss being aware of it.

Procedure

Initially in each classroom, a female E, who announced that she was a student at Ohio State studying to become an elementary school teacher and was interested in what sixth-graders think of themselves, administered the Self-Esteem Inventory with the teacher absent from the room. In order to match self-esteem data with data to be obtained later, Ss were requested to put their birthdates and sex on the Inventories, but not their names. (Since it was hoped that they would answer as honestly as they could).

Two days later, a male E, who announced that he was a graduate student in Psychology at Ohio State, conducted the dot-counting contest in each classroom with the
teacher absent from the room again. The contest was carried out under the guise of the E finding out the importance of vision in children's arithmetic ability and specifically, the role of different visual patterning in solving speed (as opposed to power) arithmetic tests.

After explaining the nature of the tasks in a general way and emphasizing that students and classes were not being graded or compared; that teachers, principals, school officials, and parents would not see the scores; and that only comparisons by age and sex were of interest, the E asked the Ss to identify their papers by birthdate and sex only. He also requested that they write whether they wore glasses to read (in order to further decrease "achievement" motives).

Then the E distributed individual contest booklets to each subject. Children were thus assigned to one of two expectancy conditions randomly within each classroom. After the booklets were distributed, the E ceremoniously unpacked and elaborately displayed a Lafayette timer which he explained would provide extremely accurate timing for the trial to follow.

Two trials were given to each class. On the first trial, subjects were allowed one minute to count ten squares of dots. One-half of the Ss were given ten easy squares (Eisen, 1969 and Gregory's, 1970 trial #1) to
count (High Expectancy condition) and one-half were given ten hard squares (comparable to items on Eisen, 1969 and Gregory's, 1970 trial #2) to count (Low Expectancy condition). Then the E collected the dot sheets and requested the Ss to correct their own papers using the answers provided in their booklets, and commented that since he was administering the task to so many sixth-graders, it would be helpful for them to correct their own. After the Ss finished, they were directed to put the number of correct squares counted on the top of their answer sheets and turn them in.

The E then asked the Ss to rate the difficulty of the trial with the following question: "How hard was this task? The rating was on a five point scale with (1) signifying "very easy" and (5) signifying "very hard." At this point the E announced that a second trial would be held immediately. The Ss were told that they would have two minutes to count twenty squares of dots (Eisen, 1969 and Gregory's, 1970 trial #2), but that the patterns were harder and more complex. They were asked to project or estimate how many out of twenty they expected to count correctly (presumably based on the experience of trial #1). These two questions were designed to serve as a check on the expectancy manipulation and hopefully, to set up an external "commitment" for the
Ss on trial #2, i.e., to establish a projected goal for their performance which was passed in to the E and remembered by them during trial two.

Perceived situational consistency was manipulated by attempting to induce one-half of the Ss to believe that their performance on the first trial was invalid due to an equipment failure and thus the estimates obtained for the subsequent trial were to be torn up and discarded (Low Consistency condition); while the other half of the Ss believed that their estimates were valid and provided a reasonable basis for predicting their performance on the criterion trial (High Consistency condition).

The Low Consistency manipulation involved the E explaining to the classes that the Lafayette timer was a very special timer which would buzz at the half-way (30-second) point in the one minute first trial. Therefore, they could use the timer as a pacing device, i.e., if they had completed less than half the squares they should speed up and if they had completed more than half the squares they could relax a bit. The High Consistency procedure was merely to explain to the classes that the timer was being used to keep very accurate time for the trial.

In the Low Consistency condition when the timer
failed to buzz and the first trial was concluded, the
E expressed surprise and irritation and attempted to
get it to work a second time. Again it failed to buzz.
Then he suggested that the class begin to correct their
papers anyway, and subsequently proceeded to the expectancy
manipulation check.

After the estimates were collected, the E decided
that because the second trial would be harder and in
order to stimulate greater interest, all Ss who reached
a certain criterion would win a prize (their choice of
either a 45 r.p.m. record, plastic puzzle, or box of
stationery). The Ss were to indicate, on a page provided
in the booklet, which prize they would like to have if
they "won," and to indicate how "attractive" the prize
of their choice was: "How much would you like to own
this prize?" The attractiveness rating was on a five
point scale with (1) being "very much" and (5) being
"very little." Then these choice and attractiveness
ratings were collected.

At this point, the E revealed that the criterion
for winning a prize was to count correctly at least
11/20 squares on the second trial. He made it very
clear that 10/20 correct would not qualify for a prize,
but that everybody who counted 11 or more correctly
would win. High Consistency Ss moved on immediately
to the second trial. Low Consistency Ss were told that
the E had decided that since the timer had not worked right and they had probably expected it to buzz, their guesses really were not very good estimates of how many they would get right on the second trial. Therefore, they should not be held to them and so they should be torn up and thrown away. The E then passed the estimates back by birthdates (and sex) and suggested that the Ss tear them up and throw them away. He demonstrated how to tear them in half and then sent a monitor around the room with a wastebasket to collect sheets. Then the Low Consistency Ss moved on to the second trial.

On the second trial, the Ss were allowed two minutes to count twenty squares of dots. When the trial concluded, the E collected the dot sheets and again requested the Ss to correct their own papers using the answers provided in their booklets. However, this time ten of the twenty answers presented in the S's booklet were incorrect—differing by three or four points in either direction from the real answers (See Appendix A). Two of the first ten answers were incorrect and five of the first fifteen were wrong. Even if Ss were to complete as many as fifteen items (Gregory's. 1970 trial #2 mean number completed = 9.55/20), they needed to falsify at least one of the remaining five "wrong" answers to win. After the contest, it was possible to measure the amount of cheating by examining the answer
When the papers were collected, the E asked the Ss to answer four final questions about the dot-counting exercise. The first and second questions were essentially filler items, "How interesting did you find this counting?" The rating was on a five point scale with (1) signifying "very interesting" and (5) signifying "very uninteresting. "How many answers did you guess you would get right on trial #2 before it started?" The third and fourth questions were to serve as manipulation checks on the consistency manipulation: "Did trial #1 help you to make a good guess about how many you would be able to get right on trial #2?" The Ss were forced to answer either "Yes" or "No." Then if they said yes, "Why did it?" If they answered no, "Why didn't it?" And finally, "Did you think the counting exercise went well?" "Yes" or "No."

The next day the male E returned to each of the classes and explained that he had inadvertently passed out the wrong sets of dots for the second trial and had included the answers for the set he should have distributed. Therefore, it was impossible to determine if anyone were a winner. However, since everyone had been so helpful and cooperative, he would like to present a check to each classroom for $10 to have
a class party. (This part of the procedure was included to avoid reinforcing cheating behavior.)
FOOTNOTES

1. Prior to the data collection, it had been decided to include only the boys' analyses, if there were any fundamental differences between boys and girls data (See Chapter III, Footnote #1). There is a strong precedent for this decision in Coopersmith's own studies of self-esteem (1967) which focused exclusively on boys.
Chapter III

RESULTS

Of the original 137 Ss from the eight experimental classrooms, excluding the pilot classes, eight Ss were omitted from the following analyses because they missed either the administration of the Self-Esteem Inventory or the dot-counting contest. The remaining 129 Ss served as the sample for the following analyses.

First, on the expectancy manipulation check, a t-test showed a significant effect for Expectancy ($t = 6.36$, $df = 127$, $p < .001$). High Expectancy (HE) Ss estimated they would get $\bar{X} = 13.49$ and Low Expectancy (LE) Ss $\bar{X} = 10.06$ out of twenty on the second trial. Thus the expectancy manipulation was successful.

Second, there was no significant difference between High Consistency (HC) Ss and Low Consistency (LC) Ss on the proportion answering "Yes" to the question, "Did trial #1 help you to make a good guess about how many you would be able to get right on trial #2?" It had been predicted that a larger percentage of Ss would answer "Yes" in the HC condition and a larger number of Ss would answer "No" in the LC condition ($X^2 < 1$, $df = 1$). Thus the consistency manipulation did not appear to be successful. In addition, there were no significant

33
differences in answering the question, "Did you think the exercise went well?" It had been hypothesized that a larger percentage of HC Ss would answer "Yes" and a larger percentage of LC Ss would answer "No" ($X^2 < 1, df = 1$). It is apparent that this manipulation did not have the intended effect on the Ss, i.e., did not induce sufficient perceived inconsistency between events related to the first trial and the prospective situation regarding the second trial. Nevertheless, the previously planned analyses were continued.

Third, an analysis of variance on the prize "attractiveness" data showed no significant effects for SE or Expectancy ($F's < 1$) and no SE x Expectancy interaction ($F < 1$). Thus any significant differences with regard to cheating would not appear to be an artifact of the differential attractiveness of the prizes across conditions.

The main dependent variable, as in Eisen's (1969) study, was the dichotomized response to the temptation situation yielding Cheat or Non-Cheat category data. Cheaters (C) changed or falsified at least one answer on the criterion trial in an effort to enhance their scores; Non-Cheaters (NC) did not change or falsify any answers on the criterion trial.

Among the 129 Ss there were 60 C and 69 NC. TABLE 1 shows the proportion of Ss falling into each type of
response by Consistency and Expectancy conditions.

Table 1.—Distribution of Cheating by Consistency and Expectancy

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>NC</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Expectancy</td>
<td>.41(13)</td>
<td>.59(19)</td>
<td>32</td>
</tr>
<tr>
<td>Low Expectancy</td>
<td>.53(18)</td>
<td>.47(16)</td>
<td>34</td>
</tr>
<tr>
<td>Low Consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Expectancy</td>
<td>.55(17)</td>
<td>.45(14)</td>
<td>31</td>
</tr>
<tr>
<td>Low Expectancy</td>
<td>.37(12)</td>
<td>.63(20)</td>
<td>32</td>
</tr>
</tbody>
</table>

A Multiple Contingency Analysis (Sutcliffe, 1957) was performed on the distribution of responses by the independent variables of Consistency and Expectancy. This analysis revealed, as predicted, no main effect for Consistency ($X^2<1$, df = 1). Contrary to prediction, there was no main effect for Expectancy either ($X^2<1$, df = 1). High Expectancy Ss (46%) were no more likely to cheat than LE Ss (47%). Moreover, the hypothesized Consistency x Expectancy interaction did not reach significance and was in the opposite direction ($X^2 = 2.99$, df = 1, n.s.). It had been predicted that in the HC condition, more HE Ss would cheat than LE Ss, but in the LC condition there would be no difference between Expectancy groups since Expectancy should have been
obviated by the consistency manipulation. It seems likely that because the consistency manipulation probably was not operationalized effectively, the interaction failed to materialize. Why the predicted main effect for Expectancy did not reach significance and was in the opposite direction is more difficult to understand. Since the consistency manipulation apparently failed, and if it is assumed that all Ss probably saw the second trial as fairly "consistent," then the Expectancy effect should have been heightened.

Given the above findings involving Consistency, it was decided to collapse the Ss across the Consistency conditions in the following analyses concerning self-esteem.

For these analyses 22 Ss were eliminated because they answered at least four out of eight Lie Scale items in the Self-Esteem Inventory (SEI) affirmatively and it was questionable whether their scores were valid. Another 9 Ss for whom no intelligence scores were available were also eliminated.

Among the remaining 98 Ss there were 42 C and 56 NC. TABLE 2 shows the proportion of Ss falling into each response category by Self-Esteem (SE) level and Expectancy condition.

In order to assess the hypothesized relationship
between SE and resistance to temptation, a multiple contingency analysis was computed using SE levels derived from a median split on the SEI scores (Median = 68) and point biserial correlations using SEI raw scores and Cheat—Non-Cheat category data computed separately within each Expectancy condition.

The multiple contingency analysis revealed a significant main effect for SE as predicted ($X^2 = 7.19$, df = 1, $p<.01$). More LSE Ss (56%) than HSE Ss (26%) cheated. Again, there was no Expectancy main effect ($X^2<1$, df = 1) with this reduced number of Ss. Also, there was a significant SE x Expectancy interaction ($X^2 = 7.89$, df = 1, $p<.005$), but it did not come about in the manner hypothesized (See Figure 1). In the HE condition significantly more LSE Ss (60%) cheated than HSE Ss (25%), but in the LE condition, only slightly more LSE Ss (52%) cheated.
FIGURE 1

Percentage of Cheaters as a Function of Self-Esteem and Expectancy
than HSE Ss (33%). It had been predicted that if an interaction occurred, it would be the result of HSE Ss in the HE condition cheating in the same proportion as LSE Ss, but that in the LE condition, LSE Ss would be much more likely to cheat than HSE Ss because they might feel that they had nothing to lose by cheating after their initial "failure." Apparently, Gregory's (1970) findings cannot be attributed to the notion that HSE Ss who had an easy first trial followed by a hard second trial falsified a few answers but not enough to win a prize because their expectations of "success" were crossed-up.

This SE x Expectancy interaction is substantiated by the point biserial correlations. In the HE condition, there was a strong positive relationship between SE ($\bar{X} = 65.63$, S.D. = 13.85, $N = 49$) and honesty ($r_{pb} = .40$, df = 47, $p < .01$). Intelligence (T-score $\bar{X} = 54.84$, S.D. = 10.74) and honesty were weakly correlated ($r_{pb} = .12$), but the correlation drops when SE was partialled out of the relationship ($r_{pb} = .01$). In the LE condition, there was a non-significant positive correlation between SE ($\bar{X} = 66.49$, S.D. = 18.79, $N = 49$) and honesty ($r_{pb} = .18$, df = 47). Intelligence (T-score $\bar{X} = 54.37$, S.D. = 8.40) and honesty ($r_{pb} = .14$) were weakly related and that correlation was only slightly altered when SE was partialled out ($r_{pb} = .11$). The difference between
.40 in the HE condition and .18 in the LE condition was not significant ($z = 1.15$, $df = 95$), though the magnitudes of the respective correlations do reflect the SE x Expectancy chi-square interaction.

It is of some interest to note that intelligence, independent of SE, is not significantly related to resistance to temptation in either the HE or LE conditions, and this would not appear to be the result of a highly homogeneous intelligence sample. Given the previous findings in this area this is a somewhat unexpected finding.
FOOTNOTES

1. For the girls (N = 140), however, the SE x Expectancy interaction is not substantiated by the point biserial correlations, and thus the hypothesized relationship between SE and honesty, does not appear to obtain, based upon the raw score data, rather than the median split data. For this reason, the girls data is reported separately in Appendix B and C and will not be discussed further.
Chapter IV
DISCUSSION

Characteristic self-esteem, hypothetically deployed through a cognitive consistency "mechanism" and theoretically mediated by a specific expectation of "success" or "failure," is strongly related to boys' responses to temptation in this two trial dot-counting paradigm.

As suggested by consistency theory, LSE does not appear to serve as a deterrent to cheating—especially in the HE condition—while HSE does seem to provide such a deterrent. Even though the Expectancy conditions were designed to affect resistance in conjunction with the Consistency conditions, that manipulation seemed to be powerful enough to withstand the ineffective consistency induction. Though it might be a misnomer to label this phenomenon "performance expectancy," Aronson and Carlsmith's (1962) notion of subjects building up expectations of success or failure in a specific situation seems to be operative in this contest. Low SE children who expected to do well on the second trial (and thus "win" a prize) were indeed most likely to cheat (60%) and thus forced a higher correlation between self-esteem scores and resistance to temptation (.40). On the other hand, Low SE subjects in the HE condition
who expected to do poorly (and thus were perhaps "geared" to not winning a prize) cheated somewhat more than HSE subjects (52% vs. 33%), but the correlations between self-esteem and honesty were quite reduced (.18) and non-significant.

The predicted SE x Expectancy interaction was in the opposite direction in Gregory's (1970) findings; but the present results obtained in a more controlled situation (e.g. individualized test booklet vs. answers written on the blackboard), with a more reliable and probably more internally consistent version of the SEI, and with an apparently more stable subject population (boys only), provide a much more theoretically satisfying set of findings.

The failure of the experimental treatments to have a more significant impact on the basic SE—Cheating relationship may be due to procedural and methodological flaws, but certainly not to outright oversight. Eisen (1969) and Gregory (1970) used a slightly different dot-counting situation. On their first trials, Ss had a very easy set of dots to count. Almost everyone got at least eight out of ten correct. On the second trial they were required to count correctly only one more square than they did on the first trial (e.g., if a S scored 8/10, he would only need to score 9/20 on the second
trial). Thus a S's score on the second trial was somewhat dependent on his performance on the first trial.

However, in the present study, since one-half the Ss were having an easy first trial and one-half a hard first trial, it seemed necessary to make winning in the second trial independent of the Ss' scores on the first trial. Thus the first trial was essentially a warm up trial in the present study. The criterion for winning a prize was to count more than 10 out of 20 correctly in two minutes. Therefore, a S could miss his estimated score on the second trial by a wide mark and still "win" a prize—and have no real reason to be or feel disappointed. Overall, there was no added material incentive (e.g., a better prize) for hitting one's estimated score.

Because the consistency manipulation was tied to the idea of an independent first trial, probably it was doomed to failure, even if the induction had been magnificent. Post hoc it is easier to realize that it was not that crucial to maintain strict continuity with the previous studies (i.e., Eisen, 1969 and Gregory, 1970). If winning a prize were contingent upon amassing a total score based on trials one and two, then the perceived situational inconsistency might have meant
something very important. But in the present study, because the trials were not cumulative, an equipment failure, whether credible or not, was apparently not significantly related to the established criterion for "winning" a prize. Thus, obtaining a score of one or ten on the first trial had no necessary relationship to obtaining a score of 11 or more on the second trial. In this light, the SE x Expectancy interaction takes on added interest.

Asking the subjects to make an external commitment for their performance on trial two, based on trial one performances, appears to have set up some kind of generalized expectation of success or failure on trial two, regardless of the actual criterion score needed to "win" the prize of their choice; so that even if they had the opportunity to tear up and throw away those estimates, they might well have adopted a "cognitive" commitment for trial two.

Along with the previously discussed methodological and procedural problems, the investigator is very aware that self-concept is an extremely complex developmental and phenomenological topic to consider theoretically, experimentally, and of course methodologically. As Wylie (1961, 1968) and Crowne and Stephens (1961) have pointed out, self-concept and self-esteem instruments
have not been proven valid—nor even particularly re-
liable. Because an instrument purports to measure
self-esteem (i.e., seems to have "face" validity) does
not guarantee that it possesses construct validity.
Coopersmith's instrument is open to this line of criticism
Moreover, as Horrocks (1969; Horrocks and Jackson, 1971)
has argued in his discussions of the development of
self-concept, it may be inappropriate to think of self-
estem as a static concept capable of being "measured"
by a test or inventory (paper and pencil or other type).
It may well be part of an ever-changing process of
reality testing via role-taking and role-playing in
many situation-specific contexts.

Several investigators have used the Coopersmith
SEI in modified form recently (e.g., Katz and Zigler,
1967; Lekarczyk and Hill, 1969; Mussen, et al., 1970)
as a seemingly valid self-esteem test without discus-
sing or even mentioning the problems involved in
widening the range of the response categories (e.g.,
the effect upon internal consistency). They merely
move on to interpret and discuss their empirical findings
without questioning its construct validity and standardiza-
tion. Eisen (1969) and Gregory (1970), likewise,
widened the response categories from "Like Me" and
"Unlike Me" to "Almost Always," "Sometimes," and "Almost
Never," but acknowledged that there were difficulties involved.

The present investigation used the original response categories and male subjects only in an effort to begin to build a set of findings based upon some minimal standardization at least, and in the hope of continuing Coopersmith's notion (1967) of establishing a set of behavioral correlates of self-esteem that might possess construct validity. Since Coopersmith (1967) concentrated his indepth investigation on boys, it was decided to follow a similar design in this study.

Though there may be no such thing as a "self-esteem" construct three recent studies (Eisen, 1969; Gregory, 1970; and the present one) indicate a positive relationship between self-esteem, as measured by some variant of the Coopersmith Self-Esteem Inventory (1959), and moral behavior in this classroom situation. Moreover, the present study seems to show that it is measuring something directly or indirectly related to morality, independent of measured intelligence.

However, as has been pointed out recently (Helper, personal communication), it is possible that there may be two kinds of self-esteem factors operating in this classroom setting—an achievement-related and a moral behavior self-esteem. There was no independent measure
of n Ach in this investigation, but every effort was made to play down the achievement aspects of the contest (e.g., any S could "win" a prize; no names on papers; vision cover story; teacher out of the room). Also, Gregory's (1970) study included a no prize control group where Ss were merely encouraged to improve their performances from trial one to trial two. This condition was included to establish a baseline or comparison level from which inferences might be made concerning the relative contributions of n Ach and the extrinsic prize incentive. In that control condition, about 10% of the subjects falsified at least one answer and about 10% cheated enough to better their scores from the first to the second trial. Thus, given that the present temptation situation is in an academic setting, it is probably true that moral and academic self-evaluations are confounded somewhat and generalization across paradigms might be elusive.

The apparent failure of Mussen, et al., to obtain significant positive correlations between the whole SE scale and honesty for either boys or girls might attest to generalization difficulties. However, the ray gun temptation situation used by Mussen, et al. (1970) was individually run, the task has proven differentially attractive to the sexes, and perhaps most important, the task was probably less "cognitive" in nature since
it was not in as naturalistic a setting or as familiar a situation as an on-going classroom context.

In spite of the Mussen, et al., (1970) failure, the present study and its two predecessors would seem to provide some empirical rationale for designing a series of studies which would attempt to generalize across both academic and non-academic situations, and might include independent measures of self-esteem, intelligence, attentional factors, and the ability to delay gratification. In that way it might be possible to assess the relative strengths of the various factors as predictors of resistance to temptation both within a single paradigm and their cumulative effects across paradigms in order to test the notion that there might be a weak general "trait" for honesty inherent in this combination of individual difference factors.
Chapter V

SUMMARY

The present study was undertaken to replicate, extend, and clarify the hypothesized relationship between characteristic or on-going self-esteem and resistance to temptation in a naturalistic field setting -- sixth-grade boys in classroom situations. It has been predicated upon the assumption that persons manifest a need for cognitive consistency in dealing with their environment. It was assumed that this need for cognitive consistency extends in relative strength from self-consistency to expectations of success and failure to perceived situational consistency in this paradigm.

As was predicted, High SE boys were more likely to resist temptation. Moreover, there was a SE x Expectancy interaction such that High SE subjects were more likely to be honest than Low SE subjects when it appeared there was a high expectation that they would be successful on the criterion task, but there was no significant difference in the likelihood that High SE subjects would be more resistant than Low SE subjects when it seemed there was a low expectation of success on the criterion task.
Perceived situational consistency, perhaps because it was not operationalized sufficiently well, did not mediate the relationship between self-esteem and honesty as was hypothesized.

It was pointed out that three recent studies using very similar paradigms have shown that self-esteem is positively related to honesty for boys; and that these results argue for designing a series of investigations to assess the role of self-esteem, probably in conjunction with intelligence, attentional factors, and control over fantasy, in explicating the generality of moral behavior across situations with the same subjects. It was hypothesized that these four individual difference factors might constitute the sometimes found "weak honesty trait" in analyses employing factor analytic methods to assess moral behavior.

Some of the difficulties in considering the construct of self-esteem were noted and discussed, especially with regard to instrumentation and the questionable status of self-esteem as a unitary concept.
APPENDIX A

Trial #2 Answers

1. correct
2. correct
3. correct
4. correct
5. correct
6. correct
7. correct
8. wrong
9. correct
10. wrong
11. correct
12. correct
13. wrong
14. wrong
15. wrong
16. wrong
17. wrong
18. wrong
19. wrong
20. wrong
APPENDIX B

Distribution of Cheating by Consistency and Expectancy
(Girls)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>NC</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Expectancy</td>
<td>.50(18)</td>
<td>.50(18)</td>
<td>36</td>
</tr>
<tr>
<td>Low Expectancy</td>
<td>.29(8)</td>
<td>.71(20)</td>
<td>28/54</td>
</tr>
<tr>
<td>Low Consistency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Expectancy</td>
<td>.45(19)</td>
<td>.55(23)</td>
<td>42</td>
</tr>
<tr>
<td>Low Expectancy</td>
<td>.41(14)</td>
<td>.59(20)</td>
<td>34/76</td>
</tr>
</tbody>
</table>

Note: \(\chi^2_{\text{Consistency}} < 1, \text{df} = 1, \text{n.s.}; \)
\(\chi^2_{\text{Expectancy}} = 1.13, \text{df} = 1, \text{n.s.}; \)
\(\chi^2_{\text{CxE}} = 3.22, \text{df} = 1, \text{n.s.}. \)
APPENDIX C

Distribution of Cheating by Self-Esteem and Expectancy (Girls)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>NC</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Expectancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High SE</td>
<td>.25(7)</td>
<td>.75(21)</td>
<td>28</td>
</tr>
<tr>
<td>Low SE</td>
<td>.69(25)</td>
<td>.31(11)</td>
<td>36</td>
</tr>
<tr>
<td>Low Expectancy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High SE</td>
<td>.37(11)</td>
<td>.63(19)</td>
<td>30</td>
</tr>
<tr>
<td>Low SE</td>
<td>.44(8)</td>
<td>.56(10)</td>
<td>18</td>
</tr>
</tbody>
</table>

Note: \(\chi^2_{SE} = 10.20, \text{df}= 1, p<.001; \)
\(\chi^2_{Expectancy} = 1.06, \text{df}= 1, \text{n.s.}; \)
\(\chi^2_{SE \times E} = 18.71, \text{df}= 1, p<.001. \)

HE:
- \(r_{pb} = .15, \text{df}= 62 \) (SE-Honesty)
- \(r_{pb} = .00 \) (Intelligence-Honesty)
- \(r_{pb} = -.05 \) (Intelligence-Honesty with SE partialled out)

LE:
- \(r_{pb} = .11, \text{df}= 46 \) (SE-Honesty)
- \(r_{pb} = .10 \) (Intelligence-Honesty)
- \(r_{pb} = .07 \) (Intelligence-Honesty with SE partialled out)
REFERENCES

Horrocks, J. E., and Jackson, D. Self-concept and the development of role behavior (tentative title), 1971.

