This dissertation has been microfilmed exactly as received

BATCHELLER, Jr., David Russell, 1930—
THE STATUS OF THE TECHNICAL DIRECTOR IN AMERICAN EDUCATIONAL THEATRE.

The Ohio State University, Ph.D., 1961
Speech – Theater

University Microfilms, Inc., Ann Arbor, Michigan
THE STATUS OF THE TECHNICAL DIRECTOR

IN

AMERICAN EDUCATIONAL THEATRE

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate
School of The Ohio State University

By

David Russell Batcheller, Jr., B.A., A.M.

The Ohio State University

1961

Approved by

[Signature]

Adviser
Department of Speech
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>iii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Procedure</td>
<td>11</td>
</tr>
<tr>
<td>III. The Development and Extent of the Technician's Position</td>
<td>17</td>
</tr>
<tr>
<td>IV. The Position of the Technician Today</td>
<td>28</td>
</tr>
<tr>
<td>V. The Pressures of the Position</td>
<td>55</td>
</tr>
<tr>
<td>VI. The Relation of the Technician to His Position</td>
<td>104</td>
</tr>
<tr>
<td>VII. Recognition of the Technician as a Teacher and Scholar</td>
<td>119</td>
</tr>
<tr>
<td>VIII. Trends in the Position</td>
<td>130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDICES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Business Reply Card</td>
<td>139</td>
</tr>
<tr>
<td>B. Major Questionnaires</td>
<td>142</td>
</tr>
<tr>
<td>C. Minor Questionnaires</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIBLIOGRAPHY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A Chronology of the Employment of Technical Directors</td>
<td>22</td>
</tr>
<tr>
<td>2.</td>
<td>Percentage Distribution of Length of Stay</td>
<td>30</td>
</tr>
<tr>
<td>3.</td>
<td>Age Range of Respondents</td>
<td>33</td>
</tr>
<tr>
<td>4.</td>
<td>The Relation of Age, Academic Degree and Academic Rank</td>
<td>35</td>
</tr>
<tr>
<td>5.</td>
<td>Instruction of Technical Courses</td>
<td>44</td>
</tr>
<tr>
<td>6.</td>
<td>Teaching Credit Allowance for Technical Directors</td>
<td>46</td>
</tr>
<tr>
<td>7.</td>
<td>Relation of Teaching Credit to Number of Productions</td>
<td>47</td>
</tr>
<tr>
<td>8.</td>
<td>Summer Theatre Participation of Technicians</td>
<td>52</td>
</tr>
<tr>
<td>9.</td>
<td>Ranking of Sources of Pressure on the Technical Director</td>
<td>57</td>
</tr>
<tr>
<td>10.</td>
<td>Technical Director's Assistance Rating</td>
<td>69</td>
</tr>
<tr>
<td>11.</td>
<td>Rating of Combined Assistance to the Technical Director</td>
<td>71</td>
</tr>
<tr>
<td>12.</td>
<td>Physical Factors Creating Pressure</td>
<td>75</td>
</tr>
<tr>
<td>13.</td>
<td>A Chart Showing the Relation of Rigging Problems to the Limitations of the Physical Plant</td>
<td>79</td>
</tr>
<tr>
<td>14.</td>
<td>A Chart Showing the Relation of the Need to Transport Production Materials to the Limitations of the Physical Plant</td>
<td>79</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>15.</td>
<td>Rating of Capacity of Budget to Purchase Capital Equipment</td>
<td>80</td>
</tr>
<tr>
<td>16.</td>
<td>Percentage Distribution of Provisions for Capital Equipment</td>
<td>81</td>
</tr>
<tr>
<td>17.</td>
<td>Crew Work Required of Class Participants</td>
<td>89</td>
</tr>
<tr>
<td>18.</td>
<td>Techniques and Methods for Increasing Student Assistance in Technical Work</td>
<td>90</td>
</tr>
<tr>
<td>19.</td>
<td>Course Credit for Technical Work Exclusive of Class Participation</td>
<td>92</td>
</tr>
<tr>
<td>20.</td>
<td>Improvements Made by an Agency Other Than the Technician</td>
<td>96</td>
</tr>
<tr>
<td>21.</td>
<td>Improvements in the Physical Plant</td>
<td>96</td>
</tr>
<tr>
<td>22.</td>
<td>Activity Elimination Preference of Technicians</td>
<td>110</td>
</tr>
<tr>
<td>23.</td>
<td>An Indication of Courses Technicians Would Like to Teach</td>
<td>112</td>
</tr>
<tr>
<td>24.</td>
<td>Interference of Technical Study with Other Research</td>
<td>112</td>
</tr>
<tr>
<td>25.</td>
<td>Goals of Technicians in Relation to the Position</td>
<td>115</td>
</tr>
<tr>
<td>26.</td>
<td>Percentage of Degrees Held by Technicians</td>
<td>120</td>
</tr>
<tr>
<td>27.</td>
<td>Relation of Academic Degree to Rank Among Technicians</td>
<td>121</td>
</tr>
<tr>
<td>28.</td>
<td>Percentage of Technicians Working Toward Advanced Degrees</td>
<td>122</td>
</tr>
<tr>
<td>29.</td>
<td>Percentage of Highest Rank Open to Technicians</td>
<td>126</td>
</tr>
<tr>
<td>30.</td>
<td>Percentage of Technicians with Master's Degrees Restricted in Teaching</td>
<td>128</td>
</tr>
<tr>
<td>31.</td>
<td>Number of Technicians Leaving the Field</td>
<td>131</td>
</tr>
<tr>
<td>32.</td>
<td>Potential for Hiring a Second Technician</td>
<td>133</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Organization of the Technical Staff in the Small Theatre Operation</td>
<td>37</td>
</tr>
<tr>
<td>2.</td>
<td>Organization of the Technical Staff in the Large Theatre Operation</td>
<td>38</td>
</tr>
</tbody>
</table>
INTRODUCTION

The introduction of drama into the curriculums of educational institutions started the process which has led to the establishment of technical direction as a profession. Educational theatre, an activity involving the actual production of plays and the teaching of academic courses in drama, was initiated in 1912 by George Pierce Baker. Baker's '47' Workshop was the first attempt in the actual production of plays as an instrument of teaching. Two years later Carnegie Institute of Technology fostered a drama department under the direction of Thomas Wood Stevens, the first in the country to offer a four-year course in theatre arts leading to an academic degree. A drama department was established at Vassar College in 1916. The University of North Carolina began its department in 1918. By 1919 Pennsylvania State University and the University of Colorado had dramatic arts departments. A theatre arts department was started at Alabama Polytechnic Institute in 1920. Departments established in 1921 are found at Black Hill's Teachers College of South Dakota, Southwestern University of Texas and West Virginia State College. The Women's College of North Carolina initiated a department in 1922; Baylor University in 1925. In that same year Yale University, Northwestern University, and Western Reserve University opened theatre departments. Departments were founded at
Syracuse University, Denison University, and the University of Oklahoma in 1927.¹

Men to handle the visual portion of produced drama have been called upon since the time of the Greek Theatre. George Pierce Baker opened the way for the stage technician in American education with his workshop. Donald Oenslager has this to say concerning his days at Harvard:

As an undergraduate, graduating in 1923, I devoted a great deal of my time to designing for the '47' Workshop of Professor Baker. At Harvard there was no such person as a technical director. The designer built, painted and dressed his own productions. Lighting was generally under the supervision of Monroe Pevear. Although, while Stanley McCandless was studying in the School of Architecture, he frequently was involved in lighting the productions.²

The situation at Harvard was unique in the light of the general educational situation of the decade. Glenn Hughes points out conditions: "When so many of us were getting started back in the early '20's, we did everything; chose the plays, designed the scenery, planned the lighting, ran the switchboard, trained the actors, etc."³

It is felt by a few of the elder statesmen of the educational theatre that there is some connection between the development of the

²Letter from Donald Oenslager, 1475 Broadway, New York, New York, April 15, 1960.

³Letter from Glenn Hughes, School of Drama, University of Washington, Seattle 5, Washington, April 25, 1960.
position of technical director in education and that of the position existing on the staff of the Theatre Guild of New York. The Theatre Guild employed two different technical directors during the 1920's. The first was Carolyn Hancock but it is unknown when she took the position. However, in 1926 the Theatre Guild employed Mrs. Kate Drain Lawson who had previously worked with Woodman Thompson. Her description of her job closely approximates the function of the technician found in educational situations where a separate scenic designer is employed. Mrs. Lawson also indicates that many members of educational theatre staffs, as part of their program, paid visits to the Theatre Guild. Mrs. Lawson often conversed with them during these visits. It is possible that these educators took with them some ideas on the role of the technical director and applied them to their own situations. There is, however, insufficient evidence to indicate that the origination of the term "technical director" and the functions implied can be credited to the Theatre Guild.

Logically the second man to be added to a college theatre staff to relieve the overworked director was a technical director. However, technical directors were not immediately obtained by directors who administered new drama departments. In many instances the opening of a department and the hiring of a technical director were separated by a number of years. It was three years after the founding of the drama department at Yale University that the need for a technical director was recognized. A nine-year span is evidenced at the University of North Carolina. The drama department of Carnegie
Institute of Technology was founded in 1914, but it was not until 1921 that the term "technical director" appeared on any of its play programs. It was ten years after Vassar established a drama department that a technical director was hired. Denison University's theatre arts department, founded in 1927, did not acquire a technical director until after World War II. When time and conditions were right, the technician was employed to augment the theatre staff. As production activity grew in the educational theatres of the country, theatre directors found the position a valuable addition.

The need for a trained staff of people is the result of the development of extensive theatrical operations. Educational theatre constitutes a large percentage of dramatic production in the United States. Drama is sponsored by 769 departments of institutions responding to the AETA College Curriculum Project and an extra-curricular activity in 136 schools responding to it. A representative theatre program consists of an average of five major productions and two to four one-act plays a year. The total program inevitably involves significant technical complexity.

A good theatre program stresses quality in the technical areas as well as in the directing and in the acting. The creation, supervision, and coordination of all elements of theatre are too much for one man to handle successfully. However, production quality can be maintained by relieving the director of technical responsibility. By hiring the technician, specialization in each area has resulted. Although "director" and "technician" function as collaborators, the
director's final authority is maintained as the cardinal principle of production organization.

Generally, the large institution offering a graduate program in theatre provides two separate positions: scenic designer and technical director. The major function in scenic design is the creation of settings, lighting and sometimes costumes. The major function of technical direction is the execution of the scene designer's work. A third situation exists wherein one person is employed as the sole director of the technical aspects of production. In such a situation, the duties of the technical director are expanded to include those of design. Furthermore, it is a mistake to designate the man "technical director," because this places emphasis upon execution without any suggestion of design. "Designer-technician" is the term which should be used as the title for the single technician; the term implies both design and execution.

By title the designer-technician is a combination of technical director and scenic designer. The technical director has full charge of and responsibility for the production organization, including scenery, lighting, costuming, properties, sound, and make-up. Through him the work of each area and of the backstage organization is properly co-ordinated. Sometimes the technical director not only co-ordinates but designs the lighting. The scenic designer is always responsible for the design of the scenery, lighting, and costuming unless otherwise arranged. He must see to it that his designs are carried out and in so doing he often supervises the painting of his sets. The designer-technician, being the sole administrator of the
technical area, is responsible for design, execution, production organization and co-ordination.

To use the term "technical director" for this investigation appeared to create less misunderstanding among respondents. It is the term most frequently employed when referring to the person who designs, executes and co-ordinates technical requirements. "Designer-technician" has not become common. Furthermore, to use the title designer-technician would have confused respondents in situations where both a scenic designer and a technical director are employed. Usually the technical director is employed in the small operation, and functions as designer-technician, whereas the true technical director may be one of two persons employed in the technical department of a large theatre operation. Directors of theatre would have had to decide which of two positions should be considered. It would have been possible for them to report that they had no designer-technician and therefore would not have been sent a questionnaire. Departmental chairmen and directors of theatre in situations where one man is employed in the technical area would not have been faced with a choice since no alternative would have been possible. It was necessary for each director of theatre to make an interpretation of the title according to his own theatre's organizational structure. Consistency was maintained by sending questionnaires to "technical directors." Respondents were individuals responsible for execution, production organization and co-ordination if not design. Since few institutions have separate scenic designers, excluding them from questioning will have little effect.
Nevertheless, the definitions stated above will serve to contribute to better understanding. The term "technician" will refer to the general class, including technical director and designer-technician.

During the 54-year development of theatre in education, the technician has become an important member of the theatre staff. He has removed a burden from the director and, by his special training, improved the quality of production. The technician is a special type of person. He is an artist, craftsman and organizer. He possesses technical knowledge of many sorts. His specialization has made the technician the authority in technical theatre and as important in his way as the play director.

Regardless of the equality of authority of technician and play director admitted by directors of theatre, an attitude of dissatisfaction was expressed by some technicians. One respondent expressed himself by stating: "There seems to be a tendency to minimize the title 'technical director' much like the term 'housewife.'" The "lower" status of theatre art as an academic discipline concurring with a misunderstanding of the nature of the technician's work seems to be a cause for his lack of recognition. There is also the possibility that the term "technical" implies a kind of activity which does not warrant significant respect.

The technician is frequently considered a "jack-of-all-trades" who probably possesses a wide variety of technical knowledge and skills. A respondent carries the point a bit too far by describing the technician as one "who is enamored of the theatre and is soft enough in the head to work unlimited hours for sub-marginal pay"
trying to satisfy the often unreasonable demands of directors and actors who ostentatiously proclaim in public that good theatre requires only a script and actors to interpret it." Another cites the technician as "a man called a technical director but who is little more than a handyman and who is given the title to keep him happy while the director does the real thinking." This investigator has been accused of organizing the questionnaire to the technical director in such a manner that he is to be considered a "glorified carpenter." The same respondent asks: "Won't you allow us a bit of recognition to some intellectual pursuits and grant that a man may be free to teach stagecraft and aesthetics at the same level of education?" Technical direction has the stigma of "craftsman" attached to it. In some instances, however, not even craftsman status is granted. A technical director in a western institution is considered by his colleagues and superiors, excepting his directors, as an English teacher who "does props" for the plays on the side. He points out further that he commonly "encounters the attitude that the work he does is really so simple that anyone could do it without training and experience and that it really doesn't contribute anything, anyway."

A unique set of conditions affect the technician. He is responsible for the technical phases of every production sponsored by the department of three or more staff members. In such a situation two or more play directors may alternate in the direction of the season's bill. The technician is forced to work with whatever facilities and finances are available to him while he is expected to
provide quality of results. If he is any kind of an artist he will attempt to do justice to the technical requirements but not without considerable expenditure of time and effort—time and effort used to innovate for that which is unobtainable. He operates in a situation where little recognition is granted to those who assist him. Often he cannot obtain the help he needs. The position is sometimes filled by individuals in need of a job who are only using it as a stepping stone to another position in theatre. Such occurrences do not lend prestige to the position. The technician, in name only, often is not trained fully for the job and in many cases not only lacks interest in the work but is unhappy with the working conditions he encounters.

The position is further hampered by the kind and amount of training available to those interested in it. The universities, according to Theodore Hoffman, Head of the Department of Drama at Carnegie Institute of Technology, are not equipped to train technical directors properly, and the less so where a man gets a Ph.D. through doing research which is unrelated to the job and which actually prevents him from learning his job. One technician reports a problem of real importance: "After 7 years I am at top rank (assistant professor) I can get without a Ph.D. and I cannot find a Ph.D. in my specialities or even many courses offered at levels higher than the courses I teach."

The purpose of this research is to present a picture of what the technician does, in an effort to expose the scope of his work, to express the general attitude of technicians in accordance with the
bearing it may have on their status, to deal strongly with the pressures of the position as they affect the conditions for recognition and to prophesy trends in the position. In order to accomplish the ends indicated above the material will be presented in the following form. In Chapter II investigation procedure is explained. Chapter III contains a discussion of the growth and development of the position. A profile of the position is developed in Chapter IV. The pressures of the position are examined in Chapter V. Chapter VI deals with the relation of the technician to his job. Recognition of the technician as a teacher and a scholar is investigated in Chapter VII. The final chapter attempts to present trends in the position.

This investigation should replace much of the non-factual opinion concerning technical direction with reliable information. If this investigation will help technical production in theatre to be recognized as, in the words of Edward C. Cole, Acting Dean of the Yale University School of Drama, "a valid, arduous and meritorious discrete subdivision of theatre arts, based in science and the liberal and fine arts and deserving of independent status as a part of the organization for theatrical production," this investigator will be more than satisfied.
CHAPTER II
PROCEDURE

Initial information for this investigation was gathered by means of business reply cards sent to approximately four hundred regionally accredited colleges and universities in the United States. The purpose of the reply cards was to determine which institutions employed "technical directors" as full-time staff members and which directors and their technicians would be willing to answer questionnaires at a future date. In order to encourage willingness to answer questionnaires, the directors were given the opportunity to request a summary of findings prior to publication of this research. The content of the reply card is included in Appendix A.

The compilation of a list of schools was hindered by the lack of an accurate, recent, theatre directory, two of which were published soon after the questionnaires were mailed. Had these publications been available the process of establishing the initial list would have been less complicated. With one exception no distinction was made according to the type of institution. Institutions offering professional training in a given field were eliminated. Such schools are Carnegie Institute of Technology, the Art
Center School of California, the Art Institute of Chicago, Boston Conservatory of Music, Pratt Institute, Case Institute of Technology and the military institutions. These were eliminated because the organization of curriculum and staff did not conform to the usual pattern of institutional organization. Exclusion of theological seminaries and "bible schools" was made because the schools did not fit standard practices.

To illustrate the organization of the "professional school," the drama department of Carnegie Institute of Technology serves as an example. About one-third of a student's curricular work is in liberal arts; the remainder is completed with specialized courses in the chosen field. The production schedule represents, in its entirety, student design and execution closely supervised by the various members of the faculty who are specialists in limited areas. The faculty is, therefore, professional; it includes no Ph.D.'s, although, states Theodore Hoffman, "we do not necessarily discriminate against this articulate majority." Autonomy is established within a College of Fine Arts. The teaching load system is not used.

The initial list was compiled by checking 781 institutions listed in the American Educational Theatre Directory of 1959-1960 against information about them in the compilation, American Universities and Colleges for 1956. This compilation was of value in determining the current enrollment of a given institution and the number of faculty in departments sponsoring a theatre program. An institution was listed if it met enough of the following qualifications to warrant sending the business reply card:
a) Three or more staff members in a Department of Speech.
b) Three or more staff members in a Department of Speech and Theatre.
c) Three or more staff members in a Department of Dramatic Art.
d) Nine or more staff members in a Department of English.
e) Seven or more staff members in a Department of English, Speech and Theatre.
f) At least five staff members in a department of any other designation whose director was listed in the Educational Theatre Directory.
g) A member of the American Educational Theatre Association and listed in the 1959 Directory of University and College Theatres.
h) The department had a chapter of a dramatic fraternity.

An institution was listed if it qualified in items "a" through "f" and "g" or "h."

Of the 399 business reply cards sent out, 308 were returned.

Directors of theatre in 194 institutions indicated that a member of their staff was employed as technical director. The remaining returns were received from 59 institutions having one man in theatre, 13 with two men in theatre, 21 directors of theatre employing student technical directors, two directors using technical directors from another department, six directors employing non-academic craftsmen and one availing himself of the services of the buildings and grounds department. Four departmental chairmen indicated that their theatre program was either suspended or non-existent. The position of technical director was impossible to determine in five instances.

A technician was to be hired for the coming year in two cases.

Four questionnaires were evolved from the information gained from the returned business reply cards. A set of two questionnaires
forms the major part of the study; these two were sent to the largest number of institutions. The remaining questionnaires were used to gather information of a limited nature and were sent to a small segment of the directors willing to respond.

The set consisted of one questionnaire sent to the "Director of Theatre" of a given institution and one sent to the "Technical Director" of that institution. The questions were arranged so that all that needed to be asked was divided between two respondents. No similar questions were asked of both individuals. In order to increase response the questionnaires were organized to take a minimum of time to fill out but provided opportunity for clarification and/or comment on each question. In essence, the questionnaires were of the check-list type.

The questionnaire sent to the director of theatre contained questions he was best qualified to answer. He was queried on matters dealing with the academic situation of the technician in his employ. He was asked questions requiring him to evaluate his technician's work in the theatre. He was questioned on department policy as it reflected upon the technician's situation in the department. A sample of this questionnaire and the one sent to the technical director is contained in Appendix B.

The approach to the technical director was slightly different; all of the questions investigated the effect of the position on him. Many of the questions dealt directly with the position. He was asked what he did in production and in teaching. His preferences in production, teaching and publication were reviewed. He was asked
questions dealing with many aspects of the theatre as they related to the pressure which they created for him in his present position and the methods employed to alleviate pressure. He was asked to express his reasons for leaving a previous position.

Questionnaires sent to the departments having one-man theatre operations were aimed to reveal the problems encountered where a technician was not employed. Although the director was asked how he operated and why he did not have a “technical director,” the most important question dealt with his chances of getting one. The questionnaire was partially intended to reveal that the one man in theatre works under the same pressures as the technician (see Appendix C).

A few questionnaires were sent to institutions in which a student technician was employed, with the purpose of ascertaining the need for a staff technician. The questionnaire is somewhat similar to the one intended for the one-man situation. It is concerned with the pressures placed upon the single faculty member who must rely on a student to ease some of the burden of production activity (see Appendix C).

The number of returned questionnaires was sufficient to validate the investigation. After processing, 129 departments are represented by both the director of theatre and the technical director. Seventeen departments are represented by the director of theatre only, while thirty departments are represented by the technician. The full range of institutions by enrollment per 1,000 is represented.
Of the questionnaires sent to the one-man operation, twenty-six are suitable for use in this study. This number coincides with the small proportion of departments in the country engaged in theatre activity supervised by one man. Five questionnaires received from the one-man operation engaging a student technical director cannot be used. These serve only as examples rather than expressions of standard practice.

Evaluation of the questionnaires is based on four approaches. Basic information was obtained by a number of direct-answer types. What the technical director teaches, for example, was obtained by the direct-answer method. For the evaluation of the person and the position both qualitative and quantitative questions were asked. For quantitative possibilities multiple choices were listed: always, frequently, seldom, never. In qualitative questions, one of the following was to be checked: notable, considerable, slight, and none. Many points were clarified and opinions expressed through comment for which space was provided on the questionnaire (see Appendix B).

Answers from the 127 departments returning both questionnaires were used in analyzing points requiring cross-reference. For points derived from the answers to a single question, the entire return of 172 questionnaires was employed. In many cases, questions were left blank, making a total number of responses to any one question 147 to 153.
CHAPTER III
THE DEVELOPMENT AND EXTENT OF THE TECHNICIAN'S POSITION

As far as this investigation reveals, Northwestern University employed the first full-time technical director. Mr. Eugene N. Frost was appointed to the faculty of the Northwestern Drama Department on September 1, 1925. Little is known about his activities at the University but he did publish one article in the Little Theatre Monthly entitled "Diagnosing the Physical Stage," which appeared in the issues of December, 1928, and January, 1929. He further contributed to the field of theatre by conducting a forum which was advertised as follows:

The Little Theatre Monthly is establishing a technical exchange to assist in bringing to the fore scientific treatment of subjects of the physical stage and visual effects of drama. Some attempt will be made to arrive at a unification of aim and effect. The forum will also attempt to discuss good practices with the view to expressing the fundamentals of stagecraft. Questions will be answered relative to these subjects and contributions from the field of a helpful nature will be published. Latest developments and experiments of stages will be given. Firms interested in the technical side of the stage are requested to send us news of their latest works. The forum will be conducted by Eugene N. Frost whose series of articles in the Little Theatre Monthly have just been published. H. A. E.1

When it was found necessary to add a technical department to the theatre organization at Yale University, Philip Barber was elevated from graduate assistant to instructor and made Technical Director of the theatre during its third season—1927-1928. His treatise on technical practice, The Scene Technician's Handbook was published by Whitlock's Incorporated in 1928. It is the first American publication of its kind to deal strictly with the technical aspects of theatre.

Although Mr. Frost is the first faculty member to be employed as technical director, the faculty directories and old programs collected at Carnegie Institute of Technology indicate that the position was used before 1925. According to B. Iden Payne, now guest professor of Drama at the University of Texas, who was at Carnegie Institute when the Drama Department was formed, T. W. Stevens had not thought it necessary to have someone function entirely as a technical director, though it was not long before he realized how important it was. This is substantiated by the fact that a Scenic Designer (Woodman Thompson) was appointed in 1916 rather than a technical director. In fact, Mr. George Walker, listed in the faculty directory as Custodian, Drama Department, part-time, executed Thompson's designs. A student, Mr. Barry Buchanan, graduating in 1920, indicates that up to that time the

designation "technical director" had not been used. But in 1921, the technical director is mentioned for the first time; students not on the payroll and holding the position for one or two years received credit on play programs. Even today, the departmental organization does not employ a man in the capacity of technical director.

The employment of "technical directors" did not spread rapidly in the early years. Samuel Selden wrote to this investigator: "There were not many people holding that kind of position around the country, but I do know there were several." Professor Selden, presently the chairman of the Drama Department at UCLA, was hired as the "technical director" at the University of North Carolina in 1927. D. Palmer Young, a graduate of Oregon State College, received his appointment there on June 10, 1927, and that same year Vassar College employed Howard Wicks as its first "technical director." Harold Barnes was the first "technical director" at the State University of Iowa: he was engaged in 1928. In September of 1928, Homer N. Abegglen was appointed to the technical directorship at Miami University of Ohio. On July 1, 1929, Ralph C. McGunn took the post of "technical director" at Amherst College and in that year Fred C. Harris, now at the University of California at Berkeley, was employed in a part-time technical position at the University of Oregon. In 1930 Ohio University hired Vincent Jukes. Theodore Sebrione was obtained by the University of Minnesota in 1931, and George Andriani, now at Santa Rosa Junior College, became the full-time "technical director" at the University of Oregon. Henning Nelms points out that
by 1932 he was using the term technical director to describe the man who supervised all forms of technical work. These men were actually designer-technicians.

How the post of "technical director" was filled in the 1920's is a matter of speculation, but there is some indication that jobs were filled by men who were "groomed" for the position. One man who was shocked to learn that this investigation revealed him to be among the first technical directors in educational theatre related his experience and thoughts about being considered for the position:

Prof. C. B. Mitchell, head of the department called me into his office, when I was a student in Electrical Engineering, two years prior to 1927, asking me if I would be interested in a position as Technical Director when I was graduated. I told him I would be very interested. On this basis he asked me to change to the school of Education where I would have more opportunity to take courses in Speech, Drama, and Art. This I did. I would therefore feel that I was being "groomed" for this position at least two years prior to 1927. On this basis you may well say that the position of Technical Director in the educational theatre was being considered in the school year of 1924-1925.

The technical director first employed at Yale University is another who was "groomed" for the position in one sense. His work as a graduate assistant gave him the experience to qualify him for the position of technical director when one was needed. Professor McGoun

4 Letter from Professor D. Palmer Young, Department of Speech, Oregon State University, Corvallis, Oregon, July 11, 1960.
at Amherst is another example of a person who was employed by his alma mater. He was active, as an undergraduate, in dramatic activity in the technical and business fields. Professor McGoun related his theatre autobiography:

My academic interests were in science. I majored in Biology and stayed at Amherst after my graduation in 1927 to work for a masters in Biology. During these two years I continued to work in dramatics as an extracurricular activity. Upon receiving my masters in 1929 I remained at Amherst as an instructor in Biology. At the same time I was officially appointed technical director in dramatics on a part time basis. This situation continued until 1938 when Amherst built a theatre and formed a Dramatic Arts Department. At this time I was given a year off to attend Yale Drama School. Upon my return I was appointed a full time instructor in Dramatic Arts, giving up the Biology completely.5

One other possibility explaining the employment of technicians in the 1920's is provided by Professor Samuel Selden. After graduating from Yale University he worked with Cleon Throckmorton at the Provincetown Playhouse and later picked up various professional jobs until the "longing for something like a steady job" caused him to contact Professor Frederick Koch at the University of North Carolina.6 Professor Koch hired him as technical director in 1927.

Professor Selden makes an observation worthy of being noted. He feels that those people who were hired as technical directors in

5Letter from Professor Ralph C. McGoun, Dramatic Arts Department, Amherst College, Amherst, Massachusetts, August 10, 1960.

6Letter from Professor Samuel Selden, Dramatic Arts Department, University of California, Los Angeles, California, August 10, 1960.
the early days did not intend to make a regular profession of teaching in that field.

There is no evidence to indicate that the initial hiring of "technical directors" was a matter of geographical expansion emanating from a particular source. Technical directors were employed in any department that had expanded its program to the point where a technician was necessary to the continued success of the theatre program. This is evidenced by the fact that men were employed by schools on the West Coast at about the same time that schools in other parts of the country employed them (Table 1).

TABLE 1
A CHRONOLOGY OF THE FIRST EMPLOYMENT OF TECHNICAL DIRECTORS—1925-1934

<table>
<thead>
<tr>
<th>Year</th>
<th>Institution</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1925</td>
<td>Northwestern University</td>
<td>Illinois</td>
</tr>
<tr>
<td>1926</td>
<td>Yale University</td>
<td>Connecticut</td>
</tr>
<tr>
<td>1927</td>
<td>University of North Carolina</td>
<td>North Carolina</td>
</tr>
<tr>
<td></td>
<td>Oregon State College</td>
<td>Oregon</td>
</tr>
<tr>
<td></td>
<td>Vassar College</td>
<td>New York</td>
</tr>
<tr>
<td>1928</td>
<td>State University of Iowa</td>
<td>Iowa</td>
</tr>
<tr>
<td></td>
<td>Miami University</td>
<td>Ohio</td>
</tr>
<tr>
<td>1929</td>
<td>Amherst College</td>
<td>Massachusetts</td>
</tr>
<tr>
<td></td>
<td>University of Oregon</td>
<td>Oregon</td>
</tr>
<tr>
<td>1930</td>
<td>Ohio University</td>
<td>Ohio</td>
</tr>
<tr>
<td>1931</td>
<td>University of Michigan</td>
<td>Michigan</td>
</tr>
<tr>
<td></td>
<td>University of Minnesota</td>
<td>Minnesota</td>
</tr>
<tr>
<td>1932</td>
<td>University of Utah</td>
<td>Utah</td>
</tr>
<tr>
<td>1933</td>
<td>Indiana University</td>
<td>Indiana</td>
</tr>
</tbody>
</table>

The figures obtained from this investigation reveal that the hiring of technical directors in the educational institutions of this
country was a gradual process. Of 142 respondents to the question pertaining to the initial appointment of a technical director, one director indicated that a technical man was hired in 1925. Between 1926 and 1930, sixteen departments hired technicians for the first time. Six technical directors were hired by the responding departments between 1931 and 1935. From 1936 to 1940 seventeen technical men began initial appointments. The same number were hired between 1941 and 1945. Immediately after the war and until 1950, twenty-eight institutions hired a technical man for the first time and from 1951 to 1955, thirty technicians were hired. Since 1955 twenty-seven of the respondents hired a technical man for the first time. Although the increase is gradual, it is interesting to note that fifty-four of the 192 respondents hired a technician for the first time before 1946, while eighty-five hired a man after World War II.

In the period from 1926 to 1930, the initial hiring of a technician occurred in schools of approximately 500 to schools with enrollments of over 25,000. In this same period, however, the majority of the institutions hiring technicians were state schools. The effect of enrollment on hiring held true until the post World War II period. From 1946 to date more of the smaller institutions hired a technician for the first time than did the institutions of 7,000 or more.

The present extent of the position of full-time staff technical director, or designer-technician, shown by the available figures is not as extensive as was anticipated. Sixty-four per cent of the respondents indicate that a full-time technician is employed in the
department. One important answer to the percentage is that theatre is not emphasized. Of the 1,015 four-year colleges and universities listed in the Directory of American College Theatres, just 53.4 per cent offer either a major or minor in theatre. Only 29.2 per cent of them offer a major in theatre. Theatre in those institutions offering neither a major nor a minor is limited in its curriculum, is an extracurricular activity, or is non-existent.

The absence of a technician in the one-man operation, of which fifty-nine are represented, is not confined to the very small school. Of the directors responding to the questionnaire dealing with the single supervisor in theatre, 17 were employed in schools with enrollments under 1,000, but 23 in schools of 1,000 to 2,000 enrollment, 14 of 2,000 to 3,000, and 5 of 5,000 to 32,000 enrollment. The same is true of institutions hiring or utilizing student technical directors to assist the one full-time faculty member in theatre. Only two respondents using a student are connected with institutions of fewer than 1,000 students. Ten such directors are employed in schools of 1,000 to 2,000 enrollment, 2 in the 2,000 to 3,000 bracket, 4 in the 4,000 to 5,000 bracket, and 3 in the 5,000 to 7,000 bracket. Of the technicians employed in departments contributing to this survey, nearly as many are employed in schools with enrollments of 5,000 or more as are engaged by schools under 5,000. Thus the presence of a permanent technical man does not correlate with the size of the institution but rather with the emphasis given to theatre.
Thirty-six per cent of the schools responding to this survey do not employ a man assigned to full-time technical direction. The directors in 26 per cent of these institutions hire a student or function in the technical capacity themselves. Another 10 per cent of the respondents indicated situations other than those previously presented. Thirteen directors explained that their two-man departments maintain a policy of alternation in the role of designer-technician. Nine departments offering a production program obtain their technical directors, or designer-technicians, from other departments or hire non-academic personnel to function in that capacity.

Almost all of the single men in theatre indicate the need for a technician and to off-set the lack of one, three-fourths of them employ students in that capacity. But the need for a full-time technical man is reflected in that the number using students also point out that they must supply a great deal of supervision in the technical area. All but one respondent indicate a consciousness of the pressure created by the absence of a faculty technician.

The unfortunate circumstance of departments without technicians is that there seems little hope of hiring a second person to function as the designer-technician. Out of sixty cases, forty-four indicate that it is either unlikely or impossible to employ a full-time designer-technician. Seventeen respondents indicate that the hiring of a full-time man is possible or even probable.

Several factors make it impossible for the one-man theatre departments to hire a full-time designer-technician. The item most
frequently cited is the lack of finances, but of nearly equal importance is the relative status of drama as an activity or academic discipline. A third factor was checked by many respondents: "departmental size limited by administrative regulation." The director of theatre in a college in Missouri indicated: "The administration has no conception of the problems involved in theatre. They consider it just play."

One of the problems involved in technical direction is the limitation of the physical plant and the facilities for production. In a small sampling of twenty-three one-man operations, wherein the director indicates that the hiring of a technician is either unlikely or impossible, half of them also indicate that the limitations of the physical plant and facilities are slight. These directors would have no trouble finding technicians to work under such conditions.

Technical direction has grown steadily since its introduction in educational theatre in 1925. The increase in the number of technicians has progressed with the advancement of educational theatre in the institutions of the country, but this number cannot increase any faster than the development of theatre programs. At the present time slightly more than half of the educational institutions offer a major or minor in theatre; directors of a number of educational theatre programs indicate the impossibility of hiring a designer-technician; and only a few institutions, the larger ones, are hiring two technicians in theatre. Therefore, the development and extent
of the position of "technical director" in American educational theatre has advanced to about 50 per cent of its capacity and is now maintaining a temporary status quo.
CHAPTER IV

THE POSITION OF THE TECHNICIAN TODAY

After thirty to thirty-five years of growth, the position of "technical director" in educational theatre has achieved a definite form. Certain duties, certain conditions and certain patterns are set. The length of time each of the many facets of the job has been fixed is unknown. This chapter contains a profile of the position which illustrates conditions since World War II.

Turn-over in the position. Technical direction is a position in which frequent change of personnel occurs. The response from 174 directors of theatre and "technical directors" reveals that the technician remains in a given position for an average of 3.7 years. A tabulation of seventy-five technicians who indicated their length of stay at a previous job shows a 3.1 year average. For ninety technicians reported upon by directors of theatre who hired them, a 3.3 year average was obtained. Nine former technicians who now have other duties in the same department held their previous positions for an average of thirteen years.

Technical men who are still holding their original positions have been excluded from the compilation of the 3.7 year average. The length of stay indicated above is based upon the number of years technicians held specific positions after which they moved on to
another one. The length of stay of technicians who are still employed by the same institution is based upon the amount of time between the initial appointment and the present. This investigation includes twenty-five technical men hired for the first time since 1950 who have not changed positions; these were excluded. Sixty-one technical men have held no previous positions and obviously could not be included in turn-over figures. The excluded eighty-six technicians represent 28.5 per cent of the "technical directors" responding to this survey.

Most technicians leave a given position after the completion of one to three yearly appointments. Of ninety-seven technical men, twenty-three stayed two years, eighteen stayed three years, while fifteen stayed but one year. Two technicians remained at the same institution, holding the same job, for ten years before making a change; two others remained nine years before moving (Table 2).

Seven technical men, who have held the position since it was established in their departments prior to 1950, show an 18.5 year average stay. As far as this investigation reveals, Professor Ralph C. McGoun has held the position of technical director at the same institution longer than anyone still living. He has been the technical director at Amherst College for thirty-one years.

The vocation of technicians vacating positions. Evidence has been introduced to show that technical men move about quite frequently, but where do they go? From ninety-two cases it is determined that most technicians take other similar jobs or return to
graduate school. Directors of theatre indicate that 28.2 per cent of their former employees took other similar positions and that another 25 per cent of them returned to graduate school. The return to graduate school, however, does not always indicate more training in technical theatre. The technician may choose to obtain a degree in general theatre and may not accept a position in technical direction upon completion of his education. In fact, a number of technicians have pointed out that they are returning to graduate school in order to prepare themselves for careers other than the one presently pursued.

TABLE 2
PERCENTAGE DISTRIBUTION OF LENGTH OF STAY

<table>
<thead>
<tr>
<th>Length of Stay (years)</th>
<th>Percentage of Technicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.5</td>
</tr>
<tr>
<td>2</td>
<td>25.3</td>
</tr>
<tr>
<td>3</td>
<td>19.8</td>
</tr>
<tr>
<td>4</td>
<td>15.4</td>
</tr>
<tr>
<td>5</td>
<td>8.8</td>
</tr>
<tr>
<td>6</td>
<td>5.5</td>
</tr>
<tr>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td>8</td>
<td>3.2</td>
</tr>
<tr>
<td>9</td>
<td>2.2</td>
</tr>
<tr>
<td>10</td>
<td>2.2</td>
</tr>
</tbody>
</table>
A sizeable proportion of the technicians deviate from the usual pattern; they continue their careers outside of the educational sphere. Directors of theatre reported that 18.4 per cent of their former "technical directors" acquired jobs in television, commercial theatre or community theatre. Slightly less than 10 per cent of the technicians began careers in business or other miscellaneous activities.

While the remaining 10 per cent of the technicians took jobs in education of another sort, as non-academic personnel in college theatre or as teachers in public schools, the final tabulation reveals that 53.2 per cent of the men who once left a technical position still teach at the college level.

The technician's reasons for resigning. To indicate his reasons for leaving his previous position, the "technical director" was given eight possibilities and a space to add other reasons on the questionnaire. Such items as "job essentially maintenance over production" and "was in an 'up or out' situation with rank open" were checked by very few of eighty-one respondents. Departmental factors including "too few technical theatre courses," "teaching load plus production responsibility too heavy," "inadequate facilities or budget to improve situation" and "disorganized department" were checked by approximately 23 per cent of the respondents. Such comments as "disagreed with the basic philosophy of the department," "impossible to advance until 1987" and "overburdened production schedule of 32 productions in 12 months with little technical help"
are indicative of the types of departmental problems which caused men to find other positions. One technical director is quite vehement in his comment:

There was no concerted effort on the part of members of the department to share in one another's failures and inadequacies as well as their triumphs. They were in fact (and still are) a pack of vultures.

Salary and employment were of concern to the greatest number of technical men. In the matter of salary, eight technicians indicate that "unattractive salary" was the only reason for leaving their previous position. Twenty respondents checked unattractive salary as one of several factors contributing to a decision to leave the job. Those concerned with salary represent 34.5 per cent of the respondents. Twenty-nine technicians accepted positions temporarily. This group, representing 35.8 per cent of the respondents, was hired for a limited period of time. While most of the time periods were of one to two years duration, the longest period of employment did not exceed four years.

The relation of age to the position. The job of technical direction is essentially a young man's position. In an age range from under twenty-four to over fifty, 72.6 per cent of the technicians now employed in I.I. institutions are between the ages of twenty-two and thirty-six. Most of the technicians over thirty-six years are between the ages of thirty-seven and forty-two. A few technicians are forty-six to fifty, and six are over fifty years of age (Table 3). Most of the oldest technical men have been in the same department for many years.
TABLE 3

AGE RANGE OF RESPONDENTS

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Number of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 24</td>
<td>1</td>
</tr>
<tr>
<td>24 - 27</td>
<td>24</td>
</tr>
<tr>
<td>28 - 30</td>
<td>28</td>
</tr>
<tr>
<td>31 - 33</td>
<td>30</td>
</tr>
<tr>
<td>34 - 36</td>
<td>19</td>
</tr>
<tr>
<td>37 - 39</td>
<td>14</td>
</tr>
<tr>
<td>40 - 42</td>
<td>6</td>
</tr>
<tr>
<td>43 - 45</td>
<td>7</td>
</tr>
<tr>
<td>46 - 50</td>
<td>6</td>
</tr>
<tr>
<td>Over 50</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
</tr>
</tbody>
</table>

Of the institutions included in this study the larger ones employ the older men. Two-thirds of the technicians over thirty-six years of age are employed in schools with enrollments greater than 6,000. However, the concentration occurs in institutions between 6,000 and 10,000 enrollment. Possibly larger budgets, greater rank and more responsibility in the technical area account for the employment of older men in these institutions.

Women in the position. Of the few women employed in the field of technical direction, only twelve were cited as "technical directors" in the responses. It is interesting to note that only three of the institutions employing them are women's colleges.
The institutions now employing female technicians are Hendrix College in Arkansas, Occidental College of California, Wellesley College, Texas Technological College, Wittenberg University of Ohio and Tufts University. Wayne State University employs a woman as assistant technical director. Women formerly holding technical positions were employed at Western College of Ohio, Skidmore College, Indiana State Teacher's College, Texas Christian University and the University of Tennessee.

Academic rank of the position. The hiring of the technician in a department follows the pattern of conventional academic procedure. Initial appointment generally begins with the rank of instructor. Since technical direction is a young man's position, there are not many technicians who have earned more than a Master's degree. This degree qualifies them for teaching in most institutions of higher education. Therefore, the position of "technical director" in educational theatre for a candidate with an M.A. degree usually begins with an instructorship. Initial appointment of technicians has not been developed beyond a notation of current rank in relation to age and degree (Table 4). A complete discussion of academic rank is contained in Chapter VII.

The position in theatre organization. The typical organizational structure into which the "technical director" fits includes both faculty and students. Whatever the arrangement may be, the technician is responsible to the play director. The department with an undergraduate program in theatre usually employs a "designer-
<table>
<thead>
<tr>
<th>Technician's Age</th>
<th>Degree now held</th>
<th>Instructor</th>
<th>Asst Professor</th>
<th>Assoc. Professor</th>
<th>Non-Academic</th>
<th>No Rank Given</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BA</td>
<td>MA</td>
<td>MFA</td>
<td>PH D</td>
<td>BA</td>
</tr>
<tr>
<td>Under 24</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-27</td>
<td>11 3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-30</td>
<td>1 17 5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-33</td>
<td>2 20 4 1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-36</td>
<td>1 9 1</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-39</td>
<td>9 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-42</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-45</td>
<td>2 1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46-50</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over 50</td>
<td>1 1 2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
technician." He has under his supervision the stage carpenter, stage electrician, property master, sound technician, costume mistress and make-up artist. Usually the costume mistress and the make-up artist receive their instructions from the play director, and only organizational aid from the designer-technician. The technician also picks and instructs the stage manager (Figure 1). The employment of student crew heads is standard educational theatre practice.

The technician in a graduate program in theatre often has graduate assistants to help him in his work. These graduate students are responsible to the technician, and the student crew heads are responsible to the graduate assistants who, as supervisors, individually oversee each production area. Therefore the technician's job is primarily organizational. The supervisors conduct the actual work by guiding the crew heads.

When additional faculty technicians are employed, the technical director's organizational responsibility does not change, although he may not be required to maintain full control. If a separate scenic designer is employed, he may have under his supervision a scenic artist. He may also share supervision of scenery construction with the technical director who is relieved of guidance in the area of costuming but maintains organizational control. Generally, however, the technical director is in charge of all phases of execution (Figure 2).

The production demands of the position. Technical direction is a position which includes design and execution in theatrical
FIGURE 1

ORGANIZATION OF THE TECHNICAL STAFF IN THE SMALL EDUCATIONAL THEATRE OPERATION

Box Office ——— Director of Theatre

 ——— Play Director

 Assistant to the Director ——— Designer-Technician

 CAST ——— Stage Manager

 ——— Costume Mistress

 ——— Stage Electrician

 ——— Property Master

 ——— Sound Technician

 ——— Make-up Artist

 ——— Chief Grip

 ——— Stage Carpenter

 ——— Assistant Stage Carpenter

 ——— Assistant Electrician

 ——— Lighting Crew

 ——— Properties Crew

 ——— Make-up Crew

 ——— Stage Crew

 ——— Construction Crew
FIGURE 2

ORGANIZATION OF THE TECHNICAL STAFF IN THE LARGE EDUCATIONAL THEATRE OPERATION

Publicity Director ———— Supervising Director ———— Business Manager

—— Play Director
 — Scenic Designer
 — ——— (Costumer)

——— Technical Director
 — Assistant Tech. Director

CAST ———— Stage Manager
 ———— Stage Carpenter

—— Costumer
 ———— Costume Supervisor
 ———— Costume Mistress
 ———— Seamstress
 ———— Construction Crew
 ———— Wardrobe Crew
 ———— Dressers

—— Lighting Supervisor
 ———— Lighting Technician

—— Property Supervisor
 ———— Property Master
 ———— Property Assistant

—— Sound Supervisor
 ———— Sound Technician
 ———— Sound Assistant

—— Make-up Supervisor
 ———— Make-up Artist
 ———— Make-up Assistant

—— Stage Carpenter
 ———— Chief Grip
 ———— Assistant Stage Carpenter
 ———— Construction Crew

—— Shop Supervisor
 ———— Shop Foreman

—— Construction Crew
 ———— Stage Crew
production. It is again emphasized that the technician is a "designer-technician." In terms of design, 87.7 per cent of the technicians included in this study are responsible for the creation of the setting, the lighting and selection of furniture. In answer to the question of how often the technician designs the scenery, 88.1 per cent of the respondents indicate that they always or frequently create it. Of 128 respondents 84.2 per cent design the lighting for most of the productions. In furniture selection, 90.9 per cent of the respondents indicate that they are always or frequently responsible.

More technicians are responsible for execution than for any other phase of production. Of 155 technicians, 98.7 per cent of them indicate that they are always or frequently involved in set construction. In addition, the stage crew is always or frequently rehearsed by 88.3 per cent of the technicians and 77.9 per cent of them pick and instruct the stage manager. In the realm of execution, one activity falls far below the others. Only 56.5 per cent of the technicians responding to this study prepare sound and music effects most of the time.

Prior to technical rehearsal, technicians give more attention to the construction of scenery than they give to lighting, properties, sound or costumes. Lighting is given more attention than properties or sound, and properties are given more attention than sound. A very few technicians give some attention to costumes. Although lighting is given more attention than properties, a considerable number of technicians indicate that properties are second
to scenery in the amount of attention given. Such a situation is understandable when properties are considered as part of the total design of a setting.

A very small number of technical directors do not design scenery or lighting. In these cases, the design is carried out by a second technician, a staff member whose only function in the theatre usually is to design the setting, lighting or both. The second technician may be appointed as scenic designer or may be an undesignated member of the staff. At Yale University, a separate faculty member is in charge of scenic design but does not have the title of scenic designer for the theatre. Of the 127 institutions investigated, eleven employ a scenic designer and a technical director. In these eleven where a separate designer is employed there are five technical directors who never design the setting and seven who never design the lighting.

Various situations determine the technical directors who seldom design the setting. First, the theatre organization may be highly specialized as in the case of departments employing a separate scenic designer. Second, some departments use scenic designs created by students. Eight directors indicate that the practice is always followed, while sixty-one indicate a frequent use of student designs. Third, where two technicians are employed, the designing of the set is handled by one man and the lighting by the other. Fourth, in two cases, and there may be more, each play director designs his own productions. Finally, another situation exists wherein
the designer-technician collaborates on the set design with the
play director.

Why so few technicians take the responsibility for the design
of costumes is somewhat a matter of speculation. Nearly 40 per cent
of the technicians now employed never design the costumes and 26.8
per cent seldom do. The low percentage may be due to the fact either
that costuming requires a combination of skills unlikely to be pos-
sessed by technicians or departments find it simpler and easier to
rent or borrow costumes.

In addition to their duties connected with production, a num-
ber of technical men point out other jobs they are expected to per-
form. Four technicians say that they are responsible for make-up,
its design and execution. Four more indicate that they are respon-
sible for theatre publicity. Additional duties cited by others in-
clude business management, "front of the house" management and pur-
chasing. Eighteen technicians direct one or two productions a year,
but in so doing are relieved of any technical responsibility. How-
ever, almost all technicians are responsible for maintenance (see
fringe responsibilities of the position).

Fringe responsibilities of the position. The position of
"technical director" involves a responsibility for maintenance.
Since the technician uses tools, equipment and the physical plant,
he is the logical one to be responsible for them. Technical men
may not desire it, but their jobs include maintaining certain types
of equipment.
The technician is responsible for the storage of all materials used in the technical preparation of productions in 82.1 per cent of the cases. He is responsible, in 80 per cent of the cases, for the tools that are used. Fewer technicians are responsible for the upkeep of the physical plant than tool maintenance or materials storage. Approximately 60 per cent of them are responsible for the physical plant, which includes the stage, shop, dressing rooms, storage rooms and green room.

Just as the director experiments with techniques and methods of working with casts, the technician, with the same interest in innovation, experiments with the materials of his domain. Furthermore, part of the work of the technician is that of making improvements where possible. In 95.5 per cent of the cases, technicians have been instrumental in improving conditions of the theatre plant. The variation in what can be done is boundless; improvements may vary from costly remodelling to constant addition of many small items. This investigation does not deal with the kind of individual improvements, only the number made, as determined by the directors of theatre. The results show that 36.3 per cent of the technicians have made "many" improvements in the theatre and 50.7 per cent have made "some" improvements.

Teaching requirements of the position. In addition to duties in actual production technicians, in almost all cases, teach academic courses. Most of them teach courses in theatre, including technical courses, and in areas other than theatre. Out of 152 respondents,
forty-one technicians give instruction in both non-theatre areas and technical theatre. Fifty-one respondents not only teach non-theatre and technical theatre courses but other theatre courses as well. Technicians involved in teaching theatre including technical courses represent 25.6 per cent of those queried. Only 13.8 per cent of the respondents teach technical theatre courses only.

More than two-thirds of the technicians included in this study are required to teach introductory courses in fields other than theatre. Most of them, according to individual comment, must teach some type of basic course in Speech or English. One technical director, connected with an English department, teaches twenty-seven quarter hours of freshman English. In most instances, the fewer the technical or theatre courses a technician teaches, the more Speech or English courses are added to his load. One designer-technician comments on the point: "A designer-technical director should have more time scheduled to give to design work, rather than lots of extra classes in non-theatre courses."

All of the technicians interviewed teach at least one course that may be classified as a technical theatre course. Many of them teach more. Almost 50 per cent of the 152 respondents teach three or more courses classified as technical. The standard combination, stagecraft, stage lighting and scenic design, is taught by sixteen of the respondents. The standard combination plus the course entitled "technical production problems" is taught by thirty-seven technicians. Those who are limited to less than three technical
courses teach, for the most part, stagecraft or the composite course, play production.

Stagecraft is the course most widely taught by the technical man. Some 70.3 per cent of the technicians answering teach it as a separate course. The percentage is higher if the twenty-seven teaching play production are included, since stagecraft is a major part of such a course. Therefore stagecraft, when it is included in play production, is a course taught by 88 per cent of the respondents. Nearly 54 per cent of the designer-technicians teach scenic design, and about 40 per cent of them teach stage lighting. Almost the same number teach "technical production problems" as stage lighting (Table 5).

Table 5

INSTRUCTION OF TECHNICAL COURSES

<table>
<thead>
<tr>
<th>Type of Course</th>
<th>Number of Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagecraft</td>
<td>107</td>
</tr>
<tr>
<td>Stage Lighting</td>
<td>60</td>
</tr>
<tr>
<td>Scenic Design</td>
<td>82</td>
</tr>
<tr>
<td>Play Production</td>
<td>27</td>
</tr>
<tr>
<td>Technical Production Problems</td>
<td>57</td>
</tr>
<tr>
<td>Costuming</td>
<td>18</td>
</tr>
<tr>
<td>Make-up</td>
<td>21</td>
</tr>
<tr>
<td>Arena Theatre</td>
<td>2</td>
</tr>
<tr>
<td>Theatre Architecture</td>
<td>10</td>
</tr>
<tr>
<td>Management</td>
<td>7</td>
</tr>
</tbody>
</table>
Teaching credit for production activity. The survey of teaching load made by the College and University Committee of the American Educational Theatre Association indicates that the normal average load of the theatre worker is thirty hours.\(^1\) For 103 technicians the average teaching load is 26.8 semester hours per academic year.

The teaching credit allowance for ninety-five technicians included in this study varies slightly from the load range reported in the College and University Committee survey. Teaching credit for technicians engaged in actual theatre production varies from a minimum of one semester hour per year to a maximum of twenty-four hours per year (Table 6). The average number of semester hours of teaching credit is 7.3 per year. When teaching credit is apportioned by the number of productions for which the technician is responsible, the resultant figure is an average of 1.5 credit hours per production.

Although the amount of teaching credit varies widely, more technicians receive six teaching credit hours per year for their work in production than any other amount. Those receiving six credits are responsible for a minimum of two productions to a maximum of twenty productions per year but most of them are responsible for three to seven productions. An index of order association was tabulated yielding a value of .29 which reflects a poor relation between the two values shown in Table 7. One would not be able to predict accurately the number of teaching credits given the technician in relation to the

TABLE 6

TEACHING CREDIT ALLOWANCE FOR TECHNICAL DIRECTORS

<table>
<thead>
<tr>
<th>Credit Hours</th>
<th>Number of Technicians Receiving Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 95
TABLE 7

RELATION OF TEACHING CREDIT TO NUMBER OF PRODUCTIONS

<table>
<thead>
<tr>
<th>Number of Teaching Credits Per Year</th>
<th>1-3</th>
<th>4-6</th>
<th>7-9</th>
<th>10-12</th>
<th>13-15</th>
<th>16-18</th>
<th>19-21</th>
<th>22-24</th>
<th>25-27</th>
<th>28-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-24</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-21</td>
<td></td>
</tr>
<tr>
<td>16-18</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-15</td>
<td></td>
</tr>
<tr>
<td>10-12</td>
<td>1</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>9</td>
<td>25</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
total number of productions for which he is responsible. Only 9 per cent of the technicians are provided with enough teaching credit to match a three-hour lecture course, three credits per production. Two credit hours per production are given to 25 per cent. Approximately 38 per cent of the technicians receive from one to one and one-half credit hours per production. Less than one credit hour per production is given to 27 per cent. Teaching credit for production work is not granted by five institutions included in this survey.

The organizational aspects of the position. The technician, in most cases, is responsible for the organization of the technical phases of production. Directors of theatre indicate that 80.9 per cent of their technicians are "always" or "frequently" responsible for the posting of technical organizational material. The technical director sees to it that crew calls go out, that sign-up sheets for crews are displayed and that crews and crew heads are fixed. The technicians who seldom or never post material place the responsibility with a graduate assistant or a hired assistant. One or two cases occur in which the responsibility falls on the crew heads, the stage manager or the production manager. In one case, the responsibility to post calls and sign-up sheets does not exist because of close contact with students, since all areas of production are handled as class laboratory work.

In the preparation of the production working schedule for crews, technicians employ two methods: a shop schedule and an individual schedule. The shop schedule is a posted list of the hours
in which the shop will be open for work. The student may appear any time during those hours. The scheduling of individuals is more effective in that the student is scheduled at times of his choice and is expected to fulfill the commitment. Individual scheduling provides the technician with the number of workers expected at a given time, around whom he can plan the work to be accomplished.

More technicians favor the individual scheduling method than the shop schedule, but the difference is insignificant. The individual scheduling method is used by only 8 per cent more technical men than the shop schedule. About 9 per cent of the technicians included in this investigation use both methods in some form or another.

In organizing the personnel for production preparation activity, more than half of the technicians provide their crew heads with written outlines of their duties and responsibilities. Since only 55 per cent of them make use of "duty sheets," such procedure is not totally representative of the way a "technical director" operates.

An organizational function handled by the technician is the production meeting. Such a meeting, which may be called by the play director, the production manager or the "technical director," is intended to gather the entire production force together in order to clarify for all the preparation procedure. The production meeting is always or frequently conducted by 80.1 per cent of the technicians reporting on its use.

Non-departmental activity of the position. Technical men have the opportunity to give time and talent to theatrical ventures outside
of the departmental program. Slightly less than 10 per cent of the
respondents do not take this opportunity. Either because too few
opportunities come along or time is at a premium, 13 per cent of the
158 technicians answering the question seldom give their time to non-
departmental theatre activities, while almost as many frequently take
the opportunity. The remainder (9 per cent) always do. In addition
to the monetary aspects, about half of the technicians give time to
efforts outside of the department as a matter of good public rela-
tions. In about one-third of the cases the department expects the
technician to further good relations by this means.

A sizeable number of technicians offer other reasons for or
against participation in non-departmental theatre. About 14 per cent
of them indicate that they seldom or never participate and specifi-
cally state that they have no extra time to do so. Their positions
demand almost all of their time. Two technical directors indicate no
interest; "no time nor interest in outside ventures. After spending
the majority of my time in theatre at school - outside activities are
sought in other areas." Several technicians point out that non-
departmental activities give them the opportunity to do what their
jobs deny them. One technician phrases the point: "To fulfill my
desire to participate on other levels of theatre production (direc-
tion)."

As many technicians indicate a personal desire to participate
in theatre outside of the school as indicate they do not for lack of
time. Some enjoy the opportunity of increasing the level of non-
school productions through their assistance and some find it a means
to increase their own experience. One designer-technician has an interesting philosophy about the local ventures: "I try to help whenever called upon—to spread good practices, to educate, to increase friendships." Another technician makes his point in a slightly different way. He writes, "Other groups need help. As an enlightened human, I feel it is only right to give of myself sometimes." However, Phillip W. Eck, designer-technician at Illinois Wesleyan University sums up what a good many technicians may feel: "To give time and talent to theatrical ventures outside of the departmental program helps to 'encourage interest in theatre.' I would do more if time permitted."

Summer commitments of the position. Regardless of the size of the school the summer program affects the technician. Slightly over half of the institutions considered in this investigation present a summer theatre program. Of the technicians employed in seventy-nine institutions, 75 per cent of them participate in the program. Two-thirds of those working in summer theatre are required to do so. In only fifteen cases, the technician is not required to participate and does not stay for the summer theatre program (Table 8). The technicians who do participate in summer theatre sponsored by their departments are responsible for an average of 4.5 productions presented during the summer period.

Departmental relations of the position. Directors of theatre generally feel that their designer-technicians attempt to create unique settings in planning the style of the play in which experimentation is possible. Eighty-seven per cent of the reporters cite
<table>
<thead>
<tr>
<th>SIZE OF INSTITUTION</th>
<th>Number of Summer Theatre Programs</th>
<th>Number of Technicians Required to Stay</th>
<th>Number of Technicians Choosing to Stay</th>
<th>Number of Technicians Who Do Not Stay</th>
<th>Number of Technicians Sometimes Staying</th>
<th>Number of Technicians Giving No Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 6,000</td>
<td>43</td>
<td>21</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Under 6,000</td>
<td>36</td>
<td>13</td>
<td>12</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>37</td>
<td>19</td>
<td>15</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
the technicians as "always" or "frequently" attempting to create
interesting sets. Nearly 80 per cent of the directors report that
their technicians have a strong voice in the selection of plays for
the season's program. Out of 139 respondents, twenty-four indicate
that the technician has a "notable" voice in the selection of plays
and eighty-seven indicate he has a "considerable" voice. Just five
directors of theatre give their technicians no voice in play selec-
tion. There are a number of cases in which the technician is given
the opportunity to direct one or two shows during the season; this
usually occurs in the smaller departments. In these instances, he
picks his own play. Several departments require that the entire
staff approve the season's bill; the technician has a vote.

About 80 per cent of the technicians responding to this study
indicate that they seldom or never feel a lack of cooperative spirit
on the part of directors when they express means of styling a pro-
duction or offer solutions to other production problems. However,
the technician of a state college in the mid-West reflects, in an
interesting way, the point of view of technical men who have ex-
perienced unpleasant relations:

I would be interested to find out what your
survey reveals - particularly in the area of
director-technical director relationships -
is it an occupational hazard or do all edu-
cational theatre people disagree on principle?
It is certainly confusing to students.

Nevertheless, when all points are considered, play selection,
director-technician relations and creativeness on the part of the
designer-technician, technical direction figures prominently in the theatre program of most institutions.

Summary of the position. The position of the technician today is a complex one. It cuts across many fields of endeavor and a variety of activities. The designer-technician is an artist as well as a craftsman, an educator as well as an organizer. It is a position for young men although some of the older men remain in it rather than take another position in the department or elsewhere. At the present time most of the technicians have Master's degrees and are instructors in institutions of all sizes. The technician engages in theatrical activity outside of the school as well as in the school. He engages in a summer theatre program. His specialty and knowledge has put him in an important position in the operation of a theatre program in education.
CHAPTER V
THE PRESSURES OF THE POSITION

Any field of activity of a complex nature has its pressures. The area of technical direction is no exception. Engaged in the supervision of a large force of workers accomplishing a multitude of tasks, the technical director acts as the co-ordinator of the technical elements of production. To accomplish the ends of technical preparation specialized structures in the form of shops, stages and storage space as well as special equipment and tools must be available. Part of the technician's job is overcoming limitations in this physical equipment as well as in the personnel with whom he works. The most obvious pressures faced by the technician are those resulting from the assistance he must depend upon, the physical plant in which he works, the facilities at his disposal, and the budget within which he must operate. Also to be considered are production preparation procedures, the planning of improvements in the physical plant, extra demands on his time and the number of productions he must mount.

Limitations of the physical plant include such things as lack of off-stage space, separation of shop and stage which necessitates the transportation of materials, small door-openings leading to the stage or from the shop, insufficient storage space which limits the
quantity of stock material storable for re-use and many other factors resulting from either the kind of working space or the space relationships of various parts of the physical plant.

A theatre operating with poor facilities is one which does not possess enough tools for the number of workers involved, lacks power tools to increase the speed of construction, does not have an adequate or well-designed control board, lacks enough of the basic types of lighting instruments, does not have enough well-located circuit outlets in the stage house or is limited in rigging equipment. The assistance the technician must depend upon refers to paid supervisory assistance and student participants.

The budget refers to the amount the technical director can spend on capital equipment as well as the amount he can spend for expendable materials needed to mount each production.

The number of productions becomes a pressure when, in relation to other listed limitations, the normal amount of time available to mount a production is compressed by a large season's bill. For example, the normal period for the preparation of a play is five weeks. If six plays are produced within the season, the total preparation period for all the plays is thirty weeks. When eight productions are scheduled for the same thirty weeks, the compression of the normal preparation period for each play creates pressure on the technician.

The sources of pressure. One hundred and fifty technicians were asked to rank in the order of importance the major sources of pressure in the technical area (Table 9). The lack of student help
<table>
<thead>
<tr>
<th>Rank Given by Technicians</th>
<th>Lack of Student Help</th>
<th>Limitations of Physical Plant</th>
<th>Poor Facilities</th>
<th>Number of Productions</th>
<th>Limited Budget</th>
<th>Stage Schedule</th>
<th>Other</th>
<th>No Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>56</td>
<td>23</td>
<td>20</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>44</td>
<td>24</td>
<td>18</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>11</td>
<td>32</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>7</td>
<td>18</td>
<td>36</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>29</td>
<td>47</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(38 per cent of the respondents placed this first in their rating) and limitations of the physical plant (37.5 per cent placed this first) are cited as the greatest pressure factors. However, the results of a Kolmogov-Smirnoff Two Sample Test indicates that both pressures are nearly equal in priority; lack of student help is perceived as more important, but not significantly so. Limitation of the physical plant was given as the next most important source of pressure by 30 per cent. This percentage is considerably higher than that for any other secondary source and double that for lack of student help. It is interesting to note, in connection with the results of the sampling test, that in twenty cases, limitation of the physical plant is given second rating where lack of student help is ranked first.

The two-sample test further reveals that additional sampling would not affect the importance of limitation of the physical plant or lack of student help. Poor facilities (ranked first by 15 per cent of the technicians) and number of productions (given first rank by 13.6 per cent) are rated third and fourth respectively. There is one chance in more than one hundred samplings that "number of productions" would rate third place. Several technicians cite a number of factors as having equal effect in creating pressure; only two indicate that they are under no pressure. Thus, the sources of pressure are ranked in the order of importance as follows: (1) lack of student help, (2) limitation of physical plant, (3) poor facilities, (4) number of productions.
It is important to note the situations where no pressure was reported. The technical director at the University of Arkansas is responsible for six major productions a year and stays on during the summer session to work on three productions. He has graduate assistance which he rates as "passable" and he can count on eighteen dependable students to work with him during the school year. He rates this student help as "ample." The facilities and physical plant are not at all limited for the production program; the amount of rigging and equipment change between productions is slight; and materials for a production are never transported from building to building. This technical director indicates that the budget for the purchase of permanent equipment is "passable." All the improvements that have been made in the physical plant have been executed by an agency other than himself. The man teaches thirteen semester hours a year and receives in addition an allowance of six credit hours a year for his production work, a teaching load of eleven hours below the average.

The technical director at Baylor University also indicates that he is under no pressure. He feels that the number of paid undergraduate students and salaried graduate assistants provides him with an "ample" technical staff. He can count on an "ample" student following of twenty individuals. He points out that the facilities and physical plant are not at all limited for the size of the production program, but considerable changes must be made in the rigging and equipment of the theatre. There is a frequent
need to transport the materials for a production from one building to another. He indicates that he has ample funds from which to purchase permanent equipment. Of the improvements in the physical plant, one fourth of them have been made by an agency other than himself.

Almost all technicians are faced with scheduling of one sort or another. Most of the scheduling involves shop hours, classes, dates on which the technician will work with the various crews and other necessary arrangements that take time but do not create undue pressure. The major source of pressure comes from scheduling too many programs requiring the use of theatre facilities. Such a situation is important enough to a number of technicians for them to have commented on the questionnaire. Perhaps the worst possible situation confronts the technical director at an Eastern University:

Our auditorium is rented to shows and organizations outside of the University—very often in the week prior to opening night and sometimes even the day before the show opens. This necessitates numerous strikes and resets preventing a full dress rehearsal.

Another technical director points out that there have been many times in which the music department has presented a concert on the stage the night before a play was to open.

Problems in scheduling and equal resultant pressure also arise from insistence on productions for campus holidays and from the shortage of help over such holidays. When two different plays must be produced within a two or three week period, most of the pressure comes in the daily planning and in the shortage of time between productions.
A normal production calendar is arranged so that all work on one production is completed before another play is started. However, when productions are presented in quick succession preparation activity overlaps. Pressure results because the theatre operation is not equipped to handle simultaneous preparations for lack of shop space, storage space for completed pieces, adequate personnel, sufficient supervision, and enough stock. Each theatre has its own combination of difficulties, but a shortage of time between productions is common to all.

Simultaneous preparation is a major factor in any theatre which is limited in capital equipment. When two different, consecutive productions require complete sets or multiple sets, an insufficient stockpile of flats creates pressure. The technical director must build enough flats to meet the demands of the two productions or wait until the flats of the first set are available. In either case the time factor adds to the difficulty.

Technical directors are constantly faced with holding personnel over holidays. Students are very willing to work week nights but are reluctant to commit themselves to crew work on the week-end when campus activities of another sort are more appealing to them. There is little value in training an adequate stage crew that works efficiently at the beginning of a run only to have it dissolve for the week-end productions. The same is true for striking the set. The job should be done when enthusiasm is high but if the strike coincides with an
all-college dance few students are willing to stay in the theatre. The following week is equally as bad because it is anti-climactic.

The most serious source of pressure not included on the questionnaire, but which many technicians commented upon, is that of cooperation. Some of the statements of technicians are as follows:

1. "Lack of departmental support of need of technical organization and efficiency."
2. "Lack of communication between technical and administration of theatre concerning aesthetics of a given production or project."
3. "Administrative attitude toward 'status quo.'"
4. "Little or no understanding of responsibilities and job of technical directors by those with power to reduce work load."
5. "Administrative lack of cooperation and understanding."
6. "Lack of cooperation of administration and faculty."

These variations amount to one general condition: conflict between administration and the personnel responsible for the technical elements of production in an activity in which cooperation is the essence of perfection and quality.

Technical organization and assistance to the technician. A technical director must have assistance to mount the technical elements of a production. This assistance is of two types: paid and voluntary student. Technical organization takes many forms based upon specific, salaried posts. The structure in departments offering a graduate program usually consists of graduate assistants in theatre and a few undergraduate students. In some cases a paid
craftsman is employed to augment the work of the technical director. Assistant technical directors are employed in a few instances in addition to graduate assistants, undergraduate help, or both; the same may be true when a craftsman is employed. A limited number of departments employ a scenic designer, although this position is not exclusive to departments sponsoring a graduate program. Technicians in an undergraduate program must depend either on paid student help, or volunteer help.

More technicians employ paid undergraduate students than any other type of help. Such a situation is understandable in view of the fact that in most four-year colleges undergraduate student help is the only type available and that many graduate departments hire undergraduates to augment the staff made up of graduate assistants. The number of student employees ranges from one to seven in a given undergraduate department. At Adams State College one undergraduate student is employed for lighting and for his work his tuition is waived. The theatre at the University of Wichita employs one shop assistant and one assistant in lighting. The larger operations can afford to employ more technicians; Lutheran Pacific College has, on the theatre payroll, two stage technicians, three electricians and one wardrobe mistress.

Although most theatres employ undergraduates to function entirely in the technical area, some technicians must share student help with other areas of production. The designer-technician at Bowling Green State University points out that the assignments are
not full time; assistants must also devote time to other department areas. The total number of employed students at the University of Detroit must be shared, two in business and publicity, and three in the technical areas.

Student technicians are not always available. Although the technical director at Texas Tech College could employ an undergraduate student, she has indicated that it is hard to find one. Southern Louisiana Institute typifies the fluctuation of students and the effect on the technical director. Harold Poe points out that he has only one paid student for the coming year but at one time he had as many as six.

Regardless of the number of employees, pressure on the technician is inherent in the employment of undergraduate students. The most obvious problem is the lack of experience and training on the part of the student technician. In spite of his willingness, the student technician is incapable of accomplishing all that a more experienced person can. The technical director at one of the larger colleges cites a case in point:

My present assistant hasn't even had stagecraft. I've had to re-do some of his work, and many of the things he builds are not built to my specification. (I draw detailed scale working drawings for each set.) He tends to put things together for the production rather than for the future use as well.

Some technicians qualify the type of paid student assistance they get as "inexperienced." The result of employing undergraduates is that the technician does not gain a great deal of time for other
problems because he must keep a close surveillance over the work of the student technician.

The inadequacies of paid student help are accentuated by the student working-time limitations. It is not just a question of clock hours. Although the student technician could work three hours a day, a problem arises when the time he could spend does not coincide with the time set for production activity. Denison University's designer-technician indicates a handicap which results from working around the class schedule of the student. The problem hinges on two factors: the necessity for staff supervision of the undergraduate assistant and the difficulty of finding common time when both are free to work in the theatre.

More than half of the institutions included in this survey employ paid undergraduate students to assist the faculty technician. If nothing more, this assistance provides the technician with manpower, although most students would have some degree of experience however slight. About one-third of the graduate schools employ the undergraduate student assistant. In these cases the undergraduate is given a position of lesser importance than the graduate assistant. Undergraduate help is often under the supervision of the graduate assistant. Therefore, the staff technician in the undergraduate school is more dependent upon the student technician and is conscious of greater pressure than the technician in the graduate situation.

In institutions on the graduate level, 32.4 per cent of the responding departments use only graduate students to assist the
technical director. The number of graduate assistants in theatre is dependent upon the budget of the department, the organization of the department (Speech, Speech and Dramatic Arts or Theatre), the relative emphasis on theatre, the need, if in a combined department, for assistantships in speech service courses, and the personal attitude of the administrator. Usually, the number of assistants is regulated by the departmental administrator. If he is aware of the needs of the technician, a satisfactory amount of help will be assigned to technical theatre. The number of graduate assistants ranges from one to fourteen. Northwestern University, for example, employs eleven graduate assistants to help the technical director with ten productions a year while Brigham Young University uses one graduate assistant to assist with fourteen to twenty productions a season.

Volunteer help, paid craftsmen, assistant technical directors and separate scenic designers are used by one-fifth of the institutions or less. Thirty-one technicians must depend entirely on voluntary student help. There is one case in which a department employs a scenic designer and a technical director but employs no student assistance. Therefore, one-fifth of the institutions contributing to this survey make no provision for paid assistance. An assistant technical director is employed by 3.8 per cent of the departments questioned.

To the technical director, employing a paid craftsman is more valuable than the employment of any other type of assistance. The craftsman is hired in a non-academic capacity. He does no classroom
teaching. He can devote his entire working day to the problems of the theatre. His major function is to relieve the technical director of some of the supervision in construction, rigging and mounting a production. He can handle the administration of tools, physical plant and storage areas. He can teach students as they work in the theatre. The amount of time he spends depends upon the number of productions to be mounted. Craftsmen are employed by 17.9 per cent of the departments included in this investigation, usually those in larger schools.

A scenic designer is helpful to the technical director when the latter is relieved of the responsibility for designing the setting. Depending upon arrangements, the scene designer may also take the responsibility for the painting of the set. However, the percentage of separate designers discovered by this investigation does not indicate widespread existence of the position. Only 7.1 per cent of the directors of theatre responding reported it.

It is important to know how satisfactorily his assistance fills the technician's needs. Furthermore, the adequacy of the assistance is dependent upon the number of productions for which help is required. Technicians were asked to consider the scope of theatrical activity in their departments and to assess the number of assistants and the time they put in as factors in off-setting pressure. Few technicians feel that the hired assistance is ample. More than half of all the technicians responding to the study are not satisfied with the ability of their assistance to off-set their work load. These technicians indicate that the hired assistance given them is either
"meager" or "totally inadequate." The remainder of the respondents indicate that their assistance is "passable;" that is, they are given enough assistance to eliminate constant pressure but their situation is such that they could use more. The production schedule, according to one technical director, is such that he could use a graduate assistant as student manager and another in the shop.

Voluntary student help is equally as important as paid assistance but the effectiveness of voluntary help depends heavily on consistency of availability. Technicians were asked to indicate the number of dependable students who helped them constantly throughout the season. An average figure was obtained from the tabulation of 157 answers: technicians can count on an average of eight students. This average indicates that the technician does not receive enough help, since this allows barely one student in each of the technical categories, lighting, props, stage crew, sound, costumes, make-up, and set construction. The student work hours in technical production survey of the Technical Developments Project reported by Wayne Bowman reveals that an average figure of 3.5 students work on major productions and that each of these students works 19.3 hours.¹

dependable students help them consistently. Others indicate as many as twenty to thirty active participants help with the productions. The largest number of technicians, however, must depend upon three to six students for active support throughout the season. Nevertheless, as Lawrence Bradley points out, even though the number of students increases it does not help the work load because of a lack of experience on the part of the students.

In rating dependable student help, technicians are divided about equally in their rating. Half of them rate their student help as "ample" to "passable," while the remainder rate their help as "meager" to "inadequate." Slightly more than one-fifth of the technicians cite their student help as "inadequate" (Table 10). There seems to be a pattern in the amount of student help—the stronger the drama department, the more active the participants.

TABLE 10

TECHNICAL DIRECTOR'S ASSISTANCE RATING

<table>
<thead>
<tr>
<th>Rating</th>
<th>Staff Help</th>
<th>Student Help</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ample</td>
<td>12.1%</td>
<td>14.4%</td>
<td>26.5%</td>
</tr>
<tr>
<td>Passable</td>
<td>34.9%</td>
<td>36.3%</td>
<td>71.2%</td>
</tr>
<tr>
<td>Meager</td>
<td>30.9%</td>
<td>28.5%</td>
<td>59.4%</td>
</tr>
<tr>
<td>Inadequate</td>
<td>22.1%</td>
<td>20.8%</td>
<td>42.9%</td>
</tr>
</tbody>
</table>

A summing up of the replies on the paid assistance and the assistance provided by student participation shows that over two-
thirds of the technicians included in this investigation cite their help as less than ample. However, no accurate distinction can be made as to which type of help is considered superior.

Only eight technicians indicate that both the staff assistance and the student help are ample. Three of the eight, representing a range in enrollment from 500 to 9,300, are responsible for four productions a season or fewer. Another is responsible for five productions a year with the assistance of a member of the faculty who designs the lighting, two scenic designers, a faculty shop foreman, graduate assistants, as well as twenty-five to thirty volunteers who participate actively. The situation at the University of Texas is much the same although the technicians are responsible for ten productions a year. With one shop foreman, one graduate assistant, fourteen paid undergraduate students and fourteen consistently dependable participants, it is reasonable that the two technicians cite their help as "ample."

The technicians employed by several colleges and universities with enrollments between 1,100 and 6,700 rate their help as "inadequate." Not only do the theatres in the above group fall below the average in number of active participants, they do not employ paid assistance and their technicians are responsible for an average of eight productions a season. The other technicians in the group of thirteen who rate their help as inadequate are not responsible for as many productions as the four cited above.
About one-third of the respondents rate their help as neither totally "ample" nor totally "inadequate." Most of them cite one type of help as "passable" and the other as "meager." There are very few instances in which a strong paid technical staff is unbalanced by a meager or inadequate student participation. In fact there is significant correlation between the two (Table 11). The calculations result in a .47 correlation coefficient.

TABLE 11

RATING OF COMBINED ASSISTANCE TO THE TECHNICAL DIRECTOR

<table>
<thead>
<tr>
<th>Staff Assistance</th>
<th>Student Assistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ample</td>
</tr>
<tr>
<td>Ample</td>
<td>8</td>
</tr>
<tr>
<td>Passable</td>
<td>9</td>
</tr>
<tr>
<td>Meager</td>
<td>1</td>
</tr>
<tr>
<td>Inadequate</td>
<td>1</td>
</tr>
</tbody>
</table>

Two universities with enrollments over 9,000 illustrate an imbalance; an ample paid force, including a costume designer, a lighting designer, the designer-technician, a shop foreman who is a state civil service appointee, two graduate assistants with one-third time in theatre and seven student technicians, is supported by a meager student following in one case. The other designer-technician indicates that the number of graduate assistants assigned to him is "ample" but that student participation, only two
consistent workers, is "inadequate." In two instances technicians rate student participation higher than paid assistance. The departments are financially unable to hire paid help.

Further investigation of student participation in the technical areas of theatre reveals that technicians are conscious of changes in the pressures of production caused by a fluctuation of good technical workers. Eighty-five per cent of the respondents indicate that there is a fluctuation. As students active in theatre come and go, 15 per cent of the technicians experience a "notable" increase in their work loads during the lean years; a "considerable" increase in their work is noted by three times as many respondents. Twenty-one per cent of the technicians indicate a slight increase when the fluctuation reduces the number of technical workers. Some years a department has many people interested in technical work while other years the emphasis seems to be on acting. There is also a variation from show to show—a popular show will draw more workers than an average one.

Physical limitations affecting the technician. Facility and physical plant limitations create pressure on the technical director. There is no doubt that technicians are conscious of these limitations; several have pointed them out specifically. Realizing that no stage is perfect, one technical director mentions the lack of a fly system and limited off-stage space in his theatre. Extreme limitation is pointed out by another: "Our stage is 36' by 9' with a 9' apron! We seldom use the house curtain." These comments are representative of 70 per cent of the respondents who indicate that their plant and
facilities are too limited for the production program sponsored by the department. The technical director now employed in an institution well known for its graduate program in theatre cites the plant as extremely limited and goes on to remark that it has been for thirty years.

The arrangement of the physical plant is another source of pressure on the technician. He must take into consideration the movement of materials for a production. The ideal arrangement is one in which movement is made on the same level where the stage, storage areas and scene shop are adjoined by large openings. To illustrate poor arrangement of physical plant, the situation at the College of Wooster, representing the small institution, and the Ohio State University, representing the large school, are cases in point. At Wooster, the theatre building is on one side of the street and the shop, a former army barracks, is on the other side necessitating manual transportation of all scenic materials. The rear portion of a deep, narrow stage serves as the shop at the Ohio State University and the theatre used for major productions is located two buildings down the street. In addition to the necessity of moving a finished set from shop to stage, the stock materials, i.e., flats and furniture, must be brought to the shop from a third building which serves exclusively as storage space. Furthermore, all scenic units and lighting equipment must be passed through a rather small freight elevator or carried up and down one flight of stairs. Most movement of materials is accomplished with a truck or a rolling rack. The technical
director of the University Theatre states that such a situation creates one of the greatest losses in time, manpower and money.

One hundred and fifty-five technicians responded to the question dealing with the transportation of materials from building to building. Approximately 37 per cent of them indicated that transportation is always necessary (Table 12). One technician points out that he must transport materials over a distance of three-fourths of a mile, while another reveals that set storage is a rented garage two blocks from the theatre. Tabulation reveals that over two-thirds of the technicians face the need to transport materials from building to building, regardless of the amount of pressure such a situation may exert.

In addition to transportation, the stage itself is a problem since it requires further expenditure of preparation time. Regardless of the completeness of the rigging and equipment, most theatres are constructed to handle a type of scenery which is no longer exclusively utilized—the drop and wing set. They are rigged with a system of batten pipes running the width of the stage, parallel to the curtain line and spaced anywhere from six inches to one and one-half feet apart to facilitate the handling of wings and backdrops at any depth. The box set used today, in any of its various forms, is usually a free standing structure with its side walls running nearly perpendicular rather than parallel to the curtain line. Rigging problems occur when the technician tries to use the pipe battens to raise portions of the set which are not parallel with the apron front.
<table>
<thead>
<tr>
<th>Limitations of Physical Plant</th>
<th>Need to Transport Materials from Building to Building</th>
<th>Amount of Rigging Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Limited 30%</td>
<td>Always</td>
<td>Notable 11.8%</td>
</tr>
<tr>
<td>Somewhat Limited 38%</td>
<td>Frequently</td>
<td>Considerable 30.6%</td>
</tr>
<tr>
<td>Slightly Limited 20%</td>
<td>Seldom</td>
<td>Slight 51.7%</td>
</tr>
<tr>
<td>Not at all Limited 12%</td>
<td>Never</td>
<td>None 5.9%</td>
</tr>
</tbody>
</table>
Rigging changes occur when two consecutive plays require different forms of scenery. For example a Shakespearean play following "The Diary of Anne Frank" requires considerable change. "The Diary of Anne Frank" is played in a box set with a number of rooms on two stories. It requires a stairway to the outside. Considerable space is necessary. The complete set consists of the main set, masked by legs or returns at the downstage corners and borders overhead if overhead space is limited, or some structure to represent the ceiling of a garret. To change from one play to the next requires not only the removal of the scenery but also the hanging in drop and wing style of drapes, which may have been taken down to provide more space both on and off stage for the play requiring the box set. In theatres where rigging is a haphazard arrangement a great deal of time is consumed. Such a situation exists where there is no fly space. All rigging must be connected to steel "I" beams by pulleys. The pulleys may have to be rearranged for each production; one set of locations to hold up the ceiling for the modern play's box set and another to accommodate pipe battens for the Shakespearean drop and wing set.

One frequently cited reason for the necessity of making rigging and equipment changes is that the theatre and its facilities are used for purposes other than the production of plays and by departments other than the one sponsoring the drama program. Technicians were asked to rate the average amount of change which must be made in rigging and equipment of the theatre and/or the stage house.
for each production. Few respondents indicated that no changes are necessary (Table 12). Although half of the technicians included in this investigation specified slight changes, almost as many indicated the need to make considerable alteration in the rigging and equipment of their theatre. The time taken to make alterations cannot be measured but the fact that this time must be added to the amount necessary to prepare for a production creates added pressure on the technician who is working to meet a production dead-line.

Undoubtedly there are some technical directors who avoid completely making any changes. One technician, commenting on the rigging situation in his theatre, states: "We just don't fool with it, but adapt the setting to the plant." Another technical director limits the amount of rigging change by planning in advance the method of staging each play. Many times overhead rigging is not necessary if the play requires just one set. Furthermore many multi-set shows are mounted on wagons, a means which allows technical directors to avoid using rigging overhead.

A number of cases were revealed by this investigation in which the limitations of the physical plant have an effect on the amount of rigging change the technical director can make. Several technicians have indicated that their changes are slight because they have no fly system. Other technicians point out that their rigging and equipment are very limited; one states that he wishes they were more adaptable. Such situations may appear to by-pass pressure on technical directors because they do not have to concern themselves
with what is not available but the lack of equipment can cause more pressure, particularly with a multi-set production. The technical director must discover other methods of making scene shifts. An elaborate multi-set play with all scenery located on floor level can create all sorts of construction, shifting and storage problems where all parts of the scenery must be easily accessible.

A considerable amount of time loss occurs when both transportation and rigging changes must be accomplished. Only three technicians are faced with neither moving materials from building to building nor with making changes in the rigging and equipment of the theatre. Of the 155 respondents, there are fifty-two whose changes in rigging are slight or non-existent and whose transportation problems seldom or never occur. This means more than three-fifths of the technicians included in this survey must expend additional time and effort to change rigging and to transport production materials from building to building. There is a significant relationship between the effect of rigging and transportation problems and the limitations of the physical plant. The calculations made from the data found in Tables 13 and 14 result in a .32 correlation coefficient in each case. It is probable, however, that technicians are more conscious of limitations resulting from the size of the stage and its off-stage space than of the two factors previously mentioned.

Provisions for capital equipment. In order to determine the adequacy of funds from which to purchase capital equipment, technical directors were asked to indicate the type of fund available,
TABLE 13
A CHART SHOWING THE RELATION OF RIGGING PROBLEMS TO THE LIMITATIONS OF THE PHYSICAL PLANT

<table>
<thead>
<tr>
<th>Limitations of Physical Plant</th>
<th>Amount of Rigging Necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Notable</td>
</tr>
<tr>
<td>Not at all</td>
<td>0</td>
</tr>
<tr>
<td>Slightly</td>
<td>1</td>
</tr>
<tr>
<td>Somewhat</td>
<td>5</td>
</tr>
<tr>
<td>Extremely</td>
<td>12</td>
</tr>
</tbody>
</table>

TABLE 14
A CHART SHOWING THE RELATION OF THE NEED TO TRANSPORT PRODUCTION MATERIALS TO THE LIMITATIONS OF THE PHYSICAL PLANT

<table>
<thead>
<tr>
<th>Limitations of Physical Plant</th>
<th>Need to Transport Production Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Always</td>
</tr>
<tr>
<td>Not at all</td>
<td>2</td>
</tr>
<tr>
<td>Slightly</td>
<td>4</td>
</tr>
<tr>
<td>Somewhat</td>
<td>28</td>
</tr>
<tr>
<td>Extremely</td>
<td>28</td>
</tr>
</tbody>
</table>
and to rate its capacity for purchase of permanent equipment for the theatre. Nearly as many technicians rated their funds as "meager," "inadequate" or "non-existent" as those who rated theirs "passable." Less than one-fifth cited their funds "ample" (Table 15).

TABLE 15

RATING OF CAPACITY OF BUDGET TO PURCHASE CAPITAL EQUIPMENT

<table>
<thead>
<tr>
<th>Rating</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ample</td>
<td>17.2</td>
</tr>
<tr>
<td>Passable</td>
<td>42.2</td>
</tr>
<tr>
<td>Meager</td>
<td>26.2</td>
</tr>
<tr>
<td>Inadequate</td>
<td>8.2</td>
</tr>
<tr>
<td>None</td>
<td>6.2</td>
</tr>
</tbody>
</table>

More than half of the technicians derive their funds for the purchase of capital equipment from an amount which is budgeted per season for that purpose. About one-sixth of the technicians draw on funds from more than one type of source. For example, two departments included in this investigation provide for the purchase of equipment out of a standing fund, a budgeted amount for the season, and out of box office profit (Table 16). There are a few instances in which the technical director must make purchases of capital equipment from the production budget.

The technician runs into problems when he must make his purchases by requisition. Often he does not know whether he will receive what he requests, let alone when. The technician at Mankato
State College of Minnesota has this to say: "We never know what will or will not pass. We have some humorous stories to tell about this."

Another problem comes from the need to justify each piece of equipment when funds must be obtained from the general speech budget or from the president's general fund.

TABLE 16

PERCENTAGE DISTRIBUTION OF PROVISIONS FOR CAPITAL EQUIPMENT

<table>
<thead>
<tr>
<th>Types of Funds</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standing Fund Only</td>
<td>5.5</td>
</tr>
<tr>
<td>Amount Budgeted Per Season Only</td>
<td>58.0</td>
</tr>
<tr>
<td>Box Office Profit Only</td>
<td>14.5</td>
</tr>
<tr>
<td>Mixed Types</td>
<td>13.8</td>
</tr>
<tr>
<td>No Provisions</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Major expenditures from such items as remodelling, installation of rigging systems, and so on, are requested specifically in the budget of departments in state institutions, presented to the state legislature. According to one technical director, the budget is "subject to the whim of the group." The purchase of small equipment in the state school is paid for from the normal budget. The amount that can be spent from the normal fund is sometimes very limited, as in the case of the technician who points out that anything costing over $25.00 must be purchased through capital requisitions forms and these purchases are not always allowed. "What Fresnels I buy, come from my scenery account. Shop machinery, lathe, pull-over saw not available through capital request yet."
Undoubtedly there are a few cases in which the following occurs. A technician who indicates that he gets an amount budgeted per season from which he can purchase permanent equipment states that the amount is passable, however, "I have a hard time keeping our director from buying equipment not really needed. For example, we've acquired a scene projector that I couldn't care less about. Some day maybe I'll use it."

The number of productions. Actual tabulations reveal that 43 per cent of the technicians are responsible for six or more productions per year, 60 per cent for five or more, and 85 per cent for four or more productions. Inaccurate understanding of the question has resulted in many answers which include only major production responsibility while others represent all the productions for which the technician is responsible. However, because many of these figures tend to underestimate the total production responsibility of the technician, it is safe to assume that he is responsible for an average of six productions per year.

Figuring five weeks as the average preparation time for a production, the technician spends thirty weeks of the school year supervising the technical aspects. The average school year is thirty-six weeks. Therefore, a technician preparing for six productions is engaged, mathematically, in production work for all but six weeks of the school year. Even though he may not be engaged a full day, he spends more time with technical work than any other phase of his job. Six weeks of uncommitted time is not much
for the accomplishment of other tasks including the improvement of facilities to increase efficiency and lessen pressure. The technician must continue his teaching and the preparation which goes into it. In effect, the technician has no extra time, a point reinforced by the fact that many respondents indicate they do not participate in theatrical ventures outside of the department.

In most instances, the technician is responsible to some degree for other production activities sponsored by the department. For example, the designer-technician at the University of North Carolina is responsible for the design of five major productions but is also in charge of the general supervision of all others. Some technicians have a modified responsibility for the technical aspects of one-act plays which are interspersed between the major productions.

Even though technicians do not have to "put in time" working on student or laboratory productions, they are "on call" for advice. Sometimes helping a student with technical problems in a laboratory production can consume a great deal of time. Perhaps there is very little difference in the time spent by the technician who has a modified responsibility for one-act laboratory productions and the one who is hired to supervise fully all the productions within the department. A modified commitment can become a full-scale involvement.

In addition to varying degrees of responsibility for major and minor productions during the academic year, many technicians
are committed to summer responsibilities. Typical commitments range from responsibility for the technical elements for four major productions and sixteen laboratory plays per year and one production during the summer session to a responsibility for ten productions during the academic year and six summer productions. Technicians active the entire year are responsible for an average of twenty-one productions. The technical director at a Midwestern college observes: "Too often we substitute volume for quality."

There are a number of technicians who not only handle the technical aspects of the season's bill but also direct one or two productions. They are kept busy throughout the season regardless of their technical responsibilities. Of course, they are relieved of the technical duty for the production they direct but directing a play takes as much time as preparing the technical aspects. One director of theatre states that he uses a rotation system giving the teachers the opportunity to direct major productions. He takes the technical director's responsibilities when the technician is directing.

Methods of production preparation procedure. Approximately half of the technicians included in this investigation attempt to reduce pressure by methods of procedure. Fifty-six per cent of the respondents indicate that they "always" or "frequently" provide their crew heads with written outlines of their duties and responsibilities. Nevertheless, such an outline is another item on which the technician must spend time. He must consider the entire technical
organization and work out a detailed list with some explanation of the duties of the crew heads for seven technical departments. He may write a carefully planned outline for the stage manager. As conditions change or oversights are noted, the technician may revise the outlines. The use of the outline of duties and responsibilities does show an effort on the part of a considerable number of technicians to insure themselves of a smooth running operation, although the effectiveness of the written outline is undetermined. The number of technicians who give verbal explanation of duties is not known. Twenty-eight per cent of the respondents seldom provide crew heads with a resume of their duties and 18.2 per cent never make use of the written outline.

Technical directors are more proficient, in most cases, than the students they supervise. The normal tendency may be to do the job personally. A technical director who has, since his last appointment, changed to another field, illustrates the point. Preferring to do most things himself, he constructed the set with the assistance of one or two students acting as attendants while the remainder of the crew watched. Such a practice resulted in the loss of willing and interested personnel upon whom the technician depended if he was to meet production deadlines.

Only 3.2 per cent of the respondents indicated that they always prefer to do most things themselves in the preparation for a production. While 43.3 per cent of the technicians specified that they frequently prefer to do the work themselves, many of them point
out that the inability of the student crew members forces them to do much more work than they prefer. Fifty-three per cent of the respondents indicate that they act in a supervisory capacity with only minor exceptions.

The technical director has so many things to over-see that it is impossible for him to spend all his time in one technical category. He is forced by the nature of technical production to work more with set construction. In order to minimize the amount of time he spends in an area he must concentrate on supervision, not personal labor. He is, however, constantly confronted with inexperienced student help. The less the crew members are able to build, the more the technical director must do himself. As a result whenever he turns his attention solely to the construction of an item, progress in other construction may slow down. He is confronted with keeping people busy while he is trying to concentrate on building a specific piece of scenery. The more freely the technical director can circulate among his workers, the more they can accomplish.

Costly mistakes can be spotted by the technician before an item is completed. Many designer-technicians paint their sets with the assistance of one or two good student painters.

The greatest cause for slow progress, particularly in the scene shop, is the need for the technical director to teach his crew members how to do something before they can proceed. In effect, the process of constructing a given piece of scenery is carried out twice. The technical director explains and demonstrates how a thing should
be done; then the student proceeds to do it. If the technical director takes the time to build the entire item as a demonstration for those who do not know the process he involuntarily disrupts progress. All too often, members of his crews are not majors and have not had courses in technical theatre. They are the people he must train.

The process of training crew members is a never-ending one. The same people do not work in the same technical category throughout the season. Therefore, the membership of each crew changes from show to show. New people begin working in the theatre any time during the academic year. The technical director is faced with the necessity of training each new crew member. Many times the most the technician can do is teach the new participant a few fundamental processes. Even though the technician must train new people, it is a part of the educational cycle, regardless of the pressure. If theatre is to be educational, the education of students, whether they be novices or semi-trained, must be accepted as a necessity. That this training increases pressure on the technical director is secondary to the main purpose of educational theatre. However, there are many other pressures that can be reduced without interfering with the training of new people as a part of the process of teaching.

Methods employed to relieve production pressure. In the final analysis, the lack of student assistance can be attacked by personal effort. It is not a situation which can be corrected by expensive
remodelling. A number of methods of questionable effectiveness are now frequently used to improve the situation. It is worth considering local techniques to stimulate participation.

One method for relieving pressure on the technician is the use of paid assistance. Not all departments have the financial ability to provide the technician with enough help. Paid assistance is deemed "ample" or "passable" in about 50 per cent of the cases with most technical directors citing their paid assistance as "passable."

A second technique for increasing production crews is the class participation requirement. About half of the technicians require students in technical courses to participate in crew work as part of the course requirement. Slightly less than a quarter of them indicate that only frequently is production work a class requirement. The remainder seldom or never require participation (Table 17). Regardless of how often crew work is used as a course requirement, 75.8 per cent of the respondents indicate that students work on crews as part of a course in order to increase their experience as well as to provide the technical director with production manpower.

The educational theatre staff has at its disposal a number of other techniques aimed specifically at increasing student participation by providing a motivation. These techniques are intended to attract not only potential theatre majors but also students who merely wish to take part in theatrical production while in school.
In order to determine what techniques are used to interest students in technical work, the following possibilities were stated on the technical director's questionnaire: course credit, membership, uniforms and other. A space was provided to indicate that no techniques were used by the department. A reply was received from 153 technical directors.

TABLE 17

CREW WORK REQUIRED OF CLASS PARTICIPANTS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always</td>
<td>50.6</td>
</tr>
<tr>
<td>Frequently</td>
<td>26.9</td>
</tr>
<tr>
<td>Seldom</td>
<td>16.7</td>
</tr>
<tr>
<td>Never</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Replies regarding the use of interest-stimulating techniques fell into four fairly similar groups. About one-quarter of the respondents checked course credit as the only technique employed. Another group similar in proportion indicated that membership in a dramatic fraternity or local drama group is the only incentive to create student interest. Both course credit and membership are cited by another one-quarter of the technicians; the remaining group employ no techniques to increase interest (Table 18).

None of these techniques are intended specifically to create interest in technical work alone. Furthermore, the only technique directed specifically toward increasing interest in the technical
aspects of production is ignored by almost every technician included in this survey. One technical director took the liberty of circling the word "uniform" on the questionnaire and writing "rot" above it. Only three technicians indicate that uniforms are employed as a technique for creating interest in technical production.

TABLE 18

TECHNIQUES AND METHODS FOR INCREASING STUDENT ASSISTANCE IN TECHNICAL WORK

<table>
<thead>
<tr>
<th>Types of Techniques</th>
<th>Number of Respondents</th>
<th>Percentage of Departments Using Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>33</td>
<td>21.2</td>
</tr>
<tr>
<td>Course Credit</td>
<td>45</td>
<td>28.6</td>
</tr>
<tr>
<td>Membership</td>
<td>34</td>
<td>21.6</td>
</tr>
<tr>
<td>Credit and Membership</td>
<td>41</td>
<td>26.1</td>
</tr>
<tr>
<td>Uniforms</td>
<td>3</td>
<td>1.9</td>
</tr>
<tr>
<td>Trip to New York Theatre</td>
<td>1</td>
<td>.6</td>
</tr>
</tbody>
</table>

The system of awarding uniforms to qualified student technicians at the College of Wooster has been extremely successful. A uniform is awarded to a student as a sign of recognition when the participant has earned a given number of points. In order to retain possession of the uniform the student must earn a set number of points a year. The uniform system attracts the student's attention
and provides him with a goal. Once the goal is achieved the student has gained experience and developed a definite interest in production work. In its first year of operation, the uniform merit system, as it is called, started with six students. Interest increased steadily. At the beginning of its fourth year, the system continues operating with twenty-nine students possessing uniforms. All of the students are active participants.

About half of the respondents indicate that course credit is available to students for participation in the theatre. In the case of one department, one hour of class credit is given to members in good standing of the "College Players." Generally credit is given for a certain amount of production work. For example, at the University of Wichita, students are given credit for fifty-four hours of work in stagecraft in the fall semester and/or credit for thirty hours of work in lighting during the spring semester. In most instances the category in which a student is to work is less specific. At North Dakota State College students may earn one credit for thirty-five hours of theatre work and two credits for seventy hours of work in a given semester; George Washington University requires forty-five hours for one credit and ninety hours for two. However, only 50 per cent of the respondents "always" give credit to students for work in the theatre (Table 19).

Improvements made by the technicians. In order to ease the pressures caused by physical plant limitations technicians make improvements. The extent of the improvements depends upon the degree of limitation of the plant and possibilities for alteration.
The stage house may be such that major reconstruction is all that will help and a low budget will not allow extensive remodelling. On the other hand, a number of small changes or improvements can reduce the expenditure of time needed to mount a production. Regardless of the extent of the improvement, a certain amount of temporary inconvenience is the result.

TABLE 19

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always</td>
<td>50.6</td>
</tr>
<tr>
<td>Frequently</td>
<td>26.9</td>
</tr>
<tr>
<td>Seldom</td>
<td>16.7</td>
</tr>
<tr>
<td>Never</td>
<td>5.8</td>
</tr>
</tbody>
</table>

The technical director must find a time when the improvements can be made. Sometimes it can be done between productions or if it is a vital improvement, the work might be accomplished along with other production preparation. A time must be available when the stage (if this is where the improvement is to be made) is free for an extended period of time. It is almost impossible to accomplish anything when a number of activities are going on. Too much time is wasted if, for example, the lighting crew is hanging instruments, the construction crew is building platforms and the technical director with other assistants is attempting to make an improvement. Furthermore, if the stage is used for play direction and acting
classes or the auditorium is used by other groups at different times of the day, the scheduling of time to make the improvement presents a problem.

Whatever the improvement may be, most technicians included in this investigation spend time, in addition to production commitments, to make alterations in the physical plant. Although an improvement accomplished by the technician may appear to be insignificant in relation to the entire physical plant, the time he spends on it is not. Consider for example the plugging facilities in the stage house of a theatre. The technical director knows that the eight outlets in the ceiling near the proscenium provide outlets for lights on the first pipe batten only. Experience has shown him that the electrician and his crew spend considerable time running stage cable from lights in the upper right to the switchboard in the lower left corner because permanent ceiling outlets are used for first pipe lights. He considers adding more outlets in the "up stage" position.

To begin the project, the technical director spends time investigating the stage house ceiling for the best position for his new outlets. His planning includes a study of the electrical requirements of the project, determination of the cost of materials he will need, and measuring distances and making drawings which will show exactly how the outlets and conduit are to be placed. He purchases his outlets from a theatrical supplier and the other
components from an electrical supplier. So far the technical director has spent no time in the actual installation of his improvement.

Two opportunities may be open to the technical director for the construction of an improvement. He may do the job himself with the aid of his assistants or he may give the job to the appropriate institutional agency. More often than not the technical director has little or no choice; the budget may allow for the purchase of materials for an improvement but the labor cost in an improvement by an outside agency is prohibitive.

Note in Table 20 the percentage of improvements in the physical plant made by an agency other than the technician. As the amount of work done by an outside agency increases, the percentage of technicians who can afford it decreases. More than half of the technicians have been able to employ an outside agency for up to one-quarter of the improvements they have planned. However, more than one-third can get no outside help. Although it is possible for the technical director with access to an ample budget to have all improvements in the theatre made by someone else, this investigation reveals that a large percentage of technicians are forced to do most of the work themselves.

The greater the number of improvements that a technical director makes the greater temporarily is the demand on his time in making the improvements. It may take as long to plan an extensive improvement as it does to plan and execute a small one. According
to responses from directors of theatres most of the technicians included in this investigation have made a significant number of improvements in the physical plant. More than two-thirds of them have not been able to depend upon substantial help from outside agencies (Table 1). It is interesting to note that the designer-technician at Cornell University has had half of his improvements executed by an outside agency because the money can be obtained from rent for the building, which is matched by the administration.

Extra demands on the technician's time. It can be seen that the work of preparing a production added to a teaching schedule results in considerable time consumption. How much the total time could be cut by eliminating the little inconveniences which occur is unknown but the pressures created are unavoidable and continuous. Consider the technician who is prepared to move his scenery from the shop to a stage which is also used for exercises by the acting and play direction classes. Often the technician and his crew must take time to clean up after the classes. Actors required to stage a portion of a play, bring to the stage tables, chairs and small props to set their stage but fail to put things away. The technician must see to it that all is returned to storage before work on scenery can continue.

The shop is open for students to come in to construct scenery. One or two of them appear. Time passes. The technical director tries to find work for them but in the meantime spends time
TABLE 20

IMPROVEMENTS MADE BY AN AGENCY OTHER THAN THE TECHNICIAN

<table>
<thead>
<tr>
<th>Work Done by an Outside Agency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>38.0</td>
</tr>
<tr>
<td>1/4</td>
<td>18.0</td>
</tr>
<tr>
<td>1/3</td>
<td>4.3</td>
</tr>
<tr>
<td>1/2</td>
<td>15.1</td>
</tr>
<tr>
<td>2/3</td>
<td>4.3</td>
</tr>
<tr>
<td>3/4</td>
<td>10.0</td>
</tr>
<tr>
<td>All</td>
<td>10.0</td>
</tr>
</tbody>
</table>

TABLE 21

IMPROVEMENTS IN THE PHYSICAL PLANT

<table>
<thead>
<tr>
<th>Improvements made by Technicians</th>
<th>Amount of Work Executed by an Outside Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Many</td>
<td>13</td>
</tr>
<tr>
<td>Some</td>
<td>23</td>
</tr>
<tr>
<td>Few</td>
<td>2</td>
</tr>
<tr>
<td>None</td>
<td>7</td>
</tr>
<tr>
<td>New Bldg.</td>
<td>4</td>
</tr>
</tbody>
</table>
apart from construction to make a number of phone calls in order to bring together enough more workers to accomplish what has been planned for the work session.

Additional time is consumed when the director of the theatre is called by a donor. "We have several boxes of old hats for use in the theatre; can someone get them?" Regardless of what the technician is doing, sometime during his day he must take time to get the donor's gift. Even if the gift is delivered, the technician must get it stored.

Rigging changes, transportation of scenery from building to building, searching the second-hand stores for the right pieces of furniture, picking up drapery material at the local department store, driving to the hardware store to purchase an item not normally on hand are but a few of the things the technician must do. All of them take time.

Keeping track of all the equipment of the theatre is by no means a small task. Although the technician may have some kind of assistance or another member of his staff who is responsible, he must oversee the entire matter of inventory. It is important to know how many flats of a given size and type are available, what furniture is available, what kinds of doors he has. The amount and color of various paints must be known in order to avoid a costly halt in the preparation because something is missing. A full stock of lumber must be kept on hand. Often the expendable materials can be used up very
quickly and when more is needed, valuable time is lost while an order is placed and delivery made.

Summary of the pressures. The pressure under which the technician works is constant; it may fluctuate but it never disappears. From the time school begins in the fall until the summer recess, the technician is constantly occupied with work in the theatre. While the play directors rotate in the direction of the season's bill, the technical director is responsible for all of the plays presented during the season. Only where two men are employed on the technical staff is there any degree of relief.

Before the season begins the technician must see to it that all equipment is in readiness. He must have saws sharpened, replace missing tools or have repaired the items that do not work. An inventory of lumber, paint and other miscellaneous items that are used must be made, and then an order placed for each type of expendable. This stock of expendable materials must be ordered, either for the first production or for the entire season. The designer-technician's production work begins with the design for the first show.

Many departments establish the coming season's bill in June of the previous season but there are a number of them in which members of the directing staff select a play just before production activities begin. In such a situation, the designer-technician is forced to design the setting with little or no time for careful consideration. If a ground plan is acceptable to the director who is
anxious to begin rehearsals, the designer quickly works out the rest of the plans so that he, too, can begin work as quickly as possible.

After spending time preparing sign-up sheets and posting them, the designer-technician looks for potential crew heads. A shop schedule is worked out and as soon after crews are filled, work begins. The technician spends most of his time in the scene shop supervising the construction of the set. He sets a time to meet with the crew heads of other areas in which work does not have to begin immediately. If he holds a production meeting, much of the preliminary work is established but the details must wait for later sessions. After construction of the set is well under way, the designer-technician arranges his time to go over the properties he needs. If they are in storage he checks them with the property master; if not, time is required to visit second-hand stores, antique shops and perhaps an auction or two. He must obtain any fabrics that are necessary for drapery, hangings or furniture coverings. Somewhere in a period between the time set construction begins and the first consideration of properties, the designer-technician finds time to design the lighting for the production. He turns over to the electrician a light plan; the plot may not be completed. At least, the electrician can begin working with his crew. As the production approaches, the designer-technician spends less time with the construction crew, for he must increase the proportion of his time with the lighting crew. With the crew he positions lighting instruments and checks coloring.
Due to the nature of set construction, it is the most time consuming of any area of technical production. The technician often is limited in the amount of time he can spend on lights, properties or sound. Most technicians wish that circumstances would permit more time for attention to lighting. One-third of them would like more time for properties, while almost as many feel that sound is neglected.

As the date for the technical rehearsal approaches, the technician may spend his days working in the shop and his evenings working out the light plot. If the production is complex in lighting, the technical director may work with the lighting crew during one or two "run-throughs" in order to avoid delays in the technical rehearsal as a result of lighting faults.

When the stage must be shared by both the director and the technical director, some plans must be made to allow the technician to set up the scenery. Usually the technician must bring his elements together while working around the play director's rehearsal schedule. However, the technical director also faces the problem of mustering a crew at a time when the stage is free. Often the technician needs quite a bit of time on the stage and he may not always get it. If the stage is used for other activities in the afternoon and for cast rehearsals in the evening, a dilemma exists. Many technical directors note that the schedule of activities on the stage makes it hard for them to find time to get their work done (Table 9--Stage Schedule).
Most "technical directors" establish the technical rehearsal as the deadline for the completion of the work in preparing for a production. In this way they insure themselves of a few more days before opening night in which to complete anything that circumstances prevented finishing. The technical rehearsal deadline also provides time for making changes which are revealed as necessary, during the technical or dress rehearsals. If more work is to be accomplished, the technical director is not only occupied in the evening with rehearsals but he must spend part of his day working toward the accomplishment of things left undone.

The technical and dress rehearsal period is a difficult time in which to work. When the set is generally complete and lights are nearly ready, the fixed schedule set up for construction work is no longer observed. When more work must be done, the technician must see to it that crew members are called in. Often, construction crew members have made other commitments immediately following their work in the theatre; in many cases, members of the same crew function as the stage crew for rehearsals and performances. The same students who are working in the evening on the stage crew cannot spend time during the day to work on set construction. As a result, the "technical director," with the help of a very few students, must finish any work that needs doing.

While all the production activity has been going on, the technician has been teaching classes as well. Receiving an average of three and one-half credit hours allowance for theatre production
work per semester, the technical director with a minimum teaching load of twelve hours per semester is spending approximately nine hours in the classroom and an equal or greater time in preparation for classes. He is often committed to other academic assignments which may include student advising, faculty committee participation or the management of the audio-visual aids on the campus.

Soon after the first production is over, it is time for the technical director to begin the second. The same processes are repeated. This period of the academic year is the time for the faculty to give mid-semester examinations. In addition to making up the tests, the technician must grade them and then take time to fill out the mid-semester reports. This is just one of any number of extras which are accepted as a part of teaching but which are considered from the theatre point of view, added pressure on the technician. Collecting gifts from donors, making improvements, teaching classes, preparing for productions, attending faculty and committee meetings, taking inventory, advising students, encouraging student participation, serving technically for other campus events, working around other schedules, overcoming plant limitations and a host of other activities leave the technical director with very little time he can call his own.

In a complex operation such as theatrical production, it is virtually impossible for all conditions to be perfect. In the technical area, the pressures created by imperfect conditions are a matter of degree. The investigation of pressures faced by the
technician reveals that several causes are of considerable impor-
tance. There is little the technician can do about the limitations
of the physical plant; he can only hope that in time funds will ac-
cumulate for the construction of a new plant and that architects
will listen to practiced technicians before a new theatre is con-
structed. Although the lack of student help creates pressure for a
large number of technical men, efforts on the part of their depart-
ments may bring about increased interest in the technical phases of
production. When well-planned new theatres are constructed, "tech-
nical directors" will not have to spend as much time to improve
conditions. More student help will reduce the amount of work the
technician must do himself. When conditions in the theatre are
improved, the number of productions for which the technician must
prepare will create only one pressure, the normal amount of time it
takes to prepare. Then the technician will be able to turn more of
his attention to the perfection of the productions and to the im-
provement of his teaching. The designer-technician at the Univer-
sity of Rhode Island sums up the present situation: "It is the
total pressure that hurts."
CHAPTER VI
THE RELATION OF THE TECHNICIAN TO HIS POSITION

It has been shown that the extra amount of time and effort the technician must put forth is partially the result of factors which can be corrected through the efforts of administrators. Administrators must have a real understanding of technical direction in order to be motivated. Therefore, the relation of the technician to his job is an important indication of the status administrators will attach to the position.

Frequently an attitude exists among administrators which affects this relationship, even though no specific consideration has been given it. Although it cannot be pinned down or proven, a hierarchy of departments is generally recognized. In this hierarchy the fine arts, including the theatre arts, is a comparatively low one. Thus the profession of technical direction is partially affected by the ranking of the theatre arts. However, in the recent progress of learning, the arts are becoming "central to a study of the mind and its means of knowing. Artistic intelligence, once thought to be, not only impractical, but a 'lower order' than academic intelligence is rising in prestige."¹ As the theatre arts gain true

acceptance and as administrators realize the role the designer-technician plays in the creation of theatre art, the status of the technician will rise.

More direct reference to the status of technical direction is contained in the semantic involvement of the title given the technician, which is responsible for the unfavorable opinion frequently held by administrators. Any title carrying the connotation of "technical" is in disrepute in academic circles; it creates a distinction between "handwork" and "brainwork." "Technical director" is misleading for it suggests execution without any implication of creativeness. Thus technical direction is considered a craft or skill and the men receive little recognition as equals in a program of cooperative effort. Frequently the play director is congratulated as if he had done all the creative thinking.

Probably every technician is aware of his status in the eyes of others but is either too busy or too interested in his work to be immediately concerned with the status of his position. On the other hand there have been some who have made comments which reflect an awareness of demeaning administrative and departmental attitude. The reader is referred to some of these comments which appear on pages 6-8 of the Introduction. The "technical director" of a state college sums up the present attitude of the dissatisfied:

Without sounding the cry of the lost, wounded and overworked theatre drudge, I do feel that Educational Theatre has lost, if it ever had, perspective as to the relationship of the Technical Director and Designer to the purpose and activity
of producing and teaching theatre in school. The Technical director is not only a misunderstood craftsman, he is an artist who is expected to accomplish the near impossible as frequently as possible and without recognizable reduction in professional performance. I have not lived alone with my burden of working late at night and on into the early morning hours to ready a production for mounting only to scramble out of bed to meet eight o'clock classes, teach a full schedule and repeat this process as frequently as is necessary to arrange a stage for opening night. From hearsay, I would say this lot is shared by many technicians in Educational Theatre. Mine is not a complaint in essence for I have solved this problem of an unnatural balance of work loads. When I decided to enter the teaching profession it was in the field of my first choice, Technical Production and Scenic Design. I have since decided that this was a mistake. I am returning to a graduate study program that will allow me to switch to the field of directing performance rather than technical facilities.

There is reason to believe that former technicians have felt that the pressures, over-work and lack of recognition made it foolish to remain in the profession. Nearly half of those who have vacated a technical position have not accepted another similar one. Some of the 25 per cent leaving a technical job to continue graduate work must have reacted as the technician quoted above.

It is debatable whether or not the technician is always treated as a genuine member of the faculty with rights to salary, rank and tenure. Of the directorships in selected speech departments, technicians receive the lowest median salary. It is less than that received by directors of radio and television, directors of debate, and directors of speech clinics. Moreover, there is an appreciable difference in salary between the play director and the technical
director. Approximately 25 per cent of the reporting technicians cannot advance above the ranks of "assistant" and "associate professor," while a few others have no academic rank in the institutions employing them.

There is no denying that technical direction is an important and integral part of play production. Its establishment in educational theatre further indicates the necessity of such a position. College and university theatres are active and vigorous. In terms of numbers of productions, the number of participants and the variety of offerings, the American educational theatre is probably the most active theatrical force in the United States. In order to maintain this level of activity the working conditions of "technical directors" must be attractive. If working conditions are not improved there will be a reduction in the number of technicians working in educational theatre. Table 31 gives some indication that the trend has already begun.

Theatrical creation requires a knowledge of certain shaping tools of play and production alike. However, the man who teaches them often is considered only a craftsman and his tools are considered crafts. Regardless of the ultimate goals of theatre students, should they intend to enter the fields of playwriting,

directing, or stage design, they must understand the "tools of the profession" in order to make significant achievement. Technical training is not an end in itself but a means toward an end. That is the ability to write or interpret or design plays for the stage. It is not enough that the technician be informed in the crafts; he must be able to apply them in order to teach effectively.

The technician is hired as a supervisor and teacher. He has the answers when the student scene technician needs them. Educational theatre is a learning process; as George R. Kernodle states it, "the American college theatre is partly committed, I am glad to say, to the idea of learning by doing - learning theatre by learning all its separate crafts and practising them together in the complete production." The comments supplied by a sizable portion of respondents indicate that most technical directors maintain that as teachers their production activity should be supervisory. Although technicians indicate they frequently do things themselves, the consensus is that supervision is not only important as a teaching method to allow students the experience of doing things themselves but absolutely necessary in order to meet production deadlines. In most cases, however, technicians do not have enough trained student help to allow them to act in a strictly supervisory capacity.

Generally technicians react favorably toward teaching and the activities associated with it. Only a very few technicians, by their lack of interest in teaching, put themselves totally in the "craftsman" category. One hundred and forty-five technicians were asked to specify the present or potential activity they would drop if they were given the opportunity. More than two-thirds of the respondents indicated that they do not want to reject any of the activities listed (Table 22). Two-thirds of the "technical directors" who would drop actual production work indicate that they are using technical direction as a stepping stone to another position in educational theatre. In other cases, the desire to drop an activity reflects the effect of the pressures of the position. The technical director of a university theatre checked publication as the activity he would drop but adds, "due to time limitations, not interest." It is reasonable to assume that since the expression "no time" appears as a comment on so many questionnaires there is some relationship between the response indicating elimination of some activity and the pressures of the position.

A positive attitude toward teaching is not based solely on a desire to teach technical theatre courses. Many technicians hold jobs in departments in which all or most of the staff teach basic courses. An analysis of eighty responses of technicians who currently teach basic speech or English courses reveals that more than three-fourths of them indicate no desire to drop the teaching of the courses.
TABLE 22

ACTIVITY ELIMINATION PREFERENCE OF TECHNICIANS

<table>
<thead>
<tr>
<th>Type</th>
<th>Technicians Desiring Elimination</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication</td>
<td>16</td>
<td>12.0</td>
</tr>
<tr>
<td>Teaching</td>
<td>5</td>
<td>3.9</td>
</tr>
<tr>
<td>Actual Production</td>
<td>16</td>
<td>12.0</td>
</tr>
<tr>
<td>None</td>
<td>93</td>
<td>72.1</td>
</tr>
</tbody>
</table>

The teaching interests of technicians are not confined to technical theatre and the fundamental courses previously mentioned. Although technicians want to teach whatever technical courses the curriculum will allow, many would like to teach other theatre courses as well. Asked what courses he would like to teach, almost every respondent checked at least one item. Courses in theatre history and theory of production are of interest to the greatest number of technicians (Table 23). A small number of "technical directors" currently teach the non-technical courses, acting and theatre history.

As a designer-technician the individual is required to possess a wide variety of knowledge. To do his work he must have a basic understanding of carpentry, electricity, electronics, painting, architecture and design. He must know something about such things as building materials, pigments, dyes and lighting equipment. The
technician must conduct his own research in the different phases of
the technical area in order to keep abreast of new developments and
to provide his students with the most up-to-date information. To
inform oneself of developments in lighting equipment alone is time
consuming with the improvements being made in that area. It would
be logical to assume that an interest in these areas would be such
that no other fields would have an appeal. However, technicians do
not confine their study exclusively to the technical area. Re-

spondents were asked to indicate the extent to which their research
in technical theatre tended to preclude study in other theatre areas.
EIGHTY-NINE PER CENT OF THEM INDICATED THAT THEIR TECHNICAL STUDY
DID NOT COMPLETELY ELIMINATE RESEARCH IN OTHER AREAS (TABLE 2).

The technician must be considered an artist. More than four-
fifths of the respondents govern the design of settings either by
creating scenery themselves or by supervising student design.
Equally as many prescribe the design of lighting. The creative ef-
fort should not be construed to imply "craftsmanship" only, because
the designer-technician's work requires him to execute a design
through the medium of the crafts. The technician's education repre-
sents more than mere technical training. "It demands a command,
not only of the complex techniques of theatre but also of dramatic
analysis, an understanding of the forms and structure of drama and
of the historical periods and ancient theatre out of which plays from
Table 23

An Indication of Courses Technicians Would Like to Teach

<table>
<thead>
<tr>
<th>Type of Course</th>
<th>Technicians Using Position as Step to Other Theatre Positions</th>
<th>Technicians Staying in the Field</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acting</td>
<td>25</td>
<td>17</td>
<td>42</td>
</tr>
<tr>
<td>Aesthetics</td>
<td>16</td>
<td>23</td>
<td>39</td>
</tr>
<tr>
<td>Directing</td>
<td>27</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>Theatre History</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Organization</td>
<td>9</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>None</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Theory of Production</td>
<td>21</td>
<td>39</td>
<td>60</td>
</tr>
<tr>
<td>Theatre Architecture</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 24

Interference of Technical Study with Other Research

<table>
<thead>
<tr>
<th>Degree of Interference</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>11</td>
</tr>
<tr>
<td>Somewhat</td>
<td>40</td>
</tr>
<tr>
<td>Slight</td>
<td>20</td>
</tr>
<tr>
<td>None</td>
<td>29</td>
</tr>
</tbody>
</table>
the past came." As an artist the technician has that artistic intelligence which is built from a foundation in the arts. By thorough study and understanding of techniques, principles and theory, he is able to express himself. For the technician expression is visual; stage design is a "space art." He is the creator of that visual interpretation of "environment" which as one of the contributive stage arts fuses with the others to make the drama live for its audiences; his imagination creates the environment for dramatic action, the setting and the lighting. An elder statesman of educational theatre, Kenneth Macgowan notes:

In only one field is educational theatre thoroughly and successfully professional. This is in physical production. In the design and lighting of our settings we have long met and matched the standards of professional Broadway.9

Just as the painter or sculptor conceives, sketches and executes his own product so does the designer-technician. Finally it should be noted that regardless of the medium, an artist's activity consists of solving problems, especially in devising means for effective expression, construction and execution of his plans. "The processes of art contain a large element of practical thinking, in addition to aesthetic experience."10

Almost all of the designer-technicians included in this investigation are experimentalists when the opportunity to create unique settings arises. Although the technician carefully selects and arranges his visual material for plays which call for a realistic literal interpretation of environment, his imagination is freer to create the visual essence of a production when the dramatic action allows abstraction. For example, *Inherit the Wind* is a play which might be realistically staged but the universality of the playwright's message should be emphasized. In order to communicate the universal, the designer attempts to create through scenery and lighting, dramatic visual effects which transcend the bonds of literalism. The setting should not only place the action but help to point out the important ideas contained in the production. The designer is permitted considerable license to create unique settings for classical plays and for plays with lyric or poetic qualities. Whatever the designer-technician creates he attempts to interpret the visual quality which makes the stage setting an integral part of the play and of no other play. Only 1.6 per cent of the directors of theatre indicate that their technicians never attempt to experiment with a play when it is possible to do so.

The designer-technician finds that he can experiment with the settings of plays in two ways. If the physical arrangement of the local playhouse is much different from that used for the original production, he regulates the physical requirements of the setting in a way consistent with the limitations of the stage. Limitations of
space and height offer a notable challenge. In a second way, but
often in conjunction with the first, the designer-technician, the
same man who supervises the building of the set and the arranging
of the lights, attempts to create a setting compatible with the di-
rectorial interpretation of the play. In any case, since he is re-
sponsible for both design and execution, the designer-technician
experiments with the settings of plays and can often bring about a
consistency in final result with original intent. He exercises ar-
tistic judgment as to the effectiveness of the visual elements of
a production.

Technicians generally take an active, artistic and critical
interest in play selection. Directors of theatre were asked if
their technicians express choices in the selection of plays. Of
141 cases, nearly 50 per cent of them always offer their opinions
on play selection. Evidently a judgement of this sort is impor-
tant to technicians as well as to directors of theatre and play
directors. An additional one-third of the respondents indicate
that their technicians "frequently" express choice. Only 2.2 per
cent of the directors of theatre reflect an attitude of disinterest
on the part of their designer-technicians.

The position of "technical director" in educational theatre
is being used as a stepping stone to other positions in education
or in professional theatre by a sizable number of people. The num-
ber is not surprising when one considers the fact that the field of
technical direction often provides a starting point for new graduates
beginning their careers in theatre. Although more than half of the 162 technicians responding to the question are staying in the technical area, a group of slightly less than one-third of the total indicate that they are using the position as a step toward other positions (Table 25).

TABLE 25

GOALS OF TECHNICIANS IN RELATION TO THE POSITION

<table>
<thead>
<tr>
<th>Intent of Technicians</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Being Used as a Stepping Stone to Other Theatre Positions</td>
<td>29</td>
</tr>
<tr>
<td>Planning to Stay in the Field</td>
<td>59</td>
</tr>
<tr>
<td>Position Being Used as a Stepping Stone to Other Positions in Education</td>
<td>2</td>
</tr>
<tr>
<td>Position Being Used as a Stepping Stone to Professional Theatre Work</td>
<td>1</td>
</tr>
<tr>
<td>Undecided</td>
<td>7</td>
</tr>
<tr>
<td>unanswered Question</td>
<td>2</td>
</tr>
</tbody>
</table>

Almost half of the technicians expressing intent to work toward another position in theatre cite play direction as their goal. A few others are interested in stage design as an area apart from technical work. Some are interested in general theatre. Regardless of the ultimate goal, nearly two-thirds of the respondents interested in other areas accept the conditions of technical direction. They are not leaving the profession because of the nature of the work; they are leaving because they would rather concentrate in
other areas. However, about one-third of those who are planning to become directors are dissatisfied with the technical portions of their jobs. Individuals in this group have consistently cited "actual production" as the activity they would drop if they had a choice. A few more dissatisfied respondents indicate that they consider themselves designers but must function as technical directors by default since there is no one else to execute the designs. The comment made by one may account for many:

I am seriously considering entering another field of educational theatre other than technical production because of the time consuming nature of production work. I have little time for advancing my own knowledge and study. For this reason I am returning to a graduate program leading to a Ph.D.

The individual quoted above indicated that he was using the position of "technical director" as a stepping stone toward another theatre position. It is a matter of speculation as to how many technicians have actually made a decision but there have been fifteen voluntary comments on questionnaires which imply a growing dissatisfaction with technical direction.

In discussing the relation of the individual to his job two major points have been made evident. The technician has an attitude toward his work which indicates a wide interest in the art of the theatre. His interests and abilities do not center solely around the physical work of production. His attitude is manifest in his teaching interests and in his work as an artist. Generally, the technician does not want to restrict his activities to those of a technical nature. The majority does not reject publication or teaching.
Second, the position of "technical director" is not being used as a stepping stone by a disproportionate number. Since technical direction is a young man's position, it is subject to being "used" in order that the beginner may gain experience. Such a situation does not lend prestige to the position. Directors of theatre should consider a candidate's statement of ultimate goal as one qualification for the position.
CHAPTER VII
RECOGNITION OF THE TECHNICIAN AS A TEACHER AND SCHOLAR

Much of the recognition of the technician is based on the academic degree obtained regardless of the degree of emphasis placed on either teaching or actual production work. This chapter is intended to investigate the various aspects of the situation.

The place of the technician in the academic structure. As far as this investigation reveals no technician is hired who does not hold a Bachelor's degree. Moreover, very few institutions accept the Bachelor's degree as a minimum requirement. Of the technicians holding only Bachelor's degrees, seven are employed in departments offering a graduate degree in theatre. Two technical directors teach in an undergraduate situation. Another, working in a graduate situation, cannot teach. In one case a professionally trained designer-technician, with a Bachelor's degree, is employed for a special reason; the campus theatre requires supervision for chapel exercises, concerts, operas, special events, and rentals to local groups in addition to seven major productions sponsored by the department of speech. It is interesting to note that two of the directors of theatre employing technicians with Bachelor's degrees indicate that no restrictions are imposed on their technical director's teaching.
Most technicians must meet the minimum requirement of a Master's degree to teach at the college and university level. Approximately two-thirds of the technicians included in this survey hold a Master's degree. Some technicians have obtained more than the minimum requirement; just about one-fourth have earned either an M.F.A. or a Ph.D. degree (Table 26). Technicians holding Master's or M.F.A. degrees are divided about equally between graduate and undergraduate schools. Those with doctorates are concentrated in graduate schools.

<table>
<thead>
<tr>
<th>Degree</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>7.0</td>
</tr>
<tr>
<td>MA</td>
<td>65.0</td>
</tr>
<tr>
<td>M.F.A.</td>
<td>19.6</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Technical men are generally grouped in the lower academic ranks. As far as this investigation reveals only one designer-technician holds the rank of "professor." Most technicians hold the rank of "instructor." Associate professorships are limited primarily to men with a Ph.D. degree. More technicians with M.F.A. degrees are "assistant professors" than those with Master's degrees. Nineteen per cent of the technicians holding Master's degrees received assistant professorships, 23 per cent of those with an M.F.A. degree were hired at the rank of assistant professor (Table 27).
TABLE 27

RELATION OF ACADEMIC DEGREE TO RANK AMONG TECHNICIANS

<table>
<thead>
<tr>
<th>Degree</th>
<th>None</th>
<th>Instructor</th>
<th>Assistant Professor</th>
<th>Associate Professor</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>40.0</td>
<td>60.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>2.0</td>
<td>79.0</td>
<td>19.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.F.A.</td>
<td>8.0</td>
<td>65.0</td>
<td>23.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Ph.D.</td>
<td></td>
<td>19.7</td>
<td>63.4</td>
<td>26.7</td>
<td>.9</td>
</tr>
</tbody>
</table>

Advanced training of technicians. In order to determine whether or not "technical directors" are urged to get advanced training, each director of theatre was asked to report on his technician's personal education. The results reveal that more than half of the men currently employed in technical positions are not working toward an advanced degree while approximately one-third of the technicians who now hold a Master's or M.F.A. degree are working toward the Ph.D. Less than 10 per cent of the technicians with Bachelor's or Master's degrees are working toward a higher degree (Table 28).

Encouragement to obtain the doctorate is not confined to technical men employed by departments offering graduate degrees in theatre. A tabulation of technicians working toward the Ph.D. reveals that 61 per cent are employed in graduate departments, 39 per cent are employed in undergraduate situations.
Table 28

Percentage of Technicians Working Toward Advanced Degrees

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>5</td>
</tr>
<tr>
<td>M.F.A.</td>
<td>3</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>32</td>
</tr>
<tr>
<td>None</td>
<td>60</td>
</tr>
</tbody>
</table>

Evidently, technicians are under little or no pressure to obtain the Ph.D. Almost 60 per cent of the directors of theatre indicate that their technical men can advance to the rank of professor but only a few actually state that the doctoral degree must be obtained to do so. In almost all cases the technician can gain permanent tenure. One director of theatre, whose designer-technician holds a Master's degree, makes the following comment: "He does not need one. A Ph.D. is completely unnecessary for a T.D." The acting dean of a drama school well known for its graduate program in theatre enters a protest against what he calls a prevalent practice: to require that a candidate for the job of technical director hold the Ph.D. degree. In support of the protest he points out:

It should be recorded that the person with aptitudes for technical theatre rarely has aptitudes for scholarship; the requirement of the combination will produce either a poor scholar or a poor technical director. Furthermore the design and technical arts of the theatre together with bases in mathematics, sciences and the fine arts are a body of knowledge sufficient for three years of
graduate work and equivalent to the work for a doctorate, although the terminal degree in this area may be the M.F.A., after the aforesaid three years of work.

There is a conflict of viewpoint as to whether the designer-technician should be considered a teacher first and a theatre artist second, or vice versa. Those who would eliminate the compulsion to publish support the latter view, 12 per cent of the technicians polled.

Currently educators in the theatre arts are attempting to overcome the argument that anyone engaged in teaching must eventually obtain a Ph. D. in order to advance. They do not deny that the degree can be useful but, by and large, the higher degree has been made into a mechanical necessity. Too often the Ph.D. provides only a "union" card for teaching in the higher echelons of education. The doctoral program in every field of graduate study, not excepting dramatic art, is by tradition a very rigorous training in the attitudes and methods of research. Everything that is studied must be done so with complete objectivity. So the question is whether the kind of discipline required of the researcher is finally of value to the creative man. Some institutions have attempted to work out compromise plans wherein the educational

theatre artist gives equal time to both theatre practice and literary and historical research. At least two schools have been working toward some kind of change. Yale University's School of Drama is offering a new degree, Doctor of Fine Arts, which will combine creative work with research in history and criticism. The new higher degree offered at the University of North Carolina, Licentiate in Dramatic Art, is so named to avoid borrowing the Ph.D. title "for a course of study in which the primary concentration is placed elsewhere than on research."³ One of the new program's specialties is technical direction.

The evidence indicating that the position of "technical director" has not existed long enough for a definite policy on academic rank to be established may have some bearing on the large number of technicians who are not working toward the doctorate. Owen Dodson, director of theatre at Howard University, hopes that this survey will help his department decide upon the ultimate rank his technician can attain. The drama department of Stanford University is currently examining the problem. Four directors of theatre indicate that no definite ruling has been established. The number of directors of theatre who have answered the question of rank from a theoretical point of view is unknown. Some have made predictions. With the exception of an instructorship for MA's, it has been

impossible for approximately 75 per cent of the directors of theatre to indicate the rank a "technical director" would receive upon initial appointment. Respondents point out that they have never employed a technician who held a degree other than the Master's. The multitude of unchecked spaces on questionnaires corroborates the comments. The initial appointment of a technician with an M.F.A. or Ph.D. is without precedent in many institutions.

Attainable levels of rank. In spite of the lack of precedent, directors of theatre have indicated the highest rank technical men can achieve. More than half of them show that technicians can attain the rank of "professor" without qualification. Less than 10 per cent specify the holding of a doctoral degree before promotion to professor is granted. Almost twice as many directors in departments offering graduate programs indicate possible full professorships for their technicians as directors in undergraduate departments. The granting of assistant and associate professorships as the highest rank is about evenly divided between graduate and undergraduate departments which make up nearly one-third of the total responses. Equally as many institutions give no rank to technicians as those which require the doctorate for promotion to full professorship (Table 29).

Table 29 indicates that technical direction is not recognized as an academic position by all institutions included in this investigation. Therefore, it is important to point out some of the conditions of non-academic status of technicians. A department of English
is currently contemplating faculty status for the scenic designer
but non-faculty status for the technical director. A department
offering a Master's program employs a designer-technician who is
made a member of the drama staff by special appointment. The di-
rector of theatre of an undergraduate department of speech and
theatre points out that technical direction is one area where the
administration will not give rank; the present incumbent is a de-
signer-technician with a background of professional work and a mem-
ber of the scenic artists union. The technician employed by another
undergraduate department is listed as "staff only, no academic rank"
in spite of the fact that he teaches both general theatre and tech-
nical courses. The technical director of one university theatre is
given the title, "associate in drama," and does not advance in rank.
Another university provides neither rank nor tenure for its techni-
cal director.

TABLE 29

PERCENTAGE OF HIGHEST RANKS OPEN TO TECHNICIANS

<table>
<thead>
<tr>
<th>Academic Rank</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>8.3</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>4.1</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>22.3</td>
</tr>
<tr>
<td>Professor</td>
<td>57.0</td>
</tr>
<tr>
<td>Professor with Ph.D.</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Teaching restrictions affecting technical men. The teaching restrictions placed on technicians are based on the degrees held by the incumbents. In most cases these restrictions are imposed on technicians employed by departments offering a graduate program. Only four technicians working in undergraduate programs have restrictions placed on their teaching activity. A technical director holding a Bachelor's degree cannot teach advanced technical courses and cannot advise Bachelor's candidates. One technician with a Master's degree cannot teach advanced technical courses or seminars in general theatre history or theory; two men holding M.F.A. degrees are similarly restricted, and one cannot advise Bachelor's candidates. Approximately 90 per cent of the technicians teaching in the undergraduate situation have no restrictions imposed upon them regardless of the degree they hold.

Exactly half of the technical men teaching in a department offering a graduate program are restricted in some way regardless of academic degree. Slightly less than one-fifth are disqualified from teaching advanced technical courses, general theatre history or theory seminars and advising Master's candidates while holding Master's degrees themselves (Table 30). Twenty-two per cent of the technicians with M.F.A. degrees are restricted in the areas of seminars and the advising of Bachelor's candidates. Since most technicians hold a Master's or Master of Fine Arts degree, they are not included in the graduate faculty; in some cases they are not needed.
Only two of ten technicians holding doctoral degrees are restricted. One cannot teach seminars and the other cannot advise Ph.D. candidates.

TABLE 30

PERCENTAGE OF TECHNICIANS WITH MASTER'S DEGREES RESTRICTED IN TEACHING

<table>
<thead>
<tr>
<th>Type of Teaching Restricted</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Technical Theatre Courses</td>
<td>11.0</td>
</tr>
<tr>
<td>Seminars in General Theatre</td>
<td></td>
</tr>
<tr>
<td>History or Theory</td>
<td>17.5</td>
</tr>
<tr>
<td>Advisement of Bachelor's Candidates</td>
<td>2.0</td>
</tr>
<tr>
<td>Advisement of Master's Candidates</td>
<td>17.5</td>
</tr>
<tr>
<td>None</td>
<td>49.0</td>
</tr>
</tbody>
</table>

The scholarly activity of technicians. Technical men, as a whole, are not particularly active in the area of publication. Texts dealing with the technical aspects of theatrical production are not abundant and few have been written by men while they were actively engaged in technical direction. An inventory of articles appearing in *Player's Magazine*, published between 1955 and 1960 reveals that about 13 per cent of the items included therein were written by men currently employed as technicians. Few articles written by technicians appear in the *American Educational Theatre Journal*. Furthermore, an attempt was made to include a technical department as a special feature of the *Journal*. Since insufficient contributions were made after its initial announcement, the feature was withdrawn.
Some of the lack of publication on the part of technicians is due to the heavy teaching and production schedule they must meet. Since so many technicians have pointed out that they have no time for anything other than production work and teaching, it is reasonable to assume that the same cause is responsible for their limited output in publication.

Summary. The degree of recognition given technical direction, as with other fields in education, is based on the amount of advanced training obtained by the individual. Age and experience are also considered. Since technical direction is essentially a young man's position and because most technicians hold only Master's degrees, recognition is limited. However, much of the appraisal of the position, at least in terms of the academic, is limited by the lack of long experience with it.
CHAPTER VIII
TRENDS IN THE POSITION

Technical direction is a relatively new post in education. It is approximately thirty-five years old. As the acknowledgment of the profession increases, new positions are initiated each year. However, currently there appears to be a trend toward a limited supply of technicians. A study of where the technician goes when he vacates a position reveals that almost half of the technicians who have made changes in the last few years have not continued their work in the field of technical direction. Only 5 per cent of the technicians who have left educational theatre entered the field of commercial television; approximately the same percentage took positions in community theatre. Less than 10 per cent of those surveyed have entered professional theatre work. Furthermore, many professional designer-technicians have taken positions in educational theatre.

Further evidence to indicate a trend toward a limited supply of technicians is supplied by a question asked of directors of theatre. Administrators in 118 institutions were asked if technicians are leaving the field. The answers are based upon a consideration of those technicians whom the directors have known to make a change. Only 6.9 per cent of the respondents feel that technicians,
as a whole, are not leaving the field. The other directors of theatre have given responses of varying amounts (Table 31).

TABLE 31

NUMBER OF TECHNICIANS LEAVING THE FIELD REPORTED BY DIRECTORS OF THEATRE

<table>
<thead>
<tr>
<th>Amount</th>
<th>Percentage of Reporters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many</td>
<td>13.5</td>
</tr>
<tr>
<td>Some</td>
<td>50.8</td>
</tr>
<tr>
<td>Few</td>
<td>28.8</td>
</tr>
<tr>
<td>None</td>
<td>6.9</td>
</tr>
</tbody>
</table>

The supply of future technicians is somewhat limited. One hundred and sixty technical men were asked to list the number of students under their tutelage who are going on in technical theatre in education. The respondents indicate a total of 109 graduate students who are planning careers in the field of technical direction. It is interesting to note that the number of potential technical directors or designer-technicians is less than the number of men reporting on that number. Twenty-six per cent of the responding technicians indicate that they have no one working toward a career in technical theatre, that is, no one in either the graduate or undergraduate enrollment.

The number of interested undergraduate students listed by technicians holds some promise. In 160 institutions, 318 undergraduates are planning careers in technical theatre in education. It is doubtful, however, that all of them will actually reach their present
goal. The Directory of American College Theatre lists 769 departments offering a curricular program in theatre. Assuming that the ratio of the number of students planning careers in technical direction (318) in the reporting institutions (160) represents the actual ratio (318:160 or approximately 2:1) for the institutions known to have a theatre program (769), then the sample would suggest that there are two potential technicians for each of the 769 departments or approximately 1,540 candidates.

The extent to which the use of more than one staff technician will develop is limited. At the present time 5.8 per cent of the departments represented employ three full-time staff members in the technical area. Two full-time staff members are employed in the technical area by 21 per cent of the departments. More than one-third of the directors of theatre currently employing one technician indicate that the hiring of a second is probable or possible (Table 32). Thus the trend can continue until about 50 per cent of all the departments included in this investigation employ a second technician. It will take some time, however, before half of the departments will have employed a second technician. Many directors have specified only that it is possible to hire; this does not indicate that they will do so. Most of the respondents who indicate that the hiring of a second technician is unlikely or impossible are directors of theatre in institutions with enrollments of 7,000 students or less. There is little or no hope for a second
staff technician to be employed in the very small theatre operation because of the lack of finances and the relative status of drama.

TABLE 32

POTENTIAL FOR HIRING A SECOND TECHNICIAN

<table>
<thead>
<tr>
<th>Potential</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Now Employed</td>
<td>5.8</td>
</tr>
<tr>
<td>Two Now Employed</td>
<td>21.0</td>
</tr>
<tr>
<td>Two Probable</td>
<td>7.2</td>
</tr>
<tr>
<td>Two Possible</td>
<td>16.4</td>
</tr>
<tr>
<td>Two Unlikely</td>
<td>37.6</td>
</tr>
<tr>
<td>Two Impossible</td>
<td>12.0</td>
</tr>
</tbody>
</table>

The employment of a separate scenic designer in the technical area is a comparatively recent development. Currently less than 10 per cent of the departments employ a separate scenic designer. In so doing, these departments divide technical functions between two men. One is given the responsibility for design, the other, for execution. It is believed that this practice will not grow significantly. More than two-thirds of the directors of theatre indicate that it is unlikely or impossible to hire a second staff member to function in the technical area. This would eliminate the possibility of hiring a second man as a scenic designer. It is more unlikely that the functions within the technical area will be separated when the designer-technician of the small theatre operation is considered. The designer-technician finds satisfaction in creating
a setting and may enjoy equally the work of executing that design. Most of the men in technical theatre are designer-technicians. It is doubtful that a large number will be willing to give up or limit their creative efforts by accepting positions as technical directors assigned to the execution of another's creation.

There is some possibility that another type of technical staff assistance could develop out of the difficulty in establishing separate functions within the technical area. Departments unable to hire both a scenic designer and a technical director may find it to their advantage to employ a shop foreman. Such a craftsman is currently employed by nearly 20 per cent of the departments included in this study. The shop foreman is employed in a non-academic post to help the designer-technician supervise the execution of designs and to relieve him of the burden of maintenance. The position provides for a second man in the technical area and relieves some of the pressure on the designer-technician but in no way creates a separation in function. Being assisted by a shop foreman the designer-technician can turn more attention to other areas requiring artistic judgement, i.e. lighting and prop selection.

It appears that little change will occur in the means of providing designer-technicians or technical directors with student staff assistance. An investigation of technical organization reveals that the use of graduate assistants in theatre is regarded as the best possible assistance that can be given to technicians in departments able to afford them. Approximately 60 per cent of the
responding graduate departments employ graduate students. An equal percentage of small undergraduate theatre operations employ student technicians whenever possible.

When considering the effect the increase in student population will have on the activities of the educational theatre technician, two trends should be pointed out. First, most of the directors of theatre have indicated that the average number of students in the departmental program has increased in the past five years. However, technicians have reported the lack of student help as one of the major sources of pressure they encounter. It is possible that the increased enrollment will demand even greater teaching activity for the technician, in addition to his other duties. Presumably there would be some increase in the registration in his theatre courses, but there would also be a sharply increasing demand for sections in speech and theatre fundamentals which would add more courses and course registrations to his load. Second, there seems to be a trend away from extra-curricular participation. Students attending college today face an increasing emphasis on grades and in order to maintain academic standing are less active outside of the classroom. Furthermore, there seems to be less interest in the arts. Part of the lack is the result of changing student values and the emphasis on science. Today's students consider education primarily utilitarian and the use to which it should be directed in our materialistic, conformist society is the acquisition of vocational tooling and skill in handling human relations. Finally, theatre activity is affected by the
often deliberate splitting of the academic and the extra-curricular aspects of college life.¹

One other trend in student activity continues without change. Though the fascination of stage lighting does attract a number of men, more women than men participate in the technical aspects of production. The situation begins with women's greater concern with the arts and less promising chances in engineering, science and business. An additional factor may be the limited number of female roles found in the plays currently being produced by educational theatres. Many women will work on a technical crew in lieu of a role. The men who would participate in one way or another are often taken to fill out a cast. The heavy participation of women leaves the technician with certain physically demanding jobs to perform with little or no assistance.

The Stage Design and Technical Developments Project of the American Educational Theatre Association should be a factor in creating better informed technicians. The Project's basic purposes are to encourage research which will reveal technical proficiencies and achievements applicable and useful to the theatre and to provide critical evaluation to members of advanced techniques in current practice. At present the membership is relatively small but it has grown considerably in the past few years. Its publications should

create a better understanding of the problems of the technician, and at the same time put on record the research efforts of the technical man.

Upon initiation of this study, this investigator was of the opinion that "technical directors" were leaving the position because their inability to organize effectively resulted in too much pressure. The opinion is no longer held. Directors of theatre were asked to appraise the organizational ability of their technicians in two areas, the physical plant and personnel. The tabulation of responses reveals that, in general, technicians are characterized as very well organized. However, they show greater ability in organizing the elements of the physical plant than in organizing the personnel working on productions. In this connection, then, technical men set a good example to be followed by future technicians.

The immediate problem the technician faces is how to handle the multitude of pressures confronting him. The answer is not one concerned with personal ability. The technical man can only hope that those with authority will realize fully the contribution he makes and help him by removing some of the unnecessary pressures. The technician is not usually in a position to help himself. Frequently, he hardly has time to examine his personal situation. He is not in a position to do much about his status, for his field is considered a lesser one in academic circles. Furthermore, no definite policy on rank and advancement has been generally adopted. As a result the technician has no sense of direction in the academic
structure, which may partially explain the state of flux of his position. However, the position is still relatively young. As more opportunity for appropriate advanced education becomes available to the creative man and as more men interested in the field obtain advanced degrees, the profession of technical direction will gain greater acceptance.
Dear Prof.

A nation-wide survey is being conducted in the interest of one group of specialists within the American educational theatre: our technical directors.

We know that theatre people are busy; therefore, our check list type questionnaires will take no more than 15 minutes to fill out. They will be mailed in about 4 months.

Would you please fill out the card and mail. The return of the card is important to the survey whether you can contribute further or not.

Your support will be greatly appreciated.

D. R. Batcheller W. C. Craig

The College of Wooster
Does a member of your departmental staff function as the Technical Director in your theatre program?

yes ____ no ____

If you have a technical director would you and he be willing to fill out individual questionnaires?

yes ____ no ____

Would you like a summary of findings of this survey prior to publication?

yes ____ no ____

Your Technical Director's name ____________________________
APPENDIX B

Major Questionnaires
QUESTIONNAIRE FOR DIRECTOR OF THEATRE

1. What degrees may be earned by a theatre major in your department?
 - Bachelors ____
 - Masters ____
 - MFA ____
 - Ph.D. ____

2. In the past five years the average number of undergraduate students in your program has:
 - increased ____
 - decreased ____
 - remained ____
 - constant ____

 Graduate students:
 - increased ____
 - decreased ____
 - remained ____
 - constant ____

3. To the best of your knowledge, when was a technical director first hired in your present department?
 - Before 1910 ____
 - 1910-1915 ____
 - 1916-1920 ____
 - 1921-1925 ____
 - 1926-1930 ____
 - 1931-1935 ____
 - 1936-1940 ____
 - 1941-1945 ____
 - 1946-1950 ____
 - 1951-1955 ____
 - after 1955 ____

4. How long did the last technical director stay in your department?
 - 1 yr. 2 3 4 5 6 7 8 9 10 other ____

5. Considering the last technical director again, where did he go?
 - another similar job ____
 - graduate school ____
 - professional theatre ____
 - other -

6. How long has the present technical director been in the department?
 - 1 yr. 2 3 4 5 6 7 8 9 10 other ____

7. What is your present technical director's age?
 - under 24 ____
 - 24-27 ____
 - 28-30 ____
 - 31-33 ____
 - 34-36 ____
 - 37-39 ____
 - 40-42 ____
 - 43-45 ____
 - 46-50 ____
 - over 50 ____
8. Does your technical director express choices in the selection of plays?
 always ____ frequently ____ seldom ____ never ____

9. Is your technical director generally "cost conscious"?
 yes ____ no ____

10. Does your technical director have a voice in the selection of plays?
 notable ____ considerable ____ slight ____ none ____

11. Does your technical director make suggestions and/or present ideas concerning areas of theatre outside the technical realm?
 always ____ frequently ____ seldom ____ never ____

12. In planning the style of a play, does your technical director attempt to create unique settings in which experimentation is possible?
 always ____ frequently ____ seldom ____ never ____

13. As an organizer, has your technical director been successful in utilizing:
 physical plant -- notably ____ considerably ____
 slightly ____ not at all ____
 personnel -- notably ____ considerably ____
 slightly ____ not at all ____

14. How many productions of any kind sponsored by the department are presented in a season?
 1 2 3 4 5 6 7 8 9 10 more ____

15. For how many of these productions is the technical director personally responsible?
 all 1 2 3 4 5 6 7 8 9 10

16. Do you have a summer theatre program? yes ____ no ____
 If yes, how many productions?
 1 2 3 4 5 6 7 8 9 10 more ____
17. If you have a summer program, is the technical director required to participate? yes no

If no, does your technical director stay on to work in the summer program? yes no

For how many summer productions is the technical director responsible?
1 2 3 4 5 6 7 8 9 10 more

18. Does the staff utilize designs created by students with the understanding that the student will help the technical director execute the design?
always frequently seldom never

19. Is course credit given students participating in the technical phases of theatre?
always frequently seldom never

20. Your technical director holds:

Bachelors ___ Masters ___ MFA ___ Ph.D. ___

21. Is your technical director working on a degree beyond the one now held? no

If yes, which?

Bachelors ___ Masters ___ MFA ___ Ph.D. ___

22. What academic rank is usually given the technical director upon initial appointment?

with Masters — instructor ___ ass't prof. ___ prof. ___ associate

with MFA — instructor ___ ass't prof. ___ prof. ___ associate

with Ph.D. — instructor ___ ass't prof. ___ prof. ___ associate

23. To what academic rank can the technical director advance?

ass't prof. ___ associate prof. ___ professor ___

Can the technical director gain permanent tenure? yes no

24. Does the department give equal recognition to the technical director in his own area to that given the play director in his? yes no
25. Does the technical director receive "teaching load credit" for his theatre work?
 adequate ____ some ____ none ____

 The credit amounts to how much per year?
 1 credit hr 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 other ____

26. What restrictions are imposed upon the technical director in his teaching considering the courses currently offered?
 none ____
 no advanced technical courses ____ no seminars in general
 history or theory ____
 no advisement of: Bachelors ____ Master ____ Ph.D. ____ candidates
 Other --

27. Considering those whom you have known to make a change recently, are technical directors leaving the technical field in educational theatre?
 Many ____ some ____ few ____ none ____

28. Has your technical director promoted, supervised or made improvements in the physical plant?
 Many ____ some ____ few ____ none ____

29. Is your technical director responsible for:
 Tools -- yes ____ no ____
 Physical plant -- yes ____ no ____
 Storage areas -- yes ____ no ____
 Other --

30. Does the technical director have to take the responsibility for the posting of technical organization material, i.e. crew calls and sign-up sheets?
 always ____ frequently ____ seldom ____ never ____

31. Is there a chance of hiring a second full-time staff technician (as scenic-designer, technical director or designer) to divide the work?
 two now used ____ probable ____ possible ____ unlikely ____
 impossible ____

32. Have you ever been employed as a technical director?
 never ____ once ____ more than once ____
33. Has anyone on your staff moved from the position of technical director to another theatre position? yes ___ no ___
If so, what position? play director ___ scenic designer ___
Other --

34. Your institution operates on the semester ___ quarter ___ system.
QUESTIONNAIRE FOR THE TECHNICAL DIRECTOR

1. Check what you do in actual production and how often you do it?

- Design the set
 - always ___ frequently ___ seldom ___ never ___
- Design the lighting
 - always ___ frequently ___ seldom ___ never ___
- Design the costumes
 - always ___ frequently ___ seldom ___ never ___
- Supervise set construction
 - always ___ frequently ___ seldom ___ never ___
- Select furniture
 - always ___ frequently ___ seldom ___ never ___
- Prepare sound & music effects
 - always ___ frequently ___ seldom ___ never ___
- Pick & instruct Stage Manager
 - always ___ frequently ___ seldom ___ never ___
- Rehearse stage crew
 - always ___ frequently ___ seldom ___ never ___
- Other
 - always ___ frequently ___ seldom ___ never ___

2. Indicate what you feel you do best or specialties as number one and rank all others according to your proficiency in them.

- set design ___ lighting ___ costuming ___ stagemark ___
- sound ___ organization ___ architecture ___ other —

3. Please check to the LEFT of the entry if the course is offered, indicate course hours to the RIGHT if YOU TEACH THE COURSE. If the courses are lumped under any one entry below indicate hours by course title and designate what is included in it.

- stagecraft ___ ___ scenic design ___
- technical production problems ___ ___ management ___
- arena theatre ___ ___ lighting ___
- make-up ___ ___ costuming ___
- theatre architecture ___ Other —

4. How many class hours per academic year do you teach in theatre other than those classified as technical theatre courses or credit for production work?

1 hr 2 3 4 5 6 7 8 9 10 more -
5. How many class hours per academic year do you teach which are not in theatre?

1 hr 2 3 4 5 6 7 8 9 10 more ___ none ___

6. What courses would you like to teach? acting ___
theory of production ___ directing ___ history ___
aesthetics ___ organization ___ Other -

7. Which of your present or potential activities would you drop, if you could?

actual publication ___ teaching ___ production ___ none ___

8. Rank in the order of importance the major causes for pressure in the technical area?

inadequate ___ poor ___ number of student help ___ facilities ___ productions ___

limitations of physical plant ___ Other -

9. What kind of assistance are you given to ease the technical load? none ___ paid student ___ paid outsider ___ salaried grad student ___ Other -

10. Considering the scope of theatrical activity is the number of assistants and the time they put in enough to offset your work load?

ample ___ passable ___ meager ___ totally inadequate ___

11. How many dependable students help you consistently throughout the season? Count those who come to mind immediately.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 more -

Rate this help in terms of the scope of the season's technical activities.

ample ___ passable ___ meager ___ inadequate ___
12. Is there a fluctuation in the number of good technical workers? yes ___ no ___
 Is there an increase in your work load caused by this fluctuation? notable ___ considerable ___ slight ___ none ___

13. Students are required to work on crews as part of course work -- always ___ frequently ___ seldom ___ never ___
 If they are required to work, it is for -- their own need for experience ___ production manpower ___ both ___

14. Do you and/or the department employ any techniques to increase student interest in technical work exclusive of monetary gain? no ___ course credit ___ membership ___ uniforms ___ other --

15. At the present time, how many students are you working with who are going on in technical theatre in education?
 undergraduates - 1 2 3 4 5 6 7 8 9 10 11 12 13
 14 15 more -
 graduates - 1 2 3 4 5 6 7 8 9 10 11 12
 14 15 more -

16. Do you conduct a production meeting prior to production preparation activities?
 always ___ frequently ___ seldom ___ never ___

17. Do you provide crew heads with written outlines of their duties & responsibilities?
 always ___ frequently ___ seldom ___ never ___

18. What method do you employ in scheduling work sessions for a production?
 post shop schedule ___ schedule crew members individually ___ other -
19. Is time lost because of error when you do not lay out completely a plan of procedure (including drawings) prior to production preparation activities?
much __ some ___ little ___ none ___

20. Do you find that you prefer to do most things yourself in the preparation for a production rather than supervise the student technician?
always ___ frequently ___ seldom ___ never ___

21. Rank the following in the order of the amount of attention you give them prior to technical rehearsal:
 scenery ____ lighting ____ props ____ sound ____ other -

 For which would you wish that circumstance would permit more attention:
 scenery ____ lighting ____ props ____ sound ____ other -

22. Are facilities and physical plant too limited for your production program?
not at all ___ slightly ___ somewhat ___ extremely ___

23. Rate the average amount of change which must be made in the rigging and equipment of the theatre and/or stage house for your productions?
notable ___ considerable ___ slight ___ none ___

24. Is there a need to transport the materials for a production from one building to another?
always ___ frequently ___ seldom ___ never ___

25. What provisions are available to acquire permanent equipment?
none ___ standing fund ___ amount budgeted per season ___
 box office profit ___

 If available how would you rate the fund in its capacity to purchase permanent equipment to make the job easier?
ample ___ passable ___ meager ___ totally inadequate ___

26. Of the improvements in your physical plant, what amount was executed by an agency other than yourself or your students?
none 1/4 1/3 1/2 2/3 3/4 all
27. Do you ever feel a lack of cooperative spirit on the part of directors when you express means of styling a production and/or other production problems?
always _____ frequently _____ seldom _____ never _____

28. Does your research in technical areas tend to preclude study in other theatre areas?
completely _____ somewhat _____ slightly _____ not at all _____

29. Do you give time and talent to theatrical ventures outside the departmental program?
always _____ frequently _____ seldom _____ never _____
Check appropriate reasons -- money ____ public relations ____
expected of T. Dir. ____ Other -

30. Are you using technical work as a stepping stone to another kind of theatre work? yes ____ no ____
If no, are you using the work as a stepping stone to any other position in education? yes ____ no ____

31. Are you using technical work in educational theatre as a stepping stone to professional technical work? yes ____ no ____

32. How long did you occupy your previous technical theatre job? held none ____ 1 yr 2 3 4 5 6 7 8 9 10 11 12 13
14 15 more -

33. Why did you leave the previous job? (Check all appropriate items)
unattractive salary ____ too few courses in technical theatre ____
teaching load plus production ____ disorganized dept' ____
responsibility too heavy ____
hired for a certain period of time ____ was in an "up or out" situation with rank open ____
job essentially maintenance over production ____

Other -

34. ADDITIONAL COMMENTS--
APPENDIX C

Minor Questionnaires
QUESTIONNAIRE TO DIRECTOR OF THEATRE - one-man operation

1. What degrees may be earned by a theatre major in your department?
 Bachelors ____ Masters ____ MFA ____ Ph.D. ____

2. How many productions of any kind sponsored by the department are presented in a season?
 1 2 3 4 5 6 more ____

3. At the present time, how many students are preparing themselves to go on in technical theatre in education?
 undergraduates - 1 2 3 4 5 6 7 8 9 10 11 12 13
 14 15 more ____
 graduates - 1 2 3 4 5 6 7 8 9 10 11 12 13
 14 15 more ____ NONE ____

4. Is course credit given students participating in the technical phases of theatre?
 always ____ frequently ____ seldom ____ never ____

5. Do you appoint a student to fill the position of technical director? yes ____ no ____
 If yes, is he paid for his work - yes ____ no ____

6. Do you employ paid assistants in the technical area? yes ____ no ____

7. How much supervision do you provide in the technical area?
 notable ____ considerable ____ slight ____ none ____

8. Are you conscious of pressure created by the absence of a technical director?
 notably ____ considerably ____ slightly ____ not at all ____

9. Given the opportunity would you hire someone to handle technical direction? (The party hired would be brought in as a full-time faculty member) yes ____ no ____

10. Is there a chance of hiring a full-time technical director? probable ____ possible ____ unlikely ____ impossible ____
11. Is your situation such that you do not need a technical director? yes ___ no ___

12. What factors make it impossible to employ a full-time faculty technical director? (check all appropriate items)

money ___ department size limited by administrative regulation ___
relative status of drama as an activity or academic discipline ___
theatre program too limited ___ student participation ___
size of institution ___ Other -

13. Are facilities and physical plant too limited for your production program?
not at all ___ slightly ___ somewhat ___ extremely ___

14. What do you consider your specialty? directing ___
technical direction ___

15. Have you ever been employed as a technical director? never ___ once ___ more than once ___

16. Would you consider transferring to another department with a larger theatre staff? yes ___ no ___

17. Do you teach any courses that may be classified as technical theatre courses? yes ___ no ___
if yes, which: stagecraft ___ make-up ___
stage lighting ___ scenic design ___ costuming ___
management ___ arena theatre ___ other -

18. Your institution operates on the semester ___
quarter ___ system.
QUESTIONNAIRE TO DIRECTOR OF THEATRE
Department using student Tech Director

1. What degrees may be earned by a theatre major in your department?
 Bachelors ___ Masters ___ MFA ___ Ph.D. ___

2. How many productions of any kind sponsored by the department are presented in a season?
 1 2 3 4 5 6 more -

3. For how many of these productions is the technical director personally responsible?
 all 1 2 3 4 5 more -

4. How much supervision is given the student serving as technical director?
 notable ___ considerable ___ slight ___ none ___

5. Check what your student technical director does in actual production and how often he does it.

 Design the set ___ always ___ frequently ___ seldom ___ never ___
 Design the lighting ___ always ___ frequently ___ seldom ___ never ___
 Design the costumes ___ always ___ frequently ___ seldom ___ never ___
 Supervise set construction ___ always ___ frequently ___ seldom ___ never ___
 Select furniture ___ always ___ frequently ___ seldom ___ never ___
 Prepare sound & music effects ___ always ___ frequently ___ seldom ___ never ___
 Pick & instruct Stage Manager ___ always ___ frequently ___ seldom ___ never ___
 Rehearse stage crew ___ always ___ frequently ___ seldom ___ never ___
 Other - ___ always ___ frequently ___ seldom ___ never ___
6. Is the technical director paid for his work? yes no

7. What is the educational level of the technical director?
 Undergraduate student graduate student

8. Does the student technical director put in as much time as the director? yes no

9. Does the student technical director teach? yes no
 If yes, what does he teach? stagecraft lighting scenic design non-technical theatre courses
 Other -

10. How much authority does the student technical director have?
 notable considerable slight none

11. Is your technical director responsible for:
 Tools — yes no Physical plant — yes no
 Storage areas — yes no Other -

12. Has your student technical director promoted, supervised or made improvements in the physical plant?
 Many few some none

13. Do you use outside help in your production preparation?
 Yes no
 If yes, what agencies? buildings & grounds
 another department local craftsman Other -

14. Has your department ever had a full-time faculty member as a technical director? yes no

15. Is there a chance of hiring a full-time faculty member to function as technical director?
 probable possible unlikely impossible
16. What factors make it impossible to employ a full-time faculty technical director? (check all appropriate items)

money ___ department size limited by administrative regulation ___

relative status of drama as an activity or academic discipline ___

theatre program too limited ___ student participation ___

size of institution ___ Other -
BIBLIOGRAPHY

Corrigan, Robert W. "Can the Small Liberal Arts College Secure a Qualified Speech Staff," Central States Speech Journal, VIII (Spring, 1957), 38-42.

Jacob, Philip E. "Social Change and Student Values," The Educational Record, XXXI (October, 1960), 338-342.

I, David Russell Batcheller, was born in Buffalo, New York, August 4, 1930. I received my secondary education in the public schools of Dunkirk, New York, and received a Bachelor of Arts degree in 1954 from the College of Wooster. In 1955 I was granted a Master of Arts degree from the University of Illinois. While in residence there I was a graduate assistant in theatre. In September, 1955, I was appointed instructor in speech at North Dakota State College in Fargo, North Dakota. In June, 1956, I received a graduate assistantship at the Ohio State University where I began work for the Doctor of Philosophy degree. I have held a position as instructor in speech at the College of Wooster since September, 1957, while completing the requirements for the degree.