AN INVESTIGATION OF EXPERIMENTALISM AS APPLIED TO

CREATIVITY AND CERAMIC MEDIA

DISSertation

Presented in Partial Fulfillment of the Requirements
for the Degree Doctor of Philosophy in the
Graduate School of The Ohio State
University

By

LYLE NATHANIEL PERKINS, B. F. A., M. F. A.

The Ohio State University

1956

Approved by:

[Signature]

Adviser

School of Fine and Applied Arts
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>I DISSOLUTION OF DUALISTIC THOUGHT IN THE ARTS</td>
<td>4</td>
</tr>
<tr>
<td>II CREATIVITY UNDER THE TERMS OF EXPERIMENTALISM</td>
<td>11</td>
</tr>
<tr>
<td>III AN EXPLANATION OF THE EXPERIMENTAL ATTITUDE</td>
<td>20</td>
</tr>
<tr>
<td>IV THE APPLICATION OF AN EXPERIMENTAL APPROACH TO CERAMIC MEDIA</td>
<td>28</td>
</tr>
<tr>
<td>CONCLUSION</td>
<td>86</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>88</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>13" Thrown Stoneware, Expressing Volume.</td>
<td>29</td>
</tr>
<tr>
<td>II</td>
<td>12" Thrown Stoneware, Contrasting Body with Glaze.</td>
<td>30</td>
</tr>
<tr>
<td>III</td>
<td>12" Thrown Stoneware, Texture in Clay Body.</td>
<td>31</td>
</tr>
<tr>
<td>IV</td>
<td>20" Thrown Stoneware, Addition and Subtraction of Clay.</td>
<td>33</td>
</tr>
<tr>
<td>V</td>
<td>17" Thrown Stoneware, Addition and Subtraction of Clay.</td>
<td>34</td>
</tr>
<tr>
<td>VI</td>
<td>18" Thrown Stoneware, Illustrating Subtraction of Clay.</td>
<td>35</td>
</tr>
<tr>
<td>VII</td>
<td>11" Thrown Stoneware, Illustrating Addition of Clay.</td>
<td>36</td>
</tr>
<tr>
<td>VIII</td>
<td>18" Thrown Stoneware, Utilizing Color of Original Container.</td>
<td>37</td>
</tr>
<tr>
<td>IX</td>
<td>9" Cast Porcelain, Expressing Volume.</td>
<td>39</td>
</tr>
<tr>
<td>X</td>
<td>16" and 13" Cast Porcelain, Expressing Elongation.</td>
<td>40</td>
</tr>
<tr>
<td>XI</td>
<td>8" Cast Porcelain, Form Altered by Cutting.</td>
<td>41</td>
</tr>
<tr>
<td>XII</td>
<td>8" Cast Porcelain, Form Altered by Paddling.</td>
<td>43</td>
</tr>
<tr>
<td>XIII</td>
<td>10" Cast Porcelain, Altered, Waisted Form.</td>
<td>44</td>
</tr>
<tr>
<td>XIV</td>
<td>16", 13", and 18" Cast Porcelain, Paddled, Unaltered, and Cut.</td>
<td>49</td>
</tr>
<tr>
<td>XV</td>
<td>13" Sculpture Clay, Illustrating "Non-traditional" Form.</td>
<td>50</td>
</tr>
<tr>
<td>XVI</td>
<td>11" Sculpture Clay, Illustrating "Traditional" Form.</td>
<td>51</td>
</tr>
<tr>
<td>XVII</td>
<td>17" Sculpture Clay, Form Expressive of Shifting Emphasis.</td>
<td>52</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>XVIII</td>
<td>15" Sculpture Clay, Variation on Similar Forms.</td>
<td>53</td>
</tr>
<tr>
<td>XIX</td>
<td>15" Sculpture Clay, Variation on Similar Forms.</td>
<td>54</td>
</tr>
<tr>
<td>XX</td>
<td>8" Sculpture Clay, Variation on Similar Forms.</td>
<td>55</td>
</tr>
<tr>
<td>XXI</td>
<td>36" Sculpture Clay, Form Expressive of Internal Structure.</td>
<td>56</td>
</tr>
<tr>
<td>XXII</td>
<td>12" Sculpture Clay, Form Expressive of the Inclusion of "Space"</td>
<td>58</td>
</tr>
<tr>
<td>XXIII</td>
<td>15" Sculpture Clay, Inlaid with Ceramic Tile</td>
<td>59</td>
</tr>
<tr>
<td>XXIV</td>
<td>14" Sculpture Clay, Inlaid with Enameled Copper Tile.</td>
<td>60</td>
</tr>
<tr>
<td>XXV</td>
<td>40" Undulating Mosaic, Glazed Clay Tile.</td>
<td>62</td>
</tr>
<tr>
<td>XXVI</td>
<td>30" Mosaic, Unglazed Floor Tile in a Brass Frame</td>
<td>63</td>
</tr>
<tr>
<td>XXVII</td>
<td>46" Clay Mosaic, "Free-standing" from Wall Surface</td>
<td>64</td>
</tr>
<tr>
<td>XXVIII</td>
<td>40" Plaster Sand Casting, Stones, Shells, Mineral Colorants.</td>
<td>65</td>
</tr>
<tr>
<td>XXIX</td>
<td>15" Hollow Clay Forms, Combined with Wood and Metal</td>
<td>68</td>
</tr>
<tr>
<td>XXX</td>
<td>22" Sculptural Form, Figures of Glazed Clay</td>
<td>69</td>
</tr>
<tr>
<td>XXXI</td>
<td>36" Sculptural Form, Figures of Glazed Clay.</td>
<td>71</td>
</tr>
<tr>
<td>XXXII</td>
<td>22" Sculptural Form, Construction of Glazed Clay.</td>
<td>72</td>
</tr>
<tr>
<td>XXXIII</td>
<td>18" Sculptural Form, Interlocking Slabs of Unglazed Clay.</td>
<td>73</td>
</tr>
<tr>
<td>XXXIV</td>
<td>12" Mobile, Wire and Enameled Copper</td>
<td>74</td>
</tr>
<tr>
<td>XXXV</td>
<td>40" Construction, Brass Rod and Enameled Copper Panels.</td>
<td>75</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>XXXVI</td>
<td>2½" Metal Rod and Balsa Wood (Model)</td>
<td>76</td>
</tr>
<tr>
<td>XXXVII</td>
<td>28" Wire and Balsa Wood (Model)</td>
<td>77</td>
</tr>
<tr>
<td>XXXVIII</td>
<td>40" Metal Rod and Plastic Metal (Model)</td>
<td>78</td>
</tr>
<tr>
<td>XXXIX</td>
<td>15" Metal Rod and Plastic Metal (Model)</td>
<td>79</td>
</tr>
<tr>
<td>XL</td>
<td>40" Metal Rod and Plastic Metal (Model)</td>
<td>80</td>
</tr>
<tr>
<td>XLI</td>
<td>40" Metal Rod, Stained Glass, and Cement (Model)</td>
<td>81</td>
</tr>
<tr>
<td>XLII</td>
<td>10" Melted Lead and Stained Glass (Model)</td>
<td>82</td>
</tr>
<tr>
<td>XLIII</td>
<td>15" Melted Lead and Stained Glass in a Brass Frame (Model)</td>
<td>83</td>
</tr>
<tr>
<td>XLIV</td>
<td>40" Melted Lead and Stained Glass (Model)</td>
<td>84</td>
</tr>
</tbody>
</table>
INTRODUCTION

This is an investigation of experimentalism as applied to creativity and ceramic media. The three-dimensional portion of the study represents an attempt to reach beyond the usual concept of "ceramics" as "pottery." It is a search for forms as aids to the expression of ideas. Pottery, as such, has not been excluded, but is used here as a springboard to further exploration — not as an end in itself.

Although the three-dimensional work presented is in illustration of an experimental approach in ceramic media, a consideration of that approach in the field of art in general is included. The text is partially devoted to this problem. It proposes — as necessary to an experimental attitude: (1) a dissolution of dualistic thought in the arts; (2) a broader acceptance of creativity — in all areas — as an aid to art; and (3) an application of experimental attitudes — intelligent action — to creativity.

Experimentation has been limited in some areas of the arts by a reliance on strict canons which hold that "art" is created by forces outside human control. What has been accepted as art, therefore, has fallen within narrow confines. One of the factors which has contributed to this situation is a dualism between the "beautiful" and the "practical." The dichotomy is based on man's long struggle to deal with "mind" and "matter." As long as the
dualism is permitted to exist, the field of "art" will be narrow and selective. This problem is considered in Chapter One.

An experimental approach applied to design with ceramic media may have the effect of broadening the concept of ceramic design. By the same reasoning, an experimental approach to all art may have the effect of broadening its conception. Furthermore, a broad concept of art's purposes and results may mean that it will play a more active role in life. The acceptance of creativity, in all fields of endeavor, may be quickened. Chapter Two deals with this need for an ever-expanding view of the importance of creativity. It may be said, in fact, that an encouragement of creativity will lead to greater discernment by man. Thus, more adequate means of personal and social expression may be evolved.

Extension of knowledge may be gained through experimentation, regardless of the field to which that effort is applied. The extension of knowledge is often the result of exceptions taken to established doctrines. A wholesale overthrow of existing standards of value is not, however, here advocated. Such standards are to be viewed as flexible guides for forming individual judgments.

An experimental approach may strengthen our democratic heritage by encouraging each person to make his own decisions and thereby arrive at personally-evaluated judgments. Experimentation, which is so vital to growth, is discussed in Chapter Three.
The principles of experimentation were applied to the work of the writer as a means of going beyond what is generally termed "pottery" and the results of this experimentation are photographically portrayed in Chapter Four. They are accompanied by explanations of the purposes involved and the experimental steps undertaken. All of the photographic work, with the exception of the color printing, was done by the writer.
CHAPTER ONE

DISSOLUTION OF DUALISTIC THOUGHT IN THE ARTS

The fostering of a dualism has had the effect of limiting the conception of "art," and, hence, of "creativity" and equally of experimentation guided by intelligence. In the early stages of man's development, a division between his inspirational objects and his utilitarian products was not evidenced. Beauty and usefulness were both incorporated in the single product. A dualism between "beauty" and "practicality" became evident later. It was not peculiar to the field of art, but manifested itself throughout the social structure. Separations were thought to exist between mind and matter, the metaphysical and the physical, and the emotional and the intellectual, as well as between the beautiful and the practical. The inception of the dichotomy is vague, having been placed by historians in the seventeenth, eighteenth, and nineteenth centuries, as follow:

Ever since the Renaissance, ... the artist has become increasingly more self conscious; ... withdrawn further and further from the deadening touch of bourgeois banality.¹

By the eighteenth century, the conception had arisen of "fine arts" (also called "polite" or "elegant" arts) as concerned primarily with the production of beauty

and aesthetic pleasure. The others, concerned more with providing basic necessities and comforts, came to be known as "useful," "practical," or "industrial" arts.

In the nineteenth century the paths of science and the arts diverged; the connection between methods of thinking and methods of feeling was broken. The mutual isolation of these two kinds of enterprise, far from being a consequence of their different natures, is a phenomenon peculiar to the nineteenth century and responsible for much about its culture that is otherwise incomprehensible.

The foothold of the dualism appears to have been gained and maintained primarily in Western cultures.

Philosophic theories of art indicate that a vast fluctuation in positions regarding the "beautiful" and "practical" has taken place in rather recent years. Some theories represent the extremes of the dichotomy, disagreeing strongly. Some are closely allied. All, in some degree, have materially conditioned an interpretation of art. Many of the theories, however, have not greatly affected the dualism between the "fine" and the "utilitarian" object or process. We are, for the most part, continuing complacently to accept art standards which have not altered much from the days of the inception of "Art for Art's Sake." John Wilcox, in commenting on the inception of the theory, has written:

During the winter of 1803–4, two important visitors came to Weimar for an extended stay, Madame de Stael and Benjamin Constant ... (who entered in his diary, February 10, 1804). ... the first known use of the phrase "l'art pour l'art."

The result of the adoption of this view was, in the opinion of many contemporary writers, unfortunate. Giedion commented: "It fostered a constantly increasing isolation of the arts from conditions of every day life."

Wide acceptance has been granted, in the past as well as in the present, to those doctrines which have separated mind from matter — particularly those of Bergson, Croce, Bell and Fry, Bullough and Munsterberg. The fallacy of the dichotomy on which so many doctrines have been based does not necessarily lie in the fact that a separation exists. The fallacy is in placing undue importance on one or the other position. The problem of the separation is the creation of "realms" (material and immaterial) that permit of no passage from one to another.

If such a split does exist for the majority, then, perhaps, it would be advantageous to place equal emphasis on both intellect and intuition, or intelligence and emotion, or whatever terms are applicable for individual designation. Each requires the other; neither stands

5 Giedion, op. cit., p. 116.
alone. Any means by which man can conduct the creative process while simultaneously taking into consideration both extremes of the dichotomy, rather than one or the other, has the potential of producing results which are in harmony with present cultural requirements. Sculptural forms for playground use, superhighway intersections, and the mural facade recently constructed for the University of Mexico may be cited as results which are in harmony with their requirements.

There is another way of attacking the dissolution of the dichotomy. One can assume that a dualistic position does not actually exist — that mistaken identity alone has set up the two poles. Such a premise is based on the belief that the cause for a separation of mind and matter (and, hence, of the "beautiful" and the "practical") was a misconception resulting in the recognition of the two as entities. If this is granted, then the two can be considered as one function. When the position is taken that the original differentiation of mind and matter led to an insurmountable difficulty and, hence, that mind should be viewed as behavior directed by purpose, or, as John Dewey said, "... intentional purposeful activity controlled by perception of facts and their relationships to one another." six the dichotomy disappears. Here the concept of mind and matter is far different from the conception on which the older (and present) dualisms rest. When a "mystical"

\[\text{6} \quad \text{J. Dewey, Democracy and Education, p. 120.}\]
quality is no longer attributed to what is called "the mind," then
the character and quality of this behavior, different from native,
mechanical behavior, can be studied. What is at issue are responses
that are directed by anticipation and foresight. The "intuition"
which once saved the bat from flying into obstacles, that took the
salmon to his up-stream home, and that called the homing pigeon
back to his cote is seen, today, as something less mysterious —
as a definable, physical action. The bat is now known to use the
principle of reflected sound, similar to radar, to direct his flight.
The salmon is thought to relocate his original birthplace by detecting
distinctive taste qualities, probably caused by the presence or
lack of certain bacteria or mineral properties remembered from his
infancy. The pigeon is considered to be sensitive to magnetic
fields of force and being accustomed to a certain intensity of this
field in his home area, utilizes this as a directional guide. It
does not seem beyond the realm of probability that when there is a
more complete understanding of man — through scientific inquiry —
the physical, not metaphysical, may fully explain all human actions.

"Emotions," which have been held — under the terms of the
material and the immaterial — to be beyond investigation, are now
held, be some, as intelligent mental activity based on past experience.
Asch has said: "Emotion and expression are integral parts of the same
process; the organism's response to conditions." Emotions are recognized as "expressive actions" and, hence, are no longer considered as completely undefinable responses. They can be: (1) the acting out of tensions caused by situations — as in anger, love, or grief; (2) a release of feelings that have been nearly or completely prevented from being carried out in the past — as in the case of an over restricted child who strews the wildest of oats when he finally breaks from parental grasp; or (3) a means of conveying the ideas generated by mental activity — creating, destroying. Emotions, from this point of view, are largely learned reactions, and thus are not to be attributed to mystical sources.

It is the writer's belief that a dissolution of the dualism is necessary, because an unthinking acceptance of it has led and may continue to lead to a false sense of security. A false security, based in a principle of isolation — for example, that of "Art for Art's Sake" — will result in a belief that no further search or change is necessary. We need to recognize that both personal and social concepts change constantly and that change is a condition of growth and knowledge. The fear of lightning as an "unknown," for example, was dispelled when individual experiments led to the harnessing of electrical energy as beneficial light and power. The process of gaining knowledge, together with the products resulting,

are one undertaking, sponsored and controlled by human intelligence. The role of intelligence is restricted when dualisms based on the mind-matter controversy exist. The role of art is also restricted. A broader view of art — and, subsequently, of creativity and experimentation — will result from a dissolution of the dualism.
CHAPTER TWO

CREATIVITY UNDER THE TERMS OF EXPERIMENTALISM

Creativity, under the terms of experimentalism, is not a mysterious, non-definable activity. It is based on the imaginative quality of behavior. The field of "art" — narrowly conceived — is often thought to provide the major opportunity for creative expression. The creative act is of course part of the "arts," but they have in no way a priority on it. The creative act may take place in all areas of human achievement, from the man shaping a new plow blade for better results to the sculptured cross on a steeple. The acceptance of the resultant products as art, or design, or a way of life, depends on a set of imaginary rules. For example, when a declared "masterpiece" is found to be the work of an unknown, its value as "art" decreases and it is relegated to a position of insignificance. Acceptance is relative to conditioning of thought, guided to formulation by social mores. These mores have been built slowly from the reflected or suggested needs of the culture. They can and do change as circumstances alter.

Creative action is not limited to efforts of an art nature. People other than "artists" are searching for ways to express themselves. Dewey states:
The remaking of the material of experience in the act of expression is not an isolated event confined to the artist and to a person here and there who happens to enjoy the work. In the degree in which art expresses its office, it is also a remaking of the experience of the community in the direction of greater order and unity.\(^8\)

It is not important how insignificant the first attempts in expression may be. There must be a point for beginning. What is important is that out of the beginnings may come the desire for further search and knowledge. Thus it is that broader concepts emerge.

Creativity increases when surrounding conditions offer a number of stimuli and these are taken into account. People today are surrounded by an ever-increasing number of stimuli which reflect the greater mobility and wider horizons of the populace. Asch has said: "The need to participate and understand, to shape and create new forms is part of our very character."\(^9\) The intelligent compounded of responses fortifies the ability to compare and judge. The citizen with an expanded mind who has traveled in foreign countries, for example, is better able to judge his own and other countries.

Few areas of attainment, today, are regarded as outside the potential of most, if not all, individuals. The theory that one must be born a musician, an athlete, or a scientist receives

\(^8\) J. Dewey, *Art as Experience*, p. 81.

decreasing attention, while a deeper understanding of the factors encouraging interest in these and other attainments is sought. The ability to create has, also, come to be viewed by many as something other than a "born with" quality, reserved for only an "artistic few. Singer contends that:

... the artist is not conceived as a rare, and rarefied, being in whom some special intuitive faculty predominates to the exclusion of intelligence, but rather as a practical craftsman like any other. He is a man who has dedicated his intelligence to the perfection of a certain type of production. The type of production depends upon the special art that is practiced.10

If the ability to create is not limited to "artists," what, then, is meant by a "creative" person? One concept of the creative person is an individual who draws upon his past experiences in order to project his thoughts upon a reorganization of these experiences. The result is considered to be more than a simple rearrangement. It is the development of a "new" configuration. "New," is suitably used, perhaps, only in the sense that the individual has become aware of this particular arrangement for the first time. He now sees possibilities beyond this transformation. In developing a "new" glaze, body, or form, for example, the individual draws upon former experiences in order to understand more fully the problem now faced.

10 Singer, op. cit., p. 354.
During the act of developing a solution to the new problem, former experiences are used as a background under changing emphasis they suggest directions that promise to be useful in solving the problem. A new experience results from, and within, the ensuing reconstruction.

When an individual says he is "compelled" or "forced" to work in a certain way by a power outside himself, his statement simply means that not all the factors conditioning his experience are consciously understood. He is holding to the notion that non-mental processes ("intuitional") differ drastically from mental processes ("intellectual"). Creativity may be decreased in breadth when the individual operates under such terms. In denying recognition of the factors conditioning creativity he restricts the number of elements which may be synthesized imaginatively.

Only the boundaries of imagination are barriers to creativity. These boundaries can be pushed outward with each new discovery when the gained knowledge is put to work in search of still newer solutions to problems. The Massachusetts Institute of Technology has offered, for the past few years, a course devoted to the designing of products for a bird-like race of imaginary "people" on an imaginary planet. The research thus evoked loosens the restrictions of conventional thinking, with the distant end in view of attacking the problems of our own planet in a more creative manner. The plan stimulates curiosity by bringing to the designer a world that is
new in the same sense that the world in which the child is born is new to him. Students are led to organize their thoughts, to solve problems.

Any creative act is one of disciplined organization, although the process of organization may take an infinite number of channels to arrive, finally, at any number of solutions. Organization may start with "doodling" for some; for others, with day-dreaming, or with the meticulously careful plotting of details. No matter by what means the process of creativity takes place, thought — in varying degree — has been channeled toward a goal.

Creativity involves the making of choices. There should be many areas for personal choice in a society which practices freedom of thought. It is true, however, that man needs the assistance of many and various suggestions from an infinite number of sources to aid him in the selection of what is valuable — in dealing with his own problems, and in developing his own standards. How he chooses among them is relative to his background and that of his society.

The main requisite for intelligent, creative living within society is to maintain as much individual freedom as possible, while paralleling the "group" in spirit and aim. When the group stimulates initiative, a "healthy" atmosphere provides the ground for an expansion of the creative activity of its members. When businessmen, politicians, or educators, for example, sit down in conference, the value of their discussion hinges on suggestions which aid each to
scrutinize his values and standards in relation to those held by others in the group, and in relation to the problem they face together.

Freedom of decision — necessary to creativity — does not mean wild guessing, nor the domination of selfish motives to the exclusion of others' aims. It means, rather, a drawing upon historical fact and theoretical principles to arrive at a solution pertinent to present needs. A people whose culture expects them to make value judgments are more likely to increase their awareness of surrounding conditions and make earnest attempts to alter them for the general betterment of mankind. In the same way, students who are encouraged to make individual judgments, become more aware of possibilities and are more open-minded than students who are discouraged from creative thinking. The ability to make individual choices that are based on a conception of the collective "good" may become the criteria for survival if open conflict occurs. Voluntary actions in a time of disaster, for example, could make the difference between recovery or defeat — be the disaster famine or flood, war or disease. The very act of testing value judgments creatively can lead to operating with a greater degree of tolerance and, thus, possibly, help to avert conflict.

The attainment of an enriched life, once held to be possible for only a few members in some societies, is an intellectual,
creative achievement, and thus open to all. Enrichment hinges upon broadening concepts regarding all areas of human development. Mundt says:

This way of life is subtly and constantly changing; its values and behavior patterns are continuously in a state of adjustment, and its symbols never stop becoming obsolete. Through his (the artist's) work he helps to clarify and establish values that determine his fellowmen's adjustments to the new living conditions.

From the idea of the whole man participating in social processes, the values of which the artist symbolically expresses and thus helps to consummate, emerges a new art. Art is meaning expressed in a form commensurate with the whole man. Understood in this inclusive sense, art is more than a work of fine art. It becomes an ingredient of all we do and make, indispensable for a unitary life.11

It is partially from such concepts as the one Mundt sets forth that a greater enrichment of life is to proceed. Man also needs to know more fully how he operates, if he is to function more adequately in his changing surroundings. Scientific-technological progress, is, in spite of all the horrors assigned to it, another means of enriching man's future. We are on the verge of a still newer and more influential change through technology — that to be brought about by automation. This new phase will inevitably increase the tempo, leisure, and scope of life with the passage of time and the continued advancement of knowledge. The challenge lies, now and in the future, in deriving the most beneficial conditions for

continual growth through creative action.

If the most "beneficial" conditions are to be derived, it will be necessary to move parallel with, rather than in opposition to, our society. Change cannot be prevented, but blind acceptance of change is not suggested. Change may be directed: indeed, change directed by purpose can be a controlling, guiding, thoughtful force. What is at issue is the search for solutions congruous with existing conditions. One of the existing conditions, as pointed out by Mills, concerns work and leisure. He says: "The fact that little real pleasure is found in their work has led many to turn to creative activities in their leisure time which fill the void of their workaday worlds, which do not require them to live up to their capabilities."12 It is to problems of this contemporary nature and to the recognition of human need for creative action that attention toward change and beneficial conditions must be turned. The nature of the search for congruous solutions to contemporary problems needs to be one of co-operation and awareness. If each person participates in his chosen way and in a manner in which he finds he has the most to offer in meeting the challenge of continual growth, he acts creatively.

The uncertainty which many individuals encounter in making choices can be decreased. Greater confidence in the making of personal choices can be attained when the individual realizes that

12 C. Mills, White Collar, p. 236.
personal preferences are based on his own experiences and not on the dictates of a codified group of experts. The wider the scope of experience, the more material there is to draw upon for comparisons. Judgments are more easily made and can become instruments directed to change — as can the process of creativity.

Creativity, as it is suggested in this writing, would: (1) be an individual endeavor — or, by extension, an endeavor of a society; (2) occur in any area of life; (3) be intelligently guided by past experiences; (4) hold, to some extent, familiarity with the material to be shaped; and (5) involve a resultant product which fulfills a purpose. Looking at this statement more closely, it can be said that creativity implies contemplation; that familiarity with the manipulatory material may have been experienced previously in similar or dissimilar materials; and that purposes may be large or small, complex or simple, depending upon the maturity and capacity of the individual in relation to the solution sought. The breadth of the creative act is greatly increased when the possibilities of creativity are not limited to "art" — as narrowly conceived — and when an experimental attitude guides action.
CHAPTER THREE

AN EXPLANATION OF THE EXPERIMENTAL ATTITUDE

The application of experimentalism in bringing about the creative act is an expression of belief in intelligence — not in an undefinable "emotional" quality — as the controlling factor. Antagonism toward the suggestion of using intellect to perform the creative act arises from a long period of dogmatic philosophy dealing with the aesthetics of art. This philosophy has held that when the end product is not a search for "beauty," or "pleasure," or that it evolved during an attempt to create something of a functional character, it is not intrinsically "good." Intellect has been considered detrimental because submission to it fostered only mechanistic results -- inferior to "spontaneous-emotive" results. The experimental attitude and approach may offer an escape from such an unrealistic theory.

The experimentalist attitude has been given various titles: pragmatism, instrumentalism, experimentalism, reconstructionism. The primary concern here is not to demonstrate the origin of the philosophy but to explore its application to the creative act.

Experimentation is more than wild guessing, subconscious fumbling, or chance. It is a verification of the usefulness of action. Action, in this sense, is the testing of beliefs through application, not the
glorification of action as an end product; i.e., "busy-work" to keep healthy children out of mischief. Action is, then, merely a vehicle, a method by which intelligence can be extended. How can action aid the gaining of intelligence? Action is a motivating force which assists man's struggle for clearer understanding of how he operates in relation to others and the natural occurrences within his environment. His knowing comes about not from isolated contemplation alone, but through contemplation in conjunction with participation. In ceramics, for example, "contemplation" (observing and reasoning) of process and materials without manipulation of the materials cannot be termed knowledge in its broadest sense.

Any activity which is directed by purpose -- a gaining of knowledge -- is a progressive reorganization of experiences. These experiences are reconstructed constantly as the action proceeds. While in the act of throwing on the wheel, for example, each new pressure on the clay suggests possible directions. Imagination, skill, and restraint come to bear on the plastic clay. Each movement of the hands produces visible changes, requiring new solutions. In this way conscious behavior permits stimulus and response to interact (flow backward and forward, each assisting the other).

When action is directed toward a response that has not yet been taken, but has been anticipated, conditions for intelligent action are present. Dewey says that: "The obstacles which confront us are
stimuli to variation, to novel response, and hence are occasions of progress." Thus that response is chosen which appears most likely to satisfy the immediate need. The selected response and the result it brings forth also mold behavior toward subsequent action. An example may be drawn from ceramics: A glaze, which in theory would seem to warrant the prediction of a resulting mat surface, is fabricated. Upon removal from the firing chamber, however, the glaze proves to be too glassy. Indications are that the glaze -- to become a mat -- will require the addition of refractory materials in subsequent experiments. A "reasonable" response has been selected, tested, and has given indications for further action.

Experimentation is a condition of curiosity and growth. It is the seeking for more adequate means of expression which will have value as information and/or pleasure for more than the doer. "There can be no art without life. There can be no life without growth. There can be no growth without change. There can be no change without controversy..." Growth is, in this sense, one of conceptualization, in which man uses intelligence, understanding, discursive reason, know-how, or whatever one wishes to call it. Growth, then, is not a matter of ideas alone: it equally involves putting ideas into practice.

Those who wish to pursue a direction while retaining an open mind toward the privileges of others may find the experimental approach to creativity advantageous. It recognizes the need for tolerance, a use for man's efforts, and a goal that is never quite attainable in full measure. It offers opportunity for everyone to participate in helping to form the future. It places on each man the responsibility of forming his opinions, values, and judgments through thoughtful action. There are, however, conditioning factors which influence the making of judgments concerning the "best" of human effort.

First, it is necessary to realize that the "best" may be multitudinous. It is an advantage — to the experimental attitude — to say that if a certain solution or effect is desired, then this is more or less the way it can be achieved, or, this is more suitable in this particular circumstance than something else. For example: numerous clay bodies can be used for dinnerware, but if translucency is one of the desired qualities, then those materials resulting in a glassy structure when fired are "best." Decisions made, in the process, do not follow a set formula. They revolve around the particular circumstances prevalent at the time.
Second, it must be remembered that tastes and attitudes may vary to a great extent. The psychological effects of surroundings, arrangement or sequence of contributing elements, atmospheric conditions, state of health, and other factors have bearing upon decisions and consequently upon values thereby attributed. An "antique" chest has been sought, found, and purchased. The buyer is very pleased until he learns that the piece is actually a contemporary copy of a "true" antique. The conditions surrounding the chest and its purchase have altered; values have also altered.

Third, it is necessary to recognize that technology is a result of exploratory pursuit and not the final solution to man's problems. Science and technology do offer facts, but these "facts" are subject to change, as are the conclusions based on them. Technology is merely another means to further knowledge and it breeds new problems as earlier ones are solved. Transportation — as in the case of the automobile, for example — may be cited. Automobiles brought about the construction of better roads. New roads brought new centers of population, new industries brought new congestions, suburban development as an escape from congestion found highways inadequate. Super-highways lessened
the inadequacy, but invited greater travel. Greater travel means more congestion, and all this has brought death, and a certain callousness to it, thus illustrating that technology does not solve all problems.

The benefits that have been derived from technological research were brought about by experimentation. The promise of an expansive future seems evident from advances being made: i.e., cultured photo-synthesis, atomic fuels, electronics, medicine -- to mention only a few.

"Facts" provided through technology may seem to some as absolutes by which values may be judged. The facts, however, are always subject to change with each advance in knowledge and are not inflexible, constant guides. The "fact" that antibiotics destroyed many infectious bacteria was exploited until later discoveries made it evident that in some instances antibiotics were detrimental to health, attacking healthy portions of the body or building up immunity to less serious viruses, while leaving the way open for more serious infections.

Fourth, the purpose for which a task is undertaken affects and conditions the result. For example, the considerations taken into account in designing a dinner plate are different than those for a fruit bowl.
The plate needs to have a form that is flat, but rises enough on the edge to keep food from being pushed off and to permit easy lifting with one hand. The clay body should be dense to reduce the possibility of chipping and prevent absorption of the cleansing water. The glaze should be smooth to allow the passage of metal eating utensils over the surface without annoying sound or touch; free of crazing, as an aid to sanitation; and hard, to prevent scratching by utensils or stacking. A fruit bowl, on the other hand, can take forms that need only to hold the fruit functionally. The body can be dense or semi-vitreous, for the bowl is usually only wiped out with a damp cloth. The glaze can be gloss or mat, crazed, textured, or mottled. The surface need not be smooth.

The conditioning factors point out that man must ever be alert to the actual scarcity of individual knowledge, that he must be aware of, and sift, the contributions of others to find future directions for his own progress, relational to the anticipated needs of society.

The experimental attitude is a suggestion for selection, struggle, and change, participation and versatility — "knowing
by doing." Munro states: "Learning, growing, and creating in the arts are achieved, not through avoiding aesthetic stimuli, but by welcoming them as one phase of active experience; then by reorganizing such experience in memory, imagination, and reflection."15

A definition of experimentalism supports the above statements:

Experimental method, in the sense in which we have referred to it, is then something different from the bare fact of the omnipresence of uncertain trial in all action. The difference is that between experiment which is aware of what it is about and experiment which ignores conditions and consequences. Empirical action in the sense in which empirical is applied to the practice of a physician who is guided by custom, by accumulation of particular past experiences rather than by scientific insight, is experimental in a sense, but distinctly not that of experimental method.

Experimental method is the universal and inescapable fact of experimentation become conscious of itself and so directing action by this consciousness.16

Experimentalism is not a theory for action as such, but a means by which the intellect can develop. Greater human satisfactions may be gained through more experimental, creative activity. A broader concept of what comprises "art" may lead to a richer life. The experimental attitude and approach is suggested as a way to expand many concepts through an increase of man's understanding, achieved by searching and testing.

THE APPLICATION OF AN EXPERIMENTAL APPROACH TO CERAMIC MEDIA

The work used in illustration of an experimental approach to ceramic media is not intended as a "directive." The pieces represent, merely, a number of selected points from a series of experiments. The purpose, which resulted in the various series, was to lead from traditionally-recognized clay forms (i.e., pottery) to shapes and materials less frequently encountered.

At the start of the project, forms were wheel thrown as simple volumes. Foot rims were kept small to suggest a visual "sprinkling" or "lifting" from the horizontal surfaces upon which they rested. Subdued glazes were used to retain the "earthy" quality of the clay (Figure I). A strong contrast between body and glaze was emphasized on some of the forms (Figure II). Texture was introduced as dark grog or granular mineral colorants into some of the body clay. The minerals melted below stoneware temperatures, leaving glassy specks on the unglazed surfaces. When covered with glaze, they "bled" through, producing dark spots (Figure III).

Following this customary approach to thrown ware, a second group of forms was thrown, guided by two pre-determined purposes: (1) the forms were to hold potted plants remaining in their
original containers, and (2) the basic forms were to be altered by addition or subtraction of clay. Forms which would allow the passage of light or color through openings in their walls, or beneath them, were felt to be in closer harmony with contemporary dwellings. Today's homes try to achieve the appearance of room-space. In such settings, where screens and partial walls allow freer visual movement, there is a great amount of overlay, blending form, and color. The glazed surfaces of these plant containers were to be held to simple, textural break-up, so that foliage could remain the dominant feature.

The color of common clay flower pots is not generally objectionable. With the advent of plant foods, however, a problem has developed due to the solubility of these materials. The porous terra cotta body of the pots permits enough seepage through their walls to carry the dissolved plant foods to the exterior surfaces. Upon evaporation of the moisture an unsightly residue remains. Part of the first purpose as stated above was, then, to disguise or hide these stains. The second purpose, that of altering the forms, dealt with the desire to go beyond the somewhat limiting conditions imposed by the throwing process. Clay was added to make legs, decorative ridges, and changing rim thicknesses (Figures IV, V, VI, and VII). Advantage was sometimes taken of the color of the original terra cotta containers by cutting away parts of the thrown forms. In this way the color and substance of the container, even though stained, was not
disregarded completely. It became an integral part of the unit, rather than acting merely as an inner shell (Figure VIII).

Continued experimentation of this order could lead to the combining of either altered or unaltered thrown forms into: "area planters" as movable garden beds for inside or outside use; forms that could function primarily in room corners or on window casements; or sectional, vertical planters whose clay forms could be supported, in part, by other materials.

The throwing experiments in altered forms led toward an exploration of vertical forms achieved by the slip-casting process. This method was used because it provides a rapid means of comparison while altering basic shapes and decorative treatments. Each form was to represent a step in a progression from a strongly-expressed volume characteristic to a compressed, elongated, characteristic (Figures IX and X).

Castings in porcelain were taken from each of fourteen molds. Two series were cast. Each piece in the first series was left as a duplicate of the model and fired with a slightly textured glaze. Each form of the second series was altered by cutting or paddling and was decorated (Figures XI and XII).

There appears to be a gradual shifting in emphasis on the "basic shape" in pottery. "Basic" refers, here, to the opinion that forms are more graceful and refined when the point of maximum width is placed about two-thirds above the foot. The proportion thus resulting
can be compared to an egg made to stand on its narrow end. It is unlikely that any such inflexible term as "basic shape" should be attached to a material as pliable as clay. Many examples of this relationship do exist in museums, however, particularly of ware made in the Tz'u Chou district of China during the Sung Dynasty, or reproductions from the works of the period.

Many pottery forms, today, seem to emphasize "waisted" and elongated silhouettes with great attention being placed on near-cylindrical shapes (Figure XIII). The rims and throat openings of such forms are taking on a decorative as well as a functional aspect (Figure XIV).

What has brought about this change? An inclusive answer is not possible, but three estimates will be made here to indicate the trend. In architecture, through the work of Sullivan, Corbusier, and Wright, light-weight construction, often with plain facade, has developed. In private dwellings and office interiors, the trend has been toward opening the living space with light-weight furniture and the vertical accent of wall-dividers, panels, and movable screens. Less floral patterns are to be found in rugs, walls, drapes, and furniture. Artificial light sources are seldom centrally located, so there is no longer need for massive chandeliers. Slim, directional lighting fixtures or indirect lighting -- or both -- service definite areas. Such trends in architecture and interior design favor the compression of materials. Attention is turned from massiveness
toward a "floating," "lifting" quality.

A second possible explanation for the contemporary affinity for compressed, elongated forms may be related to aviation. The slimming of aircraft bodies and the decrease of unnecessary weight, or the number of appendages, is apparent.

A third possible explanation may be found in magazine advertisements and outdoor display signs. Typographers are showing greater restraint in the amount of material placed in confined areas. Advertising in magazines and newspapers is so plentiful that only those layouts which are unique demand attention. A decrease in the amount of material presented is one means to such uniqueness. As for outdoor advertising, speed of travel demands that messages be concise.

The considerations point out that much contemporary designing is done with attention focused on decreasing the amount of material used and on compressing, or holding, the over-all mass to a compact unit. The total volume-area of the object frequently relates directly to shipping, packaging, and display, as well as to home and factory storage.

Throughout much of our present culture the trend seems to be toward compression. This may be accounted for, in part, by the fact that this is a period when people are frequently on the move, either in commercial or private vehicles, from transient workers to executive VP's. Those who remain more or less permanent own homes that are
relatively small by comparison with those of our recent past. Extra storage space is limited. The garage has replaced the barn and outbuildings. Guests' and children's rooms have taken over many attics. "Rumpus rooms" and workshops have changed numerous basements. Space is "precious," either while traveling or at home. There never seems to be enough room to accommodate all the accumulated articles deemed necessary for adequate living.

If this is a logical interpretation, it may account, partially, for a changing concept toward ceramic form. Forms are being designed so that they appear to move upward and to lose bulkiness, becoming light, airy, and uncluttered. Each consideration of form brings about numerous solutions. Some of these may prove to be an advantage, others an encumbrance. Through the struggle to find products more suitable to varying needs, however, design will change and improve if exploring and testing continue. It is not sufficient to reproduce forms dictated by past needs just because they have become acceptable as familiar or hold prestige value.

The experiment with cast forms pointed up the fact that more could be done. Sidewalls of forms could be partially cut to make "flaps." These might then be pushed inward or outward to create contours quite remote from the original forms. A second possibility for future investigation could be that of making forms with very "quick" swelling volumes near their upper portions. This would
provide a greater area in which to experiment with cutting and/or paddling. A consideration which should be taken into account when designing tall forms of small diameter to be cast in porcelain concerns the excessive shrinkage which takes place in the vertical dimension. The proportions of the model need to be greatly exaggerated in order to retain the desired upward thrust.

It has been stated here that compressed, elongated pottery forms are receiving particular attention today. Some possible reasons for the interest have been advanced. This statement and the writer's experiments do not preclude interest in forms of other types. Among the latter are those sometimes referred to as "free forms." These shapes offer interesting opposition to current trends in architecture and interior design.

Two underlying purposes accompanied the next study, which involved such free forms. First, to construct clay forms by shifting emphasis onto various parts within them in order to find "new" associations. Second, to incorporate a consideration of "space" in arriving at the forms. Space may be viewed as the use of a void to contrast a mass. Negative areas can be used as portions of entire designs.

Personal choices for organization are most necessary when the shape undertaken is asymmetrical rather than fully geometrical in character. These "freer" shapes offer an opportunity for form organization without exclusive reliance on traditionally-accepted
relationships (Figure XV). It appears to be a natural inclination to cling to familiar, closed shapes, for they seem to be the clearest images within our background experiences (Figure XVI). Form relationships are often more clearly understood by removing the security prop of the familiar. The organization of size, shape, and position must stand independently (Figure XVII). Weaknesses are more evident when traditional forms are not relied on, even though two individuals seldom perceive an object in quite the same way.

"Creation" can continue as the work progresses. It is a process of shifting and altering relationships within and around the object to find a suitable solution. Each form and each new arrangement of parts signal different approaches for future work (Figures XVIII, XIX, and XX).

In conjunction with the problem of searching for new configurations, a second purpose involved the use of space as an element of design. Out of such problems the ability to handle material in a manner which seems structurally sound may develop (Figure XXI). Through the development of a "feeling for structure" — based on experience — a corresponding awareness toward the atmosphere surrounding the object can be forthcoming. The atmosphere may be thought of as akin to water flowing through and around the objects, making patterns, swirls, and eddies. Although such patterns are mental images, their implied stresses and tensions can be an aid in
controlling the relationships that compose the design (Figure XXII).

Brightly glazed tiles were set into some of these "free forms" as a preliminary step to working in mosaics (Figure XXIII). Enamel on copper, providing a variation from the customary clay or glass tesserae, were also used (Figure XXIV).

In producing the mosaics themselves, a deviation from the usually-ascribed-to older methods of mosaic designing was made. Clay was first modeled in a large shape with an undulating surface. Lines were cut through to form individual tiles. The outer edges of the total pattern took on a non-geometric shape relational to the lines of the tiles (Figure XXV). The approach followed is not only in opposition to the usual procedure which results in square or rectangular outline, but altered the way in with the tesserae themselves are generally formed. Mosaic tiles are most often made by breaking off sections, or pieces, from larger tiles and fitting them into place. The world-famous sidewalks along Copacabana Beach in Rio de Janeiro are, for example, made by breaking egg-sized pieces from blocks of black and white stone. These tesserae are then tamped into a dry bed of loosely-mixed sand and concrete. As the pattern progresses, cement is sifted on the sidewalks, dampened, and swept clean. The cement remaining has filled the cracks between the stones, while the moisture has seeped underneath to partially set the cement bed. Although this is an inadequate method for cold climates, because of frost action, a similar method was tried in this series. Commercial
bathroom tile were used instead of stone and a frame of brass made the finished mosaic portable (Figure XXVI).

Another exception was taken to the conventional method of mosaic work by making an opening which extended through the undulating clay form. This was done for two reasons: (1) to increase the three-dimensional aspect of the form, and (2) to allow the wall surface on which the finished mosaic would be placed to show through as an integral part of the design. Some of the mosaics were also made to stand free of the wall, held forward by means of partially concealed brackets (Figure XXVII).

Subject matter was not considered necessary in these mosaic experiments. A pattern of changing color, rather, was used to suggest movement (Figure XXVIII). The viewer may form mental images or symbols according to his interests. The suggestion of mental images was carried further by producing the mosaics so they could be placed in any position without any one direction being "right side up." Thus greater freedom was offered in placing completed mosaics in selected locations.

As the problem of mosaics progressed, other materials such as metal or wood were introduced to play supporting or contrasting roles (Figure XXIX).

The work undertaken in this series brought several points for future development to the writer's attention:
1 - devise ways to lower the time required for construction
2 - increase the over-all size while increasing the size
 of each tessera proportionately
3 - increase the depth of modeling to catch more adequately
 outdoor sunlight or the fainter incandescent light of
 indoor settings
4 - increase the unevenness of the setting for individual
 tessera, allowing greater modulation through light
 reflection
5 - increase color gradation within areas to prevent a
 visual flatness
6 - utilize bright color for small mosaic panels, with a
 possible muting of color as the over-all area increases
7 - investigate the possibilities of using commercial tile,
 brick, and stone, either as whole or broken sections,
 with glazed and natural surfaces

Experimentation was continued in order to form stronger personal
opinions concerning relationships of volume to surrounding, or en-
compassing, space. The desire took the direction of ceramic sculpture
as a follow-through of the work done on "free forms" and mosaics.
Subject matter is apparent in those pieces done in the beginning
of the series. (Figures XXX and XXXI). It was subjugated as the work progressed. The organization of size, shape, and position stands independent when the context of the object is subordinated. The form should be interesting enough in compositional relationships to stimulate without depicting the obvious. Weaknesses become starkly evident under such circumstances. Subject matter may often give false security, aiding the "glossing-over" of relational defects.

The importance of techniques needs to be relegated to the establishment of background experiences. If an understanding of the material is established, full concentration can be centered upon the object organization. In this way the evolving forms encompass the entire attention and the mechanics of construction become, almost, an involuntary action.

We are, today, becoming more aware of the use of space as a penetrating, moving, or isolating constituent of our lives. Space is an enveloping and usable material, from envisioned inter-planetary travel to eyelets in shoes. It is no longer considered as a "nothingness," but rather as an aid, or hindrance, depending upon the problem.

The work used for illustration here expresses a desire to move forms into and back from space, to control the amount of "air" within the designed forms. These experiments are attempts to
contrast positive form (volume and mass) against negative form (void or "vacant" area) (Figures XXXII and XXXIII).

Materials other than ceramic were included as the work progressed. Ceramic materials other than clay were used, in some cases, to take advantage of a delicate, light-weight quality not usually attributed to clay (Figures XXXIV and XXXV). Some of the forms are models built up from wire, wood, and metal to aid in solidifying ideas, or, at least, bringing them to a condition where later alterations could be made. These models will act as guides for further designing in more permanent materials (Figures XXXVI, XXXVII, XXXIII, XXXIX, and XL).

The entire sculptural series shows a progression away from completely ceramic-constructed objects to partially or completely clayless forms (Figures XLI, XLII, XLIII, and XLIV). The act of moving from wheel-thrown forms to "freer" built-up shapes, or the gradual changing from sculptural clay forms to shapes composed of various materials has no significance in itself other than representing the direction an individual search has taken. What does have significance is the fact that the work has not been a repetitious operation. The study has applied an inquiring attitude and has tested ideas by acting upon them to produce three-dimensional results. The results of each experiment suggested additional possibilities to be tried. New knowledge was gained and put to use on new trials. Each new experience opened the way for broader opportunities of exploration.
Creativity was stimulated. Progress leading toward yet-unrealized configurations was made.

It is in such ways that experimentation broadens concepts -- not only of ceramic design -- but also of the very activity of living. New horizons are glimpsed and may be reached. Challenge, prompted by curiosity, leads to yet newer, unsolved problems.

Experimentation is a process of seeing, doing, and trying to understand the resultant values. Such a process may reveal that inspiration may come from any number of sources: no one section of the design field provides a better source of creative ideas than another, and -- by extension -- no one field of activity in life provides more opportunity for creativity than another. All are desirable, fertile segments of life, open for creative endeavor.

As in all projects, the end point reached is relational to time, material available, and the amount of imagination or curiosity the proposed problem evokes. Man creates by bringing mental images forward into the three-dimensionality of his world. New ideas may then develop in similar or dissimilar directions. There is no end to such experimentation.
CONCLUSION

Those who work in the art field are sometimes prone to hold a too-narrow conception of "art," confused, perhaps, by a supported dualism based on mind or matter. The dichotomy can be dissolved by: (1) placing equal emphasis on both of the so-called entities, rather than on one or the other, or (2) accepting the theory that two extremes do not exist, that mind can be defined, in reality, as a quality of the operation of the organism. When either of these positions is held, a less-restrictive point of view will result concerning what comprises art.

If an expanding concept of art is to be achieved, it is necessary to recognize the effects of all man's creative acts. The areas commonly designated as "art" can be broadened by this means. Both "fine" and "utilitarian" products may then be accepted as creative expressions of human need -- not as separate goals. A broader conception of art and its purposes will equal a broader basis of knowledge which is necessary to the progress of man toward a humanitarian goal.

Experimentation, essential to creativity, provides a way of gaining an expanding concept, not only of "art" but of all human activity. A belief in the experimental attitude is a belief in intelligence. Experimentation is a means of pioneering into the
"unknown," based on assurance in man's mental capacity and not on mysticism.

An illustrative statement in favor of the experimental attitude and approach has been set forth by the writer's three-dimensional work. An attempt has been made to fortify the text with evidence of an experimental attack on previously-untested form relationships. The experiments have resulted, therefore, in "new" configurations. The work was not accomplished by an emotive, spontaneous out-pouring of undisciplined action. Instead, in the writer's opinion, the work was done by drawing upon knowledge which, as past experiences functioning in relationship to the problems confronted, was modified and altered. Additional knowledge was gained continually by applying understanding, based on previous experiences, to new circumstances. And, finally, the particular form of art, ceramics, in which the experimentation was done, seemed to lend itself peculiarly to the demands of the experimentalist attitude and, in return, to gain in significance for the advancement of creativity.

Randall, John; Buchler, Justus; and Shirk, Evelyn. Readings in Philosophy. New York: Barnes and Noble, 1953.

I, Lyle Nathaniel Perkins, was born in Friendship, New York, November 29, 1915. I received my secondary school education in the public schools of the same town. My undergraduate training, aided by an athletic scholarship, was obtained at the New York State College of Ceramics, Alfred University, from which I received the degree Bachelor of Fine Arts in 1939. That summer was spent in study in Mexico. The summers of 1940 and 1941 were spent in graduate study in ceramic sculpture at Alfred University. After teaching in the Milton S. Hershey School, Hershey, Pennsylvania, from 1939 to 1942, I entered the United States Navy. Upon my discharge, I returned to Alfred University, from which I received the degree Master of Fine Arts in 1947. Since that time I have been Head of the Department of Ceramics, Rhode Island School of Design, Providence, Rhode Island, where I am an Associate Professor. The summers of 1947 through 1949 were spent as ceramic instructor at Alfred University. Study at Ohio State University leading to the degree Doctor of Philosophy was begun in the summer of 1951. The school year 1954-5 was spent at Ohio State during my sabbatical leave from Rhode Island School of Design.