Teaching Leisure Skills to Individuals With Significant Disabilities Using Video Prompting

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Masters of Arts in the Graduate School of The Ohio State University

By

Olivia S. Miller, B.S.

Graduate Program in Educational Studies

The Ohio State University

2014

Committee:

Dr. Helen Malone, Advisor

Dr. Sheila Morgan
Abstract

The current study used a video prompting treatment package to teach ten students with significant disabilities three leisure skills. Each leisure skill was task analyzed and videos were created for each individual step of the task. Using a multiple probe across behaviors design, the intervention was introduced for the selected tasks. Results indicate that for seven of the ten participants, video prompting was an effective intervention for teaching leisure skills.
Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Helen Malone, for her unequivocal support, patience, and immense knowledge. This study wouldn’t have been possible without her guidance. I would like to thank Dr. Linsey Sabielny, who provided me with the knowledge to grow as a professional. Thank you for the constant support you provided, from practicing how to run research sessions, to emergency ice cream trips.

I would like to thank Dr. Amy Cramer and Dr. Sandra Kolankiewicz, for providing me with the experiences and knowledge that led me to Ohio State. I would like to thank my sister, Ashley Miller, who has continuously supported me throughout my life. I would also like to thank all the teachers and parents who allowed me to work with their students.

Above all, I would like to thank my mother, who showed me the true meaning of patience. Thank you for being superwoman, and taking the time to teach me about the things that really matter in life.
Vita

2008 .. Marietta High School

2012 .. B.S. Education, Valparaiso University

2012–2014 ... Graduate Research Associate, BBAS, The Ohio State University

Fields of Study

Major Field: Educational Studies
Table of Contents

Abstract ... ii

Acknowledgments .. iii

Vita... iv

List of Tables ... vi

List of Figures .. vii

Chapter 1: Introduction ... 1

Chapter 2: Method ... 7

Participans.. 8

Tasks and Materials... 9

Dependent Measures and Data Collection .. 14

Experimental Design .. 15

Procedures.. 16

Chapter 3: Results ... 22

Chapter 4: Discussion ... 50

References.. 57
List of Tables

Table 1. Participant name, age, disability label, and Vineland-II Standard Scores........... 8
List of Figures

Figure 1. Pre–and post–training preference assessment for Jax .. 23
Figure 2. Percent correct responding across activities for Jax .. 25
Figure 3. Pre–and post–training preference assessment for Gemma 27
Figure 4. Percent correct responding across activities for Gemma 29
Figure 5. Pre–and post–training preference assessment for Bobby 30
Figure 6. Percent correct responding across activities for Bobby 32
Figure 7. Pre–and post–training preference assessment for Abel 33
Figure 8. Percent correct responding across activities for Abel .. 35
Figure 9. Pre–and post–training preference assessment for Harry 36
Figure 10. Percent correct responding across activities for Harry 38
Figure 11. Pre–and post–training preference assessment for Wayne 39
Figure 12. Percent correct responding across activities for Wayne 41
Figure 13. Pre–and post–training preference assessment for Filip 42
Figure 14. Percent correct responding across activities for Filip 44
Figure 15. Percent correct responding across activities for Wendy 45
Figure 16. Percent correct responding across activities for Clay 47
Figure 17. Percent correct responding across activities for John 49
Chapter 1: Introduction

Leisure describes an individual’s perception that one is to choose and participate in meaningful recreation (Dattilo & Schleien, 1994; Schleien, Kiernan, & Wehman, 1981). Individuals with developmental disabilities typically have an abundance of free time but do not usually use their leisure in constructive ways (Wehman & Schleien, 1981). Even so, leisure instruction for individuals with significant disabilities historically has low priority, and is often not taught. This may be due to the perceived difficulty associated with establishing and integrating leisure activities for individuals with significant disabilities (Schleien, Meyer, Heyne, & Brandt, 1995). All human beings have the right to engage in leisure activities, and services that are provided to individuals with disabilities should offer opportunities to engage in these activities (Dattilo & Schleien, 1994).

Increasing the focus on teaching leisure skills has the potential to open new doors for students with disabilities. When individuals with severe disabilities develop leisure skills, it may enhance social, cognitive, domestic, language, and motor skill development (Wehman, 1977). Specifically, individuals who gain leisure skills increase their activity level and social interactions (Jerome, Frantino, & Sturmey, 2007) and decrease their self-stimulatory behaviors (e.g., body rocking, hand flapping), due to being appropriately engaged (Wehman, 1977). In addition, acquisition of leisure skills can promote a range of
age-appropriate leisure skills that can be enjoyed across the lifespan (Schleien et al. 1995; Stumbo, 1992) that enable adults to experience an enhanced quality of life by increasing competence and self-reliance (Cannella-Malone et al. 2006; Jerome et al., 2007) leading to an increase in opportunities to access least restrictive environments (Cannella-Malone et al., 2006). These skills contribute to living a more self-supporting lifestyle and to achieving greater independence in life. The more skills adults acquire, the more enhanced their quality of life becomes. However, most individuals with significant disabilities are unlikely to learn leisure skills without systematic instruction (Wehman et al. 1985), and even those that may acquire the skills are not likely to generalize to other environments or self-initiate without systematic instruction (Snell, 1983).

Several studies have demonstrated effective methods for teaching leisure skills to individuals with significant disabilities. Schleien et al. (1981) taught three adults with severe disabilities to play an age-appropriate darts game. The participants were 23, 32, and 63 years old. Sessions were provided to each participant for 15 min daily. Each session consisted of five training trials followed by a probe in which no programming was provided. A verbal cue was given and the number of steps performed independently was recorded. Instruction began on the next step of the task analysis, which had not been performed correctly or without assistance during two consecutive sessions. A cue hierarchy was used to teach the dart skills, and training continued for each participant until he or she could complete the task analysis independently. For two of the participants, throwing darts became part of their leisure repertoire. Follow up and
generalization data demonstrated these two participants successfully maintained the skill over time, as well as in other environments.

Luyben and colleagues (1986) taught three adults with severe developmental disabilities the skill of passing a soccer ball through the use of forward chaining and prompting. The soccer pass was task analysed into nine steps, which taught sequentially using a most–to–least prompt hierarchy. If the response was correct, descriptive praise was provided. If the response was incorrect, descriptive correction was given followed by a reinstruction sequence in which the participant was prompted through the response until he performed correctly. The results demonstrated that all three participants acquired the skill.

Jerome et al. (2007) taught three adults with developmental disabilities Internet skills using errorless learning and backward chaining. All sessions were conducted in a day habilitation center for adults with developmental disabilities and autism. The online games or websites were determined for the participants by asking program staff what topics interested the participants. The results of the study demonstrated that the use of a task analysis and errorless learning to teach leisure activities was successful for all three participants.

Taken together, these studies suggest that individuals with severe and profound developmental disabilities can acquire leisure skills. However, none of these studies used technology, which has been demonstrated to be an effective method of instruction for individuals with developmental disabilities. One method of systematic instruction using technology is video-based instruction. Video-based instruction can be considered an
empirically validated procedure for teaching individuals with developmental disabilities various skills. Two types of video-based instruction include video modeling and video prompting.

Video modeling entails making a video of someone performing the target skill then showing the video to the participant at the beginning of each session. After viewing the entire video, the participant is given the opportunity to perform the entire target skill. Video modeling has been effective in teaching skills such as imitation skills (Kleeberger & Mirenda, 2010).

Video prompting involves showing the participant a video clip of one step of the task and then the participant is given the opportunity to complete that step before the next step is shown. Video prompting is an evidence-based instructional intervention (Horner et al., 2005) for teaching individuals with developmental disabilities. Research has shown that video prompting is shown to be more effective in skill acquisition for students with severe to profound disabilities (Cannella-Malone et al. 2006). Cannella-Malone et al. (2006) compared video modeling and video prompting strategies to teach putting away groceries and setting up the table to six adults with developmental disabilities. Results demonstrated that video prompting was more effective than video modeling.

Video prompting has been effective in teaching a variety of skills such as, food preparation or cooking-related skills (Graves et al., 2005; Mechling et al., 2008; Mechling et al., 2009; Mechling & Gustafson, 2008, 2009; Mechling & Stephens, 2009; Sigafoos et al., 2005), self-help skills (Cihak et al., 2006), setting the table and putting
away groceries (Cannella-Malone et al., 2006), and cleaning kennels at an animal shelter (Van Laarhoven et al., 2009).

Until recently, there has been limited research examined whether if video prompting is an effective method for teaching leisure skills to individuals with significant disabilities. Edrishinha et al. (2011) taught four adults with mental retardation photography skills using video prompting. Using a task analysis, the participants learned how to take a picture of an item with a digital camera and print the item using a printer. Once mastery was met, video prompting was removed to assess maintenance at 2, 4, and 8 weeks and at 6 months. The skills generalized to novel situations and were maintained during follow-up.

Chan and colleagues (2013) taught one man diagnosed with down syndrome three leisure skills using video prompting. Using a task analysis, the participant learned how to paint, listen to music and take pictures. However, a limitation to this study there was only one participant, and the prompt hierarchy was never successfully faded.

Both Edrishinha et al. (2011) and Chan et al. (2013) found video prompting to be an effective method for teaching age-appropriate leisure skills. Because of the range of skills previously taught using video prompting, and with the results of Edrishinha et al. (2011) and Chan et al. (2013) it is reasonable to predict that video prompting could continue to be used to teach leisure skills.

Therefore, the purpose of this study was to determine whether leisure skills could be acquired using video prompting for ten individuals with significant disabilities.
Additionally, this study examined whether preference would shift once a leisure skill was learned.
Chapter 2: Method

In this chapter, the methods used in this study are presented. First, information about the participants will be presented, along with the tasks and materials. Then the dependent measures and data collection procedures will be presented, followed by interobserver agreement and procedural integrity procedures. Next, the experimental design used will be presented. Lastly, the procedures will be described.

Participants

Participants name, age, disability label, and Vineland-II Adaptive Behavior Standard scores are shown in table 1. Gemma was a 19-year old girl with autism and facial dysmorphism. Jax was an 18 year-old boy with Down syndrome postural orthostatic tachycardia syndrome (POTS), and a cortical visual impairment. Bobby was a 15 year-old boy with multiple disabilities. Harry was a 19 year-old boy with severe cognitive and communicative delays. Filip was a 16 year-old boy with Down syndrome and a heart defect (atrioventricular septal defect [AVSD]). Clay was a 14 year-old boy with autism. Abel was a 14 year-old boy with Autism. Wayne was a 21 year-old boy with autism and mild microcephaly scaphocephaly. Wendy was a 12 year-old girl with Autism. John was a 14 year-old boy with multiple disabilities, Trisomy 13, and a heart defect.
<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Vineland Composite Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jax</td>
<td>M</td>
<td>18</td>
<td>Down Syndrome, Cortical visual impairment</td>
<td>53</td>
</tr>
<tr>
<td>Gemma</td>
<td>F</td>
<td>19</td>
<td>Autism, facial dysmorphism</td>
<td>54</td>
</tr>
<tr>
<td>Bobby</td>
<td>M</td>
<td>15</td>
<td>Multiple disabilities</td>
<td></td>
</tr>
<tr>
<td>Harry</td>
<td>M</td>
<td>19</td>
<td>Severe cognitive disability, communication delay</td>
<td></td>
</tr>
<tr>
<td>Filip</td>
<td>M</td>
<td>16</td>
<td>Down Syndrome, heart defect</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>M</td>
<td>14</td>
<td>Autism, Mild microcephaly scaphocephaly</td>
<td>32</td>
</tr>
<tr>
<td>Abel</td>
<td>M</td>
<td>14</td>
<td>Autism</td>
<td>45</td>
</tr>
<tr>
<td>Wendy</td>
<td>F</td>
<td>12</td>
<td>Autism</td>
<td></td>
</tr>
<tr>
<td>Wayne</td>
<td>M</td>
<td>21</td>
<td>Autism, Mild microcephaly scaphocephaly</td>
<td>41</td>
</tr>
<tr>
<td>John</td>
<td>M</td>
<td>14</td>
<td>Multiple disabilities, trisomy 13, Heart defect</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 1. Participant name, age, disability label, and Vineland-II Standard Score

Setting

This study was conducted in a fully-segregated urban school for students ages 10 through 22, with moderate to profound intellectual, physical, and developmental disabilities. All sessions took place in a room separate from the students’ classrooms.
The room had four small tables, with different leisure items in the room. For example, the darts board remained hanging on the wall throughout the study.

Tasks and Materials

A leisure inventory was sent home to each participant’s parent, guardian, and teacher to identify relevant leisure skills for assessment (See appendix A for a copy of the inventory). The inventory included various activities, and the person filling out the inventory indicated which activities the participant had done in the past, was currently doing, or might be interested in doing. Based on the inventories, five activities that the parent or guardian noted as “might be interested in learning” were selected for each participant. Based on the results of the pre-training preference assessment, five items were selected to teach. The following leisure skills were taught to the participants.

Darts. The following is the task analysis for darts, with time included: (a) walk up to line on floor (7 s), (b) pick up dart off table (5 s), (c) hold dart by metal grip (6 s), (d) aim by looking at the dart board holding arm at a 90 degree angle (7 s), (e) move arm forward and release dart in throwing motion toward the board (6 s), (f–m) repeating steps b, c, d, and e (48 s), (n) after throwing, go pick up the darts (9 s), and (o) place the darts on the table (8 s). The total time for the throwing darts task analysis was 96 s.

Silly selfie. The following is the task analysis for silly selfie, with time included: (a) pick an accessory (e.g., glasses disguise, green wig, plastic teeth)(9 s), (b) put accessory on (16 s), (c) press button on bottom of frame (9 s), (d) slide finger on lock arrow (7 s), (e) touch the photo booth icon on bottom of screen dock (9 s), (f) pick a filter
(7 s), (g) pick up iPad with arms forward (10 s), (h) position camera so face is on the screen (10 s), (h) smile or make a silly face (5 s), (i) touch camera button while smiling or making a silly face on bottom of the screen (12 s), (j) press the center circle button on the bottom of the frame to close photo booth (12 s), (k) place iPad on the table (8 s), and (l) take accessory off and place on the table (11 s). The total time for the silly selfie task analysis was Total time 125 s.

Selfie. The following is the task analysis for selfie, with time included: (a) press button on bottom of frame (9 s), (b) slide finger on lock arrow (7 s), (c) touch the photo booth icon on bottom of screen dock (9 s), (d) pick a filter (7 s), (e) pick up iPad with arms forward (10 s), (f) position camera so face is on the screen (10 s), (g) smile or make a silly face (5 s), (h) touch camera button while smiling or making a silly face on bottom of the screen (12 s), (i) press the center circle button on the bottom of the frame to close photo booth (12 s), and (j) place iPad on the table (8 s). The total time for the selfie task analysis was 89 s.

Weighted curls. The following is the task analysis for weighted curls, with time included: (a) pick up weights off table (9 s), (b) stand in front of mirror, facing the mirror (9 s), (c) slowly curl dumbbell to front of shoulder (9 s), (d) slowly release dumbbell down to your side (7 s), (e) slowly curl the dumbbell in your other hand to the front of your shoulder (9 s), (f) slowly release the dumbbell down to your side (7 s), (h–w) repeating steps c, d, e, f and (x) placing the weights back on the table (9 s). The weights that were used were 5 lb. dumbbells. The total time for the weighted curls task analysis was 187 s.
Origami boat. The following is the task analysis for origami boat, with time included: (a) turn triangle over, so white side is facing up and long edge is on the bottom (9 s), (b) fold one of the lower corners of the triangle up to the top point, and crease (14 s), (c) fold the other corner up to the top point, and crease (13 s) (d) open the paper out so both triangles are down on the table, facing out (10 s), (e) fold the top corner point down to the bottom base edge of the triangle and crease (11 s), (f) fold one of the bottom corners and re-crease the triangle (9 s), (g) fold the other bottom corner and re-crease the triangle along the other crease line (10 s), (h) fold the bottom corner of the point up about 1/3 of the way, making sure the point is in the center (11 s), (i) crease the bottom (8 s) and, (j) turn the boat over (7 s). The total time for the origami boat task analysis was 102 s.

Put artwork into portfolio. The following is the task analysis for portfolio included: (a) open three ring binder (6 s), (b) pull apart metal rings (7 s), (c) grab one page protector from the box (8 s), (d) open page protector (9 s), (e) place one piece of artwork in the page protector (14 s), (f) place page protector into the three ring binder (12 s), (g–n) repeating steps c, d, e, f and, (o) push the metal rings together (6 s) and, (p) close the three ring binder (6 s). The total time for the put artwork into portfolio task analysis was 154 s.

Dominos. The following is the task analysis for dominos included: (a) open dominos container lid (9 s), (b) choose domino piece (7 s), (c) place domino piece standing vertically on table (11 s), (d) choose next domino piece (5 s), (e) stand domino piece vertically in front or behind of the current standing domino (13 s), (d–k) repeating
steps b, and c, (l) knock dominos over by blowing or using finger (12 s), (m) place dominos in container, and (17 s), (n) place lid back on container (11 s). The total time for the dominos task analysis was 139 s.

Shape puzzle. The following is the task analysis for shape puzzle, time included:

(a) pick up shape piece (7 s), (b) match piece to same shape and color on puzzle (11 s), and (c–t) repeating steps a and, b. The total time for the shape puzzle task analysis was 180 s.

Mr. Potato Head. The following is the task analysis for Mr. Potato Head, time included: (a) open rear latch, and take out all the pieces (22 s), (b) close rear, until it clicks (5 s), (c) turn Mr. Potato Head, so three vertical homes are facing front (8 s), (d) push hat in the hole on the top (10 s), (e) push eyes in the top vertical hole (11 s), (f) push nose in the hole under the eyes (12 s), (g) push tongue in the hole under the nose (11 s), (h) push ear in the top hole on the side (11 s), (i) push arm in the hole under the ear (14 s), (j) push next ear in the top hole on the other side (13 s), and (k) push other arm in the hole under the ear on the other side (14 s). The total time for the Mr. Potato Head task analysis was 131 s.

Lite bright. The following is the task analysis for lite bright, time included: (a) hold the bottom, and push the bottom of the lite bright down (12 s), (b) choose light piece (7 s), (c) put light piece through hole with dot (11 s), (d–x) repeating steps b and c, (y) press circle button on bottom of board to turn on lights (11 s), and (z) turn room lights off and look at the lite bright (21 s). The total time for the lite bright task analysis was 249 s.
Basketball. The following is the task analysis for basketball, time included: (a) grab the basketball off table (7 s), (b) walk to line (9 s), (c) aim by looking at hoop and holding ball at chest level (9 s), (d) push hands up and release ball towards hoop (9 s), (e) retrieve basketball (8 s), and (f) put ball back on table (12 s). The total time for the basketball task analysis was 54 s.

Nerf rocket. The following is the task analysis for nerf rocket, time included. (a) place one rocket on the yellow tube (11 s), (b) pick up base of rocket (9 s), (c) carefully, set down the rocket base on the floor (13 s), (d) using your foot, step on pump to shoot rocket (11 s), (e) retrieve the rocket (12 s), (f) pick up rocket base (12 s), (g) place rockets and base on table (10 s). The total time for the nerf rocket task analysis was 78 s.

Bubble gun. The following is the task analysis for bubble gun, time included. (a) unscrew the bubble bottle lid (11 s), (b) place lid on table (8 s), (c) pick up bubble gun (9 s), (d) place plastic tube inside bubble bottle (14 s), (e) twist bubble bottle lid, until secure (17 s), (f) squeeze and hold the trigger until bubbles release (23 s), (g) place bubble gun on table (9 s). The total time for the bubble gun task analysis was 91 s.

Painting nails. The following is the task analysis for painting nails, time included: (a) pick out a polish color (7 s), (b) shake nail polish (9 s), (c) unscrew lid (11 s), (d) pull out the brush (6 s), (d1) wipe brush (11 s), (d2) pick unpainted finger (12 s), (d3) place brush on the top of the cuticle, and pull down towards the tip of the nail (16 s), (d4) continue strokes, to cover entire nail (6 s), (d5) place brush back in jar (5 s), (e–h) repeating steps d, d1, d2, d3, d4, and d5, (i) blow on painted nails (11 s), (j–n) repeating
steps d, d1, d2, d3, d4, d5 on unpainted hand, (o) blow on painted nails (9 s), and (p) screw lid on tightly (11 s). The total time for the painting nails task analysis was 618 s.

Development of videos

The videos used for this study were recorded using an iPhone. The video clips for all tasks were developed beforehand using the same materials as those used during training. Each video clip was filmed from the perspective of a spectator, in that the student saw another person (i.e., an adult male) completing the step of the task. At the beginning of each clip, a female voice provided an auditory prompt stating what the student was to do in that step. For example, for the first step in *weighted curls*, the student heard, “First, pick up both weights off the table,” and saw the performer in the video pick up both weights from the table.

Dependent Measures and Data Collection

The dependent measure for this study was the percentage of steps in the task analysis that were completed correctly. Using the task analysis as a data sheet, each step of the task was recorded as completed correctly or not on a session-by-session basis. During baseline, to be scored as correct, the step had to be completed within 30 s of the initial instruction or within 30 s of completion of a previous step. During intervention, steps had to be completed within 30 s of viewing the video clip for that step. An error was defined as the student engaging with the leisure item not for its intended purpose.
Interobserver Agreement and Procedural Integrity

Interobserver agreement (IOA) data were assessed in all conditions by having a trained second observer collect data for student activity engagement for at least 30% of sessions per condition. Independent observers were trained by explaining the task analysis for each task, providing the observers with data sheets, and providing examples of correct and incorrect responses. IOA was calculated on a session-by-session basis by dividing the number of agreements by the number of agreements plus disagreements and multiplying by 100.

Procedural integrity data were collected by independent observers during at least 30% of the sessions for all students across all conditions. The procedures for each session were listed sequentially on a checklist and a secondary observer marked off which steps were completed correctly or incorrectly. Procedural integrity was calculated by dividing the number of steps completed correctly by the total number of steps and multiplying by 100.

Experimental Design

A multiple probe across behaviors design was used to demonstrate a functional relation between video prompting and change in behavior. The phases included were baseline, intervention (i.e., video prompting), and maintenance. In order to move from baseline to intervention, the student had to have three data points that were stable or showed a decreasing trend. If behavior was increasing during baseline, the student remained in the baseline phase until it stabilized. To move the next behavior into intervention, the behavior in intervention had to demonstrate an increasing trend over at
least three data points and baseline had to be stable or decreasing. Students were placed in maintenance once they achieved mastery (i.e., five consecutive sessions at 100%).

Procedures

Activities interest inventory. A leisure inventory was sent home to each participant’s parent or guardian in order to identify relevant leisure skills for assessment. The inventory included various activities, and the person filling out the inventory indicated which activities the participant had done in the past, was currently doing, or might be interested in doing. Based on the inventories, five activities that the parent or guardian noted as “might be interested in learning” were selected for each participant. If five items were not identified, the experimenter identified items based on feedback from the parent or guardian and teacher. Items were selected for the preference assessment based on information from the parent and school inventory.

Pre-Training MSWO. A preference assessment was conducted at the start of this study to identify each participant’s preference for the identified leisure activities. Based on the results of the leisure activity inventory from parents or guardians and teachers, and activities identified based on observations of each student, five items were chosen for further evaluation.

A five item multiple stimulus without replacement (MSWO) preference assessment (DeLeon & Iwata, 1996) was conducted with each participant across five sessions. Prior to each session, the student was allowed to sample each item. Following sampling, items representing each activity (e.g., nail polish for painting nails, a basketball for shooting, and an iPad for taking selfies) were presented in an arc. The objects were
presented in front of the participant, and they were instructed to, “choose one” or “pick one.” Selection was defined as the participant physically selecting an item from the array. Any attempt to grab more than one item was blocked. After selecting an item, the remaining items were removed, and the participant was given the activity and allowed 30 s to engage with it. The remaining items were shuffled and re-presented, and the procedures continued until all the items had been chosen or no response was made for 30 s.

During the preference assessment and training trials, a predetermined amount of attention was prescribed for all students. For example, if a student selected the green wig and mirror, during the 30 s of engagement, the experimenter would say, “oh that looks great”. The experimenter provided brief vocal attention during the assessment to prevent providing too much attention towards certain leisure items.

To calculate rank, a point weighing scoring method was used based on Ciccone and colleagues alternate scoring method (2005). The first item selected in a session resulted in a point value score of 5. Selection on trial 2 resulted in a point value score of 4, and so on. If an item was not selected, a point value of 0 was assigned to that item.

At the end of each session (5 trials) the weighted score were summed to calculate a total score (out of 25). For example, if an item were selected on the first trial of all five sessions, the total score would be 25 (i.e., selected five times on the first trial multiplied by 5).

Preference results were then categorized by using guidelines by Pace, Ivancic, Edwards, Iwata, and Page (1985). High preference items were those scored 80–100%
(17–25 points) moderate preference had scores of 50–79% (9–16 points), and non-preferred items 0–8% (0–8 points).

Baseline. At the start of the study, the students were not receiving instruction on this task in their classrooms or in their home. I ran single opportunity sessions with each of the participants’ activities identified from the inventory. A single opportunity method was used in baseline to prevent the students from learning the activities during the assessment. Students were given 30 s to initiate the task and 30 s to begin the next step upon correct completion of a previous step. If the student did not respond for 30 s or made an error, the session was terminated, and the student did not have an opportunity to complete the rest of the task. Non-specific verbal praise for participation was provided upon the session termination (e.g. “Oh alright, thanks for hanging out”).

During baseline sessions, students were individually brought to the setting for the task. Using a single opportunity method, the student was told to “Do the task.” If they didn’t start the first step within 30 s or started the step incorrectly, I blocked the response, and the session was terminated.

Video prompting with error correction. Students were brought to the location for the task and provided with video prompting. The student was positioned in front of the materials for the task and a timer was started. The trainer held the iPhone in front of the student so they could easily see the screen, said, “Watch this,” and played the video clip of the first step. When the clip ended, the trainer said, “Now you do it.” The student had 30 s to complete the step. If the student did not initiate the step within 30 s or completed the step incorrectly, the trainer blocked the response and said, “Not quite right,
watch it again.” The trainer then played the video clip a second time. If the second viewing of the video clip did not evoke a correct response across three consecutive sessions, three hierarchical most-to-least prompts were provided. The first prompt was a full physical prompt. When using the full physical prompt, the experimenter repeated the auditory prompt given in the video while physically guiding the student by the hand to complete the step.

Following three consecutive sessions with full physical prompts, the physical prompt was reduced to a partial physical prompt at the elbow. Using this prompt level, the experimenter repeated the auditory prompt given in the video while physically guiding the student at the elbow. The prompt level was then reduced to a partial physical prompt at the shoulder after three sessions. Using this prompt level, the experimenter repeated the auditory prompt given in the video while providing a tap at the student’s shoulder to guide them through the step. After three sessions with the partial physical at the shoulder, the prompt level was reduced to a gesture prompt. Using this prompt level, the experimenter repeated the auditory prompt given in the video while pointing to the start of the step. All prompts were paired with the verbal cue of the specific step. For example, if the prompt was partial at the elbow, the experimenter would prompt at the elbow while repeating the verbal cue for the designated step.

Once the full physical prompt was faded, if the student made an error during a session, the prompt was immediately increased back to a full physical prompt during that session. In the next session, the prompt level was increased by one level. For example, if the student was receiving a prompt at the shoulder, a prompt at the elbow was provided in
the next session. All error correction decisions were made on a step-by-step basis. For example, if a student was unsuccessful with one step in the entire task, only that step received the tiered error correction. Upon completion of the task, the timer was stopped and the student was given a small edible reinforcer and thanked for participating.

In vivo instruction. If the data for video prompting with error correction plateaued below mastery levels, in vivo instruction was implemented. A most-to-least prompt hierarchy was used, paired with a verbal direction for each step. Additionally, the student was given 20 s to initiate a correct response. If the student did not initiate or began to respond incorrectly, a physical prompt was used to complete the step.

Maintenance. After students reached mastery, they were placed into maintenance. This condition was identical to the baseline phase. If a student’s performance dropped below 80% correct for three consecutive sessions, video prompting was reintroduced until the student regained mastery.

Post-Training MSWO. Once students reached mastery or 90% of all three tasks, a post training MSWO was conducted to examine if preferences had shifted since learning the leisure activities. The procedures used were identical to the pre-training MSWO.

Generalization probe. The generalization phase consisted of changing the stimuli of the task or adding a peer. For Jax and Harry, both students were brought to the same room and given the direction of “play darts”. The trainer didn’t provide any further direction. For Gemma, she was asked to paint someone else’s nails. Bobby was given a novel lite bright sheet, requiring a total of 78 lights.
Social Validity. The social validity phase consisted of anecdotal records of how the students responded to each leisure task. For example, Gemma started clapping and communicating about how much she loved her nails while walking back to her classroom.
Chapter 3: Results

Jax

Pre-and post-training preference assessment. The results for Jax’s pre-and post-training preference assessments are depicted in Figure 1. During the pre-training preference assessment, the most preferred activity was taking a silly selfie using an iPad. The second preferred item was a whoopee cushion, the third a set of 5 pound dumbbell weights, the fourth a shape puzzle, and the least preferred activities was throwing darts. After Jax had acquired the three tasks, the post-training preference assessment was conducted. During the post training preference assessment, throwing darts was the most preferred activity.
Figure 1 Pre-and post-training preference assessment for Jax

Video prompting. Figure 2 depicts the percentage of steps competed correctly for Jax across darts, silly selfie, and weighted curls. Jax’s performance was measured across (a) baseline, (b) video prompting, and (c) maintenance without video prompting.

Darts. During three baseline sessions, Jax completed 13% of the darts steps correctly. With the introduction of video prompting, Jax showed an immediate increase in responding from baseline, performing 73% of the steps correctly. Following session 4, his performance increased to 100% and maintained for the remainder of the study. Once Jax met mastery, video prompting was removed and performance maintained at 100% without using video prompting for 11 weeks.

Silly selfie. During four baseline sessions, Jax did not complete any of the silly selfie steps correctly. With the introduction of video prompting, he showed an immediate increase to 77% correct for session 5, and then responding increased to 92% correct for
sessions 6 and 7. Following session 7, Jax’s performance increased and maintained at 100% correct. During maintenance, performance maintained at 100% without using video prompting for 10 weeks.
Figure 2. Percentage of task analysis steps performed correctly across activities for Jax.
Weighted curls. During three baseline sessions, Jax completed an average of 3% of the weighted curls steps correctly. With the introduction of video prompting, he showed an increase in responding to 96% then to 100% for the remaining video prompting with error correction sessions. During the maintenance phase, video prompting was removed and Jax performed 96% of the steps correctly and maintained that level for 10 weeks. This decrease occurred because he completed more than the required sets of weighted curls, and had to have the experimenter prompt by saying “alright” to get him to place the weights on the table. One reason for Jax not putting the weights down could be because over the period of task instruction he built up muscle endurance, which has allowed him to complete more repetitions of the weights.

Gemma

Pre-and post-training preference assessment

The results for Gemma’s pre- and post-training preference assessments are depicted in Figure 3. During the pre-training preference assessment, the most preferred activity was taking painting her nails. The second preferred item was making a loom bracelet, the third putting artwork into a portfolio, the fourth was taking a selfie and the least preferred activity was making an origami boat. After Gemma had acquired the three tasks, the post-training preference assessment was conducted. During the post-training preference assessment, painting nails remained the most preferred activity. The second preferred activity was making an origami boat, the third was putting artwork into a portfolio, the fourth was making a loom bracelet, and the least preferred was taking a selfie.
Figure 3 Pre–and post–training preference assessment for Gemma

Video prompting. Figure 3 depicts the percentage of steps competed correctly for Gemma’s across portfolio, origami, and nail polish. Gemma’s performance was measured across (a) baseline, (b) video prompting, and (c) maintenance without video prompting.

Putting artwork into a portfolio. During three baseline sessions, Gemma completed none of the artwork portfolio steps correctly. With the introduction of video prompting, she showed an immediate change in the level of responding from baseline, performing an average of 95% (range: 81–100%) of the steps correctly. Gemma mastered the shape puzzle in 5 sessions.

Origami boat. During four baseline sessions, Gemma completed none of the Origami steps correctly. With the introduction of video prompting, she showed an immediate change in the level of responding from baseline, performing an average of
84% (range: 50–100%) of the steps performed correctly. Gemma’s overall trend was stable and high, and she completed the last three sessions with 100% accuracy.

Painting Nails. During seven baseline sessions, Gemma completed 2% of the painting nails steps correctly. With the introduction of video prompting, she showed an immediate change in the level of responding from baseline, performing an average of 96% (range 80–100%) of the steps correctly. Gemma’s overall trend was stable and high, and mastered painting nails in 23 sessions.
Figure 4. Percentage of task analysis steps performed correctly across activities for Gemma.
Bobby

Pre-and post-training preference assessment. The results for Bobby’s pre- and post-training preference assessments are depicted in Figure 5. During the pre training preference assessment, the most preferred activity was throwing darts. The second preferred item was making a lego structure, the third was lite bright, the fourth was listening to music and the least preferred activity was taking a selfie. After Bobby had acquired the three tasks, the post-training preference assessment was conducted. During the post-training preference assessment, taking a selfie became the most preferred activity. The second preferred activity was the lite bright, the third was throwing darts and legos, and the least preferred was listening to music.

![Figure 5](image-url)

Figure 5. Pre–and post–training preference assessment for Bobby.
Video prompting. Figure 6 depicts the percentage of steps Bobby completed correctly across taking a selfie, lite bright, and darts. The performance if the three leisure skills were measured across baseline and video prompting.

Taking a selfie. During three baseline sessions, Bobby did not complete any of the selfie steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 95% (range: 60–100%) of the steps correctly. Bobby mastered taking a selfie in 8 sessions.

Lite bright. During five baseline sessions, Bobby completed 16% of the lite bright steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 98% (range: 88–100%) of the steps performed correctly. Bobby’s overall trend was stable and high. During maintenance, Bobby’s performance maintained at 100% of the steps performed correctly.

Darts. During seven baseline sessions, Bobby completed an average of 4% (range: 0–7%) of the dart steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 97% (range 87–100%) of the steps correctly. Bobby’s overall trend was stable and high. During maintenance, Bobby’s performance maintained at 100% of the steps performed correctly.
Figure 6. Percentage of task analysis steps performed correctly across activities for Bobby.
Abel

Pre-and post-training preference assessment. The results for Abel’s pre- and post-training preference assessments are depicted in Figure 7. During the pre-training preference assessment, the most preferred activity was throwing darts. The second preferred item was dominos, the third was lite bright, the fourth was weighted curls, and the least preferred activity was Mr. Potato Head. After Abel had acquired the three tasks, the post-training preference assessment was conducted. During the post-training preference assessment, the lite bright became the most preferred activity. The second preferred activity was Mr. Potato Head, the third was throwing darts and dominos, and the least preferred was weighted curls.

Figure 7. Pre-and post-training preference assessment for Abel.
Video prompting. Figure 8 depicts the percentage of steps Abel completed correctly across darts, lite bright, and Mr. Potato Head. The performance the three leisure skills was measured across baseline and video prompting.

Darts. During three baseline sessions, Abel completed 0% of the dart steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 94% (range: 67–100%) of the steps correctly. Abel mastered darts in 9 sessions.

Lite bright. During four baseline sessions, Abel completed 8% of the darts steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 97% (range: 88–100%) of the steps performed correctly. Abel’s overall trend was stable and high. Abel mastered the lite bright in 12 sessions.

Mr. Potato Head. During six baseline sessions, Abel completed an average of 23% (range: 18–27%) of the Mr. Potato Head steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 97% (range 82–100%) of the steps correctly. Abel’s overall trend was stable and high, Abel mastered the Mr. Potato Head in 8 sessions.
Figure 8. Percentage of task analysis steps performed correctly across activities for Abel.

Harry

Pre-and post-training preference assessment. The results for Harry’s pre- and post-training preference assessments are depicted in Figure 9. During the pre-training preference assessment, the most preferred activity was weighted curls. The second
preferred item was building a lego structure, the third was throwing darts, the fourth was a shape puzzle, and the least preferred activity was making an origami boat. After Harry had acquired the three tasks, the post-training preference assessment was conducted. During the post-training preference assessment, making an origami boat became the most preferred activity. The second preferred activity was throwing darts, the third was the shape puzzle, and the fourth was building a lego structure and weighted curls.

![Selection Ranks for Activities](image)

Figure 9. Pre- and post-training preference assessment for Harry.

Video prompting. Figure 2 depicts the percentage of steps Harry completed correctly across origami boat, weighted curls, and darts. The performance of the three leisure skills were measured across baseline and video prompting.

Origami boat. During three baseline sessions, Harry completed 0% of the origami boat steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of
88% (range: 60–100%) of the steps correctly. During maintenance, he maintained the level of responding, performing an average of 100% accuracy.

Weighted curls. During five baseline sessions, Harry completed 4% of the weight curls steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 99% (range: 96–100%) of the steps performed correctly. Harry’s overall trend was stable and high. During maintenance, he maintained responding, performing an average of 94% (range: 91–95%) correctly.

Darts. During eight baseline sessions, Harry completed an average of 30% (range: 7–87%) of the darts steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing 100% of the steps correctly. During maintenance, he maintained responding, performing 100% of the steps correctly.
Figure 10. Percentage of task analysis steps performed correctly across activities for Harry.
Wayne

Pre- and post-training preference assessment. The results for Wayne’s pre- and post-training preference assessments are depicted in Figure 11. During the pre-training preference assessment, the most preferred activity was throwing darts. The second preferred item was listening to music, the third was a shape puzzle; the fourth was taking a selfie, and the least preferred activity dominos. After Wayne had acquired the three tasks, the post-training preference assessment was conducted. During the post-training preference assessment, the shape puzzle became the most preferred activity. The second preferred activity was throwing darts and dominos, the third was listening to music, and the fourth was taking a selfie.

Figure 11. Pre- and post-training preference assessment for Wayne.

Video prompting. Figure 2 depicts the percentage of steps Wayne completed correctly across shape puzzle, darts, and dominos. The performance of the three leisure skills was measured across baseline and video prompting.
Shape puzzle. During three baseline sessions, Wayne completed 5% of the shape puzzle steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 91% (range: 55–100%) of the steps correctly. Wayne mastered the shape puzzle in 22 sessions.

Darts. During four baseline sessions, Wayne completed 13% of the darts steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 75% (range: 47–87%) of the steps performed correctly. Wayne’s overall trend was stable and high, though he never mastered this skill.

Dominos. During seven baseline sessions, Wayne completed an average of 25% (range: 0–30%) of the domino steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 87% (range 64–100%) of the steps correctly. Wayne’s overall trend was stable and high, and he completed the last three sessions with 100% accuracy.
Figure 12. Percentage of task analysis steps performed correctly across activities for Wayne.
Filip

Pre- and post-training preference assessment. The results for Filip’s pre- and post-training preference assessments are depicted in Figure 13. During the pre-training preference assessment, the most preferred activity was taking a selfie. The second preferred item was the lite bright, the third was weighted curls, the fourth was making an origami boat, and the least preferred activity was throwing darts. After Filip had acquired the three tasks, the post-training preference assessment was conducted. During the post-training preference assessment, throwing darts became the most preferred activity. The second preferred activity was the lite bright, the third was taking a selfie, the fourth was making an origami boat, and the fourth was weighted curls.

![Figure 13. Pre-and post-training preference assessment for Filip.](image)

© 2023. American Psychological Association. All rights reserved.
Video prompting. Figure 14 depicts the percentage of steps Filip completed correctly across weighted curls, darts, and taking a selfie. The performance if the three leisure skills were measured across baseline and video prompting.

Weighted curls. During three baseline sessions, Filip completed 3% of the weighted curl steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 92% (range: 87–100%) of the steps correctly. Filip mastered the weighted curls in 12 sessions.

Darts. During four baseline sessions, Filip completed 7% of the darts steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 92% (range: 80–100%) of the steps performed correctly. Filip’s overall trend was stable and high, though he never mastered this skill, he completed the last two sessions at 100% accuracy.

Taking a selfie. During six baseline sessions, Filip completed an average of 6% (range: 0–10%) of the selfie steps correctly. With the introduction of video prompting, he showed an immediate change in the level of responding from baseline, performing an average of 79% (range 50–90%) of the steps correctly. Filip’s overall trend was stable and high, and he completed the last three sessions with 90% accuracy.
Figure 14. Percentage of task analysis steps performed correctly across activities for Filip.

Wendy

Video prompting. Figure 15 depicts the percentage of steps Wendy completed correctly across Mr. potato head, painting nails, and origami. The performance of the three leisure skills was measured across baseline and video prompting.
Figure 15. Percentage of task analysis steps performed correctly across activities for Wendy.
Mr. Potato Head. During three baseline sessions, Wendy completed 0% of the Mr. Potato Head steps correctly. With the introduction of video prompting, she showed an immediate change in the level of responding from baseline, performing an average of 49% (range: 27–64%) of the steps correctly.

Painting nails. During six baseline sessions, Wendy completed an average of 2% (range: 0–2%) of the painting nails steps correctly. With the introduction of video prompting, she showed an immediate change in the level of responding from baseline, performing an average of 88% (range: 58–100%) of the steps correctly. Wendy’s overall trend was stable and high. Though she never mastered this skill, she ended the last two sessions with 100% accuracy.

Origami. During eight baseline sessions, Wendy did not complete any of the origami steps correctly. With the introduction of video prompting, she showed a slight change in the level of responding from baseline, performing an average of 10% of the steps correctly. Wendy’s overall trend was stable and low.

Clay

Video prompting and in vivo instruction. Figure 16 depicts the percentage of steps Clay completed correctly across basketball, nerf rocket, and bubble gun. The performance of the three leisure skills was measured across baseline and video prompting.
Figure 16. Percentage of task analysis steps performed correctly across activities for Clay.

Basketball. During three baseline sessions, Clay completed 17% of the basketball steps correctly. With the introduction of video prompting, he showed a slight change in the level of responding from baseline, performing an average of 16% (range: 0–50%) of the steps correctly. With the introduction of in vivo instruction, he showed an immediate increase in the level of responding, performing 100% of the steps correctly.

Nerf rocket. During 10 baseline sessions, Clay completed 0% of the nerf rocket steps correctly. With the introduction of video prompting, he showed a slight change in the level of responding from baseline, performing 14% of the steps correctly. With the
introduction of in vivo instruction, he showed an immediate increase in the level of responding, performing an average of 86% (range: 43–100%). Clay’s overall trend was stable and high.

Bubble gun. During 12 baseline sessions, Clay did not complete any of the bubble gun steps correctly. With the introduction of in vivo instruction, he showed an immediate change in the level of responding from baseline, performing an average of 61% (range: 29–71%) of the steps correctly.

John

Video prompting. Figure 17 depicts the percentage of steps John completed correctly across bubble gun, basketball, and nerf rocket. The performance of the three leisure skills was measured across baseline and video prompting.

Bubble gun. During three baseline sessions, John completed 0% of the bubble gun steps correctly. With the introduction of video prompting, he showed a slight change in the level of responding from baseline, performing an average of 27% (range: 14–29%) of the steps correctly.

Basketball. During all baseline sessions, John completed 0% of the basketball steps correctly.

Nerf rocket. During all baseline sessions, John completed an average of 0% of the nerf rocket steps correctly.
Figure 17. Percentage of task analysis steps performed correctly across activities for John.
Chapter 4: Discussion

The results of this study demonstrate that video prompting was an effective tool for teaching students with significant disabilities a variety of leisure activities. Eight of the ten participants made progress learning leisure skills using video prompting. Additionally, this study examined preference before and after training, to determine if preference would shift once a skill was taught. Results of this study demonstrated that preference did shift after skill acquisition.

This study extends the literature on video prompting in several ways. First, in the previous literature targeting leisure skills using video prompting (e.g., Edrishinha et al. 2011), only one target skill was taught. In this study, three different leisure skills were targeted across each of 10 participants. Second, this study extends the use of video prompting to adolescent students (ages 10–21) with significant disabilities, whereas previous research (e.g., Edrishinha et al., 2011) taught leisure skills with an older population. Additionally, this study extended the research by evaluating preferences before and after learning a new skill. All of the participants had some shift in preference from the pre- to post-training preference assessments, indicating that learning a new leisure skill may affect preference for that skill.
Although the results for seven of the participants are positive, the results for Clay, John, and Wendy indicate that for some individuals, video prompting alone may not be sufficient for leisure skill acquisition. Video prompting may require specific prerequisite skills, such as the ability to attend to the video and imitation skills. Seven of the participants in the study appeared to have these abilities. However, there are several possible reasons why Clay, John, and Wendy may not have mastered the tasks, which will be discussed with respect to each participant.

Wendy. First, unlike Clay and John, Wendy reached 100% accuracy during the last two sessions for painting nails. One reason she may have never performed more than 64% of the steps for Mr. Potato Head correctly could be due to a past history of putting Mr. Potato Head together in a way that was different from the task analysis created for this study. Though her parent recorded that she had never been exposed to Mr. Potato Head (on the inventory), it was evident that she had some exposure. Future research should attempt to identify skills for which the participants have no history or identify steps that the participants can already complete, so as to avoid attempting to teach the skill differently from what they may already know. Interestingly, Wendy did noticeably better during her painting nails task compared to the other two tasks. One reason she acquired painting nails could be that it was identified as her highest preference on her pre-and post-training preference assessments. Another reason could be that the reinforcing properties were stronger than the other two tasks.

Clay. Throughout the study, video prompting was ineffective for Clay. One reason could be because once video prompting was introduced, Clay began engaging in
self-stimulatory behaviors, such as shaking his head back and forth. Due to Clay engaging in this behavior, he was not attending to the videos and what the model in the videos was doing. Future studies could address this issue by interrupting the stereotypy (e.g., letting Clay hold the iPhone as the video was playing). However, once in vivo instruction was implemented, Clay did not engage in any self-stimulatory behaviors and responding immediately increased to skill mastery. Future research should attempt to identify preferences for video prompting versus in vivo instruction, as well as determine if one procedure is better than the other at competing with stereotypy.

John. One reason John may not have mastered any of the skills could be due to not having the pre-requisite skills needed, such as attending, prior to starting the study. For example, he rarely attended to the video, and often got up and moved from the task. Additionally, he was frequently out from school due to illness, so he was not introduced to in vivo instruction.

Video prompting may require specific prerequisite skills, such as the ability to attend to the video and imitation skills. Seven of the participants in the study appeared to have these abilities. For example, Jax would often imitate me as we walked down the hallway. Also, Gemma would often attend to videos on the computer during her free time. One way to evaluate important prerequisite skills would be to show the student a video to see if they attended by looking at the screen, and for how long they attended. Another way to assess if video prompting would be appropriate for specific students would be to evaluate the students’ imitation skills. This could be accomplished outside of
video prompting by using a live model to assess imitation (e.g., experimenter claps hands to see if student will clap hands).

Limitations

Although the results of this study are positive, there are some limitations that should be considered. First, during baseline, the sessions were terminated if the participant failed to complete a step correctly, and it is possible that they could have completed some of the subsequent steps if given the opportunity. As such, the results in baseline may represent depressed levels of what the student could do. A single opportunity baseline method was used to prevent the students from practicing errors, especially given that they had never come into contact with most of the activities. Additionally, based on the feedback from the parents and teachers from the leisure inventory form that was sent home, it was noted that the students had never come into contact with the specific activities being targeted. Another reason for using a single opportunity method was because for some students, being exposed to a multiple opportunity may have become exhausting. This could have led to the leisure activities being perceived as a demand, and not reinforcing. Future studies may use a multiple opportunity method in baseline to overcome this limitation.

A second limitation is that limited measures of generalization were included due to the school year ending. For four of the participants (i.e., Gemma, Bobby, Harry, Jax), generalization probes were used to see if they could generalize the leisure skill to novel materials and/or people. For generalization for painting nails, Gemma was asked to paint the experimenter’s nails, instead of her own. The only step that Gemma missed, but not
counted for, was blowing on the nails, which is socially appropriate not to do. Overall, she performed 100% of the painting nails steps correctly. Bobby was given a premade lite bright cut out and told to put the lights in. During video prompting for lite bright, he was placing 14 lights through silver dots. During the generalization phase, there were 78 possible placements for the lights. Without instruction, Bobby completed the task with 100% accuracy. Although generalization probes were used, it would have been worthwhile to examine generalization of the leisure skills in other environments. Harry and Jax were brought to the darts board together and given a verbal to “play darts.” Without instruction from the trainer, both Harry and Jax played three games of darts together. Additionally throughout the game, if Jax or Harry would hit the board with a dart, they would high five each other, or clap.

Another limitation is that none of the students learned how to self-direct the video prompts. The next step in this study, would have been to teach the students who went into maintenance, how to access the leisure skills on the iPhone.

The last limitation is that there was no direct measure of social validity for this study. Although anecdotal records were taken, future researchers should consider using a more direct method.

Future Research

Due to lack of time, the current study was unable to conduct generalization probes across novel environments. Future researchers may want to assess participants’ ability to generalize trained behaviors to novel environments, as well as generalize to other
partners. For example, researchers should evaluate if students could generalize a task with typical peers, classroom staff, or a novel peer.

Future research should also focus on replicating the current study, and examining if there is a difference in skill acquisition based on the type of activity. For example, researchers could compare the rate of skill acquisition in a repeated steps task (e.g., painting nails) to one that includes unique steps (e.g., silly selfie), to see if one results in faster acquisition.

As was mentioned with Clay, stereotypy can compete with instruction. Future researcher should attempt to identify preferences for video prompting versus in vivo instruction, as well as determine if one procedure is better than the other at competing with stereotypy.

Implications for Practice

There are several practical implications for teaching leisure skills to individuals with significant disabilities. First, leisure activities are important because of the positive, beneficial effects on social interaction, communication, and overall quality of life (Cannella-Malone et al., 2006). For example, for painting nails, Gemma was provided with a choice of five different nail polish colors, every session picking a different color. Additionally, Gemma would go back to some of her nails and paint a second coat to make the polish color even. After completing the task, she would walk back to her classroom, pointing out that she had painted her nails, and the color. Completing this task directly resulted in Gemma displaying pride and an increase in social interactions with both teachers and peers.
Second, building fluency with a new task builds self-confidence (Cannella-Malone et al., 2006). For the putting artwork in a portfolio task, Gemma often paused during the task and said, “I can’t do this,” or asked for help. By the end of the study, Gemma was completing the portfolio task without making comments about not being able to complete the task or requesting help. In other words, by repeatedly practicing this skill, Gemma was able to acquire it and no longer rely on others for assistance. Another practical implication is that leisure skills could be used as prerequisite skills for transition/job skills. For example, teaching Gemma to put artwork in her portfolio could be generalized to putting cover letters into page protectors for an office.

Third, all participants’ preferences shifted from their pre-training preference assessment, indicating that students with significant disabilities should be systematically exposed to different leisure activities in order to find out what they do or do not prefer.

Finally, the iPhone camera technology made it simple and quick to create videos and import them into their own separate albums, which made it easy to access and edit the videos as needed. Having user-friendly video technology like this would be ideal for teachers to use in the classroom. The videos took between 5 and 8 minutes to create.

Overall, the present study contributes to the existing literature in several important ways. The results suggest that video prompting is an effective method for leisure skill instruction and also indicate that when leisure skills are taught to individuals who initially lacked them, preferences for those activities may shift. Additionally, four of the participants who were exposed to generalization probes were able to generalize the skill to novel materials and peers.
References

