The Effect of Urban Status on Xenophobic Sentiment

A Case Study

THESIS

Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts in the Graduate School of The Ohio State University

By

Robert Joseph VandenBerg

Graduate Program in Sociology

The Ohio State University

2014

Master's Examination Committee:

Edward Crenshaw (Advisor), Craig Jenkins, and Vincent Roscigno
Abstract

Although the existing transnational literature on xenophobia is voluminous, it has mostly neglected the effect of urban status on intergroup relations. This article addresses this shortcoming by integrating theories from urban sociology with work on ingroup-outgroup dynamics drawn from contact theory, group threat theory, social identity theory, and social dominance theory. **Method:** Using a sample drawn from the sixth wave of the European Social Survey, I construct a critical experiment modelling the effect of both residential status and outgroup presence on xenophobia in the Scandinavian states. **Findings:** My results point to inconsistent influences of urbanity/urbanism on xenophobia, but a robust negative influence of percent foreign on xenophobia (i.e., partial support for contact theory). Conversely, my critical experiment, which takes the form of interacting residential status (urbanity) and foreign percentage, is positive and consistent with group threat theory, social identity theory, and social dominance theory. I conclude with speculation on how sample selection and composition plays into these findings, as well as with suggestions for future research.
Acknowledgments

I am indebted for helpful comments to Claudia Buchmann, Edwards Crenshaw, Craig Jenkins, Marta Kołczyńska, Carolyn Morgan, Matthew Soener, and Vincent Roscigno. However, all errors and omissions are entirely my own.
Vita

June 2003 ...Calvary Schools of Holland (Michigan)

2006 ..B.A. German, University of North Dakota

2008 ..M.A. History, University of North Dakota

2012 to present ..Graduate Student, Department of Sociology,

 The Ohio State University

Fields of Study

Major Field: Sociology
Table of Contents

Abstract ... ii
Acknowledgments .. iii
Vita .. iv
List of Tables ... vi
Chapter 1: Introduction ... 1
Chapter 2: Urban Status and Intergroup Relations ... 4
Chapter 3: Intergroup Conflict and Accommodation .. 7
Chapter 4: Hypotheses .. 13
Chapter 5: Data and Methods .. 15
Chapter 6: Findings .. 25
Chapter 7: Conclusion .. 35
References .. 39
List of Tables

Table 1: Regional Coding Scheme ... 20
Table 2: Variables and Summary Statistics .. 23
Table 3: Unstandardized HLM Regression Coefficients and Standard Errors for Effects of Independent Variables on Xenophobia ... 26
Table 4: HLM Models 5 and 6 Repeated by Country .. 32
Chapter 1: Introduction

Xenophobia has long been one of the core concerns of the social sciences, but its contemporary relevance is amplified by the surge in global migration. In a rapidly globalizing world where Somali refugees settle in Ohio (Borgerding 2013) and Afghans seek a better life in Indonesia (Hewson 2014), the opportunities for intergroup conflict continually multiply. The social implications of this trend are far-reaching. As the world grows steadily more interconnected, national governments have to contend with complex new challenges that simultaneously affect multiple states while being beyond the capacity of any one polity to address independently. The transition to a global society has also been accompanied by an unprecedented consolidation of human populations in cities (Clark 2000; de Soto 2000). Taken together, the combined effect of globalization and urbanization is a world where people from diverse regions of the world are packed together more closely in both the virtual and physical realms.

The novel realities of this interconnected world bring with them a need for a new understanding of “transnational justice” that speaks to the reality that the globe has condensed into a single human community (Abizadeh 2008; Miller 2009). In light of these changes, many observers see the state-focused nationalism of the past four centuries as being supplanted by a cosmopolitan ethic which may someday lead humans to regard

1 These challenges run the gamut from environmental degradation (Friedman 2008) to fluctuations in the integrated global market (Friedman 1999, 2006; LaFeber 2002) to the emergence of non-state actors with their own political agendas (Barber 2001; Spektorowski 2003).
their entire species as a single moral community (Kristeva 1993; Linklater 2010; Wendt 2003; cf. Anderson 1991). Nonetheless, it seems evident that that day remains a long way off. For while globalization has brought about an unprecedented rise in transnational migration (UNNS 2013), it has also engendered a surge in anti-foreigner sentiment that transcends any single country or region (Llana 2010). Sociologists have responded by producing an abundance of research on xenophobia and its attendant issues. Unfortunately, past cross-national investigations have generally neglected to explore whether residential status exerts an effect on hostility to foreigners. This oversight seems remarkable in light of the fact that new immigrants tend to gravitate to large cities, and that cultural diversity manifests itself the strongest in urban settings (Blom 2006; Fischer 1975; Wirth 1938: 10). Indeed, sociologists conflate the effects of diversity and urbanity precisely because they co-occur so often. However, the two are distinct concepts, each with its own sociological literature and theoretical predictions.

One notable example of research that does look at the urbanity-diversity relationship is Massey’s (1986) comparative work on ethnic residential segregation in six different societies. His findings point to remarkable similarities in segregation patterns across the six contexts. Johnston et al. (2007) likewise compare trends in urban ethnic segregation across a sample of five English-speaking countries. They find that although some patterns hold true across all five societies, there are also striking differences. Foremost among these are the relatively low levels of segregation observed in Australian and New Zealand cities as well as the persistent and anomalously high levels of

2 Migrant farm workers represent one notable exception to this trend. See: Hoggart and Mendoza 1999; Rye and Andrzejewska 2010. I am indebted to my colleague Marta Kołczyńska for this insight.
residential segregation affecting Blacks in the United States. Significantly, although both of these works are truly cross-national in scope, they restrict their samples to urban areas in the countries they examine. Consequently, although they provide a basis for comparing trends in urban intergroup relations across different countries, they do not really offer a means for capturing the effect of urbanism itself within a transnational context. This leads me to conclude that examining the interaction between residential status and ethnic diversity at accentuating or moderating intergroup conflict is a highly fruitful avenue for research that remains mostly neglected in the cross-national sociological literature.

My objective is to address this shortfall by linking two separate bodies of research. First, I integrate ideas about urban society from classic sociological theory with group threat theory, contact theory, social identity theory, and social dominance theory to illuminate how urbanism helps to shape intergroup attitudes. Then I apply this theoretical synthesis to an empirical case study to assess how residential status compares with other variables in predicting xenophobic sentiment. This will highlight the interrelated nature of three of the most significant macro-trends in the contemporary world – globalization, urbanization, and xenophobia.
Chapter 2: Urban Status and Intergroup Relations

The question that the existing cross-national literature has neglected is whether residential status has an impact on xenophobia distinct from outgroup presence alone. For the purpose of this paper I make a distinction between “urbanization,” “urbanity,” and “urbanism.” Following writers like Clark (2000), I take “urbanization” to be primarily a geographical characteristic referring either to the proportion of a given land area occupied by one or more cities or to the proportion of a given human population residing in cities. I use “urbanity” or “urbanism” to denote the lifestyle and distinctive forms of social embeddedness characteristic of people residing in cities as well as the ideologies and worldviews that emerge as a consequence of urbanism (van Diepen and Musterd 2009). Taken together, I conceptualize urbanization as the physical process that gives rise to urbanism, and urbanism as the social processes that lead to urbanity. From a theoretical point of view, urbanism is the most interesting of the three for my purposes because it encompasses the kinds of cultural arrangements we would expect to negatively correlate with xenophobia, as the assumption that city-living generates greater tolerance for “the other” rests on distinctive urban social constraints (e.g. diverse workplaces, sharing of public space, etc.).

Classical sociological theorists understood urbanism as a mode of life fundamentally different from the “folk society” that preceded it (Durkheim 1951;
Redfield 1947; Simmel 1955; Tönnies 1957). And although they often disagreed over whether the effects of urbanism were good or bad, they broadly shared the view that it transforms the people who adopt it, fostering an “urban personality” – detached from other humans, accustomed to frequent change, and less subject to informal social control. In an environment where they are required daily to associate with numerous strangers, urbanites learn to rely on visual cues and other contextual information to assess the people they have to deal with (Lofland 1985). Exposed to the widest variety of people, but possessing organic ties to few of them, they gravitate to those with whom they have the strongest natural affinity. Compared with rural life, this arrangement encourages a broader tolerance of others, but it also entails a continual tension from living and moving amid a multitude of other city-dwellers (Wirth 1938: 15-16; Durkheim 1951). The paradox of urbanism is its dual promotion of integration and segregation. Urbanism could either ameliorate or accentuate the agitating effect of outgroup threat, since the high density and close confines of city life promote both competition and competition avoidance through specialization (Simmel 1955). The classic theories of urbanism have far-reaching implications for the study of intergroup relations, but their insights have yet to be fully integrated into our understanding of the socially contingent circumstances under which the arrival of foreigners is apt to trigger a xenophobic response.

If classical theory is correct that social relations in cities differ fundamentally from non-urban areas, then one would expect that how indigenous populations react to foreigners depends not only on the share of foreigners they encounter, but also the environment in which they encounter them. Urbanism could facilitate accommodation between groups
by fostering an overall attitude of tolerance and advancing cross-group contact while leading to improved relations between natives and immigrants. Contact theory would predict precisely this. On the other hand, it could also make meaningful contact more difficult to achieve by promoting superficial interactions with a large number of people to the exclusion of deeper relationships. It could exacerbate the intergroup friction arising from competition over scarce resources, since in an urban setting immigrants generally compete with the native proletariat for low-skill jobs. This expectation is in line with group threat theory. I use these countervailing predictions as the basis for a critical experiment to test whether contact theory or group threat theory (as amplified by social identity theory and social dominance theory) better accounts for the effect of urbanism on intergroup conflict. To the extent that these insights have been integrated into research on intergroup relations, the cases examined have mostly been confined to the United States. These investigations found some evidence that residing in a city exerts a positive effect on tolerance for outgroups (Tuch 1987; Wilson 1991), although some researchers argue that the urban effect is either in decline (Abrahamson and Carter 1986) or disappears entirely once controls for education are included (Moore and Ovadia 2006). I aim to extend on this body of research by posing a similar question in a non-American context. Specifically, I will examine an ideal case for insights than can be applied more broadly than the highly specific U.S. situation with its historic complexities.
Chapter 3: Intergroup Conflict and Accommodation

Existing research on xenophobia has been effective at accounting for the role of heterogeneity in fostering intergroup conflict through contact theory and group threat theory. Contact theory predicts that direct engagement with the outgroup will decrease prejudice, provided that the encounter takes place under circumstances of general equality (Allport 1958: ch. 16; Pettigrew 1998). Conversely, group threat theory postulates that prejudice increases when a dominant group perceives their dominance being eroded in favor of an out-group (Blalock 1957, 1967; Blumer 1958). Therefore, evidence that xenophobia is strongest in areas with large immigrant populations would count against contact theory and favor group threat theory. Conversely, evidence of natives living in immigrant-dense areas being disproportionately tolerant would tilt the scales the other way.

Group threat theory and contact theory have been widely applied in previous research on intergroup relations. For example, Bobo and Hutchings (1996) tested group threat theory and discovered that a tendency to view other groups as competitors correlated positively with prejudicial attitudes, simple self-interest, broader beliefs about

3 Following Allport (1958: 40-41), I define an “ingroup” as any status group with whom the individual shares some dimension of identity, and an “outgroup” as comprising all individuals with whom the salient dimension is not shared. Although an ethnocentric preference for the ingroup over the outgroup is almost automatic and hostility toward the outgroup is a powerful means for reinforcing ingroup solidarity, it does not follow that all ingroup-outgroup encounters are characterized by conflict (cf. Brewer 1999). For an examination of how the location and permeability of the ingroup-outgroup boundary can vary by context, see Alba (2005).
the fairness of the social system, and a sense of racial alienation. They also concluded that the four-way relationship they observed between Blacks, Whites, Latinos, and Asians in southern California was so complex as to not be reducible to individual psychology, but rather showed evidence of having been conditioned by America’s complicated racial history. Tomaskovic-Devey and Roscigno (1996) likewise applied group threat theory to the history of American race relations, and concluded that understanding the history of social and economic subordination in the U.S. South requires attention to the complex interaction of race and class. African-Americans were almost always disadvantaged, but whether the corresponding benefits accrued to White elites or the White working class varied from region to region. In the same vein, Muller (2012) brought group threat theory to bear on the issue of racial disparity in incarcerations in America. He argued that the disparity was already evident during the 19th century, and that two major predictors of African-American incarceration rates were the density of Black settlement in Northern cities and the proportion of immigrants from Europe in local police forces. Muller’s findings are consonant with Bobo and Hutchings in emphasizing how moderately subordinated social groups (in this case, Irish-American police officers) are predisposed to zealously protect what little privilege they enjoy from encroachment by more heavily oppressed populations.

In contrast, Hjerm (2007) cast doubt on the hypothesized correlation between the presence of outgroups and perceived threat. Relying on data from the European Social Survey, he found that minority presence was a poor predictor of xenophobia in the dominant group. Furthermore, he argued that this was true for both the actual and the
perceived presence of immigrant populations. The crux of Hjerm’s argument was that the predictive power of outgroup presence had probably been overestimated in past research. Teney (2012) reached a similar conclusion, finding no link between regional immigration rates and support for an anti-immigrant German political party, thus calling into question group threat theory. Instead, she discovered a negative correlation between the size of the minority and xenophobia at the local level, suggesting support for contact theory.

One of the shortcomings of pure group threat theory is that it does not do a good job of explaining intergroup conflict in settings where resources are no especially scarce. In practice, it often assumes that threats are tangible – usually economic or political in nature. Yet applying this definition of group threat to, for example, modern Scandinavia seems difficult. Indeed, these nations are notable for their comparatively robust prosperity, their political stability, and the personal liberty that they afford their citizens (Bevanger 2005; Doyle 2014; The Economist 2013). The very expansiveness of the Nordic welfare state model also ensures that Danes, Norwegians, and Swedes are for the most part insulated from the kinds of privations that one would expect to generate prejudice toward outgroups elsewhere in the world (Jæger 2006; Swank and Betz 2003; cf. Veugelers and Magnan 2005). Yet while Scandinavia does not seem to be a place rife with conflict, one alternative might be to conceptualize the welfare state as a contested resource. Natives may see immigrants as posing a threat to it, and are therefore willing to engage in competition to maintain control of the welfare state. There is considerable empirical support for this “welfare chauvinism” perspective (Andersen and Bjørklund
1990; Bay and Pedersen 2006; Oesch 2008a), and it provides a solid example of how group threat theory might apply in societies where at first it appears counterintuitive to invoke it. Another possibility is to view foreign threat as cultural and symbolic. Indeed, Sides and Citrin (2007) make that very point, arguing that a theory of symbolic threat does a better job of accounting for European xenophobia than any actual peril to the native’s standard of living (cf. Goodwin 2011; Oesch 2008a). This sense of symbolic threat might emerge through cross-cultural friction over anything from gender norms (Akkerman and Hagelund 2007; Ali 2008; Criscione 2009) to religious identity (Storm 2011) to national identification (Hjerm 1998; Kunovich 2009). Therefore, the symbolic perspective on group threat theory makes the presence of group threat intelligible in the Scandinavian context.

Related to symbolic versions of group threat theory are social identity theory and social dominance theory. In its simplest form, social identity theory makes three key claims about how an individual’s sense of self relates to the larger groups to which he or she belongs. First, it suggests that humans derive a meaningful sense of personal identity from the groups to which they adhere. Viewed from this angle, identities are neither entirely individualized nor static, but continually negotiated between the individual and the surrounding society. Second, it holds that once a group identity has been internalized, individual are likely to exhibit biases in favor of their own group which are often irrational and which may not even be entirely conscious. Third, it predicts that beliefs about outgroup members rest heavily on stereotyped mental images that gloss over individual variations. The first postulate fits well with empirical findings from social
psychological research examining how individuals construct their personal identities (Brewer 1991; Hehman et al. 2010; Lamont and Molnár 2002; Tajfel 1981; cf. Abdelal et al. 2006). It also conforms to theories of symbolic interaction that focus on the dramaturgical component of self (Howard 2000; Nagel 1994; Swidler 1986). The second postulate is consistent with insights gained from psychological experiments looking at how people are prone to favor their own group in the allocation of resources. This holds true even under conditions conforming to the “minimal group paradigm” where, logically speaking, group membership ought not to be salient (Brewer 1999; Tajfel 1970; Vaughan et al. 1981). The third one is also well supported by work investigating the role of human cognition in making sense of the social environment (Macrae and Bodenhausen 2001; Rydgren 2004, 2007; Tajfel 1969).

A more materialistic view of society might conceptualize groups primarily as vehicles for acquiring and protecting resources, but social identity theory shows how collective identities are rooted in a deeper psychological necessity. Even when individuals are no longer directly dependent on others for survival, they remain dependent on the group for their sense of self. The group is an extension of the self, and its stability and shared norms enable the individual to trust other group members, even if he or she does not know them personally. However, introducing outgroup members into the environment brings with it new cultural tensions, potentially undermining social solidarity and decreasing social capital (Putnam 2007; cf. Jonas 2007). Newcomers not only represent an unaccustomed source of uncertainty; their very presence challenges the shared identity which members of the ingroup had previously relied on to orient
themselves toward the social world. In this manner, symbolic threat can seem highly salient to the individual, even when the physical threat is marginal.

Social dominance theory (Sidanius et al. 2004) represents a further extension of group threat theory that incorporates the insights from social identity theory. Drawing on work in anthropology and psychology examining cross-cultural universals of human behavior (e.g. Brown 1991; Pinker 2002), social dominance theory argues that the propensity for group-based stratification is an enduring feature of human nature. However, it also emphasizes that the specific configuration of the stratification regime is highly contingent on culturally specific social structures, so that while the human drive to achieve social dominance appears to be universal, the identity of the dominant group and the means by which they maintain their dominance will vary widely from culture to culture. For example, Sibley et al. (2013) examined attitudes toward immigration among New Zealanders and found that individual worldviews and predispositions interact with local community characteristics to determine if and how xenophobic sentiments are expressed.4 Social dominance theory also improves on social identity theory by accounting for the fact that members of subordinate groups sometimes identify with the dominant group rather than with their own ingroup if their psychological affinity for social hierarchy outweighs their need for group-based identity.

4 Regrettably, urban status was not one of the community characteristics they controlled for, as it would have provided a valuable comparison case for my own research if they had.
Chapter 4: Hypotheses

Broadening the scope of group threat theory by incorporating insights from social identity theory and social dominance theory helps us to understand how natives might perceive an alien group as a threat, even if their presence in no way imperiled their wellbeing. What remains unclear is whether this sense of threat is more pronounced in an urban or a non-urban setting. The paucity of previous cross-national research incorporating residential status into the sociology of group conflict makes it difficult to formulate a confident prediction about the precise relationship. However, we can draw a very tentative hypothesis from what little evidence is available. Lööw (1995: 131) notes that the Swedish government’s decision to settle asylum seekers in rural communities during the mid-1980s triggered a powerful backlash from ethnic Swedes. In the years that followed, the Swedish public grew progressively more skeptical toward immigration, and immigrants increasingly came under attack from gangs of youth and right-wing extremists. Granted, the rural communities that were inhospitable to foreigners shared other important characteristics such as relatively high unemployment. Furthermore, acts of violence against foreigners have by no means been confined to Sweden’s rural areas (Bunar 2007; Pred 2000). Nevertheless, the qualitative data suggest that the introduction of foreign populations into some of the least urbanized parts of Sweden played a significant role in exacerbating anti-foreigner violence. For this reason, I expect that urbanism offers a measure of protection against xenophobia, and its net effect is to
strengthen the integrative forces described by contact theory in large cities, while leaving the antagonistic effects of perceived group threat unchecked in less-urbanized areas. This would also be consistent with research on urban tolerance from the U.S. (Tuch 1987; Wilson 1991). This leads me to the following two formal hypotheses representing a critical experiment between competing theoretical viewpoints.

H_0: The relationship between social diversity and xenophobia will not be conditioned by residential status.

H_1: As urbanism/urbanity increases, the relationship between social diversity and xenophobia grows less positive. (Contact Theory)

H_2: As urbanism/urbanity increases, the relationship between social diversity and xenophobia grows more positive. (Group Threat Theory/Social Identity Theory/Social Dominance Theory)
Chapter 5: Data and Methods

If I am going to link the study of xenophobia with urbanism, then I need as pure of a comparative case as possible. There is a robust literature on intergroup conflict in the United States (e.g. Adams and Roscigno 2005; Bonilla-Silva 2004), but America would not be optimal for my purpose because it is a unique case. As a one-time colony with a history of interracial contact spanning its entire existence, the USA lends itself poorly to basic research on xenophobia because its long and complex history of ethnic hostility easily confounds efforts to untangle cause and effect (see Bobo and Hutchings 1996: 967). Europe also offers an expansive literature on its ethnic antagonisms (e.g. Bail 2008; Dijkstra et al. 2001; Krell et al. 1996). But much like America, Europe’s diverse and often conflictual ethnic past makes the ultimate causes of contemporary antagonisms difficult to isolate.

Fortunately, the Scandinavian countries – Denmark, Norway, and Sweden – are well suited for exploring this topic because they represent a near-ideal case of cross-cultural encounter. Prior to approximately 1970, these three Nordic states were some of the most culturally homogenous nations in the world – uniformly White, overwhelmingly Lutheran, and united by their common use of closely related North Germanic languages.\(^5\) Stable, progressive, and intensely cohesive, the Scandinavian nations are extremely rich

\(^5\) The small Sami, Finnish, and Roma minorities represent some exceptions to the overall ethnic homogeneity described above. See: KRD 2000.
in social capital (Reeskens and Hooghe 2008; Shirer 1955). Yet at the same time, this internal solidarity makes it difficult for outsiders to assimilate into these societies on account of their strong internal cohesion (Gullestad 1991; Järvinen 2003; Lybeck 2002). In other words, Scandinavia approaches an ideal type for an ethnically, linguistically, and religiously homogeneous society encountering cultural and racial diversity for the first time.

Since my primary objective is to disentangle urbanism’s effect on xenophobia from the effect of exposure to foreigners alone, I use a model where xenophobic sentiment is the dependent variable, and residential status and outgroup presence are the explanatory variables. In this analysis individuals are nested within regions, and I use predictors of both levels. I employ a multi-level model in order to avoid uncontrolled autocorrelation among residents of the same region (see: Blalock 1984; Ringdal 1992). I also employ a series of interaction terms to explore the differential effects of urban status depending on outgroup contact.

The data for this investigation are drawn from the sixth wave of the European Social Survey (ESS) collected during 2012 and 2013. The ESS is a biennial Europe-wide survey project that incorporates many of the best practices developed for the General Social Survey and the World Values Survey. It ranks as equal if not superior to the other two surveys in terms of validity (Reeskens and Hooghe 2008). Furthermore, the ESS is useful for studying xenophobia because it includes a number of items measuring attitudes toward immigrants. These attitudinal measures allow me to generate a factorial index of anti-foreigner sentiment to serve as my dependent variable (Hjerm 2009; Sides and Citrin
Population and migration data were obtained from the government statistical bureaus of Denmark, Norway, and Sweden. These data allow me to control for regional population density and the ratio of immigrants to natives. Moreover, given the topic of xenophobia and nativism, it makes little sense to include non-native Scandinavians in the sample, so they were excluded.

My dependent variable is derived from three items in the ESS that measure respondent attitudes toward immigrants. These items measure responses on an 11-point Likert scale where “0” indicates a very negative attitude toward immigrants and “10” indicates a very positive one. In the interest of making the results more intuitive to interpret, I reverse-coded them so that higher values correlated with higher levels of xenophobia and response categories ranged from “1” to “11”. The three items produce a one-factor solution (exploratory factor analysis – analysis available from author upon

6 The following government documents were utilized to supplement the ESS dataset with regional population numbers: Statistics Denmark (DST) 2010 (31-32); Statistics Norway (SSB) 2010 (78-85); Statistics Sweden (SCB) 2011 (90-94). Additionally, region-level immigration data was downloaded from the following online sources: DST Statistikbanken (accessed March 25, 2014), SSB Statistikkbanken (accessed March 24, 2014), and SCB Statistikdatabasen (accessed March 26, 2014).

7 For a methodological overview of the technique used to extract the dependent variable, see Kootstra (2004) and Matsunaga (2010).

8 The wording for the individual questions was as follows: “Is immigration bad or good for [Denmark/Norway/Sweden]'s economy?” “Is [Denmark/Norway/Sweden]'s cultural life undermined or enriched by immigrants?” And “Do immigrants make [Denmark/Norway/Sweden] a worse or better place to live?” An additional three items that measure preferences toward immigration policy were considered for inclusion in the dependent variable, but were ultimately rejected. These items ask respondents whether their country should “Allow many or few immigrants of different race/ethnic group from majority,” “Allow many or few immigrants from poorer countries outside Europe,” and “Allow many or few immigrants of same race/ethnic group as majority.” The response categories which the respondents could choose from were “Allow many to come and live here,” “Allow some,” “Allow a few,” and “Allow none.” The dataset also included five additional variables which I was not able to utilize at all because they were only included in the 2002 round of the ESS. These items ask respondents to react to the following five statements: “Allow many/few immigrants from poorer countries in Europe.” “Taxes and services: immigrants take out more than they put in or less.” “Allow many/few immigrants from richer countries outside Europe.” “Immigrants take jobs away in country or create new jobs.” “Immigrants make country’s crime problems worse or better.” Elsewhere, data elicited by these questions has been put to excellent use by Sides and Citrin (2007) and Legewie (2013).
request) with an eigenvalue of 1.74 and a Cronbach’s alpha of .83. This lends support to my belief that these questions measure a single factor. The composite index – labeled xenophobia for convenience – is standardized so that a value of +1 equals one standard deviation above the mean, and -1 on standard deviation below.\(^9\)

I utilize two variables as proxies for residential status. Population density is a measure of population density at the regional level in individuals per square kilometer. Strictly speaking, it is a measure of urbanization since it quantifies the extent to which a given region is characterized by the close settlement pattern distinctive of cities. In the interest of achieving a more normal distribution, I logged this variable prior to entering it in the statistical models. The other variable utilized is domicile. Domicile is a self-reported measure of the size of the community in which the respondent resides included in the ESS survey instrument. It consists of five categories ranging from 1 (“farm or home in countryside”) to 5 (“big city”).\(^{10}\) For my purposes, domicile is a measure of individual urbanity, since it captures the respondent’s perception of their urban status. By simultaneously incorporating variables for regional urbanization and individual urbanity, I can estimate the more elusive cultural variable of urbanism which I expect to correlate negatively with xenophobia.\(^{11}\) I also include a region-level variable, percent

\(^9\) This index had a near-normal distribution with a variance of .78, a skewness of .33, and a kurtosis of 3.05.

\(^{10}\) I reverse-coded this item so that higher values corresponded to more urban places of residence. Previously, residents of large cities were coded “1”.

\(^{11}\) I settled on this arrangement because I believe it offers the best means to operationalize urbanism available. However, it does represent a compromise necessitated by data limitations. The best proxy measure of urbanization imaginable is one which occurs in Norway’s statistical yearbook called “urban settlement area in per cent of total area by county” (SSB 2013: 45). Unfortunately a comparable measure does not appear to be available for Denmark and Sweden, and Statistics Norway has not updated this measure for their country since 2005 (ibid.). On the geographical side, my preferred approach would
foreign, to measure the presence of foreign-background individuals. This percent foreign is the number of first- and second-generation immigrants in each region divided by the total population multiplied by 100. Both population density and percent foreign were lagged by two years so that ESS observations from 2012 were paired with census values from 2010. These geographical variables were coded using the 33-territory scheme tied to individual observations in the ESS 6. These territories correspond to Denmark’s five administrative regions (NUTS-2), Norway’s seven statistical regions (also NUTS-2), and Sweden’s 21 counties (län, NUTS-3), shown in Table 1. These ranged from the very urban Capital Region of Denmark with 658.1 inhabitants per square kilometer to the very rural Norrbotten County in Sweden with a mere 2.53 people per square kilometer.

have been to control for contextual variables at the municipal level as was previously done by Hjerm (2009), but privacy laws governing the sharing of survey data in Europe restrict the data available to me to the regional level for Denmark and Norway and the county level for Sweden.
In addition to the dependent variable and the region-level explanatory variables, my model employs the following controls at the individual level – sex (reference category male), age (in years), education (in years), working class status, unemployment, conservatism, and generalized trust. I control for sex to account for the possibility that xenophobia may correlate with gender (Dixon and Rosenbaum 2004: 271; Hjerm 2009: 20).

Table 1: Regional Coding Scheme

<table>
<thead>
<tr>
<th>Denmark</th>
<th>Norway</th>
<th>Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Region of Denmark</td>
<td>Oslo and Akershus</td>
<td>Stockholm</td>
</tr>
<tr>
<td>Zealand</td>
<td>Hedmark and Oppland</td>
<td>Uppsala</td>
</tr>
<tr>
<td>Southern Denmark</td>
<td>South Eastern Norway</td>
<td>Södermanland</td>
</tr>
<tr>
<td>Central Jutland</td>
<td>Åger and Rogaland</td>
<td>Östergötland</td>
</tr>
<tr>
<td>North Jutland</td>
<td>Western Norway</td>
<td>Örebro</td>
</tr>
<tr>
<td></td>
<td>Tröndelag</td>
<td>Västmanland</td>
</tr>
<tr>
<td></td>
<td>Northern Norway</td>
<td>Jönköping</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kronoberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kalmar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gotland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blekinge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skåne</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Västra Götaland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Värmland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dalarna</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gävleborg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Västernorrland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jämtland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Västerbotten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norrbotten</td>
</tr>
</tbody>
</table>

Note: In the 2012 wave of the European Social Survey, Danish and Norwegian observations are coded by region (NUTS-2) and Swedish observations are coded by county (NUTS-3).
I control for age because it has been shown in previous research to correlate positively with prejudice (Case et al. 1989). Existing literature likewise suggests that education has a negative effect on xenophobia (Case et al. 1989; Hjerm 2005; Moore and Ovadia 2006). Lipset (1959) postulated that the working class was especially at risk of harboring authoritarian and exclusionary attitudes, and his theory has been borne out by subsequent research (Andersen and Bjørklund 1990; Kitschelt and McGann 1997; Oesch 2008a). Therefore, I control for working class status using a dichotomous variable based from Oesch’s occupational class scheme (2006: 283). The unemployment variable counts individuals who identified themselves as having been unemployed in the previous week. I include a measure of conservatism (operationalized as where the respondent places him or herself on an 11-point left-right spectrum) because this item has been shown to accurately capture resistance to change and acceptance of inequality (two psychological attributes likely to correlate negatively with xenophobia) within Western European populations (Aspelund et al. 2013).

12 It may at first seem contradictory that I should derive an indicator of working class status from Oesch’s work when Oesch himself argues that a culturally and politically unified working class is in many ways a sociological relic of the past and not readily applicable to post-industrial economies (2006, 2008a, 2008b). However, I believe that an admittedly crude measure of working class status is adequate for analytical purposes in this context. I am confirmed in this opinion by the strong predictive power of the working class variable in multiple statistical models (see Findings section). I accomplish this by coding observations “1” if their ISCO code in the ESS corresponds to a job which Oesch designates as either “Skilled crafts,” “Skilled office,” “Skilled service,” “Routine operatives,” “Routine agriculture,” “Routine office,” or “Routine service,” and “0” otherwise. The International Standard Classification of Occupations is a coding scheme published by the International Labor Organization. Oesch (2006) uses the 1988 edition (ISCO-88), but the 2012 round of the ESS codes respondent occupation according to the 2008 revision (ISCO-08), necessitating some harmonization on my part with the help of a conversion chart published by the ILO. In all, observations were coded as working class if their ISCO-08 code in the ESS corresponded to any of the following values: 0210-0310, 2240, 3121-3139, 3213-3214, 3240-3253, 3256, 3258, 3341-3342, 3344, 3434, 4110-5164, 5169-5212, 5222-7542, 7544-9629.
I also included a measure of generalized trust13 because the literature suggests that generalized trust and the closely related construct of social capital should be relevant to the question of xenophobia, although whether the correlation should be positive or negative is open to debate (e.g. Putnam 2000: 22; Hooghe 2007; Strømsnes 2008). Finally, I utilize two interaction terms – \textit{population density} * \textit{percent foreign} and \textit{domicile} * \textit{percent foreign}. From a theoretical perspective, both of them measure the presence of an urban effect net of outgroup presence, but they do so via different avenues. \textit{Population density} * \textit{percent foreign} attempts to capture this urban effect using an objective but rather coarse measure of population density at the regional level. \textit{Domicile} * \textit{percent foreign} uses an individual measure of urban status and is therefore much more fine-grained, but it is also subjective. By including both terms separately in otherwise comparable models, I can assess which more closely reflects the effect of urbanism on xenophobia, and of course it allows me to test two different variants of my critical experiment. Univariate sample statistics and regional breakdowns are found in Table 2.

13 The wording for this item was as follows: “Generally speaking, would you say that most people can be trusted, or that you can’t be too careful in dealing with people?” Responses were coded on an 11-point scale where higher values correspond to higher levels of generalized trust.
Table 2: Variables and Summary Statistics

Ordinal Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean</th>
<th>S.D.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenophobia (three-item index)</td>
<td>-1.78</td>
<td>2.756</td>
<td>0.018</td>
<td>0.883</td>
<td>3592</td>
</tr>
<tr>
<td>"Immigration bad or good for [country's] economy?" ("good" → "bad")</td>
<td>1</td>
<td>11</td>
<td>5.455</td>
<td>2.182</td>
<td>3592</td>
</tr>
<tr>
<td>"[Country's] cultural life undermined or enriched by immigrants?" ("enrich" → "undermine")</td>
<td>1</td>
<td>11</td>
<td>4.582</td>
<td>2.344</td>
<td>3592</td>
</tr>
<tr>
<td>"Immigrants make [country] worse or better place to live?" ("better" → "worse")</td>
<td>1</td>
<td>11</td>
<td>5.005</td>
<td>2.110</td>
<td>3592</td>
</tr>
<tr>
<td>Age (measured in years)</td>
<td>15</td>
<td>96</td>
<td>48.238</td>
<td>17.624</td>
<td>3592</td>
</tr>
<tr>
<td>Education (measured in years completed)</td>
<td>0</td>
<td>26</td>
<td>13.181</td>
<td>4.116</td>
<td>3592</td>
</tr>
<tr>
<td>Conservatism ("very left" → "very right")</td>
<td>0</td>
<td>10</td>
<td>5.474</td>
<td>2.240</td>
<td>3592</td>
</tr>
<tr>
<td>Generalized Trust - "Most people can be trusted or you can't be too careful?" (Likert scale)</td>
<td>1</td>
<td>11</td>
<td>7.659</td>
<td>1.890</td>
<td>3592</td>
</tr>
<tr>
<td>Domicile - self-reported ("countryside" → "big city")</td>
<td>1</td>
<td>5</td>
<td>3.014</td>
<td>1.246</td>
<td>3592</td>
</tr>
<tr>
<td>Population Density (individuals per square kilometer, by region, logged)</td>
<td>0.930</td>
<td>6.489</td>
<td>4.046</td>
<td>1.352</td>
<td>3592</td>
</tr>
<tr>
<td>Percent Foreign (1st and 2nd generation immigrants in population, by region)</td>
<td>5.542</td>
<td>28.700</td>
<td>13.253</td>
<td>6.695</td>
<td>3592</td>
</tr>
</tbody>
</table>

Categorical Variables:

- **Sex**
 - Male 1,865 (51.92%)
 - Female 1,727 (48.08%)

- **Working Class**
 - Working Class 1,983 (55.21% all obs.)
 - Unemployed 114 (3.17% all obs.)

- **Country**
 - Denmark (total) 1,066 (29.68% all obs.)
 - Capital Region of Denmark 289
 - Zealand 147
 - Southern Denmark 219
 - Central Jutland 278
 - North Jutland 131
 - Norway (total) 1,261 (35.11% all obs.)
 - Oslo and Akershus 251
 - Hedmark and Oppland 100
 - South Eastern Norway 243
 - Agder and Rogaland 201
 - Western Norway 229
 - Trøndelag 113
 - Northern Norway 124
 - Sweden (total) 1,265 (35.22% all obs.)
 - Stockholm 241
 - Uppsala 33
 - Södermanland 38
 - Östergötland 54
 - Örebro 41
 - Västmanland 33
 - Jönköping 54
 - Kronoberg 24
 - Kalmar 46
 - Gotland 7
 - Blekinge 28
 - Skåne 163
 - Halland 35
 - Västra Götaland 212
 - Värmland 31
 - Dalarna 37
 - Gävleborg 39
 - Västernorrland 48
 - Jämtland 31
 - Västerbotten 43
 - Norrbotten 27

Source: European Social Survey, augmented with data from Statistics Denmark, Statistics Norway, and Statistics Sweden
The statistical analysis utilizes multi-level modeling where each mode has two levels. The first level is the individual respondent and contains all of the non-regional controls, and the second level is region.¹⁴ In order to account for variables with no realistic zero-point, all non-dichotomous variables were centered on their grand mean.

¹⁴ Since three countries is too few to introduce a separate level into the model to between country variation, the “cluster” command was used in STATA to account for autocorrelation at the country level.
Chapter 6: Findings

Table 3 reports my analysis of the determinants of xenophobic sentiment in the Scandinavian states. I step in equations (Models 1 through 6) in order to demonstrate the unique influence of observation levels as well as to introduce the multiplicative terms that constitute the major tests of my hypotheses.
Table 3: Unstandardized HLM Regression Coefficients and Standard Errors for Effects of Independent Variables on Xenophobia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
<td>Model 3</td>
<td>Model 4</td>
<td>Model 5</td>
<td>Model 6</td>
</tr>
<tr>
<td>Female</td>
<td>-0.0744*</td>
<td>-0.0739*</td>
<td>-0.0738*</td>
<td>-0.0728*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.038)</td>
<td>(0.037)</td>
<td>(0.038)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.000562</td>
<td>0.000751</td>
<td>0.000780</td>
<td>0.000752</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>-0.0347***</td>
<td>-0.0353***</td>
<td>-0.0358***</td>
<td>-0.0354***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Class</td>
<td>0.225***</td>
<td>0.208***</td>
<td>0.206***</td>
<td>0.206***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.047)</td>
<td>(0.048)</td>
<td>(0.049)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.162***</td>
<td>0.154***</td>
<td>0.161***</td>
<td>0.153***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.023)</td>
<td>(0.020)</td>
<td>(0.022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservatism</td>
<td>0.0738***</td>
<td>0.0757***</td>
<td>0.0760***</td>
<td>0.0752***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generalized Trust</td>
<td>-0.116***</td>
<td>-0.120***</td>
<td>-0.121***</td>
<td>-0.121***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domicile</td>
<td>-0.0371</td>
<td>-0.0351*</td>
<td>-0.0381*</td>
<td>-0.0427***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population Density (logged)</td>
<td>0.0157</td>
<td>0.0693*</td>
<td>0.0783***</td>
<td>0.0698*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.032)</td>
<td>(0.023)</td>
<td>(0.033)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Foreign</td>
<td>-0.0171***</td>
<td>-0.0234***</td>
<td>-0.0205***</td>
<td>-0.0245***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.004)</td>
<td>(0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population Density (logged) * Percent Foreign</td>
<td>0.00503</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domicile * Percent Foreign</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00473***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.0138</td>
<td>0.00165</td>
<td>-0.121</td>
<td>-0.101</td>
<td>-0.128***</td>
<td>-0.110~</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.062)</td>
<td>(0.104)</td>
<td>(0.063)</td>
<td>(0.035)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>Variance - Region</td>
<td>0.0126***</td>
<td>0.00262***</td>
<td>0.0183***</td>
<td>0.000440</td>
<td>0.00121</td>
<td>0.000586</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Variance - Residual</td>
<td>0.770***</td>
<td>0.769***</td>
<td>0.613***</td>
<td>0.613***</td>
<td>0.611***</td>
<td>0.612***</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.018)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Akaike Information Criterion</td>
<td>2988.224</td>
<td>2978.978</td>
<td>2732.460</td>
<td>2714.799</td>
<td>2710.721</td>
<td>2711.888</td>
</tr>
<tr>
<td>Bayesian Information Criterion</td>
<td>3900.6</td>
<td>2997.5</td>
<td>2744.8</td>
<td>2733.4</td>
<td>2723.1</td>
<td>2730.4</td>
</tr>
<tr>
<td># Observations</td>
<td>3592</td>
<td>3592</td>
<td>3592</td>
<td>3592</td>
<td>3592</td>
<td>3592</td>
</tr>
<tr>
<td>Degrees of Freedom</td>
<td>0.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

*p<0.10 *p<0.05 **p<0.01 ***p<0.001

Source: European Social Survey, augmented with data from Statistics Denmark, Statistics Norway, and Statistics Sweden

Note: Variables age, education, conservatism, generalized trust, domicile, population density, and percent foreign centered on the grand mean.

Model 1 is an “empty” model included to gauge how variance clusters within the model without any predictors present. Regional variance registers as extremely significant, but as can be seen from comparing regional variance to residual variance, it accounts for a
relatively small portion of variance in the model (about 1.6%).15 Although the amount of variance explained by the Level 2 (regional) model is unusually low for a hierarchical-linear model, HLM is still the best method to apply to these data because two of my three explanatory variables (population density and percent foreign) are inherently hierarchical in that all observations within the same geographical region share the same value (thereby violating OLS’s assumption of statistical independence). The introduction of Level 2 (regional) variables in Model 2 predictably depresses the region variance further to about 0.3%,16 while the use of Level 1 predictors with no Level 2 predictors in Model 3 causes regional variance to rebound to 2.9% of total variance.17 At each stage, both the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) grow smaller, indicating a progressively better fit.

With the simultaneous introduction of Level 1 and Level 2 variables in Model 4, regional variance becomes nonsignificant, suggesting that controlling for population density and percent foreign effectively captures the regional variation which previously registered as extremely significant. Regression coefficients for Model 4 indicate that being female \((b = -0.0739, p < 0.05)\) predicts a reduction in xenophobia of 0.074 standard deviations (SD) relative to male respondents. Age registers as nonsignificant. Much as previous research would lead us to expect, the coefficient for education \((b = -0.0353, p < 0.001)\) indicates that for each additional year of schooling, the predicted level of xenophobic sentiment declines by about 0.035, meaning in practical terms is that the

\[\frac{(0.0126 / (0.0126 + 0.770)) \times 100}{1.61}\]
\[\frac{(0.00262 / (0.00262 + 0.769)) \times 100}{0.340}\]
\[\frac{(0.0183 / (0.0183 + 0.613)) \times 100}{2.90}\]
equivalent of an undergraduate education (16 years) can be expected to reduce xenophobic sentiment by over half a standard deviation when other factors are held constant.\footnote{\textit{-0.0353} * 16 = \textit{-0.565}} Being a member of the \textit{working class} (\(b = 0.208\), \(p < 0.001\)) predicts an increase in xenophobia of 0.21 SD over other respondents, and being \textit{unemployed} (\(b = 0.154\), \(p < 0.001\)) increases xenophobia by about 0.15 SD. Furthermore, a one unit increase in \textit{conservatism} (\(b = 0.0757\), \(p < 0.001\)) correlates with an increase in xenophobia of 0.075 standard deviations, meaning that across the eleven-point Left-Right scale that respondents’ political self-identifications are coded on, a respondent who identifies as extremely conservative is likely to exhibit an attitude which is 0.83 standard deviations more xenophobic than one who identifies as very progressive.\footnote{\(0.0757 * 11 = 0.833\)} A similar, but opposite and more pronounced trend emerges with \textit{generalized trust} (\(b = -0.120\), \(p < 0.001\)), in that each unit increase on the eleven-point trust scale depresses xenophobia by 0.12 standard deviations, meaning that extremely trusting Scandinavian are 1.3 SD less xenophobic than their extremely distrustful counterparts.\footnote{\(-0.120 * 11 = -1.32 \)} The \textit{domicile} coefficient (\(b = -0.0351\), \(p < 0.1\)) indicates that xenophobia decreases by 0.035 SD for each unit increase in urbanity. Since domicile is a five-point scale, this predicts that a Scandinavian residing in the countryside will on average be 0.19 SD more xenophobic than a comparable individual living in a large city. The \textit{population density} coefficient (\(b = 0.0693\), \(p < 0.05\)) indicates that a one-unit increase in the natural log of population density increases xenophobia by 0.069 standard deviations, meaning that as population
density increases from its realistic minimum of 2.5 individuals per square kilometer (0.93 logged) to its realistic maximum of 658 (6.49 logged), the increase if roughly five-and-a-half log units will result in a 0.39 standard deviation increase in xenophobic sentiment. The unexpected finding of population density correlating with xenophobia while domicile correlates negatively is most likely a consequence of my having been constrained to operationalize population density at the regional/county level instead of the municipal level. Since some large Scandinavian cities are for statistical purposes nested inside larger regions with relatively low population densities (e.g. Bergen in Western Norway and Trondheim in Trøndelag), the positive relationship between population density and xenophobia most likely reflects the reality in extremely large cities like Stockholm, Copenhagen, and Oslo that either constitute their own region or dominate the surrounding region. By contrast, the negative coefficient of domicile appears to arise from the presence in the sample of respondents residing in cities which are large but not huge by Nordic standards, where the cultural preconditions for a progressive urban outlook are present but not the condition of coexistence in close quarters with unfamiliar populations which is likely to trigger a xenophobic response. Finally, the percent foreign coefficient \((b = -0.0234, p < 0.001) \) points to a 0.023 SD decrease in xenophobic sentiment for each additional percentage of foreigners present in a regional population. Since values of percent foreign within the sample range from 5.5 to 28.7, this coefficient translates into a reduction of over half a SD of xenophobia.

\[\begin{align*}
6.49 - 0.93 &= 5.56 \\
5.56 \times 0.0693 &= 0.385 \\
28.7 - 5.54 &= 23.16
\end{align*} \]
between regions with very low and very high outgroup presence when other variables are controlled for. Given that this is a native-only sample of respondents, this finding is quite interesting and may suggest something about the dominance of progressive cultural norms in this part of the world, something I will revisit in the conclusions.

The patterns for values and statistical significance of the control variables observed in Model 4 mostly hold for the remaining two models, with one exception: the statistical significance of gender (female) attenuates in Model 6. Age never attains statistical significance, while education and generalized trust exhibit a robust negative relationship with xenophobia throughout, and working class, unemployed, and conservatism a positive one. Model 5 introduces the interaction term population density * percent foreign to test the combined effect of urban status (in this case operationalized as regional urbanization) and outgroup presence. Although the direction of the interaction supports the second hypothesis (group threat), the interaction is statistically nonsignificant. Otherwise it has minimal impact on the coefficients of the other variables, and I conclude that the effect for this interaction probably is not meaningful, even though Model 5 manages to achieve the lowest AIC and BIC out of any of the six models. Model 6 also attempt to capture a residential status-outgroup presence interaction, except it utilizes the domicile * percent foreign interaction term to operationalize urban status as individual (i.e. perceived) urbanity rather than regional urbanization. The interaction in this model registers as extremely statistically significant. Since the sign of the interaction term is positive, this would lead me to find for

\[23.16 \times -0.0234 = -0.542 \]
Hypothesis #2 – group threat perspective – because it indicates that increasing urban status suppresses the effect of \textit{percent foreign} on reducing xenophobia. In fact, at the maximum value of \textit{domicile} (5, i.e. “a big city), the marginal effect of \textit{percent foreign} on xenophobia, while still negative, is practically zero.25 Conversely, the marginal effect of \textit{domicile} on xenophobia at a high level of \textit{percent foreign} (e.g. 28\%) is positive,26 suggesting that urbanity’s tendency to encourage tolerance is reversed when foreigners are ubiquitous in the social environment. This is fairly strong support for Hypothesis #2: while Scandinavians do report more tolerance if they view themselves as city-dwellers, and the presence of foreigners in their country does not apparently lead them into xenophobia (given the negative coefficient between foreign percent and xenophobia), a high degree of actual \textit{contact} between natives and foreigners (which is typical in large cities) erodes the otherwise high level of tolerance for immigrants, even in Scandinavia. Seen in this light, the fact that Scandinavians are relatively tolerant is likely traceable to higher levels of education and generalized trust compared to the rest of the world.

Nonetheless, a word of caution is in order at this juncture. Although the positive and extremely significant \textit{domicile} * \textit{percent foreign} lends support to Hypothesis #2 and the group threat perspective, there are important caveats the prohibit accepting it completely at face-value, at least in this sample. This becomes evident if we disaggregate the results by country.

25 -0.0245 + 0.00473 * 5 = -0.00085
26 -0.0427 + 0.00473 * 28 = 0.08974
Table 4: HLM Models 5 and 6 Repeated by Country

<table>
<thead>
<tr>
<th>Variable</th>
<th>Denmark Model 5</th>
<th>Denmark Model 6</th>
<th>Norway Model 5</th>
<th>Norway Model 6</th>
<th>Sweden Model 5</th>
<th>Sweden Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>-0.126*</td>
<td>-0.127*</td>
<td>0.0137</td>
<td>0.0150</td>
<td>-0.0943</td>
<td>-0.0937</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.051)</td>
<td>(0.029)</td>
<td>(0.030)</td>
<td>(0.077)</td>
<td>(0.076)</td>
</tr>
<tr>
<td>Age</td>
<td>0.00509***</td>
<td>0.00513***</td>
<td>-0.00137</td>
<td>-0.00151</td>
<td>0.000473</td>
<td>0.000465</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Education</td>
<td>-0.0232***</td>
<td>-0.0230***</td>
<td>-0.0258**</td>
<td>-0.0274**</td>
<td>-0.0543***</td>
<td>-0.0553***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Working Class</td>
<td>0.325***</td>
<td>0.323***</td>
<td>0.185***</td>
<td>0.179***</td>
<td>0.159*</td>
<td>0.152*</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.053)</td>
<td>(0.053)</td>
<td>(0.052)</td>
<td>(0.067)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0.102</td>
<td>0.105</td>
<td>0.254</td>
<td>0.253</td>
<td>0.196~</td>
<td>0.198~</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.086)</td>
<td>(0.196)</td>
<td>(0.195)</td>
<td>(0.118)</td>
<td>(0.117)</td>
</tr>
<tr>
<td>Conservatism</td>
<td>0.0909***</td>
<td>0.0913***</td>
<td>0.0870***</td>
<td>0.0882***</td>
<td>0.0504***</td>
<td>0.0515***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.008)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Generalized Trust</td>
<td>-0.162***</td>
<td>-0.162***</td>
<td>-0.108***</td>
<td>-0.109***</td>
<td>-0.110***</td>
<td>-0.110***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.008)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>Domicile</td>
<td>-0.0347</td>
<td>-0.0248~</td>
<td>-0.0768***</td>
<td>-0.0774***</td>
<td>-0.00836</td>
<td>-0.0376</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.013)</td>
<td>(0.011)</td>
<td>(0.010)</td>
<td>(0.036)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>Population Density (logged)</td>
<td>0.0517</td>
<td>0.0274</td>
<td>-0.377***</td>
<td>-0.205***</td>
<td>-0.00422</td>
<td>0.00388</td>
</tr>
<tr>
<td></td>
<td>(0.091)</td>
<td>(0.112)</td>
<td>(0.079)</td>
<td>(0.059)</td>
<td>(0.048)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Percent Foreign</td>
<td>-0.0190</td>
<td>-0.0250</td>
<td>0.0956***</td>
<td>0.0495***</td>
<td>0.00373</td>
<td>-0.00138</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.025)</td>
<td>(0.020)</td>
<td>(0.014)</td>
<td>(0.010)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Population Density (logged) * Percent Foreign</td>
<td>-0.00581</td>
<td>-0.0104***</td>
<td>-0.00211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domicile * Percent Foreign</td>
<td>0.00270</td>
<td>0.000374</td>
<td>0.00392*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.108</td>
<td>-0.0764</td>
<td>0.212***</td>
<td>0.0890*</td>
<td>-0.228***</td>
<td>-0.232***</td>
</tr>
<tr>
<td></td>
<td>(0.240)</td>
<td>(0.273)</td>
<td>(0.063)</td>
<td>(0.042)</td>
<td>(0.054)</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Variance - Region</td>
<td>8.93e-23***</td>
<td>9.22e-23***</td>
<td>1.80e-23</td>
<td>1.52e-23</td>
<td>7.64e-21***</td>
<td>1.34e-19</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Variance - Residual</td>
<td>0.611***</td>
<td>0.611***</td>
<td>0.511***</td>
<td>0.512***</td>
<td>0.629***</td>
<td>0.628***</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.017)</td>
<td>(0.011)</td>
<td>(0.011)</td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Akaike Information Criterion</td>
<td>705.914</td>
<td>705.881</td>
<td>697.493</td>
<td>698.117</td>
<td>1311.332</td>
<td>1310.936</td>
</tr>
<tr>
<td>Bayesian Information Criterion</td>
<td>730.8</td>
<td>730.7</td>
<td>733.5</td>
<td>734.1</td>
<td>1383.3</td>
<td>1382.9</td>
</tr>
<tr>
<td># Observations</td>
<td>1066</td>
<td>1066</td>
<td>1261</td>
<td>1261</td>
<td>1265</td>
<td>1265</td>
</tr>
<tr>
<td>Degrees of Freedom</td>
<td>4.0</td>
<td>4.0</td>
<td>6.0</td>
<td>6.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

* p<0.10 * p<0.05 ** p<0.01 *** p<0.001

Note: Continuous variables age, education, conservatism, generalized trust, population density, and percent foreign centered on the grand mean.
Table 4 shows Models 5 and 6 repeated separately for each of the countries in the sample. Once disaggregated by country, the Danish models show no statistically significant explanatory variables or interaction terms, which in and of itself could be logical given that Denmark is the smallest and most densely populated of the Scandinavian states, which could easily make for less meaningful urban-rural contrast in social attitudes. In contrast to the all-Scandinavian Model 5, the Norwegian Model 5 shows a statistically significant population density * percent foreign interaction term (p < 0.01), but the domicile * percent foreign interaction in the Norwegian Model 6 drops to nonsignificance. In the Swedish models, by contrast, population density * percent foreign is not significant, but the domicile * percent foreign interaction in Model 6 is (p < 0.05). Overall, what appears to be happening is that the statistically significant findings in the Model 6 with the pooled dataset (Table 3) are being disproportionally driven by the Norwegian data with some input from the Swedish sample but little from the Danish data. One possibility is that the effect of urban status on xenophobia is too small to show up in individual country samples. Another is that an unidentified confounder that differs significantly between all three countries is at work in the sample. A third is that cultural urbanism has advanced so far in modern industrialized countries like Scandinavia that even rural populations are “urban” in their worldview, making ideological attributes like xenophobia unlikely to vary across level of urban status. The suggestive findings of an urbanity-xenophobia relationship contained in the pooled sample make me reluctant to

27 Due to the decreased number of Level 2 clusters in the Danish and Norwegian samples, these models may violate one of the assumptions of HLM. For comparison purposes, I generated equivalent models in OLS and the results were very similar. Details available from author upon request.
embrace the third explanation in particular. But at the same time, in the absence of corresponding models at the national level, I am equally reluctant to firmly reject the null hypothesis. The reader should therefore take these finds as indicative of a likely urbanity-xenophobia relationship that merits further investigation, but not as definitive proof that the relationship exists.
Chapter 7: Conclusion

Based on an analysis of a pooled sample of ESS 2012 survey data for the Scandinavian states, I find that the relationship between social diversity and xenophobia is contingent on residential status. Once actual proximity is taken into account (which I did by considering residential status), contact between natives and non-natives tends to either erode tolerance or generate xenophobia – a finding that broadly accords well with the predictions of group threat theory, social identity theory, and social dominance theory. At the same time, I also find that outgroup presence exerts a countervailing influence that reduces xenophobia, which fits in principle with contact theory. However, many effects are small and are inconsistent when the sample is disaggregated by nation. If possible, future research should attempt to more precisely isolate the urban effect on xenophobia by using smaller geographic units of analysis (ideally municipalities in Scandinavia). It would also be desirable to refine our understanding of outgroup contact by distinguishing between those immigrants who physically resemble the native population and those who are visibly foreign and therefore more likely to elicit a xenophobic response. For example, over half of foreign immigrants to Sweden in 2012 originated somewhere in Africa, Asia, or South America (SCB 2014: 116), making it likely that an indigenous Swede could identify them as a foreigner on the street from appearance alone. By contrast, the approximately one-third of foreigners arriving from elsewhere in Europe (ibid.) would be much more likely to blend in with the light-skinned
natives and thereby evade becoming the object of prejudice. This means that an analytical distinction between immigrants of European ancestry and immigrants from other ethnic backgrounds should be drawn whenever possible to ensure that, for example, Somalis and Germans are not being treated as though they were equally likely to appear foreign to their Nordic hosts. One way to do this in the Scandinavian context would be to control for migrants from predominantly non-White countries (Africa, Asia, and Latin America) separately from countries where a majority of the population is phenotypically European (Europe, the United States, Canada, Australia, and New Zealand).28

One of the paradoxes of case study research is that the cases which come closest to being “ideal” or “archetypical” often differ in many ways from the larger body of more ambiguous average cases. One notable respect in which Denmark, Norway, and Sweden differ from most other industrialized economies is their extraordinarily high level of generalized trust. Since generalized trust seems to play a prominent role in suppressing xenophobic reactions to social outgroups, it has the potential to act as a confounder limiting the generalizability of Scandinavian findings. Another Scandinavian idiosyncrasy with direct relevance to urban research is the highly centralized nature of their urban systems that allows Copenhagen and Oslo to dominate Denmark and Norway respectively to an extent that would be impossible in more diversified countries like Germany or the United States. (The presence of Gothenburg as a rival metropolis to Stockholm helps to lend a far less unipolar character to Sweden’s urban complex.)

28 The data necessary to do this is freely available from the Danish and Norwegian governments, but purchasing comparable data from Statistics Sweden would have required funds well in excess of what was available for this research project.
Moreover, since immigrants tend to be drawn disproportionately to the largest cities and the number of megacities in Scandinavia is small, it will at times be difficult to disentangle the social effects of large population from those of large outgroup presence. For this reason, it would be valuable to extend this line of research outside of the Scandinavian context, preferably to countries with multiple large cities varying significantly in the size of their immigrant populations. Locating rural contexts with large permanent (i.e. non-transient) immigrant populations would also be valuable, as it would help to extend our understanding of intergroup contact situations that tend to disproportionately occur in urban environments.

Another topic that merits attention is the effect of immigration on social capital. Research undertaken by Putnam (2007) suggests that ethnic diversity often negatively impacts the level of social capital in a community. Given the significant variation between urban and rural society in forms of social capital, however, it stands to reason that placing urbanism firmly at the center of research examining the relationship between immigration and social solidarity will yield valuable new insights into how to cope with increasing levels of social diversity. Finally, it is worth noting that although intergroup contact *can* help to overcome group boundaries and reduce group conflict, the optimistic predictions of contact theory cannot be expected to apply to every – or even most – instances of intergroup contact. Importantly, Allport (1958) placed *equal status* between groups foremost in his list of conditions under which the contact hypothesis could be expected to apply, yet equal status is more often the exception than the rule in real-world intergroup contact situations, whether they occur in urban or rural environments. Ideally,
future survey research would account for this by controlling for the quality of intergroup contact, as some scholars have attempted to do using data from the General Social Survey (e.g. Dixon 2006; Yancey 1999), but in practice this will be difficult to achieve given the many nuances of the contact paradigm. In sum, integrating urban theory into research on intergroup relations promises exciting new insights into the relationship between social diversity and social solidarity, yet many methodological hurdles remain to be overcome.
References

ESS Round 6: European Social Survey Round 6 Data (2012). Data file edition 2.0. Norwegian Social Science Data Services, Norway – Data Archive and distributor of ESS data.

Sibley, Chris G., John Duckitt, Robin Bergh, Danny Osborne, Ryan Perry, Frank Asbrock, Andrew Robertson, Gavin Armstrong, Marc Stewart Wilson, and Fiona

