Essays on Financial Frictions and Macroeconomic Dynamics with Heterogeneous Agents

DISSERTATION

Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University

By

Lini Zhang, B.A., B.S., M.A.

Graduate Program in Economics

The Ohio State University

2014

Dissertation Committee:
Professor Julia Thomas, Advisor
Professor Paul Evans
Professor Aubhik Khan
ABSTRACT

This dissertation develops dynamic stochastic general equilibrium (DSGE) models in which financial frictions interact with rich household heterogeneity to study the implication of financial shocks for aggregate fluctuations.

The first essay "Heterogeneous Households, Mortgage Debt and Housing Demand over the Great Recession" studies the contractions in the U.S. housing market and the real economy in the Great Recession. I build a quantitative general equilibrium model with heterogeneous households and two sectors. Households face portfolio problems that involve selecting the stock of housing, mortgage debts and financial assets. The real house price is endogenous and households have the option to default on mortgage debt. The model matches the housing and non-housing moments in the U.S. data. The experiment with negative productivity shock, financial tightening and housing depreciation shock on the economy can reasonably explain the recessions in the housing market and the real economy. Specifically, the decrease of aggregate productivity accounts for the declines in aggregate output, consumption, investment, labor hours as well as part of the drop in housing production and demand. The tighter financial condition explains the large decreases in mortgage debt, leverage and housing demand. The high housing depreciation generates high mortgage default rate and reduces housing demand as household net worth shrink. Households deleverage and reduce mortgage debt when the financial condition is tightened or when housing value is exposed to persistently
high depreciation shocks because the cost of borrowing through mortgages would increase greatly relative to the benefit of borrowing in either case.

In the second essay "Credit Shocks, Entrepreneurship and the Labor Wedge", I explore the impact of credit shocks on the dispersion of firm growth rates and the countercyclicality of the labor wedge (the ratio of the marginal rate of substitution (MRS) and the marginal product of labor (MPL)). To achieve these goals, I build a model with heterogeneous entrepreneurs and incomplete financial markets in which entrepreneurs are subject to collateralized borrowing constraints. I find that in the presence of heterogeneity in both individual assets and abilities, a negative temporary credit shock can generate large and persistent contractions in output, consumption and investment.

The labor wedge arises in the credit shock because the MPL is distorted downwardly as tighter borrowing constraints limit capital inputs. In the credit shock, the constrained entrepreneurs lose profits with distorted capital inputs while unconstrained entrepreneurs gain profits from lower prices. The dispersion of firm production sizes thus increases as constrained entrepreneurs endogenously exit from and unconstrained entrepreneurs endogenously enter into the production sector.
To my parents and sister
ACKNOWLEDGMENTS

I would like to thank my advisor Julia Thomas and committee member Aubhik Khan for spending time and energy to give me valuable comments, correct guidance and helpful perspectives in my graduate studies. I deeply appreciate Julia for her support and patience in my research and career. I am grateful to Aubhik for his encouragement and suggestions. My experience of working with them should become the navigation for my future journey as an economist.

I would like to thank my committee member Paul Evans. His comprehensive knowledge, valuable comments and kindly support have greatly benefited me in my graduate studies.

I would also like to thank all remaining faculty members in the department of economics and the seminar participants at Khan-Thomas Workshop. Their comments and suggestions have greatly helped me to survive my graduate studies.

I also acknowledge the support from the Ohio Supercomputer Center.
VITA

June, 2003 ..Hengyang No.8 High School

2007..B.A. Economics, B.S. Mathematics, Wuhan University

2009..M.A. Economics, Wuhan University

2010..M.A. Economics, The Ohio State University

2010 to present ..Graduate Teaching Associate, Department of Economics, The Ohio State University

FIELDS OF STUDY

Major Field: Economics
TABLE OF CONTENTS

Abstract .. ii

Dedication .. iv

Acknowledgments .. v

Vita .. vi

List of Tables .. x

List of Figures .. xi

Chapter 1: Heterogeneous Households, Mortgage Debt and Housing Demand over the Great Recession ... 1

1.1 Introduction .. 1

1.2 The Model ... 8

1.2.1 Demographics and the Default Decision Rule ... 8

1.2.2 Household Problem ... 9

1.2.3 The Banking Sector .. 10

1.2.4 Representative Production Sectors .. 11

1.2.5 General Equilibrium .. 12
1.3 Parameterization ... 14
1.4 The Steady State ... 16
1.5 Negative Productivity Shock .. 19
1.6 The Great Recession Experiment .. 24
1.6.1 Transitional Dynamics of the Great Recession Experiment 25
1.6.2 The New Steady State with Tighter Finance Condition ... 29
1.7 The Foreclosure Boom Experiment .. 31
1.8 The Depreciation Shock Experiment ... 33
1.9 Concluding Remarks ... 36
1.10 Tables and Figures .. 38

Chapter 2: Credit Shocks, Entrepreneurship and the Labor Wedge 57
2.1 Introduction ... 57
2.2 The Model ... 61
2.2.1 Heterogeneity and Demographics .. 61
2.2.2 Preferences .. 62
2.2.3 Technology .. 62
2.2.4 Financial Markets ... 63
2.2.5 Individual Problem .. 64
2.2.2 General Equilibrium .. 66
LIST OF TABLES

Table 1. Exogenously Adopted Parameters ... 38
Table 2. Endogenously Calibrated Parameters and Data Moments 38
Table 3. Steady State Numerical Results .. 39
Table 4. Numerical Results of Higher Financial Intermediation Cost 39
Table 5. Model and Data Generated Moments .. 81
LIST OF FIGURES

Figure 1. Housing Market in the Great Recession .. 40
Figure 2. Other Macroeconomic Series in the Great Recession 41
Figure 3. Mortgage Price Schedule ... 42
Figure 4. Household Value Function .. 42
Figure 5. Net Saving Policy .. 43
Figure 6. Housing Asset Policy Function ... 43
Figure 7. Household Leverage Policy, l=m/(ph) .. 44
Figure 8. Financial Asset Policy .. 44
Figure 9. Labor Supply Policy .. 45
Figure 10. Negative Productivity Shock ... 46
Figure 11. Negative Productivity Shock: Housing Market Variables 47
Figure 12. Shifts of Household Leverage Policy in the Productivity Shock 48
Figure 13. The Great Recession Experiment ... 49
Figure 14. The Great Recession Experiment: Housing Market Variables 50
Figure 15. Shifts of Household Leverage Policy in the Great Recession Experiment 51
Figure 16. Home Equity with the Tighter Financial Condition .. 52
Figure 17. The Foreclosure Boom Experiment .. 53
Figure 18. The Foreclosure Boom Experiment: Housing Market Variables 54
Figure 19. The Depreciation Shock Experiment .. 55
Figure 20. The Depreciation Shock Experiment: Housing Market Variables 56
Figure 21. Macroeconomic Facts in the Great Recession ... 82
Figure 22. Empirical Wedges Measured with the U.S. Data .. 83
Figure 23. Expected discounted lifetime value ... 84
Figure 24. Asset decision rules of a worker (left) and an entrepreneur (right) 85
Figure 25. Steady state production activities ... 86
Figure 26. Households distribution in the steady state .. 87
Figure 27. Negative Productivity Shock .. 88
Figure 28. Negative Credit Shock .. 89
Figure 29. Cross-Sectional Average Profits ... 90
Figure 30. Dispersion of Entrepreneurial Production Sizes ... 91
1.1 Introduction

Understanding the movements of housing variables in the data is important to explain the Great Recession as it started with the residential housing market. From 2002 to 2006, the U.S. housing market experienced a rapid increase in housing production and price level, which contributed to the economic boom from 2003-2007. The housing market collapsed in 2006 and the high foreclosure rate in the residential mortgage market was followed by the so called Great Recession. Figure 1-2 shows the data facts on the housing market variables and the business cycle components of macroeconomic variables. First of all, the housing market experienced a long depression. From 2006Q3-2011Q4, real house prices and real housing wealth declined about 25%, residential investment decreased 45% and real aggregate mortgage debt fell about 18%. Household leverage in the housing market dropped 17% between 2009Q1 and 2013Q1.\footnote{Leverage in this paper is defined as the ratio of real mortgage debt to real housing value.} Secondly, the housing downturn was accompanied by a severe contraction in real economic activity outside the housing market. Specifically, real output was about 5% lower than its 2007Q4 level in early 2009. Hours dropped 10% and consumption decreased 4.5% from 2008Q2 to 2009Q2. Finally, residential mortgage foreclosure rate increases significantly after 2006Q2.

How can we understand the recessions in the housing market and the real economy? Can the patterns noted above be explained by a productivity shock?
How do the financial tightening and the higher foreclosure rate in the residential mortgage market affect the housing and non-housing variables? These questions have not been answered yet as existing literature either aims to explain only the real economic recession or study some specific targets in the housing market.\footnote{Real economic recession means the declines of real output, consumption, labor hours and investment in this paper.} For example, Iacoviello and Pavan (2013) studies the procyclicality of mortgage debt. Gervais (2002) studies the distortions of housing taxation on the composition of aggregate capital. Leading papers that focus on explaining the real economic recession with financial shocks include Jermann and Quadrini (2012) and Khan and Thomas (2013). The objective of this paper is to reproduce the housing recession alongside the real economic recession, and explore the effects of financial tightening and housing foreclosure boom on the aggregate economy in a dynamic stochastic general equilibrium (DSGE) model with heterogeneous households and mortgage default.

Specifically, the model economy is populated by infinitely lived heterogeneous households with idiosyncratic labor productivity that solves the consumption, labor and portfolio problems each period. The portfolio problem involves selecting the stock of housing, mortgage debts and non-housing/financial assets to maximize expected lifetime value. Houses are risky assets that are exposed to idiosyncratic depreciation shocks while financial assets are risk-free. Houses can serve as collateral to borrow through mortgages. Nevertheless, households have the option to default on mortgage debts at the cost of having their houses foreclosed. Financial intermediaries issue mortgages and price them in the way such that household default risk and the fluctuations of real house prices are fully reflected. To allow the variations in real house prices, my model includes two sectors: a consumption good sector and a housing good sector. The model is calibrated to match the housing and non-housing moments in the U.S. data. With the parameters identified in calibration, the benchmark model is able to generate homeownership rate, non-housing asset to housing asset ratio, housing wealth to GDP ratio and housing investment to GDP ratio that are close to their correspondences in the U.S. data.

To explain the patterns of the data shown in Figure 1 and 2, I have done several experiments. A negative productivity shock in both housing and consumption good
sectors can generate a real economic recession with contractions of housing output and demand. However, the pure negative productivity shock fails to explain the decrease of mortgage debt and leverage in the data. To fix these housing market variables, I keep the same productivity shock and introduce a financial tightening in mortgage issuance and a one-period housing depreciation shock to mimic the environment in the Great Recession. With these three shocks to the economy, the real economic recession is maintained and the movements of housing variables in the data can be explained. Specifically, the decrease of aggregate productivity in the two sectors accounts for the declines of aggregate output, consumption, business investment, labor hours as well as part of the drop in housing production and demand. The tighter housing finance condition is responsible for the large decreases in mortgage debt, leverage and the decline of housing demand. The one-period high housing depreciation generates high mortgage default rate and reduces housing demand as household net worth shrink. Thus this Foreclosure Boom Experiment with negative productivity shock, financial tightening and one-period housing depreciation shock can reasonably explain all of the housing and non-housing variables understudy except the dynamics of the real house prices.34

The impact of the high foreclosure rate in the residential mortgage market on the aggregate economy is explored in the experiment with a persistent housing depreciation shock. The shock generates a persistent housing foreclosure boom and also leads to the decreases in mortgage debt, leverage, housing demand and production. However, the persistent housing depreciation shock is not able to account for the real economic recession.

The model has four key ingredients. Firstly, when households default the only punishment is to lose the ownership of the houses. There is no recourse state and no transaction cost in housing purchase and selling. Also, households are not discriminated in the financial markets if they default. As a result, the default option is chosen if and only if the housing asset is underwater, i.e. the realized housing value

3The objective of this paper is to explain the contraction in both the real economy and the housing market as much as possible. Understanding the dynamics of real house prices in the data is not the emphasis and goal of this paper.

4The experiment with negative productivity shock and tighter finance condition can explain the housing and non-housing variables as good as the three shock experiment except the movements of foreclosure rate.
is smaller than the mortgage loan value. This "ruthless default" rule simplifies the mortgage price schedule and reduces the number of individual states that are needed to be tracked so that the computational difficulty of solving the model is greatly reduced. Secondly, houses can be rented out for rental incomes but they are risky assets as they are exposed to idiosyncratic depreciation shocks.\(^5\) Since the house is seized by the banks when household default and there is no recourse state, households also save using risk-free financial asset to smooth consumption even if it has a lower return.\(^6\) Moreover, the uncertainty in housing return because of the idiosyncratic depreciations generates mortgage default with the stable real house prices in the steady state. Thus a realistic foreclosure rate in the residential mortgage market can be matched by calibrating the invariant distribution of the depreciation shock. Thirdly, issuing mortgage is costly so that the banks lose an additional \(r_w > 0\) units of real resource per unit of mortgage debt issued. This assumption breaks up households’ indeterminacy between saving and borrowing as the risk-free mortgage interest rate is strictly higher than the real interest rate.\(^7\) Finally, I model two sectors with two factors: a consumption good sector and a housing good sector that produce with capital and labor inputs. Thus there is a relative price, which is the real house prices with consumption good as the numeraire.

In the Foreclosure Boom Experiment with financial tightening, one-period depreciation shock and negative productivity shock in both sectors, the decrease of productivity leads to the declines in aggregate output, consumption, investment and labor hours. Housing demand shrinks for two reasons. On the one hand, households who experience large reductions in their labor income demand less housing assets as they reduce net saving to smooth consumption. On the other hand, since the financial tightening makes borrowing through mortgages more costly, households avoid the higher cost of borrowing by deleveraging and borrowing less. As households need to pay larger down payments for the same houses, they reduce their housing demand. In addition, the decline in aggregate productivity generates a deep recession in the

\(^5\)The depreciation shock is i.i.d. drawn from an invariant distribution. In this paper housing depreciation captures the fluctuations in housing value.

\(^6\)Rental income is the only source of housing return in the steady state as house prices are stable. In the benchmark economy, rental income generates a housing return that is higher than the risk-free interest rate.

\(^7\)See Jeske, Mitman and Krueger (2013) for more details.
consumption good sector which recovers as productivity increases. The decline in aggregate productivity also leads to the contraction in housing output. It is worth noticing that housing output does not follow aggregate productivity to recover in period 2 even if consumption good output does. The reason is because the capital and labor inputs in the housing sector decrease further after the first period. The one-period high depreciation generates large foreclosure rate and reduces household net worth. This negative wealth effect changes household labor decisions and aggregate hours in the economy. In the general equilibrium framework, the factor price ratio becomes such that the capital and labor inputs in the housing sector continue to decrease for several periods after the shock hits. Therefore, the recession in the housing production sector hits the trough several periods after the shock and the housing recovery is later than the recovery in the consumption good sector.

With the tighter housing financial condition, households find it optimal to decrease leverage and mortgage debts. To understand the substantial decline in mortgage debt and the mechanism of the household deleveraging process, it is important to first clarify why households save using risk-free financial assets and risky housing assets simultaneously. Even if houses are subject to random idiosyncratic depreciation shocks, households want to obtain the higher return from owning houses but also try to insure themselves against the idiosyncratic depreciation shock. When households are hit by big depreciation shocks or experience large unexpected declines in real house prices so that their housing assets are underwater, they default and their net worth only depends on their holdings of financial assets, which cannot be seized by the banks. To maintain the previous level of consumption, households thus also hold risk-free financial assets even if they have lower return. Therefore, households would borrow through mortgages, purchase houses and save financial assets at the same time.

The optimal leverage / mortgage policy is determined by household valuations over the benefit and cost of borrowing. Given the housing asset \(h_i \), selecting the optimal amount of mortgage debt is equivalent to choosing the optimal housing down payment. A lower down payment / higher debt allows household to spend less in purchasing houses and save more in financial asset and increase consumption. Therefore,
the benefit of borrowing through mortgages is the increase in household value from increasing and smoothing consumption. The cost of borrowing through residential mortgages is the decrease in household value caused by higher default risk and the larger net interest payments to the banks. The optimal leverage ratio is such that the benefit of borrowing is equal to the cost. When the financial condition becomes tighter, households find that the cost of borrowing through mortgages has greatly increased relative to its benefit as the default risk and net interest payment to the banks increase. Thus in the financial crisis households avoid the higher cost of borrowing by reducing leverage and their holdings of mortgage debts. Accordingly, households’ demand for financial assets also decline.8

In the new steady state with tighter housing finance, the levels of macroeconomic variables such as aggregate output, consumption and investment remain roughly the same as in the benchmark economy. In contrast, housing market has several major changes. Specifically, outstanding mortgage debt falls 20%, homeownership rate increases 0.24% and foreclosure rate drops 13.9%. In addition, the tighter financial condition leads to a 0.3% increase in household wealth inequality.9

This paper is first related to business cycle models with home production. Leading examples are Davis and Heathcote (2005), Iacoviello and Neri (2010), and Greenwood and Hercovitz (1991). These papers study multi-sector productions and can match housing investment data well. However, they do not distinguish owning and renting, do not model mortgage default and household heterogeneity in housing and non-housing wealth, and thus cannot match the homeownership rate, foreclosure rate and household wealth distribution in the data.

This paper is closely related to papers that study the housing market with heterogeneous agents, endogenous default and exogenous house prices such as Chatterjee and Eygungor (2010), Corbae and Quintin (2012), and Jeske, Krueger and Mitman (2013). Jeske et al (2013) builds a heterogeneous agents model with endogenous mortgage default option to study the macroeconomic and distributional impact of the subsidy from Government Sponsored Enterprises. They find that eliminating the

8The U.S. household financial asset declined 15.1% from 2007Q4 to 2008Q4.
9Wealth inequality is measured by the wealth Gini coefficient. Wealth is in terms of household net worth in this paper.
subsidy leads to substantial reduction of mortgage origination and increases aggregate welfare. Their insightful paper provides a useful framework on housing and mortgage market with collateralized default and mortgage pricing. However, Jeske et al (2013) is silent about the macroeconomic contractions in the housing market and the real economy in the recent financial crisis. This paper models the same household portfolio problem and a similar mortgage issuance sector as in Jeske et al (2013), but it differs from Jeske et al (2013) in three key respects. Firstly, the real house prices are endogenous in the model. Secondly, this paper departs from their endowment economy setting to include two sectors that produce consumption goods and housing goods respectively. Thirdly, this paper aims to study the impact of aggregate productivity, financial tightening and the high housing foreclosure rate on the aggregate economy and the housing market in order to understand the Great Recession. But this objective is not able to be done in their framework.

Finally, this paper is related with literature that studies the impact of housing market over the business cycle with heterogeneous agents. A leading example is Iacoviello and Pavan (2013). They study housing and mortgage debt activities over the business cycle and find that higher individual income risk and lower down payments can explain the reduced volatility of housing investment, the reduced procyclicality of debt and part of the reduced volatility of GDP. My model also succeeds in generating declines in housing demand and mortgage debt and is thus complementary to Iacoviello and Pavan (2013). However, this paper extends Iacoviello and Pavan (2013) to model mortgage default and explore the implications of real and financial shocks on a comprehensive range of housing and non-housing variables such as housing production, foreclosure, aggregate output, consumption and investment which are not studied in their paper.

To the best of my knowledge, this is the first paper that has studied the housing market and the real economy with mortgage default and endogenous house prices in a heterogeneous agent framework. In addition, the rich elements in the model allow me to study the effect of an increase in residential housing foreclosure rate to the aggregate economy. To explain the Great Recession, it is important to understand the aggregate implications of high foreclosure rate because the foreclosure boom in
the residential housing market has been widely believed to be related to the cause of the 2007-2009 financial crisis. Since existing literature have not explored this point, I regard this as a major contribution of the paper.

The rest of the paper is organized as follows. Section 2 presents the baseline model. Section 3 discusses parameterization. Section 4 summarizes the steady state results. Section 5 considers the transitional dynamics of a pure technology shock. Section 6 presents the results of the financial tightening and negative productivity shock. Section 7 shows the results of the Foreclosure Boom Experiment. Section 8 discusses the dynamics of the persistent housing depreciation shock. Section 9 concludes.

1.2 The Model

1.2.1 Demographics and the Default Decision Rule

There is a continuum of households in the economy that are indexed by $i \in [0, 1]$. Each household is endowed with one unit of time to divide between labor and leisure. Households live infinitely and have idiosyncratic labor productivity ϵ. In the economy, households save using two kinds of assets. Firstly, households can hold risk-free non-housing/financial asset a which earns risk-free interest rate r per unit of assets saved. Secondly, households can purchase perfectly divisible housing asset h. However, houses are risky assets as they are subject to idiosyncratic housing depreciation shocks. Let δ' denote the housing depreciation shock tomorrow. Depreciation δ' is an i.i.d. draw across time for every household from the continuously differentiable cumulative distribution function $F(\delta'), \delta' \in [\delta, 1]$.

There is a competitive housing rental market where households can trade housing services. One unit of housing asset generates one unit of housing service. A house purchased at the beginning of a period can be rented out immediately and thus generate rental income in the same period as the purchase. Short selling of risk-free non-housing assets and houses are prohibited.

Households can use housing assets as collateral to take out mortgages issued by the banks. Let m' denote the size of the mortgage, and p_m denote the mortgage price. A household that enters the next period with (h', m') has the option to default on
its mortgage payment after observing the housing price p'. If the household chooses to default, the punishment is losing the ownership of the house to the banks. A defaulting household is not punished in any other form in the financial market. There is no recourse state and no transaction cost in housing purchases and sales. Given these assumptions, a household chooses to default if and only if the housing asset is underwater, i.e., if the housing value is smaller than the mortgage payment. That is,

$$p'(1 - \delta')h' < m'$$ \hspace{1cm} (1)

Equation (1) is the household default decision rule. It implies that the ex-ante default probability at the origination of the mortgage prior to observing the depreciation only depends on the size of the mortgage m' and housing value $p'h'$.10 Thus mortgage price p_m is simply a function of (m', h'). It also implies that the cutoff housing depreciation rate at which a household is indifferent between defaulting and repaying is $\delta^* = \max \left\{ \delta, 1 - \frac{m'}{p'h'} \right\}$.

1.2.2 Household problem

Let x denote household net worth which is the real value of all assets brought into the period after the housing depreciation shock is materialized. Households thus have two individual state variables (x, ϵ). Let $\mu(x, \epsilon)$ denote households distribution over individual state variables (x, ϵ). Then aggregate state variables are (z, μ) where z represents aggregate productivity. Since the main interest of the paper is the stationary economy and perfect foresight transitions, the dependence of prices on (z, μ) are left implicit. In each period, households maximize discounted expected lifetime value from consumption, leisure and housing service taking real interest rate r, real wage rate w, real rental price p_s and mortgage price function $p_m(\cdot, \cdot)$ as given. That is, households solve the following problem

$$V(x, \epsilon) = \max_{c,s,a',h',m',n} u(c, s, 1 - n) + \beta \sum_{\epsilon'} \pi(\epsilon' | \epsilon) \int_0^1 V(x', \epsilon') dF(\delta')$$ \hspace{1cm} (2)

10See Jeske et al (2013) for a more detailed discussion.
subject to

\[c + p_s + s' + ph' - m'p_m(m', h') = w \epsilon n + x + p_s h' \quad (3) \]

\[c, s, a', h', m' \geq 0, \quad 0 \leq n < 1 \quad (4) \]

where net worth \(x' = (1 + r')a' + \max \{0, p'(1 - \delta')h' - m'\} \)

Equation (3) is the household budget constraint. The right hand side of equation (3) denotes resources available to the household within the period including labor income and net worth. Since the timing is that houses purchased this period can be rented out immediately, household rental income \(p_s h' \) also shows up as part of the household resources within the period. The left hand side of equation (3) is the household allocation of resources among consumption, housing service and asset portfolio which involves selecting the level of financial assets, housing assets and mortgage debt.

Future net worth \(x' \) consists of financial asset income and home equity. If future housing value after the realization of housing depreciation is larger than the mortgage debt, home equity is positive and equals \(p'(1 - \delta')h' - m' \). In this case, households repay the debts. Otherwise, household home equity is zero and net worth \(x' = (1 + r')a' \) as households use the default option and have their houses foreclosed.\(^{11}\)

1.2.3 The Banking Sector

Assume that banks are perfectly competitive and have the technology to convert risk-free assets into productive capital without any cost. At the beginning of each period, banks take deposits of financial assets from households, lend capital to the housing production sector and issue mortgages. Following Jeske et al (2011), I assume that issuing mortgage is costly so that banks have to lose an additional \(r_w \) units of real resources per unit of mortgage issued. \(r_w \) characterizes the screening, monitoring, administrative as well as maintenance costs associated with each unit of mortgage. Thus the effective cost of issuing a unit of mortgage equals \(r + r_w \) and banks discount the

\(^{11}\)In reality, it is possible that home equity become negative and households do not trigger default for various reasons. For example, there are penalties on household credit report if they default. Homeownership itself might be valuable to the households and it involves losses of additional resources to move to new places. In the model, existing assumptions eliminate these possibilities and default is chosen iff housing asset is underwater. Thus, home equity is always nonnegative in the model.
expected payments received next period at \(\frac{1}{1+r+r_w} \). When households default, banks seize the after depreciation housing value. However, the bank foreclosure process is costly and only recovers a fraction \(\theta \in [0, 1] \) of the collateral value.

Banks take into account that households might default on the mortgage payments next period. Therefore, mortgage price is such that each mortgage contract compensates for the expected loss in the case of default.

\[
m'p_m(m', h') = \frac{1}{1 + r + r_w} \left\{ m'F(\delta^*) + \theta p'h' \int_{\delta^*}^{1} (1 - \delta')dF(\delta') \right\} \tag{5}
\]

where \(\delta^* = \max\left\{ \delta, 1 - \frac{m'}{p'h'} \right\} \) is the cutoff housing depreciation rate at which a household is indifferent between defaulting and repaying.

In equation (5), \(m'p_m(m', h') \) is the actual units of consumption that a household obtains when he takes out a mortgage of size \(m' \) and buys a house of size \(h' \). The right hand side is the expected discounted revenue that banks receive next period from \((m', h') \). With probability \(F(\delta^*) \) household receives a housing depreciation shock \(\delta' \) that is lower than the threshold depreciation \(\delta^* \) so that repay the mortgage is optimal. With probability \(1 - F(\delta^*) \) households default and banks liquidize the house after a costly foreclosure process which only recovers \(\theta \) fraction of the after depreciation housing value.

1.2.4 Representative Production Sectors

There are two representative production sectors in the economy, a consumption good sector and a housing good sector. Assume that capital and labor are perfectly mobile and the aggregate productivity \(z \) is the same across sectors.

The consumption good sector produces consumption goods using capital and labor according to production technology \(Y_c = zK_c^\alpha N_c^{1-\alpha} \). Thus, the representative consumption good firm solves the following problem

\[
\max_{K_c, N_c \geq 0} \left\{ zK_c^\alpha N_c^{(1-\alpha)} - (r + \delta_k)K_c - wN_c \right\} \tag{6}
\]

\(^{12}\)I follow Jeske et al (2013) to assume that \(r_w \) is paid when the mortgage is repaid. When a household defaults on a mortgage payment, it also defaults on the mortgage issuance cost.
The housing sector produces new homes using capital and labor according to production technology \(I_h = zK_h^\nu N_h^{1-\nu} \). Let \(\delta_k \) denote capital depreciation and \(p \) be the real housing price with consumption good as the *numeraire*. The representative firm in the housing sector solves

\[
\max_{K_h, N_h \geq 0} \left\{ pzK_h^\nu N_h^{1-\nu} - (r + \delta_k)K_h - wN_h \right\}
\]

The above two static maximization problems imply that profits are maximized by choosing \(K_c, N_c, K_h, N_h \) such that

\[
r = \alpha zK_c^\alpha N_c^{1-\alpha} - \delta_k
\]

\[
w = (1 - \alpha)zK_c^\alpha N_c^{1-\alpha}
\]

\[
p = \frac{1}{\nu z} \left(\frac{\nu}{1 - \nu} \right)^{1-\nu} (r + \delta_k)^\nu w^{1-\nu}
\]

1.2.5 General Equilibrium

A recursive competitive equilibrium consists of a set of functions

\[(p, p_s, p_m, r, w, V, c, s, n, a', h', m', N_c, N_h, K_c, K_h, \mu)\]

that satisfies the following conditions.

(i) Given prices \(p, p_s, p_m, r \) and \(w \), the value function \(V \) solves (2) and \(c, s, n, a', m', h' \) are the associated policy functions

(ii) Given prices, policies \(K_c, N_c \) solves the consumption good production problem and \(N_h, K_h \) solves the housing production problem

(iii) Given \(p_m(\cdot, \cdot) \), financial intermediaries break even for all \((m', h') \)

(iv) Consumption good market clears

\[
\int cd\mu + I = Y_c
\]

where \(I = I_k + (r_w + r_{-1} - r) \int p_m(m, h)m\,d\mu \) is the broad investment and \(I_k = \)
\(K' - (1 - \delta_k)\bar{K}\) is the investment in aggregate capital stock. \(r_{-1}\) is the real interest rate in the previous period and \(\int p_m(m, h) md\mu\) is the aggregate mortgage loan that is borrowed by households in the previous period.\(^{13}\) \(\bar{K}\) is aggregate capital stock this period and \(\bar{K}'\) is aggregate capital stock for the next period.

(v) Housing rental market clears

\[
\int sd\mu = \int h'd\mu
\] \hspace{1cm} (13)

(vi) Labor market clears

\[
N_c + N_h = \int (\epsilon n) d\mu
\] \hspace{1cm} (14)

(vii) Asset market clears

\[
\int a'd\mu = \int p_m(m', h') m'd\mu + \bar{K}'
\] \hspace{1cm} (15)

(viii) Capital market clears

\[
K_c + K_h = \bar{K}
\] \hspace{1cm} (16)

(ix) Housing market clears

\[
\int h'd\mu = I_h + H
\] \hspace{1cm} (17)

where \(I_h\) is the newly built houses this period and \(H = \int \int^R h(1 - \delta)dF(\delta)d\mu + \int \theta \int^1 \theta^R h(1 - \delta)dF(\delta)d\mu\) is the effective aggregate housing stock after depreciation and the foreclosure process.

(x) The evolution of household distribution over individual variables, \(\mu(x, \epsilon)\), is consistent.

\(^{13}\)The quantity \(\int p_m(m, h) md\mu\) does not depend on \(p_m(\cdot, \cdot)\). Actually, this is the quantity that pins down the price \(p_m(\cdot, \cdot)\). The notation should not cause confusion.
1.3 Parameterization

One period in the model is a quarter. Table 1 lists the parameters that are adopted exogenously from data. Suppose the idiosyncratic labor productivity ϵ follows a log AR(1) process

$$\log \epsilon_{t+1} = \rho \log \epsilon_t + (1 - \rho^2)^{0.5} \eta_{\epsilon,t}, \quad \eta_{\epsilon} \sim N(0, \sigma^2_{\eta})$$

(18)

I follow Jeske et al (2013) to set the persistence of labor productivity $\rho_\epsilon = 0.98$ and the standard deviation $\sigma_\eta = 0.3$, which stand in line with empirical literature on labor productivity and a vast literature on the nature and specification of the household income process. In Pennington-Cross (2004), the estimates of the average default loss is 22% with national data. I let $\theta = 0.78$ to be consistent with Pennington-Cross (2004). I follow Jeske et al (2013) to set the CRRA parameter $\sigma = 3.9$.

To generate realistic housing foreclosure in the steady state of the model, the housing depreciation process $F(\delta)$ is assumed to be a Pareto distribution with probability density function

$$f(\delta) = \frac{1}{\sigma_\delta} \left(1 + \frac{\gamma(\delta - \bar{\delta})}{\sigma_\delta} \right)^{-\frac{1}{\gamma} - 1}$$

(19)

I calibrate the three parameters γ, $\bar{\delta}$ and σ_δ by targeting three moments in the data: mortgage foreclosure rate, mean depreciation of residential fixed assets and the standard deviation of housing prices. According to the National Delinquency Survey from Mortgage Banker Association (MBA(2006)), the average quarterly foreclosure rate of all mortgage loans is about 0.4% from 2002Q1 to 2006Q4. The mean depreciation for residential housing is calculated as the consumption of fixed capital in housing sector divided by the total capital stock of residential housing. The data on the consumption of fixed capital in housing sector is taken from Table 7.4.5 of National Income and Product Account (NIPA), and the capital stock of residential housing is taken from Fixed Asset Table 1.1.14 My estimation of the quarterly mean depreciation for residential housing is 1.4%.15 The standard deviation of the housing

14 Table 7.4.5 published by BEA June 25, 2010
15 This estimation stands in line with Macro-Housing literature such as Jeske et al (2011) and Iacoviello and Pavan (2013).
value is obtained by utilizing the state volatility parameter from the Federal Housing Finance Agency (FHFA or OFHEO). The state volatility parameter, which is measured using sales prices only, reflects the standard deviation of housing price growth after four quarters from 1991Q1 to 2013Q2. According to the FHFA, the standard deviation of housing prices in the 51 states of the United States varies from 6-9% and has a mean value about 8%. Therefore, I choose the volatility target to be 8%.

Household receives utility from consumption c, housing service s and leisure $1 - n$. The momentary utility function is

$$u(c, s, 1 - n) = \frac{(c^{\tau} s^{\tau - \tau_1} (1 - n)^{1 - \tau})(1 - \sigma)^{1 - \sigma} - 1}{1 - \sigma}$$

I choose parameter $\tau = 0.45$ so that households in the model on average work one-third of their time. $\tau_1 = 0.385$ is chosen so that the share of housing in total consumption expenditure is 14.4%, which is measured using the annual data from 1969 to 2001 (NIPA Table 2.4.5). As shown in Figure 1, real mortgage debt is about 0.41 times as large as the housing wealth from 1969Q1 to 2002Q4. The mortgage administration cost $r_w = 0.0001$ is adopted so that the aggregate leverage ratio in the steady state is very close to this target. The time discount factor $\beta = 0.978$ is chosen to hit a quarterly real interest rate of 1.2% in the steady state.

On the production side, I set parameter $(1 - \nu) = 0.88$ to match the labor’s share in the construction sector. The average labor’s share in construction sector from 1987 to 2002 is measured to be 0.88 using the method and data source provided in Davis and Heathcote (2005). I choose the capital’s share in the consumption good sector $\alpha = 0.301$ such that the aggregate capital to aggregate output ratio $\frac{K}{Y}$ is 3.06 in the steady state and the consumption capital to consumption output ratio $\frac{K_c}{Y_c}$ is about 2.0, which are consistent with the U.S. data. I choose capital depreciation $\delta_k = 0.025$ to be consistent with King and Rebelo (2000). I assume that the aggregate productivity is the same in the consumption good sector and the

16 I abstract land as a production factor in the housing sector. I estimate the capital output ratio in the construction sector to be about 0.16. Thus capital here is more appropriate to be interpreted as the combination of capital and land since physical capital itself is almost negligible in the construction sector.
housing sector. Aggregate productivity z follows a log AR(1) process

$$\log(z_{t+1}) = \rho_z \log(z_t) + \zeta_t, \quad \zeta_t \sim N(0, \sigma^2_\zeta) \quad (21)$$

where $\rho_z = 0.95$ as in Bloom et al (2011) and $\sigma_\zeta = 0.0072$ as in King and Rebelo (2000).

1.4 The Steady State

In this section, I illustrate the steady state properties of the model. Figure 3 plots the mortgage price function $p_m(m, h)$ provided by the banking sector as described in equation (5). Since $F(\delta)$ is a continuous differentiable distribution, $p_m(m, h)$ is also continuous and differentiable in m and h. As shown in Figure 3, mortgage price is higher when a larger house h is pledged as collateral, holding mortgage m constant. Given the housing asset h, mortgage price decreases as mortgage debt m increases.

Actually, mortgage price is simply determined by household leverage. Let $\iota = \frac{m}{ph}$ denote the leverage ratio, then equation (5) can be rewritten as

$$p_m(\iota) = \frac{1}{1 + r + r_w} \left\{ F(1 - \iota) + \frac{\theta}{\iota} \int_{1-\iota}^{1} (1 - \delta)dF(\delta) \right\} \quad (22)$$

By the definition, selecting the optimal mortgage debt is equivalent with choosing the optimal leverage ratio, holding houses h and housing price p constant. Taking derivative with respect to ι, one can find that $p_m'(\iota) < 0$. Thus mortgage price is monotonically decreasing in leverage. Intuitively, since the default probability is equal to $1 - F(1 - \iota)$, a larger leverage implies a higher probability of default as the threshold depreciation rate, which is equal to $1 - \iota$, becomes lower.

Figure 4 plots the value function over net worth and labor productivity. Household value is higher the larger his net worth and/or labor productivity. Let $g' \equiv a' + (p - p_s)h' - m'p_m(h', m')$, then g' is the net saving from households.\(^{18}\) By solving a consumption-leisure-savings problem illustrated in the appendix, I find that the net

\(^{17}\)Proposition 2 in Jeske et al (2011) implies that it is never optimal for households to choose leverage $\iota > 1 - \delta$ in equilibrium. Thus the threshold depreciation $\delta^* = 1 - \iota$ without loss of generality.

\(^{18}\)With this definition, the household problem can be transformed into a consumption-savings problem which is available in the appendix.
saving policy is linear and increasing in net worth and labor productivity, which is shown in Figure 5.

Figure 6 shows the housing decision as a function of net worth and labor productivity. Larger net worth and labor productivity means more resource is available to households to allocate between different assets. Under the model framework, households find it optimal to buy a larger house if they have larger net worth. Although households can obtain housing service from renting, households demand risky housing assets because they yield higher expected return than the financial assets. Specifically, the expected return of housing investment comes from two sources: the implicit rental income and the potential appreciation in home value. Since house prices are constant in the steady state, the unique source of housing return is the rental income.\(^{19}\)

Figure 7 shows that household leverage policy decreases monotonically with net worth and/or labor productivity. Leverage is high (at close to 50%) to households with little wealth. Leverage then drops quickly as net worth increases until it reaches around 40%. After that, leverage declines mildly because households start to increase their holdings of risk-free non-housing assets, as can be seen from Figure 8.

Households save more risk-free financial assets as net worth increases, but decrease holdings of financial assets when their labor productivity is larger. The reason is because households with little wealth or higher productivity tend to finance their current and future consumption more from labor income. In contrast, high wealth and low productivity household tend to finance current and future consumption more from capital income. Thus high wealth and low productivity households have smaller shares of safe assets in their portfolio.

In the steady state, households buy houses, save low-interest bearing financial assets, and borrow through mortgages simultaneously. The reason is because households want to take advantage of the higher expected return from owning houses but also try to insure themselves against the adverse idiosyncratic depreciation shock. Notice that real housing price is stable in the steady state so that the uncertainty in housing return only comes from the idiosyncratic depreciation shocks. When household get

\(^{19}\)Given the expected housing depreciation is 1.2%, \(p\) equals 1.57 and \(p_s\) equals 0.043 in the steady state, the expected housing return is obviously higher than the risk-free interest rate which is equal to 1.2%.
hit by large depreciation shocks so that their houses are underwater, they default and their net worth only depends on how much financial asset they own, which is $(1+r)a$. To maintain the previous level of consumption, they find it optimal to hold risk-free financial asset, a.

In addition, given houses h the larger the mortgage debts that households borrow, the smaller the housing down payments they pay and the larger the amount of financial assets they can save. Since the financial assets are not seized by the banks when households default, accumulating financial assets enables them to maintain their previous consumption. Thus the benefit of borrowing through mortgages is the increase in household value from increasing and smoothing consumption with risk-free financial asset. On the other hand, the cost of borrowing is the decrease in household value due to larger default risk and net interest payments to the banks. Both the cost and benefit of borrowing are increasing in leverage. However, the cost of borrowing rises up faster than the benefit given the format of the mortgage price schedule and the concavity of household value function. Thus there exists a unique optimal leverage policy for each given house h and housing prices p. The optimal leverage/mortgage debt is such that it equalizes the benefit and cost of borrowing in the residential mortgage market. Therefore, households would borrow through residential mortgages and save via financial and housing assets at the same time in the steady state.20

In the steady state, the model reproduces a housing foreclosure rate of 0.36\% which is consistent with the data. Specifically, households who have their houses foreclosed are mostly those with little net worth, because they are the high leverage takers at each labor productivity level.

The model reproduces the U.S. wealth distribution in general. Wealth in the model is defined as household net worth. Diaz-Gimenez et al (1997) reported that the Gini coefficient of wealth is 0.78 in the 1992 SCF. The wealth Gini coefficient in the steady state of this model is 0.39, which is close to that in the data and stands among the rates produced in the literature: Jeske et al (2011) obtains a Gini coefficient 0.46 in their steady state. Iacoviello and Pavan (2013) obtains a Gini coefficient equals to

20Mian and Sufi (2011) has documented that borrowed funds based on home equity are used by households for increasing consumption.
0.73 in their steady state with two discount factors and 0.53 with a single discount factor.

In the steady state, housing wealth takes up 32% of total household wealth in the steady state, which is consistent with 30% in the data from 1969Q1-2006Q4. Moreover, housing wealth is 1.1 times that of real GDP in the benchmark economy which matches the data correspondence from 1969Q1 to 2006Q4. In the steady state, about 99.3% of households owns strictly positive housing assets and 50.1% of households owns larger houses than the amount of housing services they actually consume. Since housing is perfectly divisible in the model, I regard the ”percent of households with \(h' > s \)” as the best proxy to homeownership rate in the model.\(^{21}\) Accordingly, homeownership rate in the benchmark economy is close to the homeownership rate in the data which is 64% on average from 1994 to 2007.

1.5 Negative productivity shock

In this section, I present the results of the benchmark economy with a persistent negative productivity shock. In the first period, productivity drops 2.7% in the housing and consumption good sectors and recovers gradually afterwards according to equation (21). The initial decline in productivity is determined such that the measured total factor productivity (TFP) in the economy decreases about 2.8% initially to be consistent with the decline of measured TFP in the data during the Great Recession.

Figure 10-12 shows the transitional paths of main economic variables understudy. When the productivity shock hits the economy at \(t = 1 \), the marginal productivity of capital (MPK) falls which leads to an initial decline in real interest rate. Real wage rate falls at the shock as the marginal product of labor (MPL) declines.\(^{22}\) Given that the inverse of the elasticity of intertemporal substitution \(\sigma \) is equal to 3.9, the substitution effect dominates and households supply less labor. Thus aggregate labor supply drops initially and then increases slowly as wage rate recovers. As aggregate

\(^{21}\)Note that homeownership here does not correspond to the traditional concept of owner-occupation. In this paper homeownership means that the households’ holdings of housing assets can fully satisfy their own demand for housing services. This definition of homeownership is consistent with Henderson and Ionnides (1983). Under the assumption that the housing asset is perfectly divisible, this definition is the best proxy to the owner-occupation homeownership in the data.

\(^{22}\)MPK\(_c\) is equal to MPK\(_h\) as capital is perfectly mobile. Similarly, MPL\(_c\) and MPL\(_h\) are equal because labor is perfectly mobile across sectors.
productivity increases over time, wage rate and interest rate recovers gradually.

Households reduce their consumption as they receive lower labor and asset income. The decrease in the MPK results in the initial drop of investment. Aggregate capital stock depreciates gradually as investment falls down.

Real house prices jump up 0.15% initially at the shock. It then decreases to be 0.3% below the steady state house prices as aggregate productivity recovers over time.\(^{23}\)

By equation (57) in the appendix, real house prices depend on aggregate productivity \(z\), real interest rate \(r\), and the housing capital’s share \(\nu\). Given that the consumption good sector is relatively capital intensive as \(\alpha > \nu\), real house prices are negatively related with interest rate and positively related with productivity \(z\). Since the initial drop in capital rental rate \(r + \delta_k\) is larger than the initial decrease in productivity \(z\), real house prices rise up about 0.15% in the first period. Intuitively, real house prices are equal to the unit cost of housing production which hinges on productivity and factor prices as shown in equation (10) with the CRS production function. Even if factor prices \(w\) and \(r\) decline at the shock and reduce the production cost given the same \(K_k\) and \(N_h\) inputs, the smaller productivity reduces housing output so much that the unit cost of production still becomes higher. Therefore, real house prices rise up at the shock as the unit cost of production is larger when productivity \(z\) falls.

Notice that the movements of the real house prices hinge on the capital’s share in the housing sector, \(\nu\). In particular, if \(\nu = 0\) so that housing sector only has labor as input, house prices \(p\) only depend on productivity \(z\) and wage \(w\) and not directly on interest rate \(r\). In this case, the movement of \(p\) in \(t = 1\) depends on the ratio \(\frac{w}{z}\).\(^{24}\)

Aggregate net saving drops at the shock. Specifically, it is households with high productivity and low wealth that experience the largest decline in net saving. The high productivity and low wealth people work more hours in the steady state, so the decline in wage and labor hours decreases their labor income greatly. To smooth

\[^{23}\text{The decline in real house prices are relatively small compares to the size of the shock because aggregate productivity falls equally in consumption good and housing good sectors. If the shock took place only in the consumption good sector, real house prices would drop about 2% in the first period. However, housing output would increase initially in that case.}\]

\[^{24}\text{If instead the housing sector is more capital intensive such that } \alpha < \nu, \text{ then real house prices are negatively related with productivity and positively related with real interest rate according to equation (57) in the appendix. Particularly, if } \nu = 1 \text{ so that housing sector produces with capital only, house prices } p \text{ are independent of } w \text{ and only hinge on } z \text{ and } r. \text{ In this case, the initial movement of } p \text{ depends on } \frac{r + \delta_k}{z}.\]
consumption, they have to significantly reduce their net savings. In contrast, people with low labor productivity and high net worth supply very little labor in the steady state. As a result, the big drop in wage has little impact over their labor income. Given that real interest rate recovers quickly after the initial decline, this group of households actually reduces their consumption and increases their net savings for the higher return next period. Since most of the population is in the first group, aggregate net saving declines at the shock. Aggregate net saving declines further after the first period because households need to smooth consumption but labor and asset income only recovers slowly.

Figure 11 shows the dynamics of aggregate leverage which is derived using aggregate mortgage debt divided by aggregate housing wealth. Aggregate leverage rises up 7.5% at the shock and falls down gradually since period 2. The movements of individual leverage policy are consistent with the ups and downs of the aggregate leverage. As shown in Figure 12, household leverage policy curve shifts up in period 1. To understand the change in leverage policy, suppose a household with the highest labor productivity is at point A in Figure 12 in the steady state. When the shock hits, lower risk-free interest rate moves him up to point B which corresponds to a higher leverage assuming his net saving does not change. Nevertheless, lower wage and interest rate reduce his labor income and asset income. To smooth consumption, he has to decrease net saving. Thus on the graph he moves up further from point B to point C which corresponds to a smaller saving and even higher leverage. Therefore, leverage at the individual level rises up initially and there is no household deleverage process in the pure negative productivity shock.

Leverage falls down from period 2 for two reasons. On the one hand, real house prices fall down since period 2. The lower housing return discourages households from borrowing and purchasing houses. On the other hand, as real interest rate and wage rate recovers over time, households does not need to borrow as much for their consumption and the purchase of houses.

\(\text{25 Notice that household labor productivity is persistent. So there is large probability for an individual to stay with his current labor productivity next period.} \)

\(\text{26 Although the rental price } p_s \text{ increases after its initial decline, the effective housing price } (p - p_s) \text{ still falls from } t = 2. \)
Aggregate financial asset rises up initially at the shock and falls down thereafter as productivity recovers. As explained in section 4, households borrow mortgage debt and also hold risk-free financial assets in order to smooth consumption because the idiosyncratic depreciation shocks reduces housing return and might trigger default. An increase in leverage ι implies larger default risk as the threshold depreciation rate is equal to $1-\iota$ and the default probability is equal to $1-F(1-\iota)$. Since all households take higher leverage when the shock hits, they insure themselves against higher default risk by holding more safe assets. Therefore, household demand for financial assets increases in the shock. As leverage falls down when z recovers, households holding of financial assets follows to decrease.

Aggregate housing demand declines about 0.2% at the shock and falls to 1.6% below the steady state level in about 25 periods. Nevertheless, housing demand shows rich heterogeneity at the micro-level. Firstly, households with low wealth and high labor productivity decrease housing demand. They belong to the group of population that experiences large decline in labor income. To smooth consumption, they have to decrease net savings. Since they finance their consumption more from labor income and save relatively less in risk-free assets in the steady state, housing wealth takes up a large share in their asset portfolio. Therefore, they reduce their holdings of housing assets as they have to save less. Secondly, households with low productivity and high wealth increase housing demand as they increase net saving. Since most people in the economy belong to the first group, aggregate housing demand declines when the shock hits. Housing demand continues to decline for about 30 periods for two reasons. Firstly, household labor income recovers only slowly over time. Secondly, the return to housing investment decreases as the real house prices are falling since period 2.

Aggregate housing service declines when the shock hits because the reduction in the labor income leads to a large initial decline in total household consumption expenditure.\footnote{Aggregate housing service is equal to aggregate housing demand H' according to the housing rental market clearing condition equation (13).} Therefore, the housing service expenditure follows to decline as it takes up a fixed share (85.6%) in total household consumption expenditure. Aggregate demand for housing service declines further after period 1 as rental price increases.
faster than the recovery of housing service expenditure.

Since capital and labor are perfectly mobile, the allocation of capital and labor inputs between the housing and consumption good sectors depends on the factor price ratio $w_{r+\delta_k}$, aggregate capital \bar{K} and aggregate labor \bar{N} in the economy.28 At $t = 1$, aggregate capital \bar{K} does not change, but aggregate labor \bar{N} falls down 1% and the wage-rentals ratio $w_{r+\delta_k}$ increases about 0.86% so that the relative aggregate cost of labor falls. Thus, capital in the housing sector K_h turns out to decrease 3% in period 1. Since the consumption good sector is relatively capital intensive as $\alpha > \nu$ and the relative aggregate labor cost $w_{r+\delta_k}\bar{N}$ changes small, the decrease of aggregate capital determines the dynamics of consumption capital as any change in aggregate capital is multiplied by $\frac{1-\nu}{\nu}$ and thus has a large impact over capital in the consumption sector. Therefore, K_c follows the pattern of aggregate capital \bar{K} to decrease for about 25 periods until investment recovers above the steady state level. Capital in the housing sector continues to fall after the first period because the relative aggregate labor cost $w_{r+\delta_k}\bar{N}$ is decreasing faster than the the impact from capital depreciation $\frac{1-\alpha}{\alpha}\bar{K}$.

Labor input in the consumption good sector decreases 0.78% initially. The reason is because the wage-rentals ratio $w_{r+\delta_k}$ rises up at the shock and increases the capital-labor ratio in the consumption sector. Given that consumption capital only increases 0.1% at the shock, the consumption labor input turns out to decrease. The initial increase in the factor price ratio $w_{r+\delta_k}$ also increases the capital-labor ratio in the housing sector $\frac{K_h}{\bar{N}_h}$.29 Since capital in the housing sector drops at the shock, labor in the housing sector falls down 4.5% initially. As the factor price ratio $w_{r+\delta_k}$ decreases after the first period, the capital to labor ratio in the consumption and housing good sector follows to decrease. Thus labor input in the consumption sector recovers since period 2. As the housing capital to labor ratio decreases slowly over time, the decrease of wage-rental ratio is dampened by the small capital’s share in the housing sector. Thus the housing labor input follows to decrease with its capital input after the first period.

Housing investment, I_h, decreases 7% initially due to the declines in aggregate

28See appendix B.4
29The same increase in the factor price ratio would raise the capital-labor ratio in the housing sector more than that in the consumption sector as $\nu < \alpha$.

23
productivity and production inputs. Although productivity recovers after the initial decline, housing output continues to decrease for several periods as housing labor and capital inputs decrease further after \(t = 1 \). Thus housing production hits the trough six periods after the shock and the housing recovery thus comes later than the recovery of the consumption good sector.

Foreclosure rate decreases 0.49% in the first period when the productivity shock hits because there is initial increases in real house prices. However, foreclosure rate jumps up to 6.38% higher than the steady state level in the second period as households choose larger leverage at \(t = 1 \) because the lower labor and asset income make them poorer. Foreclosure rate comes down gradually since period 3 as household reduce leverage when labor and asset incomes recover.\(^{30}\)

In summary, a persistent negative productivity shock itself can generate a real economic recession, declines of housing demand and production, but it fails to generate decreases in aggregate financial assets, mortgage debts and leverage. To explain the fluctuations of mortgage debts and leverage in the data, I raise bank’s cost of issuing mortgage to create a financial environment similar to that in the 2007Q3-2009Q2 financial crisis.

1.6 The Great Recession Experiment

Economic booms and busts are closely related with the changes in housing financial conditions as the Great Recession is widely believed to be connected with the financial innovations in the mortgage market. The housing finance condition has been tightened in the financial crisis as a large fraction of financial institutions raises their down payment requirements and the issuance of the mortgage backed securities have been restricted.

To mimic the environment in the Great Recession, I raise banks’ cost of issuing mortgage permanently, and at the same time keep the same productivity shock as that in section 5.\(^{31}\) The permanent change in housing finance and the persistent productivity shock together causes an economic transition until the economy reaches

\(^{30}\)Suppose the banking imbalance caused by the fluctuation of foreclosure rate at the shock is eliminated by the government funding which is borrowed from other countries outside the economy.

\(^{31}\)Again aggregate productivity falls 2.7% initially and recovers gradually over time according to equation (21).
the new steady state. Specifically, the mortgage administration fee r_w is raised permanently from $1.0e - 4$ in the benchmark economy to $3.5e - 4$ in period 1. The increase in r_w captures the increased cost of financial intermediation and a permanent structural change in mortgage finance as it results in higher housing down payments in the financial market. I call this two-shock experiment the Great Recession (G.R.) Experiment.

1.6.1 Transitional Dynamics of the Great Recession Experiment

When the negative financial and productivity shocks hit the economy, the marginal productivity of capital (MPK) and the marginal productivity of labor (MPL) both decrease. Thus real interest rate and wage decline initially. Since $\sigma = 3.9$ so that the substitution effect dominates, aggregate labor supply falls down at the shock. The reductions in aggregate productivity and labor input in the consumption sector together contribute to a 2.9% initial decline in real consumption output. The housing output experiences an 11.6% initial decline as its productivity, labor and capital inputs decrease at the shock. The contractions in the consumption and housing output together contribute to an initial fall of 3.5% in aggregate output. As aggregate productivity increases, aggregate output, real wage and interest rate recover little by little over time. Comparing the impulse response of macroeconomic variables of the G.R. experiment to that in the pure productivity shock, I find that the decrease of aggregate productivity is responsible for the contractions of real aggregate output, consumption, investment and most of the housing production.

Before discussing the transitional dynamics of the housing market, it is worth noticing that the initial decrease in real interest rate is smaller in the GR experiment than its initial decline in the pure productivity shock. This is because the tighter financial condition raises the cost of borrowing so that households reduce leverage.

\[32\] I raise r_w to $3.5e - 4$ so that in the new steady state household leverage declines 17% to match the decrease of households leverage observed in the Great Recession shown in Figure 1.

\[33\] The decreases in N_h, K_h are explained in the later context.

\[34\] I have done an experiment with the tighter financial condition and no productivity shock and find that aggregate output falls less than 0.01%, consumption declines 0.01%, investment increases 1.4%, consumption good output rises up 0.1% and housing output drops 1.5% at the shock.
and take smaller mortgage debts. Accordingly, they need to save less financial assets to smooth consumption. The reduced saving in financial assets leads to smaller supply of credit in the financial market and thus there is less rental capital available for productions. Consequently, interest rate increases for households to deposit a larger amount of financial assets. Therefore, the initial decline in real interest rate is smaller in the G.R. experiment than that in the pure productivity shock.

The impulse responses of housing variables differ from that in a pure productivity shock in several dimensions. First of all, housing price increases initially but the increment is smaller. According to equation (57) in the appendix, real house prices are positively related with productivity and negatively with interest rate when $\alpha > \nu$. Since productivity paths are the same but the initial decrease in interest rate is smaller in the G.R. experiment, real house prices rise up less at the shock. Real house prices start to decrease since period 2 as the rental rate $r + \delta k$ grows faster than aggregate productivity.

Secondly, aggregate leverage/mortgage debt slumps when the financial transition is triggered. As shown in Figure 14, aggregate leverage falls 8% at the shock and continues to decline to 17% below its steady state level in 25 periods. Consistent with the movements of aggregate leverage, leverage at the household level also falls when the financial transition starts. As shown in Figure 15, household leverage policy curve shift down greatly in period 1. To understand the shift of leverage policy, suppose that a household with the highest labor productivity and high net worth is at point A’ in the steady state. The tighter financial condition makes him move down to point B’ which corresponds to a lower leverage, assuming his net saving does not change. Nevertheless, lower wage rate decreases his labor income. To smooth consumption, he reduces net saving. Thus on the graph he moves from point B’ to point C’, which corresponds to a smaller saving and about the same level of leverage as B’. Nevertheless, for households with the highest productivity and very small net worth,

35 See credit market resource constraint equation (15).
36 The average quarterly decline of real house prices varies from 0.5% to 0.9% in all post-war recessions except the 2000-2001 recession and the Great Recession. The real house prices increased 1.3% on average each quarter in the 2000-2001 recession. The collapse of the housing price in the Great Recession might because that the pre-crisis housing price has severely deviated from the fundamental, i.e. the high housing price before the crisis is a bubble. Since this paper does not generate a price bubble in the steady state, it is reasonable that real housing price does not experience a big slump in this two-shock experiment. See footnote 23.
their leverage policy curve remains basically unchanged. However, they experience the largest decrease in labor income which makes them to reduce net saving significantly. Thus they end up taking larger leverage than they do in the steady state. Since few households are in the second group that increases leverage, the aggregate economy turns out to experience a deleveraging process in the Great Recession Experiment.

The reason that households deleverage in the shock is because larger interest payment dampens households’ incentive of borrowing mortgages to save financial assets and smooth consumption. Since households borrow at the mortgage interest rate and receive interests from banks via saving financial assets, the parameter \(r_w \) determines how much households are willing to borrow and how much risk-free financial assets they save.\(^{37}\) On the one hand, the benefit of borrowing through residential mortgage is the increase in household value from smoothing consumption with larger holdings of financial assets. Borrowing larger debts allow them to spend smaller amounts out of their savings for the same houses and thus they can save more in financial assets. Since the risk-free financial assets are not seized by the banks when households default, accumulating financial assets enables them to keep their consumption close to the level before default.

On the other hand, the cost of borrowing through mortgages is the net interest payments that households pay out to the banks. Given house \(h' \) and housing price \(p \), the benefit and cost of borrowing depend on \(r_w \). A higher \(r_w \) shifts up the cost of borrowing at each level of leverage as households have to pay higher net interests to the bank for the same \((m', h') \) choice. As the meantime, a higher \(r_w \) shift down the benefit of borrowing at each level of leverage as households receive a smaller mortgage loan with the same \((m', h') \) because the loan is now discounted more heavily with the higher \(r_w \). Thus the optimal leverage that equalizes the benefit and cost of borrowing becomes much smaller than the optimal leverage in the steady state. Alternatively, with a tighter financial condition that increases the difference between the borrowing interest rate and saving rate, households find the cost of borrowing to save increases significantly relative to its benefit for the same \((m', h') \). Therefore,

\(^{37}\)The risk-free interest rate = \(r \) while the risk-free mortgage rate = \(r + r_w \). So the difference between the mortgage rate and the risk-free saving rate \(\geq r_w \).
households choose smaller leverage / mortgages. Consequently, the housing down payment has increased after the financial change has taken place. Thus, the tightening of the housing financial condition explains the sharp declines in aggregate leverage, aggregate mortgage debt and aggregate financial asset. This is the mechanism of the household deleveraging process.

Thirdly, aggregate housing demand decreases at the shock as in the pure productivity shock in section 5, but the trough in this experiment is deeper. Households choose smaller leverage / higher down payment with financial tightening, but the large decline in mortgage debt does not follow with a great decline in aggregate housing demand because households is spending more of their own ”skins” in the purchase of houses. Nevertheless, the smaller borrowing makes housing demand fall down more than that in the pure productivity shock.

Foreclosure rate drops 0.1% in the first period because housing value appreciates as the real house prices rise up. Foreclosure rate shows large drop since period 2 as households deleverage once the financial tightening takes place. Since the financial change is permanent, foreclosure rate converges to a lower level in the new steady state with $r_w = 3.5e - 4$.

In the G.R. experiment, there are contractions in consumption good and housing good outputs. However, the contraction in the consumption good sector is smaller than that in the pure productivity shock while the contraction in the housing sector is larger. The reason is because real interest rate decreases less at $t = 1$ in this experiment. A higher initial real interest rate implies higher MPK and smaller capital-labor ratio in both sectors at the shock. So the aggregate investment is larger as MPK is higher. The smaller capital-labor ratio implies lower MPL and wage rate in the G.R. experiment at $t = 1$. Given smaller wage, aggregate labor supply is thus smaller initially. Since aggregate labor \bar{N} falls down 1.2% and the wage-rentals ratio $\frac{w}{r+\delta_k}$ only increases 0.54% at $t = 1$, capital in the housing sector turns out to decrease about 9% which is much larger than the initial drop of K_h in the pure productivity shock. In the meantime, K_c increases 0.25% at the shock compares to the tiny initial decrease in the pure productivity shock. On the other hand, labor input in the consumption good sector falls down smaller while labor in the housing sector falls much larger
initially. Therefore, the decrease in housing output is larger than that in the pure productivity shock while the decline in consumption output is smaller.

As in the pure productivity shock case, capital in the consumption good sector follows the pattern of aggregate capital to decrease for about 25 periods until investment rises above the steady state level. In contrast, capital in the housing sector \(K_h \) starts to increase after the initial decline as aggregate capital depreciates and the relative cost of aggregate labor recovers over time. As the factor price ratio \(\frac{w}{r + \delta} \) fall down after the first period, the capital-labor ratio decreases further and it follows that labor inputs in both sectors recover fast from period 2. From period 2, housing output increases little by little as productivity, housing capital and labor inputs recover.

In summary, the Great Recession Experiment has generated large and persistent contractions in the real economy and the housing market. Specifically, the tighter financial condition is responsible for the substantial decline in mortgage debt, the leverage ratio and part of the decrease in housing demand.\(^{38}\) The smaller aggregate productivity can account for the large drop in housing production as well as the declines in aggregate output, consumption, business investment and hours. Comparing the movements of model variables to the fluctuations of corresponding variables in the data, this two-shock experiment is able to explain about 70% of the drop in real output, 38% of the reduction in consumption, 12% of the decline in labor hours, the entire drop in mortgage debts, 17% of the decrease in housing output, 22% of the decrease in housing demand and 1.3% of the decline in real house prices.

1.6.2 The new steady state with tighter housing finance

This subsection discusses the properties of the economy in the new steady state with tighter housing finance condition \((r_w = 3.5e - 4) \). As shown in table 4, with the tighter housing finance condition the quantities of most real economic variables such as aggregate output, consumption, investment, housing demand are basically the same as that in the benchmark economy. On the production side, variables such as capital inputs, labor inputs and outputs in both sectors barely change with the

\(^{38}\)In the experiment with only the tighter finance condition, mortgage loan and leverage both drop 21% at the shock. Thus the permanent increase in \(r_w \) is fully responsible for the deleveraging process in this experiment.
tighter finance condition. In addition, the equilibrium real wage, real interest rate and real rental price also change little. Since interest rate only decrease 0.03 basis points, the risk-free mortgage interest rate actually declines 0.05 basis points in the new steady state. The plunge of the outstanding mortgage debts does not conflict with the lower risk-free mortgage interest rate because it is the difference between the risk-free interest rate and the mortgage interest rate rather than the absolute cost of borrowing that matters critically in household borrowing and saving decisions.

Several major changes take place in the housing market. With the tighter housing finance condition, aggregate mortgage debt falls to around 80.3% of its benchmark value, foreclosure rate drops 13.9%, and aggregate financial asset falls 3.42%. Aggregate housing stock is 0.36% smaller than the benchmark level but homeownership rate, which is represented by the percent of households with $h' > s$, increases 0.24%. If I use the percent of households with $h > 0$ to characterize homeownership rate, homeownership rate does not change with the tighter housing finance. Non-housing asset now takes up 67.45% of household wealth, which is smaller compares to 68.5% in benchmark economy. In addition, tighter housing finance leads to a small increase in wealth inequality as the Gini coefficient is 0.3% higher than that in the benchmark economy. Finally, the tighter borrowing in the mortgage market leads to large increase in home equity as shown in Figure 16. The increase in home equity implies that the housing down payment in the financial market is higher in the new steady state.

Comparing the new steady state with tighter mortgage issuance to the benchmark economy, I can draw a couple of policy implications. If the government values higher homeownership and a smaller foreclosure rate for the stability of the financial system, they should adopt regulations to enforce tighter mortgage issuance. If the government cares more about inequality, they should subsidize the mortgage issuance sector to reduce the extra cost measured by r_w so that the cost of borrowing by means of mortgages is smaller and pushes the economy to move toward the benchmark case.
1.7 The Foreclosure Boom Experiment

The Great Recession Experiment has good explanatory power over the real economic recession and housing recession but the foreclosure rate does not increase initially as in the data. Therefore, I add a third shock—a one-period housing depreciation shock to the existing two shocks in the G.R. experiment. Specifically, the housing depreciation shock is a one period shock that raises the shape parameter γ in the Pareto distribution for one period such that the housing foreclosure rate would increase to 0.74% in the first period to match the 200% increase of mortgage foreclosure rate in 2007Q4 relative to the average foreclosure rate from 2002Q1 to 2006Q4. The three shocks are unexpected by the households and they hit the economy simultaneously in period one. I call this three shock experiment the Foreclosure Boom (F.B.) Experiment.39

When the shock hits, a larger fraction of households wakes up at $t = 1$ to see their housing value falls below the mortgage loan value and thus choose to default. The high housing depreciation decreases household net worth and brings a large negative wealth effect to the economy. The results of this experiment differ from that in the G.R. experiment in several respects. First of all, with the same tightening in the housing finance condition, the initial decline in mortgage loan, leverage and financial assets is smaller than that in the G.R. experiment. The reason is because households are poorer as net worth shrinks so that they need to borrow more per unit of housing asset they purchase. Given that they choose a larger leverage, the initial decrease in aggregate financial asset follows to be smaller as they need a larger amount of safe financial asset to insure themselves against the higher default risk.

Secondly, households have a larger initial decrease in consumption, net saving and housing demand. Compare to households in the G.R. experiment, they reduce their consumption and net saving more as they are poorer because of the depreciation shock. Households still exhibits similar heterogeneity in net saving, but the heterogeneity of housing demand that we observe in the G.R. experiment does not apply to the F.B. experiment. Instead, all households decrease their housing demand as they

39Notice that the Pareto distribution does not change in the mortgage price schedule as all households and banks in the economy expect that the increase in γ only lasts for one period.
get poorer. Accordingly, housing demand declines 1% initially.

Thirdly, real interest rate, investment, and aggregate capital have larger declines in the F.B. experiment. Real interest rate falls more than that in the G.R. experiment for two reasons. On the one hand, the initial decrease in financial assets is smaller in this experiment so that the credit supply is larger. On the other hand, due to the strong negative wealth effect from the depreciation shock, households work more hours than they would in the G.R. experiment so that the initial decrease in aggregate labor is smaller. The higher aggregate labor increases the \(\frac{w}{r+\delta_k} \) ratio and thus increases the capital-labor ratio in the consumption and housing sectors. Thus the MPK is smaller and so does the real interest rate. With the lower MPK, investment is also smaller in this experiment. Consequently, aggregate capital depreciates to hit a lower trough.

Fourthly, the recession in the consumption sector is deeper when the shock hits and the recovery in the housing sector is later than that in the consumption good sector. Since labor and capital are perfectly mobile across sectors, by equation (55) and (56) higher aggregate labor increases the capital and labor inputs in the housing sector and reduces capital and labor in the consumption sectors when the shock hits given that the housing sector is relatively labor intensive. As a result, capital and labor in the consumption sector decreases more than they do in the G.R. experiment. The smaller capital and labor inputs make consumption output decrease 3.5% which is larger than that in the G.R. experiment.

In contrast, housing output, \(I_h \), only decreases 2% at the shock. This is because the higher factor price ratio makes housing capital input increase about 1.7% initially. As aggregate productivity recover, the factor price ratio \(\frac{w}{r+\delta_k} \) is falling fast so that the relative cost of aggregate labor \(\frac{w}{r+\delta_k}N \) falls more than the decrease in \(K \). Therefore, capital input in the housing sector falls down further after \(t = 1 \). Housing labor input also continues to decrease after period one. Although productivity recovers after the initial decline, housing output continues to fall for several periods as housing labor and capital inputs decrease further after the first period. Therefore, the contraction

40All households decrease their demand for mortgage loan, housing asset and financial asset in the F.B. experiment. However, these do not contradict with the fact that low productivity high wealth households increases their net saving slightly because \(g' = a' + ph' - m'p_m(m', h') \). The increase in net saving is possible when the decrease in the value of mortgage loan is larger than the decreases in financial asset and housing asset. This is exactly what happens to the high wealth low productivity group.
in the housing production sector hits the trough seven periods after the shock and the housing recovery is later than the recovery in the consumption good sector.

Finally, foreclosure rate hits 0.74% initially which is 100% higher than the steady state default rate. From the second period and on, foreclosure rate falls down as households deleverage with the tighter housing finance condition.

Real housing price increases 0.2% initially which is higher than that in the G.R. experiment because the higher initial wage has a dominating effect with the small \(\nu \) and thus raises the unit cost of production. Consequently, the house prices are higher when the shock hits. Real house prices start to fall off after the initial increase as productivity recovers gradually which reduces the unit cost of housing production over time.

In a nutshell, the Foreclosure Boom experiment has also generated a real economic recession alongside a recession in the housing market. Specifically, the tightened financial condition is responsible for the substantial decline in mortgage debt, the leverage ratio and part of the decrease in housing demand. The smaller aggregate productivity can account for the drop in housing production as well as the declines in aggregate output, consumption, business investment and hours. The depreciation shock makes the foreclosure rate rises up initially and the tighter finance condition explains the later drop of foreclosure rate. Comparing the model declines to that in the data, the three-shock experiment is able to explain about 70% of the drop in real output, 39% of the reduction in consumption, 10% of the decline in labor hour, the entire drop in mortgage debts, 14% of the decrease in housing construction output, 17% of the decrease in housing demand and 1.3% of the decline in real house prices.

1.8 The Depreciation Shock Experiment

In this section, I discuss the aggregate economic effect of a single depreciation shock. Suppose the shape parameter \(\gamma \) in the Pareto distribution follows a log-AR(1) process

\[
\log \gamma_{t+1} = \rho_{\gamma} \log \gamma_t + \xi_{\gamma}, \quad \xi_{\gamma} \sim N(\mu_{\gamma}, \sigma_{\xi}^2)
\]

(23)
where $\rho_\gamma = 0.9$, $\sigma_\xi = 0.01$, $\mu_\gamma = \gamma^*(1 - \rho_\gamma)$ and $\gamma^* = 0.7304$ as in the benchmark economy. When the shock hits, the shape parameter γ increases one standard deviation and then moves back to its steady state level according to the log-AR(1) process in equation (23).

The results of the depreciation shock are displayed in Figure 19-20. Firstly, households choose smaller mortgage debt and leverage at the shock. However, the reason that households deleverage here is different from that in the G.R. experiment. Households reduce their leverage because the mortgage price schedule provided by the bank has changed with the Pareto distribution. Holding household leverage decisions constant, a higher shape parameter γ means that households have larger probability to draw big depreciations that might make their houses underwater. Moreover, the housing value after the foreclosure process is also lower with the higher γ holding everything else constant. Because of these reasons, banks offer a lower mortgage price for the same leverage ratio to compensate themselves for the increase in expected loss from higher default rate and the smaller after depreciation housing value in the foreclosure process. Given the new mortgage price schedule, the cost of borrowing using mortgages has been shifted up so that households find it optimal to choose smaller leverage and mortgage debt. Accordingly, their demand for financial assets also decline at the shock. As γ recovers, banks offer better and better mortgage prices to households so that they gradually raise their leverage and debt positions. Financial asset increases gradually as household leverage recovers over time.

Housing demand decreases at the shock for two reasons. Firstly, housing demand decreases because the increase in housing depreciation reduces the real housing return. Secondly, as households choose smaller leverage/mortgage debts, they pay higher housing down payments per unit of house they purchase. Given that their net worth decreases when the shock hits, they can afford to purchase less houses.

The persistent depreciation shock generates a deep contraction in the housing sector but is not able to generate a severe real economic recession. The initial decline in financial assets leads to the increase of real interest rate at the shock as credit

\footnote{Once the shock hits, households and financial institutions have perfect foresight over the path of the shape parameter γ.}
supply is smaller. An initial increase in interest rate implies a lower capital-labor ratio by equation (46) and (48). Thus the MPK is higher while the MPL is lower in both sectors at the shock. The lower MPL explains the initial decrease in real wage. Given that the inverse of the elasticity of intertemporal substitution σ is equal to 3.9 and the real wage falls, the substitution effect dominates and households supply smaller labor hours. With smaller aggregate labor and factor price ratio $\frac{w}{r+\delta_k}$ in the economy, capital and labor in the housing sector decrease greatly according to equation (56). Thus housing output decreases 15% at the shock. Since aggregate capital does not change at the shock, it follows that the consumption sector uses a slightly larger amount of capital as the housing sector is small and only takes up 6.8% of aggregate output. Higher capital increases the MPL in the consumption sector which makes consumption good firms employs more labor. Therefore, labor in the consumption sector increases 1% at the shock. Since aggregate productivity remains at steady state level, the increase in consumption good inputs leads to a 0.8% initial increase in consumption output. Although the depreciation shock brings a small boom in consumption good production, real aggregate output still falls 0.1% at the shock because the increase in consumption output cannot make up for the large contraction in housing production.

Although real interest rate rises up at the shock, the decrease in labor income and the small decrease in net worth because of higher depreciation make all households decrease their consumption and net saving slightly.

Real house prices decrease 0.1% initially as the decrease in real wage has a dominating effect so that the unit cost of production in the housing sector declines. As wage recovers, real house prices also increase over time.

Foreclosure rate rises up 10% initially as a larger fraction of population finds their housing assets underwater when the shock hits the economy. Foreclosure rate falls down since $t = 2$ for two reasons. Firstly, households deleverage in the first period and thus face smaller default risk. Secondly, γ starts to recover since period 2. Foreclosure rate becomes slightly higher in period 3 than period 2 as household leverage increases. Since period 4, foreclosure rate moves down little by little as γ recovers to the steady state level gradually over time.
1.9 Concluding Remarks

This paper develops a dynamic stochastic general equilibrium (DSGE) model with heterogeneous households and two sectors to explore the impact of financial shock, productivity shock and housing depreciation shock on the aggregate economy and on housing variables such as real mortgage debt and housing demand. I have calibrated the model to reproduce the housing and non-housing moments in the U.S. data. The resulting economy is characterized by the household behavior of borrowing using mortgage debt and saving using risk-free financial assets and risky housing assets at the same time.

Several experiments have been conducted in order to understand the housing and real economic contractions in the Great Recession. Comparing the results in these experiments, I have come to the following conclusions. Firstly, the decrease of aggregate productivity accounts for the declines in aggregate output, consumption, business investment, labor hours as well as part of the drop in housing production and demand. Housing demand falls at the decrease of productivity as households who experience large declines in their labor income hold less housing assets. Secondly, the tighter housing finance is responsible for the large decreases in mortgage debt, leverage and the part of the decrease in housing demand. Household decreases mortgage debt and leverage as the cost of borrowing mortgage to save financial assets have greatly increased. Under normal financial conditions, households take large mortgage debts to take advantage of high housing return and insure themselves against high default risk by holding financial assets to smooth consumption. When the financial condition is tighter so that the cost of borrowing mortgages to save financial assets becomes higher while the benefit of borrowing decrease, households reduce leverage and their holdings of mortgage debts to avoid higher interest payments and default risk. Housing demand falls with tighter financial condition because household have to pay higher housing down payment for the same house as they deleverage.

Thirdly, the persistent housing depreciation shock explains the movements of foreclosure rate and part of the decreases in mortgage debt, housing demand and production. Housing demand is smaller with the depreciation shocks because of two reasons.
One the one hand, the higher depreciations decreases the real housing return. On the other hand, the higher household default risk is priced by the financial intermediaries in the mortgage schedule when the depreciation process changes. Given lower mortgage prices in the financial markets, households take out smaller mortgages per unit of houses they purchase. Thus they decrease housing demand as the housing down payments are higher. Finally, the Foreclosure Boom Experiment with negative productivity shocks, financial tightening and housing depreciation shock generates a real economic recession alongside a housing contraction that explains the housing and non-housing variables understudy except the movements of the real house prices.

Although this paper has studied the recessions in the housing market and the real economy with endogenous real house prices, mortgage default and heterogeneous households, it can still be strengthened in two respects. Firstly, one-period mortgage contract is modeled in the paper for the convenience of analysis. In the real world, most mortgage contracts are multi-periods contract. The effects of the long-term mortgage debts to the macroeconomy and the housing market have not been fully explored in the literature. So it is meaningful to extend the model to include multi-period mortgage contracts. Secondly, this paper cannot explain the dynamics of the real house prices in the Great Recession. The fluctuations of the real house prices in the model are not comparable to the collapse of the real house prices in the Great Recession. A potential way to fit the plunge of real house prices is to generate a housing price bubble in the steady state. Considering the complexity of the current model, I leave these to future research.
1.10 Tables and Figures

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_k) capital depreciation</td>
<td>0.025</td>
<td>U.S. data</td>
</tr>
<tr>
<td>(\rho) productivity persistence</td>
<td>0.98</td>
<td>Jeske et al (2011)</td>
</tr>
<tr>
<td>(\sigma) productivity variance</td>
<td>0.30</td>
<td>Jeske et al (2011)</td>
</tr>
<tr>
<td>(\nu) capital’s share in housing</td>
<td>0.12</td>
<td>GDP-by-Industry</td>
</tr>
<tr>
<td>(\theta) foreclosure technology</td>
<td>0.78</td>
<td>Pennington and Cross (2004)</td>
</tr>
<tr>
<td>(\sigma) CRRA parameter</td>
<td>3.9</td>
<td>Jeske et al (2011)</td>
</tr>
</tbody>
</table>

Table 1: Exogenously Adopted Parameters

<table>
<thead>
<tr>
<th>Target Moment</th>
<th>Model</th>
<th>Target</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta) risk-free rate</td>
<td>1.2</td>
<td>1.2</td>
<td>U.S. data</td>
</tr>
<tr>
<td>(\tau) Average labor hours</td>
<td>0.33</td>
<td>0.33</td>
<td>U.S. data</td>
</tr>
<tr>
<td>(\tau_1) Consumption’s share</td>
<td>0.86</td>
<td>0.86</td>
<td>NIPA</td>
</tr>
<tr>
<td>(r_w) Aggregate Leverage</td>
<td>0.39</td>
<td>0.41</td>
<td>Flow of Funds</td>
</tr>
<tr>
<td>(\alpha) Total Capital to Output ratio</td>
<td>3.06</td>
<td>3.00</td>
<td>Gervais (2002)</td>
</tr>
<tr>
<td>(\gamma) Foreclosure rate</td>
<td>0.36%</td>
<td>0.4%</td>
<td>MBA (2006)</td>
</tr>
<tr>
<td>(\sigma_{\delta}) House value volatility</td>
<td>0.07</td>
<td>0.08</td>
<td>OFHEO HPI data</td>
</tr>
<tr>
<td>(\bar{\delta}) Average housing depreciation</td>
<td>1.2%</td>
<td>1.4%</td>
<td>NIPA</td>
</tr>
</tbody>
</table>

Table 2: Calibrated parameters and data moments
<table>
<thead>
<tr>
<th>Variable</th>
<th>Interpretation</th>
<th>SS Value</th>
<th>U.S. Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>percent of hhs with $h' > 0$</td>
<td></td>
<td>99.3%</td>
<td></td>
</tr>
<tr>
<td>percent of hhs with $h' > s$</td>
<td>homeownership</td>
<td>50.1%</td>
<td>64%</td>
</tr>
<tr>
<td>Wealth Gini</td>
<td>wealth inequality</td>
<td>0.39</td>
<td>0.78</td>
</tr>
<tr>
<td>$pH/(4 \times GDP)$</td>
<td>housing wealth</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Non-housing asset</td>
<td>non-housing asset share</td>
<td>68.15%</td>
<td>70%</td>
</tr>
<tr>
<td>$p \times I_h/GDP$</td>
<td>housing investment share</td>
<td>6.7%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Table 3: Steady State Numerical Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Interpretation</th>
<th>Benchmark value ((r_w = 0.0001))</th>
<th>High financial cost ((r_w = 0.00035))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>real interest rate</td>
<td>1.196%</td>
<td>1.193%</td>
</tr>
<tr>
<td>(w)</td>
<td>real wage rate</td>
<td>1.725</td>
<td>1.725</td>
</tr>
<tr>
<td>(p)</td>
<td>real housing price</td>
<td>1.5695</td>
<td>1.5698</td>
</tr>
<tr>
<td>(p_s)</td>
<td>real rental price</td>
<td>0.0428</td>
<td>0.0430</td>
</tr>
<tr>
<td>(A)</td>
<td>financial asset</td>
<td>11.10</td>
<td>10.72</td>
</tr>
<tr>
<td>(H)</td>
<td>housing stock</td>
<td>3.304</td>
<td>3.292</td>
</tr>
<tr>
<td>(Ml)</td>
<td>mortgage loan</td>
<td>1.972</td>
<td>1.583</td>
</tr>
<tr>
<td>Default rate</td>
<td>foreclosure</td>
<td>0.36%</td>
<td>0.31%</td>
</tr>
<tr>
<td>Mean net worth</td>
<td>Mean net worth</td>
<td>1.80</td>
<td>1.80</td>
</tr>
<tr>
<td>(C)</td>
<td>consumption</td>
<td>0.861</td>
<td>0.861</td>
</tr>
<tr>
<td>(Y)</td>
<td>output</td>
<td>1.167</td>
<td>1.168</td>
</tr>
<tr>
<td>(I)</td>
<td>business investment</td>
<td>0.2282</td>
<td>0.2285</td>
</tr>
<tr>
<td>(K)</td>
<td>capital</td>
<td>9.124</td>
<td>9.135</td>
</tr>
<tr>
<td>(N)</td>
<td>effective labor</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>(I_h)</td>
<td>housing investment</td>
<td>0.0496</td>
<td>0.0498</td>
</tr>
<tr>
<td>(\mu(h' > 0))</td>
<td></td>
<td>99.3%</td>
<td>99.3%</td>
</tr>
<tr>
<td>(\mu(h' > s))</td>
<td>homeownership</td>
<td>50.17%</td>
<td>50.29%</td>
</tr>
<tr>
<td>Non-housing asset</td>
<td>non-housing asset share</td>
<td>68.15%</td>
<td>67.45%</td>
</tr>
<tr>
<td>Wealth Gini</td>
<td>wealth inequality</td>
<td>0.392</td>
<td>0.393</td>
</tr>
<tr>
<td>$pH/(4 \times GDP)$</td>
<td>housing wealth to output</td>
<td>1.11</td>
<td>1.10</td>
</tr>
<tr>
<td>pI_h/GDP</td>
<td>housing investment share</td>
<td>6.67%</td>
<td>6.70%</td>
</tr>
</tbody>
</table>

Table 4: Numerical Results of Higher Financial Intermediation Cost
Data Source: FHFA, Board of Governors, Flow of Funds, U.S. Census Bureau, M.B.A

Figure 1: Housing Market in the Great Recession
Data Source: NIPA tables, Fixed Asset tables and CPU (2012). Real GDP, consumption, business investment and residential investment are detrended using Hodrick-Prescott filter with a smoothing parameter of 1600 from 1969Q1 to 2013Q1.

Figure 2: Other Macroeconomic Series in the Great Recession
Figure 3: Mortgage Price Schedule

Figure 4: Household Value Function
Figure 5: Net Saving Policy

Figure 6: Housing Asset Policy Function
Figure 7: Household Leverage Policy, $l = m/(ph)$

Figure 8: Financial Asset Policy
Figure 9: Labor Supply Policy
Figure 10: Negative Productivity Shock
Figure 11: Negative Productivity Shock: Housing Market Variables
Figure 12: Shifts of Household Leverage Policy in the Productivity Shock
Figure 13: The Great Recession Experiment
Figure 14: The Great Recession Experiment: Housing Market Variables
Figure 15: Shifts of Household Leverage Policy in the Great Recession Experiment
Figure 16: Home Equity with the Tighter Financial Condition \((r_w = 3.5e^{-4})\)
Figure 17: The Foreclosure Boom Experiment
Figure 18: The Foreclosure Boom Experiment: Housing Market Variables
Figure 19: The Depreciation Shock Experiment
Figure 20: The Depreciation Shock Experiment: Housing Market Variables
Chapter 2: CREDIT SHOCKS, ENTREPRENEURSHIP
AND THE LABOR WEDGE

2.1 Introduction

The Great Recession is known to be characterized by a severe contraction in real economic activity. As shown in Figure 21, real output is 5% lower than its 2007Q4 level in early 2009. Hours drop 10% and private investment decreases 25% from 2007Q4 to 2009Q3. Secondly, the 2007-2009 financial crisis has been related with significant movements of the aggregate wedges. As shown in Figure 22, the Solow Residual declined 1.9% from 2007Q4 to 2009Q1. The labor wedge which is the ratio of the marginal rate of substitution (MRS) and the marginal product of labor (MPL) increases 9% from 2007Q4 to 2009Q3. Since the worsening of the labor wedge has been believed to be connected with the distortions in the labor market, it is important to explain the movements of the labor wedge in the data. Thirdly, there is a 152% increase in the dispersion of firm growth rates during the recent financial crisis as documented by Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2012).

Can the financial crisis itself cause a large contraction in real economic activity? What is the mechanism that financial shock generates distortions in the aggregate wedges and raises the dispersion of firm production sizes? To answer these questions, I build a quantitative general equilibrium model with heterogeneous entrepreneurs and incomplete financial markets. Individuals are heterogeneous in
their abilities and asset positions, and can pay random fixed costs to change occupation (entrepreneur or worker). Entrepreneurs produce and can borrow capital from the financial markets using assets as collateral.

I find that a negative credit shock can generate large contractions in aggregate output, consumption, investment and hours. In particular, the decreases in aggregate output, consumption and capital are quite persistent with the transitory credit shock. The dispersion of firm production sizes increases sharply in the credit shock and can explain about 50% of the increase of dispersion in the Great Recession. Another promising feature of this paper is that given rich heterogeneity in production and individual behavior, a credit shock gives rise to movements in the labor wedge that can explain about 35% of the movements in the data.

This model has three key ingredients. Firstly, individuals value leisure which allows me to study the movements of the labor wedge. Secondly, the financial markets are incomplete in that entrepreneurs are subject to collateralized borrowing constraints. Inefficiency arises when high ability entrepreneurs with low assets cannot borrow enough capital for production. Thirdly, individuals decide whether to pay fixed cost to change occupation at the beginning of each period. The occupational choice allows endogenous entry into and exit from the production sector. However, misallocation of ability may arise when high ability individuals are prevented from productions when they draw high fixed costs.

The credit shocks have two effects on the production side. Firstly, capital allocation is distorted more severely in both extensive margin and intensive margin. On the one hand, the tighter borrowing constraints make a larger fraction of entrepreneurs to become constrained in the economy. Thus an increasing measure of entrepreneurs has to produce with insufficient capital inputs. On the other hand, as real interest rate and real wage decrease in the negative credit shock, the optimal capital and labor inputs of each entrepreneurial production rise up consequently. Since the borrowing limit in the financial market is sharply reduced in the credit shock, constrained entrepreneurs have to run productions with capital inputs that are much lower than the optimal level. Thus capital is distorted more severely in the intensive margin. Secondly, labor input follows to be distorted given insufficient capital inputs. Because of the
distortions in production inputs, real output falls at the shock.

In the credit shock, the labor wedge rises up gradually and peaks before the financial condition is restored. The labor wedge then falls down little by little as aggregate capital recovers over time. The labor wedge rises up in the credit shock because the tightening of the borrowing constraints limits capital input and thus causes a downward distortion in the marginal product of labor (MPL). 42

The dispersion of entrepreneurial production sizes increases sharply in the financial shock. On the one hand, since high asset high ability workers can stay unconstrained in the financial market when the shock hits, they endogenously enter into the production sector to take advantage of the lower input prices for higher profits. In contrast, the tighter borrowing constraints greatly affect constrained entrepreneurs by sharply reducing their capital inputs. Even if the input prices become lower in the shock, the large drops in capital and labor inputs reduce the profits of constrained entrepreneurs. Thus low asset entrepreneurs who are constrained in the financial markets endogenously exit from productions because their value as entrepreneurs slump with tighter credits. Since most of the productions are small (in terms of employment) in the steady state, the dispersion of production sizes increases in the credit shock. 43 In addition, the dispersion of production sizes increases smaller in the productivity shock because high asset high ability entrepreneurs do not experience increases in profits due to the decline in productivity. Therefore, few high asset high ability workers enter into production sectors in the productivity shock. Consequently, the dispersion of firm production sizes increases less.

This model is first related to literature with imperfect financial markets and linear collateral constraints. Leading examples are Buera and Shin (2013), and Khan and Thomas (2013). Buera and Shin (2013) studies the transitional dynamics of economic miracles in a framework with heterogenous entrepreneurs and financial frictions. I follow Buera and Shin (2013) to model the imperfect financial markets and entrepreneurial productions. However, this paper significantly differs from Buera and

42 In the meantime, the marginal rate of substitution (MRS) is also distorted as entrepreneurs cannot select leisure. But the fluctuations of the labor wedge is leaded by the distortion in MPL

43 Labor inputs is increasing in entrepreneurial assets in this model. Thus higher asset entrepreneurs have larger production scale in terms of employment.
Shin (2013) in two respects. Firstly, this paper has completely independent goals from theirs. They study the transitional dynamics of a developing economy into an advanced economy, while this paper studies the effects of credit crunch on the real economy, the dispersion of firm sizes and the countercyclicality of the labor wedge. Secondly, household heterogeneity is richer in this paper as I add frictions in occupational choice and have individuals to value leisure.

This paper is also related with literature that study credit shocks in a framework with heterogeneous individuals and financial constraints, such as Buera and Moll (2013) and Bassetto, Cagetti and De Nardi (2010). This paper complements Bassetto, Cagetti and De Nardi (2010) with an in depth study of the real effect of credit shocks and stands in line with Buera and Moll (2013) in generating fluctuations of the labor wedge. However, this paper differs from theirs by introducing frictions in firm entry and exit and can also explain the impact of financial shocks on the dispersion of firm growth rates.

There is a growing literature that study labor distortions and the movements of the labor wedge with financial frictions. Leading examples are Jermann and Quadrini (2009), and Arellano, Bai and Kehoe (2011). This paper is complementary to this literature but novel in two aspects. Firstly, I study the effects of a credit shock on the real economy in a framework without large firms but with heterogeneous entrepreneurs. I model entrepreneurial productions rather than firm productions because empirically entrepreneurs are reported as easy to be constrained in the financial markets. Cagetti and De Nardi (2006) points out that entrepreneurs face borrowing constraints and their production decisions such as the level of possible borrowing from the financial markets are related to their personal wealth. Secondly, this paper focus on the impacts of the credit shock on firm production distribution and thus provides a new mechanism that can explain the movements of the labor wedge. In this paper, financial crisis gives rise to fluctuations of the labor wedge due to the downward distortion in the marginal product of labor, which is resulted from the financial frictions that distorts the allocation of capital and labor.

The rest of this paper is organized as follows. Section 2 presents the baseline model. Section 3 discusses parameterization. Section 4 presents the properties of the economy
in the steady state. Section 5 considers the impacts of a negative productivity shock. Section 6 explains the effects of a negative credit shock. Section 7 concludes.

2.2 The Model

2.2.1 Heterogeneity and Demographics

There is a continuum of individuals in the economy that are indexed by $i \in [0, 1]$. Each individual is endowed with one unit of time to divide between labor and leisure. Individuals live indefinitely and can save using risk-free assets a.

Individuals are endowed with the idiosyncratic entrepreneurial ability, which is the ability to manage production using capital and labor. An individual with higher entrepreneurial ability is more efficient in production management and thus produces larger output given the same amount of capital and labor inputs. Alternatively, entrepreneurial ability can be understood as the individual-level productivity. I suppose that entrepreneurial ability evolves according to an exogenous Markov chain P_θ.

At the beginning of a period, each individual draws a random fixed cost ξ from a uniform distribution $G(\xi)$ with $\xi \in [0, \xi_U]$. After the realization of the fixed cost, he chooses whether to maintain or shift his occupation (entrepreneur or worker). The idiosyncratic random fixed cost is only paid when an individual changes his occupation, i.e., he is a worker (an entrepreneur) last period but now wants to become an entrepreneur (a worker). The occupational choices allow for endogenous entry into and exit from the production sector.

Let χ_{-1} denote the occupation history of an individual. Then

$$
\chi_{-1} = \begin{cases}
1, & \text{if last period entrepreneur} \\
0, & \text{if last period worker}
\end{cases}
$$

Since the fixed cost is only paid when an individual switches occupation, it is sufficient to record occupation history for one period. Let $\mu(a, \theta, \chi_{-1})$ denote the cumulative distribution of individual wealth a, entrepreneurial ability θ and occupation history.
\(\chi_1\) across households in the economy.

2.2.2 Preference

All individuals value consumption and leisure and discount future utility using the same discount factor \(\beta\). Individual \(i\)'s utility from consumption and leisure is given by

\[
E_0 \sum_{t=0}^{\infty} \beta^t u(c_{it}, 1 - n_{it}), \\
u(c_i, 1 - n_i) = \frac{\left(c_i^{\tau} (1 - n_i)^{(1 - \tau)}\right)^{1 - \sigma}}{1 - \sigma}
\]

(25)

Entrepreneurs and workers share the same form of utility function regardless of occupation.

2.2.3 Technology

Entrepreneur \(i\) with talent \(\theta\) can rent capital, hire labor and produce according to the following production technology

\[
f(z, \theta_i, k_i, l_i) = z \theta_i (k_i^\alpha (\bar{n} + l_i)^{1-\alpha})^\nu
\]

where \(z\) is the aggregate productivity, \(k_i\) is capital input and \(l_i\) is the amount of labor hired by the entrepreneur. Capital input is limited by borrowing constraint \(k_i \leq \lambda a_i\).

To keep the framework simple to analyze, entrepreneurs must work a fixed amount of time, \(\bar{n}\).

Parameter \(\alpha \in (0, 1)\) and it captures the fraction of entrepreneurial income that goes to capital. As the production scale increases, entrepreneur \(i\)'s management skill might gradually become insufficient so that his returns to production decreases. Thus I suppose the scale parameter \(\nu \in (0, 1)\) so that production technology is decreasing returns to scale (DRS).

Suppose entrepreneurial ability \(\theta\) is inalienable and there is no market for the ability. The labor market is perfectly competitive and frictionless. All individuals in the economy face common wage \(w\) and interest rate \(r\) with the belief that their
occupational choices, asset decisions and labor supplies do not affect prices.

2.2.4 Financial Markets

Perfectly competitive financial intermediaries have the technology to convert deposited assets into productive capital without cost. At the beginning of each period after the fixed cost are drawn and occupational choices are made, workers and entrepreneurs deposit assets in the financial markets. The return on deposited assets (i.e. the interest rates in the economy) is r. At the same time, entrepreneurs rent capital for production. In the financial market, workers are pure lenders while entrepreneurs borrow capital with their assets as collateral. The amount of capital that entrepreneurs can borrow is limited by the linear collateral constraint, $k \leq \lambda a$, where a is individual financial assets and λ measures the degree of financial frictions. λ is the same to every entrepreneur in the economy. Since capital is assumed to depreciate at rate δ, the effective capital rental rate is $r + \delta$. Notice that the financial markets allow within period borrowing but forbid borrowing for intertemporal consumption. That is, $a \geq 0$ must hold in each period. This constraint might bind for workers who are wage earners but does not have direct influence over the behavior of entrepreneurs, who need asset to borrow capital for production.

Inefficiency arises because not all entrepreneurs can borrow up to their optimal level of capital inputs. In addition, the random fixed cost prevents some high ability individuals from production.

The timing of the economy is as follows. Firstly, aggregate productivity and individual abilities are realized and known to all households. Secondly, individuals draw random fixed costs and the occupational choices are made. Thirdly, individuals deposit assets in the financial market. Entrepreneurs rent capital, hire labor and carry out productions. Finally, workers get paid, entrepreneurs take the profits, individuals trade and consume final goods.
2.2.5 The individual’s problem

Let S denote the vector of aggregate state in the economy, $S = (z, \mu)$. Let $v^1(a, \theta, \chi_{-1}, \xi, S)$ represent the expected discounted value of an individual with wealth a, entrepreneurial ability θ, occupation history χ_{-1} and fixed cost ξ when the aggregate state of the economy is S.

Define $v^0(a, \theta, \chi_{-1}, S)$ as the beginning of period expected value of an individual prior to the realization of its fixed cost draw, but after the determination of $(a, \theta, \chi_{-1}, S)$. Thus

$$v^0(a, \theta, \chi_{-1}, S) \equiv \int_0^\xi U v^1(a, \theta, \chi_{-1}, \xi, S) \, G(d\xi)$$

At the beginning of a period, an individual selects occupation after the fixed cost ξ is drawn. Regardless of his choice, his value function can be expressed as

$$v^1(a, \theta, \chi_{-1}, \xi, S) = \max \{v^e(a, \theta, \chi_{-1}, \xi, S), v^w(a, \theta, \chi_{-1}, S)\}$$

An individual chooses to be an entrepreneur only if running an individual-specific technology gives him higher discounted lifetime value than that of a worker.

The entrepreneur’s problem

Taking wage w, interest rates r as given, an entrepreneur with wealth a, ability θ and fixed cost ξ solves the following problem:

$$v^e(a, \theta, \chi_{-1}, \xi, S) = \max_{\{c, a', k, l \geq 0\}} \left\{ u(c, 1 - \bar{n}) + \beta E[v^0(a', \theta', 1, S')] \right\}$$

subject to

$$c + a' \leq f(\theta, z, k, l) - wl - (\delta + r)k + (1 + r)a - \xi(1 - \chi_{-1})$$

$$k \leq \lambda a$$

Equation (28) is the entrepreneur’s budget constraint. The entrepreneurial income is consisted of production profits and the asset income. The fixed cost is only paid when $\chi_{-1} = 0$, i.e. he is a worker last period. The entrepreneur allocates his income for consumption and saving. Equation (29) is the linear borrowing constraint that
is faced by the entrepreneur. It defines the maximum amount of capital that an entre-
preneur can borrow is \(\lambda \) times of his current asset \(a \). The random fixed cost does
not affect the labor and capital decisions. The lower is the fixed cost \(\xi \), the higher
is the value of entrepreneur holding everything else constant. Let \(c^e(a, \theta, \chi_{-1}, \xi, S) \),
\(n^e(a, \theta, \chi_{-1}, \xi, S) \), \(a^e(a, \theta, \chi_{-1}, \xi, S) \), \(k(a, \theta, S) \), \(l(a, \theta, S) \) represent entrepreneur’s op-
timal choices of current period consumption, labor supply, capital, labor input and
next period asset holdings, respectively.

The worker’s problem

Taking wage \(w \), interest rates \(r \) as given, a worker solves the following problem

\[
v^w(a, \theta, \chi_{-1}, \xi, S) = \max_{\{c, n, a' \geq 0\}} \{ u(c, 1 - n) + \beta E[v^0(a', \theta', 0, S')] \}
\]

(30)

s.t.

\[
c + a' \leq wn + (1 + r)a - \xi \chi_{-1}
\]

(31)

\[
0 \leq n < 1
\]

(32)

Equation (31) is the budget constraint for a worker. The worker earns labor and in-
terest income and allocates them for consumption and saving. The idiosyncratic fixed
cost is paid only if the worker is an entrepreneur last period. Let \(c^w(a, \theta, \chi_{-1}, \xi, S) \),
\(n^w(a, \theta, \chi_{-1}, \xi, S) \), \(a^w(a, \theta, \chi_{-1}, \xi, S) \) represent the worker’s optimal choices of current
period consumption, labor supply, and next period asset-holdings, respectively.

Occupation Analysis

A type-\(\theta \) worker (entrepreneur) with current wealth \(a \) chooses to switch occupation
if the value as an entrepreneur (a worker) after paying the fixed cost \(\xi \) exceeds the
value of continuing to be worker (entrepreneur).

Specifically, a type-\(\theta \) individual shifts occupation if he draws a fixed cost lower
than the threshold

\[
\xi^T(a, \theta, \chi_{-1}, S) = \max \{ 0, \min \{ \xi(a, \theta, \chi_{-1}, S), \xi_u \} \}
\]

where \(\xi(a, \theta, 0, S) \) satisfies
$$v^e(a, \theta, 0, \xi; S) = v^w(a, \theta, 0, \xi; S)$$

and \(\xi(a, \theta, 1, S)\) is given by

$$v^e(a, \theta, 1, \xi; S) = v^w(a, \theta, 1, \xi; S)$$

Intuitively, switching occupation is applied only if switching gives him higher value. Given \((a, \theta, \chi_{-1}, S)\), an individual switches occupation when he draws a fixed cost smaller than the threshold \(\xi^T(a, \theta, \chi_{-1}, S)\) which gives him as much value as staying with his old occupation.

2.2.6 Equilibrium

In equilibrium, good market clears so that aggregate output is equal to the sum of aggregate consumption and aggregate investment, \(Y = C + I\), where

$$Y = \int_{a, \theta} \int_0^{\xi^T(a, \theta, 0, S)} f(\theta, z, k, l)G(d\xi)\mu(d[a \times \theta \times 0]) + \int_{a, \theta} \int_{\xi^T(a, \theta, 1, S)}^{\xi_U} f(\theta, z, k, l)G(d\xi)\mu(d[a \times \theta \times 1])$$

$$C = \int_{a, \theta} \int_0^{\xi_U} c^e(a, \theta, 0, \xi, S)G(d\xi)\mu(d[a \times \theta \times 0])$$

$$+ \int_{a, \theta} \int_{\xi^T(a, \theta, 1, S)}^{\xi_U} c^e(a, \theta, 1, \xi, S)G(d\xi)\mu(d[a \times \theta \times 1])$$

$$+ \int_{a, \theta} \int_0^{\xi^T(a, \theta, 1, S)} c^w(a, \theta, 1, \xi, S)G(d\xi)\mu(d[a \times \theta \times 1])$$

$$+ \int_{a, \theta} \int_{\xi^T(a, \theta, 0, S)}^{\xi_U} c^w(a, \theta, 0, \xi, S)G(d\xi)\mu(d[a \times \theta \times 0])$$

\(^{44}\)When \(\chi_{-1} = 0\), random fixed cost does not influence the value of a worker as it is not paid.

\(^{45}\)When \(\chi_{-1} = 1\), random fixed cost does not influence the value of an entrepreneur as it is not paid.
\[I = K' - (1 - \delta)K = \int_{a, \theta} \int_{a, \theta} A^c(a, \theta, 0, \xi, S)G(d\xi)\mu(d[a \times \theta \times 0]) \]
\[+ \int_{a, \theta} \int_{a, \theta} A^e(a, \theta, 1, \xi, S)G(d\xi)\mu(d[a \times \theta \times 1]) \]
\[+ \int_{a, \theta} \int_{a, \theta} A^w(a, \theta, 1, \xi, S)G(d\xi)\mu(d[a \times \theta \times 1]) \]
\[+ \int_{\xi_T(a, \theta, 0, S)} A^w(a, \theta, 0, \xi, S)G(d\xi)\mu(d[a \times \theta \times 0]) - (1 - \delta) \int_{a, \theta, \chi - 1} a\mu(d[a \times \theta \times \chi - 1]) \]

(34)

Labor market clears so that the total demand of labor from entrepreneurs is equal to the total labor supply provided by workers.

\[\int_{a, \theta} \int_{a, \theta} l(a, \theta, S)G(d\xi)\mu(d[a \times \theta \times 0]) \]
\[+ \int_{a, \theta} \int_{a, \theta} l(a, \theta, S)G(d\xi)\mu(d[a \times \theta \times 1]) \]
\[= \int_{a, \theta} \int_{a, \theta} n^w(a, \theta, 1, \xi, S)G(d\xi)\mu(d[a \times \theta \times 1]) \]
\[+ \int_{\xi_T(a, \theta, 0, S)} n^w(a, \theta, 0, \xi, S)G(d\xi)\mu(d[a \times \theta \times 0]) \]

(35)

Capital market clears so that the aggregate demand of capital equals to the total available assets in the economy.

\[\int_{a, \theta} \int_{a, \theta} k(a, \theta, S)G(d\xi)\mu(d[a \times \theta \times 0]) \]
\[+ \int_{a, \theta} \int_{a, \theta} k(a, \theta, S)G(d\xi)\mu(d[a \times \theta \times 1]) = \int_{a, \theta, \chi - 1} a\mu(d[a \times \theta \times \chi - 1]) \]

(36)

Definition of Equilibrium: A recursive competitive equilibrium is a set of functions: (i) wage \(w \), interest rates \(r \); (ii) Household allocations \(c(a, \theta, \chi - 1, \xi, S) \), \(a'(a, \theta, \chi - 1, \xi, S) \) and \(n(a, \theta, \chi - 1, \xi, S) \), occupational choices, and values \(v^0(a, \theta, \chi - 1, S) \); (iii) Entrepreneurial labor input \(l(a, \theta, S) \) and capital allocation \(k(a, \theta, S) \); (iv) The
evolution of distribution of households over states $\mu(a, \theta, \chi^{-1}, \cdot)$, such that

(1) $v^0(a, \theta, S)$ solves the individual problem and $c(a, \theta, \chi^{-1}, \xi, S), a'(a, \theta, \chi^{-1}, \xi, S),$ $n(a, \theta, \chi^{-1}, S, l(a, \theta, S)$ and $k(a, \theta, S)$ are the associated policy functions.

(2) Labor market, goods market, and capital market clear.

(3) The evolution of the distribution of households over individual variables, $\mu(a, \theta, \chi^{-1})$, is consistent.

2.3 Parameterization

One period in the model is a year. I identify entrepreneurs in this model as families headed by individuals who claim themselves as self-employed in the 2007 Survey of Consumer Finances (SCF). This empirical counterpart of entrepreneur is the same as in Cagetti and De Nardi (2009). I choose $\sigma = 1.5$ following standard practice. I set $\delta = 0.06$ to have an annual capital depreciation rate of 6% in steady state. Aggregate productivity follows a mean zero log $AR(1)$ process: $\log z' = \rho_z \log z + \epsilon_z$, with $\epsilon_z \sim N(0, \sigma^2_{\epsilon_z})$. I choose the persistence to be 0.859 and standard deviation to be 0.014 following Khan and Thomas (2013). Entrepreneurial ability θ evolves following a log $AR(1)$ process $\log \theta_{t+1} = \rho_e \log \theta_t + \epsilon_{e,t}$, with $\epsilon_e \sim N((1 - \rho_e) \log \mu_e, \sigma^2_{\epsilon_e})$. I pin down the three parameters $\mu_e, \rho_e, \sigma_{\epsilon_e}$ by targeting three moments in the data.

In sum, nine parameters are endogenously determined together by targeting nine moments in the data. I set $\beta = 0.936$ so that the steady state interest rate is 3.91%. I select $\tau = 0.44$ so that individuals in the economy work one third of the time. $\alpha = 0.32$ to generate a capital-output ratio of 2.4 in the steady state. $\nu = 0.82$ so that the richest 5% of population earns 24.01% of income. I choose $\lambda = 7.2$ to get an external finance to GDP ratio of 1.68. External finance in the model is the amount of capital that cannot be covered by entrepreneur’s assets (or internal funds). The upper bound of random fixed cost $\xi_U = 0.68$ so that entrepreneur takes up 12.61% of population in the steady state. The three parameters that determine the ability process are chosen to be $\mu_e = 0.50$, $\rho_e = 0.72$, $\sigma_{\epsilon_e} = 0.30$ so that in each period 19% of existing entrepreneurs exits to become workers, 2.74% of workers enters entrepreneurship and the median net worth of entrepreneurs is 6.62 times that of workers. As shown in...
Table 1, the model generated moments match the moments in the data well.

2.4 Steady State

In this section I describe the steady state properties of this economy. Figure 23 shows the expected discounted lifetime value function $v^0(a, \theta, \chi_{-1})$. Firstly, given entrepreneurial ability θ and history χ_{-1}, an individual’s expected lifetime value is increasing in his current asset a. The higher the asset holding, the higher his expected value will be. Secondly, holding asset a and history χ_{-1} constant, a person’s expected value is increasing in ability. Finally, given the same asset and ability, an individual with high ability has higher value when he is entrepreneur last period. In contrast, an individual with median or low ability has higher value when he is a worker last period. The difference in value caused by occupation switch is quite small because the fixed cost is a one period payment and thus has very small impact over individual lifetime value. The value function in Figure 23 implies that low and median individuals have higher value as workers while high ability individuals with sufficient assets have higher value as entrepreneurs.

It is worth noticing that high ability individuals with very small assets choose to become workers in order to accumulate assets as the value of them is higher as workers. If the asset level is very small, entrepreneurial production profits are very small even for high ability individuals. In this case, being workers give them larger value as labor income is much higher. Therefore, high ability individuals work to accumulate assets before they enter the production sector in the economy.

The expected return to asset, $E(R_{t+1}^a)$, can be written as follows

$$E(R_{t+1}^a) = 1 + r_{t+1} + \Gamma_{t+1} P_r(entrepreneur_{t+1}) \lambda \frac{\partial \pi(k, z, \theta, r, w)}{\partial k}$$

(37)

where $\Gamma_{t+1} = 1$ if the individual is constrained in the financial market at time $t + 1$ and $\Gamma_{t+1} = 0$ otherwise. $P_r(entrepreneur_{t+1})$ is the probability that an individual is an entrepreneur at time $t + 1$ and $\pi(k, z, \theta, r, w)$ is the entrepreneur’s profit as a function of (k, z, θ, r, w).

Equation (37) indicates that the expected return to asset can be higher than the
real interest rate, i.e. $E(R_{t+1}^a) > (1 + r_{t+1})$ if an individual can satisfy two conditions at the same time: (i) he is constrained in the financial markets next period, $\Gamma_{t+1} = 1$ and (ii) he has strictly positive possibility to become an entrepreneur next period, $P_r(\text{entrepreneur}_{t+1}) > 0$. Intuitively, the return to asset comes from two sources. One is the interest payments from depositing assets. The other is the expected increase in production profit that a constrained entrepreneur obtains next period. When entrepreneurs are constrained in the financial market, increasing saving a' allow them to raise capital inputs and profits. In contrast, increasing saving does not affect the profits of unconstrained entrepreneurs. Therefore, only individuals that satisfy conditions (i) and (ii) at the same time can have the second source of return.

The right panel in Figure 23 shows the asset decision rules of an entrepreneur. There are three important observations from it. Firstly, the two asset decision curves go across the zero point because an entrepreneur with zero assets cannot produce, receive no interest payment and hence has zero income. Thus he cannot save something out of nothing. Secondly, given ability θ, asset demand a' is increasing in the entrepreneur’s current asset. And given current asset a, an entrepreneur with high ability chooses higher asset next period. Notice that with higher asset or ability, production profit increases so that the entrepreneur has more resources to allocate between consumption and saving. Thirdly, a high ability entrepreneur’s asset decision rule is concave in asset a, while a low ability entrepreneur’s asset decision rule is flat around zero and then linearly increasing in a. As shown by Figure 23, a high ability entrepreneur with asset $a < 2.5$ is constrained in the financial market and hence have insufficient capital input. Labor input follows to be distorted and production profit is concave in asset a. Thus the entrepreneurial income is also concave in a and high ability constrained entrepreneur has concave asset decision rules. Low ability entrepreneur’s asset decision rule is flat around zero assets because they have little profits and choose not to save in order to have some consumption this period. In the steady state, no low ability and asset individual choose to be entrepreneur. Although a constrained high ability entrepreneur’s income is distorted downwardly by the financial frictions, he has a larger saving rate than that of an unconstrained high ability entrepreneur. The reason is because constrained high ability entrepreneurs
entrepreneurs with $a < 2.1$) satisfy condition (i) and (ii) and thus have higher expected returns to saving.

The left panel of Figure 23 shows the asset decision rule of the worker and four points can be raised. Firstly, given worker’s ability, the optimal future asset is increasing in current asset. Secondly, worker’s asset decision curves are slightly convex in asset a. This is because low asset workers satisfy conditions (i) and (ii) and thus have higher return to saving than workers with high assets. Thirdly, high ability workers with high assets save less than low and median ability workers because they have higher expected lifetime value/income which makes them consume more. In contrast, high ability workers with little assets save more than low and median ability workers with the same asset position out of precautionary purpose. Since ability is persistent, they save more assets which enable them to borrow more capital if they switch to entrepreneurs in future. Finally, workers’ asset decisions do not cross the zero point. Workers with no assets now can work for wages and save assets for next period for precautionary purposes. Even if ability is persistent, low ability workers still have small chances to become high ability next period. In that case, positive asset holding enables him to borrow capital and carry out production.

Figure 24 displays the invariant distribution of households in the steady state. The first graph is the distributions of households that are workers. Firstly, most of the median and low ability individuals are in this graph. In principle, it is optimal for low and median ability individuals to become workers since they are less efficient in managing production. Secondly, low ability individuals are not crowded at the zero asset point because of the precautionary savings motive/higher return to saving. Positive asset holdings enable them to borrow capital and carry out production in the case that they become entrepreneurs next period. The second graph of Figure 24 shows the distribution of entrepreneurs. Particularly, 98% of high ability households are entrepreneurs and 80% of the entrepreneurs hold assets $a < 4.8$. This indicates that the dispersion of production sizes is large but most productions are small scales.
2.5 Persistent Technology Shock

Suppose the economy is exposed to an unexpected negative technology shock so that productivity falls one standard deviation (2.73%) initially so that the measured TFP falls about the same size as in the data. After the shock takes place, all households in the economy have perfect foresight over the path of future aggregate productivities.

As shown in Figure 27, the decline in aggregate productivity leads to the decrease of the marginal product of labor (MPL) and the marginal product of capital (MPK). It follows that entrepreneurs demand less labor as MPL decreases. The decrease in productivity and labor input contribute to a 3.4% of initial decline in output. Real interest rate falls as the marginal product of capital declines. The decrease of MPK also leads to the initial decline of investment. In addition, the smaller real interest rate gives workers and entrepreneurs less incentive to save. Thus investment falls much more than the decrease in output while consumption does not decline as much.

Given that the inverse of intertemporal elasticity of substitution, $\sigma = 1.5$, the substitution effect dominates. Thus hours decline at the shock as shown in Figure 27. As investment falls, aggregate capital depreciates gradually which prolongs the decrease in output and consumption. The impulse response of external finance follows the ups and downs of aggregate capital in the shock as external finance is closely related with aggregate capital. The measure of entrepreneurs increases in the productivity shock after a small initial decline. The decrease of aggregate productivity leads to the decline of profits for all entrepreneurs. However, the value of being a worker also drops in the shock as wage and interest rate slump. In the first period, the large decrease in productivity makes production profits decrease sharply so that the difference between the values of workers to that of entrepreneur is slightly enlarged. As productivity starts to recover from period 2, the value of entrepreneur increases fast while the value of workers rises up slowly as wage and interest rate recover little by little. Therefore, the measure of entrepreneurs rises up to be higher than the steady state level in period 2.

The negative productivity shock generates fluctuations in the labor wedge. I define
labor wedge following the definition in Chari, Kehoe and McGrattan (2007)

\[
- \frac{U_t}{U_c} = (1 - \tau) \frac{(1 - \alpha) Y}{L}
\]

(38)

where \(\tau \) is the labor wedge. Equation (38) connects the firm labor decision and household labor behavior using the labor wedge. In Figure 27, the labor wedge is measured by substituting the aggregates generated by this model, \(\{K_t, L_t, Y_t, C_t\} \), to the utility function and production function in CKM (2007)\(^\text{46}\).

Figure 28 shows that the labor wedge, \(\tau_t \), rises up 0.8% initially and then gradually comes down to the steady state level. Figure 21 shows the empirical labor wedge measured using the U.S. annual data with the utility and production functions given in Chari, Kehoe and McGrattan (2007). As shown in Figure 21, the labor wedge increases 9.1% from 2007Q4 to 2009Q3 and then comes down gradually. Compare to the movements in the data, the labor wedge generated in the productivity shock does not fit the ups and downs of the empirical labor wedge well.\(^\text{47}\)

As productivity recovers gradually, households expect marginal productivity of capital and interest rate to increase and save more assets. Thus investment rises up fast. Capital depreciates until investment has recovered. The persistent decrease in productivity slows down the reversion of the MPK and output. The slow recovery of output and high investment are responsible for the prolonged decline in consumption.

As capital depreciates over time and productivity recovers slowly, the marginal productivity of labor increases gradually which account for the slow recovery of labor hours. After capital starts to increase after hitting the trough, the marginal productivity of labor increases faster and hours becomes the driving force of the economic recovery.

\(^\text{46}\)In CKM (2007), utility function is \(u(c, 1 - n) = \log(c) + \psi \log(1 - n) \) and production function is \(AF(K, L) = AK^\alpha L^{1-\alpha} \) where A is TFP. Labor wedge \(\tau_{\text{ckm}}^t = 1 - \frac{mrs}{mpl} = 1 - \frac{\psi CL}{(1-L)(1-\alpha)Y} \). I am consistent with them in parameter values \(\psi = 2.24 \) and \(\alpha = 0.35 \).

\(^\text{47}\)The reason why this model generates movements in the labor wedge in the productivity shock is explained in detail in the next section.
2.6 Negative Credit Shock

I consider the real effect of a temporary negative credit shock that unexpectedly decreases the coefficients of the collateralized constraint λ to 44% of its steady state level for three consecutive years. Households have perfect foresight over the path of λ once the shock takes place. I choose λ to decrease 44% in the shock to generate an initial decline of investment around 13% to match the size of the initial decline in investment in the negative productivity shock. Accordingly, the recessions in the negative productivity shock and the credit shock are comparable.

As shown in Figure 28, the persistent negative credit shock causes long lasting contractions in real economic activity. The unexpected tightening of the credit constraint reduces the maximum amount of capital that entrepreneurs can borrow in the financial markets. Consequently, the distortion of capital input becomes more severe in both extensive margin and intensive margin. Firstly, a larger fraction of entrepreneurs becomes constrained in the financial markets. Therefore, more entrepreneurs are producing with insufficient capital. Secondly, entrepreneurs who were constrained in the steady state are constrained more severely as they produce with capital far less than the optimal level for two reasons. On the one hand, tighter borrowing constraints greatly reduce the maximum amount of capital that entrepreneurs can borrow from the financial market. On the other hand, real interest rate and real wage decrease so that for each entrepreneur the optimal capital and labor input rises up in the shock. Thus constrained entrepreneurs are forced to produce with capital which is much further away from the optimal level.

The smaller borrowing capacity in the financial market causes the aggregate capital demand to decrease which puts downward pressure on real interest rate. On the other hand, constrained entrepreneurs’ capital inputs decline so much that their demand for labor also falls. Therefore, aggregate labor demand declines. The decreases in aggregate labor put downward pressure on prices so that real wage also decreases initially as shown in Figure 28.

As capital input is limited, the marginal productivity of capital (MPK) increases immediately at the shock. MPK and the real interest rate turn out to move in the
opposite direction due to the tightening of the credit constraints. The MPK and the real interest rate are related by the following equation.

\[f_k(z, \theta, k, l) = r + \delta + \frac{\mu_2}{\mu_1} \]

(39)

where \(\mu_1 \) is the Lagrange multiplier of the entrepreneurial budget constraint in equation (28) and \(\mu_2 \) is the Lagrange multiplier of the collateralized borrowing constraint in equation (29). When \(\lambda \) decreases at the shock, the collateral constraint is tightened so that \(\mu_2 \), which is the Lagrange parameter to the collateral constraint, increases significantly. The sharp increase of the ratio \(\frac{\mu_2}{\mu_1} \) turns out to be large enough to balance the decline in the real interest rate and the increase in MPK. Alternatively, the return premium, which is the difference between the MPK and the real interest rate, has been enlarged in the negative credit shock. This is consistent with the empirical evolution of the return premium for the U.S. economy during the 2007-2009 financial crisis as reported in Buera and Moll (2013).

External finance declines in the shock because the tightened credit constraint reduces the amount of capital that an entrepreneur can borrow given his asset \(a \). External finance reaches its trough in period 3 as capital depreciates gradually during the shock.

Output declines 3.0% in the first period and continues decreasing in period 2 and 3 with tighter credit. Investment declines 14% initially at the shock and remains 10% below steady state in period 2 and 3 because the low real interest rate gives households small incentive to save. Capital depreciates gradually until investment recovers in period 4.

Aggregate hours declined 1.4% initially at the shock and remains about 0.8% lower than the steady state level in period 2 and 3. In the model, aggregate labor hours stayed low throughout the three periods of tighter credit because of two reasons. Firstly, the distortion in capital causes entrepreneurs to decrease labor input. Since more entrepreneurs become constrained during the financial crisis, an increasing number of constrained entrepreneurs are forced to reduce capital input. Entrepreneurs with small assets, who are very sensitive to the credit market conditions, choose to
decrease labor input given insufficient capital. Secondly, workers choose to work less as wage falls given that the substitution effect dominates.

There are fewer entrepreneurs in the credit shock. The decrease in the measure of entrepreneurs is accomplished through the individual occupation options which allow endogenous entry into and exit from the production sector. Specifically, high asset high ability individuals enter production while low asset high ability entrepreneurs exit from the production sector. Since most individuals in the economy have small asset, the measure of exiting entrepreneurs outweighs the measure of entering entrepreneurs. Thus, the overall effect is the decrease in the measure of entrepreneurs. Empirically, the 2007 and 2010 Survey of Consumer Finance reports that the share of families that owns a privately held business has increased from 12% in 2007 to 13.3% in 2010. This does not conflict with the results here because each individual-specific technology in this economy corresponds to an establishment in the data. According to the U.S. Census Business Dynamics Statistics, the number of establishments experienced an average annual decline of 1.1% from 2008-2011.

The changes in the measure of entrepreneurs in the credit shock generate larger dispersion of the production sizes. On the one hand, the value of being a worker is generally smaller across asset positions during the crisis due to the smaller labor and asset income. On the other hand, the changes in the entrepreneurial value vary across asset positions in the credit shock. Holding asset a, ability θ and aggregate productivity z constant, an entrepreneur’s production profit is increasing in λ and decreasing in real interest rate r and wage w. Given that real interest rate, wage and the parameter λ all decline during the financial crisis, the change of an entrepreneur’s profit depends on his current asset position. For a high asset entrepreneur, he finds the profit increases during the financial crisis as his capital input is not influenced much by the worsened credit condition while his production cost declines greatly. It follows that the value of the high asset entrepreneurs increases in the credit shock. Thus the threshold fixed cost of the high asset individual increases, which indicates that high asset individuals have a larger probability to become entrepreneurs. For a low

48The entrepreneurial labor input must satisfy $l = \left(\frac{(1-\alpha)z^\lambda}{1-\alpha}w^\lambda k^\lambda \right)^{\frac{1}{1-\alpha}} - n$, where μ_3 is the Lagrangian multiplier of the labor market condition $l \geq 0$ and the Lagrange parameter $\mu_3 = 0$ as long as entrepreneurs hire $l \geq 0$. Thus, when the decline in capital k outweighs the decrease in wage w, labor input l declines.
asset entrepreneur, his capital input is very sensitive to the credit conditions and he is forced to decrease capital input during the shock. Thus his output and profit decreases greatly. It follows that his value of being entrepreneur v^e declines. Consequently, the decline in value v^e for entrepreneurs with little assets could outweigh the decline in the value of the outside option, i.e. being a worker, v^w. In this case, the threshold fixed cost falls and thus they have larger probability to exit from production and become workers. Given that most productions are small scale in the steady state, it implies that the dispersion of production scales increases during the negative credit shock.

More interestingly, the increase in the dispersion of production sizes is larger in the credit shock than that in the negative productivity shock. As shown in Figure 35, the coefficients of variation increases 38.1% in the credit shock while it only increases 4.9% in the productivity shock. The large increase in production dispersion is consistent with the empirical evidence in Bloom et al (2012) which suggests that the dispersion of firm growth rates increases 152% in the Great Recession. Since the credit shock generates a recession half as much as that in the data, the increase of the dispersion in the credit shock thus explains 50% of the increase in the data.

The negative credit shock can give rise to fluctuations in the labor wedge. The definition of the labor wedge is given in equation (38) in the previous section. During the credit shock, the labor wedge, τ_l, have a small decline in the first period and later rises up and peaks at 1.6% in period 3. It then gradually comes down to the steady state level. The movements of the labor wedge in the credit shock coincide with the ups and downs of the labor wedge in the data. As shown in Figure 21, the labor wedge increases during the Great Recession after an initial decline and then falls down after it peaks in 2009Q3. Since the model generated recession is half as much as in the data, the movements in the labor wedge in the credit shock explains about 35% of the movements in the data.

Why does this model generate movements of the labor wedge in the negative credit shock? Since tighter borrowing constraints force constrained entrepreneurs to produce with insufficient capital input, capital is distorted more severely in the intensive margin. Consequently, MPL is distorted downwardly as the decline in hours
is not sufficient to eliminate the distortion from capital. Therefore, the wedge between MRS and MPL is enlarged in the credit shock. The initial decrease of the labor wedge in the shock is because aggregate capital does not change in the first period while labor hour decreases so that the distortion in MPL becomes smaller than that in the steady state. As capital depreciates and labor hour increases, the labor wedge rises up and peaks in period 3. After the financial condition is restored, the labor wedge falls down gradually as capital recovers little by little over time.

Why does the negative productivity shock give rise to movements in the labor wedge as well? Although there is no change in financial condition in the productivity shock, capital is still distorted more severely in the intensive margin. Since the real interest rate and real wage decrease at the shock, the optimal capital and labor for each individual-specific production increase. Given that the credit constraints stay unaffected, capital allocation is distorted more severely in the intensive margin as constrained entrepreneurs are producing with capital that has a larger difference from the optimal level. Since the decrease in labor input cannot fully eliminate the distortion from insufficient capital, MPL is also distorted downwardly in the productivity shock and the wedge between MRS and MPL increases.

The endogenous productivity/measured Solow Residual decreases in the negative credit shock. The reason is because the misallocations in capital and labor distort production significantly, although the selection effect crowds out a small fraction of inefficient entrepreneurs. A growing literature also finds that financial shocks can cause losses of aggregate productivity. Leading examples are Khan and Thomas (2013) and Buera and Moll (2013).

As far as recovery is concerned, aggregate output, aggregate investment, aggregate labor hours and real interest rate all bounce back after the shock is over in period 4. However, as the collateral constraints are restored in period 4, MPK declines sharply which slows down the recovery of investment and the accumulation of capital. The increase in investment after period 4 and the slow recovery of output account for the long lasting trough in consumption. Moreover, the slow accumulation of capital is responsible for the persistent contractions in output, external finance and MPL.

Hours rise above the steady state level in period 4 when the borrowing constraints
are restored. On the one hand, hours increase as MPL is less distorted. Therefore, the production side demands more labor inputs. On the other hand, real wage bounces back after the shock is over. The dominating substitution effect makes workers to work more.

In sum, the credit shock shows good explanatory power over the Great Recession. It creates a persistent contraction in real economy activity and gives rises to movements in the labor wedge that explains about 35% of the movements in the data. The credit shock also leads to sharp increase of the dispersion of firm production sizes which can explain 50% of the increases in the data.

2.7 Conclusion

This paper studies the real effects of credit shocks in a quantitative general equilibrium model with heterogeneous entrepreneurs, variable employment and incomplete financial markets. Each individual in the economy values leisure and is heterogeneous in assets and entrepreneurial abilities. At the beginning of each period, individuals have to pay fixed cost if they switch occupation (entrepreneur or worker). The occupational choice creates endogenous entry into and exit from the production sector. Entrepreneurs produce consumption goods and take the profits, but they are subject to collateral borrowing constraints, which limit their capital input. Inefficiency arises as (1) high ability low asset entrepreneurs cannot borrow enough capital for production; (2) high ability individuals are prevented from production when they draw high fixed costs.

This model yields rich macroeconomic implications. I find that in the presence of heterogeneity in both individual assets and abilities, a negative temporary credit shock can generate a large and persistent contraction in real economic activity. In the credit shock, capital allocation is distorted more severely in both intensive and extensive margins. On the one hand, a larger fraction of entrepreneurs becomes constrained and produces with insufficient capital. On the other hand, capital allocation is distorted more intensively for two reasons. Firstly, tighter borrowing constraints force constrained entrepreneurs to produce with smaller capital inputs. Secondly,
the optimal capital and labor input increase in the credit shock as the real interest rate and real wage decline. Thus entrepreneurs can only produce with capital that is far less than the optimal. In addition, the dispersion of production scales increases greatly in the credit shock. High asset high ability workers, who are not affected much by the tighter credit, endogenously enter into the production sector to take advantage of lower prices and earn higher profits. In contrast, low asset entrepreneurs exit from production because their profits slump with severely distorted capital input. Finally, the credit shock itself can give rise to persistent increases in the labor wedge as marginal product of labor is distorted by the tightening of financial condition. Specifically, MPL is distorted downwardly as tighter borrowing constraints limit capital inputs and thus gives rise to a wedge between MRS and MPL.

Ohanian (2010) pointed out that a model that can explain the movements of the labor wedge in the data might be useful to understand the persistent high unemployment in the recent financial crisis. However, this paper finds that the labor wedge is not so informative about the distortions in the labor market because the negative credit shock experiment generates persistent high labor wedge as in the data, but it is the labor hours that drive the recovery of economy. This finding is consistent with the spirit in Buera and Moll (2013).
2.8 Tables and Figures

<table>
<thead>
<tr>
<th>Target moment</th>
<th>Model</th>
<th>Target</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Real interest rate</td>
<td>3.91</td>
<td>4.0</td>
<td>U.S. data</td>
</tr>
<tr>
<td>τ Average hours worked</td>
<td>0.33</td>
<td>0.33</td>
<td>U.S. data</td>
</tr>
<tr>
<td>α Capital-output ratio</td>
<td>2.4</td>
<td>2.3</td>
<td>U.S. data</td>
</tr>
<tr>
<td>ν Top 5 percent earnings</td>
<td>24.01</td>
<td>30.0</td>
<td>BS (2010)</td>
</tr>
<tr>
<td>λ External finance to GDP</td>
<td>1.68</td>
<td>1.75</td>
<td>BS (2010)</td>
</tr>
<tr>
<td>ξ_U Percentage of entrepreneurs</td>
<td>12.61</td>
<td>11.2</td>
<td>U.S. data</td>
</tr>
<tr>
<td>ρ_e Percentage of exiting entrepreneurs</td>
<td>19.02</td>
<td>22-24</td>
<td>BCD (2010)</td>
</tr>
<tr>
<td>σ_e Percentage of workers entering entrepreneurship</td>
<td>2.74</td>
<td>2.3-3</td>
<td>BCD (2010)</td>
</tr>
<tr>
<td>μ_{e} Median net worth of entrepreneurs to that of workers</td>
<td>6.62</td>
<td>6.5</td>
<td>U.S. data</td>
</tr>
</tbody>
</table>

Data source: NIPA tables and the Survey of Consumer Finance

Table 5: Model and Data generated moments
Data Source: NIPA tables and Fixed Asset tables

Figure 21: Macroeconomic Facts in the Great Recession
Figure 22: Empirical Wedges measured with the U.S. Quarterly Data.
Figure 23: Expected discounted lifetime value $v^0(a, \theta)$
Figure 24: Asset decision rules of a worker (left) and an entrepreneur (right)
Figure 25: Steady state production activities
Figure 26: Households distribution in the steady state
Figure 27: Negative productivity shock
Figure 28: Negative credit shock
Figure 29: Cross-Sectional Average Profits
Figure 30: Dispersion of Entrepreneurial Production Sizes
References

Appendix A: DATA

I generate Figure 1 using the following data between 1969Q1 and 2013Q1. Housing wealth is the market value of the household owner-occupied real estate including vacant land and mobile homes from the Flow of Funds Accounts of United States. Data on units of new residential construction started is from the U.S. Census Bureau between 1969M1 to 2013M3. I convert the monthly data into quarterly data by taking sum of the monthly data in a quarter. The house price index is from the Federal Housing Finance Agency (FHFA) quarterly all-transactions indexes which is available between 1975Q1 and 2013Q4. Mortgage debt is obtained from the Board of Governors historical database for one-to four-family residence. Housing foreclosure rate is reported in the National Delinquency Survey from 2004 to 2012 by the Mortgage Banker Association. Leverage is measured using real mortgage debt divided by real housing wealth. All real variables are obtained using GDP deflator which is measured using Gross Domestic Product (billions of dollars) from Table 1.1.5 divided by Real Gross Domestic Product (billions of chained 2005 dollars) from Table 1.1.6 of the Bureau of Economic Analysis.

For data that generates Figure 2, output is the Real Gross Domestic Product (billions of chained 2005 dollars) from Table 1.1.6 of the BEA. Consumption is Personal Consumption Expenditures less durable goods from Table 1.1.5 of the BEA. Business investment is the sum of durable goods and private nonresidential fixed investment from Table 1.1.5. Residential investment is also from Table 1.1.5. The real values of consumption and investment are calculated using the GDP deflator. Real GDP, consumption, business investment and residential investment are detrended using Hodrick-Prescott filter with a smoothing parameter of 1600.
from 1969Q1 to 2013Q1. Data on unemployment rate is from the Bureau of Labor Statistics. The Solow Residual is measured using data on private capital and hours. Private capital is the sum of private fixed assets and consumer durables from Fixed Asset Table 1.1 of the BEA. Hours data are those constructed by Cociuba, Prescott and Ueberfeldt (2012).
Appendix B: SOLUTION METHODS

B1: Consumption-Leisure-Savings Problem

Following Jeske, Krueger and Mitman (2011), household’s problem in this model can be transformed into the following consumption-leisure-savings problem

\[v(x, \epsilon) = \max_{c,g,n} u(c, 1 - n; p_a) + \beta \sum_{\epsilon'} \pi(\epsilon' | \epsilon) \omega(g', \epsilon') \]

subject to

\[c + g' = w\epsilon n + x \]

\[0 \leq n < 1, \quad g' \geq 0 \]

where \(\omega(g', \epsilon') \) is given by

\[\omega(g', \epsilon') = \max_{h', m', a' \geq 0} \int_{\delta}^{1} v(x', \epsilon') dF(\delta') \]

\[s.t. \]

\[x' = (1 + r')a' + \max \{0, p'(1 - \delta')h' - m'\} \]

\[g' = a' + (p - p_a)h' - m'p_m(m', h') \]

In order to solve the consumption-leisure-savings problem, I need to solve \(\omega(g', \epsilon') \) first. I call this optimization problem that solves \(\omega(g', \epsilon') \) the household portfolio problem. The portfolio problem is represented by equations (26)-(28) which involves selecting houses, financial assets and mortgage debt to maximize expected value.

B2: The Steady State
1. Building grid points for individual labor productivity, net worth \(x \) and net saving \(g \). I use 21 log-spaced points over \([0, 8]\) for \(g \), 25 log-spaced points over \([0, 8]\) for \(x \). I approximate the continuous AR(1) process for labor productivity with a 5 state Markov chain using the procedure in Tauchen and Hussey (1991).

2. Set the guesses of real interest rate \(r \) and real rental price \(p_s \).

3. Given \(r \) and \(p_s \), do the following to find the value function and optimal decision rules:

 (i) Set a guess for value function \(v(x, \epsilon) \)

 (ii) Solve the household portfolio problem and find \(\omega(g, \epsilon) \) for each \((g, \epsilon)\) on the grid.

 (iii) Solve the consumption-savings problem represented by equation (40)-(42) to update value function and find the optimal net saving \(g^* \) for each \((x, \epsilon)\) on the grid.

 (iv) Given \(g^*(x, \epsilon) \), find the optimal asset decision rules \(h^*(x, \epsilon), m^*(x, \epsilon) \) and \(a^*(x, \epsilon) \) using the decision rules solved in (ii).

4. Compute the steady state distribution of individuals over net worth, idiosyncratic productivity and default choice \(\mu(x, \epsilon, d) \).

 (i) I use 500 evenly spaced grid points over \([0, 8]\) for \(x \) and the same grid points chosen in step 1 for \(\epsilon \).

 (ii) Approximate the housing, asset, mortgage decision rules solved in Step (3) using splines. For households starting with \((x, \epsilon, d)\), use the decision rules to determine the cutoff depreciation rate \(\delta^* = 1 - \frac{m}{ph^*} \). Then \(1 - F(\delta^*) \) fraction out of \(\mu(x, \epsilon, d) \) defaults and \(F(\delta^*) \) fraction repay.

 (iii) For people starting with \((x, \epsilon, d)\), they have the same \(\delta^* \) and decision rules, but they might end up with different net worth next period since housing depreciation \(\delta \) draw is idiosyncratic. I simulate \(\delta \) draws for households at \((x, \epsilon, d)\) using Pareto distribution and calculate their future net worth \(x' \) correspondingly.

 (iv) Suppose future net worth is such that \(x_j \leq x' \leq x_{j+1} \) for a individual at \((x, \epsilon, d)\), where \(x_j \) and \(x_{j+1} \) are two adjacent net worth grid points. Then update \(\mu \) assuming that individuals at \((x, \epsilon, d)\) move to \((x_j, \epsilon', d)\) with probability \(\varphi \pi_\epsilon(\epsilon'|\epsilon) \) and to \((x_{j+1}, \epsilon', d)\) with probability \((1 - \varphi) \pi_\epsilon(\epsilon'|\epsilon) \), where \(\varphi = \frac{x_{j+1} - x}{x_j + 1 - x_j} \). Update \(\mu \) until it converges. The resulting \(\mu \) is the fixed point of household distribution \(\bar{\mu} \).
5. With $\bar{\mu}$, calculate aggregates in the economy and solve the production problems. Then check market clearing conditions. If rental market and consumption good market do not clear, update guesses of r and p_s and come back to step 3.

B3: Transitional Dynamics

The transitional dynamics is solved following three steps:

1. Start with steady state value function and solve the value function backwardly from $t = T - 1$ to $t = 1$
2. Start with steady state distribution, update the household distribution forwardly from $t = 1$ to $t = T$
3. Check the market clearing conditions in each period to update interest rate and rental price.

The length of time $T = 150$ in the negative productivity shock and $T = 160$ in the Great Recession Experiment and the Foreclosure Experiment. $T = 100$ in the depreciation shock experiment. Since households in this model are forward looking, they look at current as well as future prices to make decisions. When the period t prices are updated, they have impact over the markets in period $t - 1$ and t. Therefore, I use a small parameter 0.001 to update prices. The precision for value function $= 1.0e - 4$. Precision for household distribution $= 1.0e - 8$. Precision for market clearing conditions in the steady state and the transitional dynamics $= 1.0e - 3$. All other precisions $= 1.0e - 6$.

B4: Production Problem

First order conditions for consumption good sector:

\[
\begin{align*}
[K_c] & \quad \alpha z K_c^{\alpha - 1} N_c^{1 - \alpha} = r + \delta_k \\
[N_c] & \quad (1 - \alpha) z K_c^\alpha N_c^{-\alpha} = w
\end{align*}
\] (46) (47)
First order conditions for housing sector:

\[[N_h] \quad (1 - \nu)pzK^\nu_h N^{-\nu}_h = w \]
\[[K_h] \quad \nu pz K^{\nu-1}_h N^{1-\nu}_h = r + \delta_k \]

Equation (46) and (47) imply

\[w = \left(\frac{1 - \alpha}{\alpha} \right) \left[\alpha z \left(\frac{1}{r + \delta_k} \right)^{\alpha} \right]^{\frac{1}{1 - \alpha}} \]
\[\frac{K_c}{N_c} = \left(\frac{\alpha}{1 - \alpha} \right) \left(\frac{w}{r + \delta_k} \right) \]
\[\frac{K_h}{N_h} = \left(\frac{\nu}{1 - \nu} \right) \left(\frac{w}{r + \delta_k} \right) \]

Equation (48) and (49) imply

\[p = \frac{1}{z\nu} \left(\frac{\nu}{1 - \nu} \right)^{1 - \nu} \left(r + \delta_k \right)^\nu w^{1 - \nu} \]
\[\frac{K_c}{N_c} = \left(\frac{\alpha}{1 - \alpha} \right) \left(\frac{w}{r + \delta_k} \right) \]

Recall the labor market, capital market clearing conditions

\[K_c + K_h = \bar{K}, \quad N_c + N_h = \bar{N} \]

Together can solve

\[K_c = \frac{(1 - \nu) \bar{K} - \left(\frac{w}{r + \delta_k} \right) \bar{N}}{1 - \nu - \frac{1 - \alpha}{\alpha}} \]
\[K_h = \frac{(1 - \nu) \bar{N} - \left(\frac{w}{r + \delta_k} \right) \bar{K}}{1 - \nu - \frac{1 - \alpha}{\alpha}} \]

Using equation (50) and (52) can obtain

\[p = \frac{1}{\nu} \left(\frac{\nu}{1 - \nu} \right)^{1 - \nu} \left(\frac{1 - \alpha}{\alpha} \right)^{1 - \nu} \left(\frac{z}{r + \delta_k} \right)^{\frac{\alpha - \nu}{1 - \alpha}} \]
\[\frac{w}{r + \delta_k} = \alpha^{\frac{1}{1-\alpha}} \left(\frac{1}{1 - \alpha} \right) \left(\frac{z}{r + \delta_k} \right)^{\frac{1}{\alpha}} \]

(58)