Testing the Parasocial Phenomena

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts in the Graduate School of The Ohio State University

By

Kathryn L. Lookadoo

Graduate Program in Communication

The Ohio State University

2012

Thesis Committee:

Emily Moyer-Gusé, Advisor

Jesse Fox
Copyright by
Kathryn L. Lookadoo
2012
Abstract

Research on parasocial relationships (PSR) has primarily focused on its relation to media theories. However, the parasocial phenomena should be further examined through the lens of interpersonal communication due to PSR’s similarities to social relationships. This study tested the links between PSR and two interpersonal areas, the fundamental attribution error (FAE) and expectancy violations theory (EVT). Participants completed a two-part survey measuring their PSR with four television actors and their characters. The study also measured the FAE, information seeking about those actors, show viewing frequency, and need for cognition. In a 2 x 4 mixed experiment, participants completed expectancy violation measures after viewing the actors’ manipulated Twitter feeds featuring either neutral or negative statements. Results showed that strong PSRs with actors reduced the FAE, but the relationship was not moderated by information seeking nor viewing frequency. Conversely, strong PSRs with characters increased the FAE. Furthermore, need for cognition did not significantly reduce the likelihood of committing the FAE. Additionally, the experimental manipulation testing PSR’s relation to EVT failed to reach significance. In all, this research demonstrates the usefulness of exploring PSR through interpersonal theories and presents ideas for future avenues of research.

Keywords: parasocial, fundamental attribution error, expectancy violations, Twitter, celebrity
Dedication

Dedicated to my parents, Don and Marilyn, for their constant love and support.
Acknowledgements

I would like to thank my thesis committee members Drs. Emily Moyer-Gusé and Jesse Fox for their time and energy spent guiding and encouraging me in the completion of my thesis as well as all of my graduate school endeavors.

I would also like to thank my friends in the department who kept me sane and filled my days with laughter, my whole family for their encouragement, and Jim for his support and understanding.
Vita

May 2005 .. The Hockaday School

May 2009 ... B.A. Communication and Spanish, Trinity University

2010 to present Graduate Associate, The Ohio State University

Fields of Study

Major Field: Communication
Table of Contents

Abstract ... ii
Dedication .. iii
Acknowledgements .. iv
Vita .. v
List of Tables .. vii
List of Figures .. viii
Chapter 1: Introduction .. 1
Chapter 2: Literature Review, Hypotheses, and Research Question 4
Chapter 3: Method .. 18
Chapter 4: Results ... 26
Chapter 5: Discussion ... 30
References ... 38
Appendix A: Tables of Results.. 47
Appendix B: Figures of Results.. 51
Appendix C: Survey Given to Participants ... 54
List of Tables

Table 1. H2: Betas, t- and p-values depicting participants’ NFC impact on FAE……………………………………………………………………………………………………48

Table 2. H3a: Betas, t- and p-values depicting condition’s impact on expectedness of behavior……………………………………………………………………………………………48

Table 3. H3b: Betas, t- and p-values depicting impact of PSI with actor on expectedness of behavior moderated by condition…………………………………………………………49

Table 4. H3c: Betas, t- and p-values depicting the interaction between PSI with an actor and information seeking impact’s on expectedness of behavior (in the negative condition).…………………………………………………………………………………………………49

Table 5. RQ 1: Uses for Twitter on a 5-point (1=strongly disagree to 5=strongly agree) scale………………………………………………………………………………………………50
List of Figures

Figure 1. Hypothesis 1a (controlling for PSI with character)……………………………………52
Figure 2. Hypothesis 1b (controlling for PSI with character)……………………………………52
Figure 3. Sample stimuli used for Leighton Meester manipulation ……………………65
Figure 4. Sample stimuli used for Hugh Laurie manipulation…………………………66
Figure 5. Sample stimuli used for Jim Parsons manipulation ……………………66
Figure 6. Sample stimuli used for Sandra Oh manipulation…………………………67
Chapter 1: Introduction

Within the field of communication, interpersonal and mass communication theories have developed in strong but mostly separate subfields (Nabi & Oliver, 2010). As we continue to study these areas, integrating the two subfields and cross-testing their respective theories would enrich the field of communication as a whole. Parasocial phenomena present a potential area to follow through with the application of interpersonal theories to mass communication. Scholars have noted the similarity between parasocial and social relationships (Auter & Palmgreen, 2000; Giles, 2002), thus indicating a well-suited area to integrate interpersonal and mass communication.

Attribution theory and expectancy violations theory (EVT) serve as two established interpersonal theories that can help enhance our understanding of parasocial phenomena.

When consuming media, it is possible for audience members to form an attachment to or relationship with the character, media personality, or actor. This mediated interaction or relationship, referred to as parasocial phenomena, can influence the viewers’ enjoyment of the media text and potentially affect their attitudes and behaviors (Greenwood & Long, 2009). Parasocial phenomena have been found to occur with soap opera characters (Perse & A. M. Rubin, 1987), news anchors (A. M. Rubin, Perse, & Powell, 1985), television shopping hosts (Grant, Guthrie, and Ball-Rokeach, 1991), comedians (Auter, 1992), actors (J. Cohen, 2004), and other mediated personality
types (Giles, 2002). As this parasocial relationship with a media figure develops, an audience member can come to feel as if he or she intimately knows or understands the media figure (Cortese & A. M. Rubin, 2010).

Although media consumers may feel like they understand an actor to whom they parasocially relate, sometimes they make errors in assessing the actor’s personality. Viewers may believe that the personality traits of fictional characters match those of the nonfictional actor playing the character (Tal-Or & Papirman, 2007). This psychological phenomenon of misattribution, known as the fundamental attribution error (FAE), impacts the perceived relationship a media consumer constructs with the media figure. It causes the media consumer to blend the character and actor traits together, creating a potentially skewed view of the actor and misinformed expectations about the actor’s behavior. Given this, what happens to the parasocial relationship when an actor violates a media user’s expectations? Research has yet to thoroughly explore this area (Tal-Or & Papirman, 2007).

Twitter presents a realistic context in which to study the parasocial phenomena and expectancy violations theory. Traditionally, researchers study the parasocial phenomena through audience members’ interactions with characters formed through media (television specifically). However, growing social media outlets like Facebook and Twitter present methods of strengthening and maintaining parasocial relationships. Through these platforms, fans can interact with media figures at any time of the day. Since its launch in August 2006, Twitter has become a popular web-based social network used by the general public as well as companies, media outlets, politicians, and celebrities (Greer & Ferguson, 2011). By the end of 2010, Twitter had more than 175 million users...
(Hargittai & Litt, 2011). Celebrities tend to be the most popular “tweeters,” garnering a lot of attention from those that follow them (“The top 100 most followed on Twitter,” 2011). Because Twitter allows actors to express themselves whenever and however they choose, it is possible for information to be tweeted that counters the personality of the characters they play.

This study will focus on people’s misattributions, or fundamental attribution errors (FAE) about popular actors and the characters they play. These FAEs shape people’s expectations about actors’ personalities and behaviors, but what happens when these expectations are violated? This study will focus on specific expectancy violations committed by an actor via Twitter and how a person’s parasocial relationship with that media figure impacts their reaction to the violation. This work will extend the application of attribution theory and EVT within mass communication literature and further improve our understanding of parasocial phenomena.
Chapter 2: Literature Review, Hypotheses, and Research Question

Twitter

Twitter is a real-time, microblogging social network in which authors (or “tweeters”) share posts (“tweets”) of 140 characters or less which can include text and links to websites or pictures (“About Twitter,” n.d.). Twitter users create a username and a profile page that displays user information (including a picture, location, and a brief note) and past tweets with those that are most recent at the top of the profile. When a user “follows” someone that means the user has elected to receive that person’s tweets on the user’s Twitter home page (“What is following?,” n.d.). Following does not have to be reciprocal. A user can follow someone without being followed by that person. This is a common occurrence with celebrity tweeters; a fan will follow a celebrity, however the celebrity may or may not follow the fan’s Twitter. Twitter’s default setting is to make content public, but a user can privatize his or her profile so that people must request and then be approved to follow the user (“What is following?,” n.d.).

Presently, approximately 13 percent of online U.S. American adults use Twitter (Smith, 2011). Among young adult users, ages 18-24, research shows that interest in entertainment and celebrity news is a strong predictor of Twitter adoption (Hargittai & Litt, 2011). Part of the appeal of following celebrities on Twitter is the sense of a more direct and intimate access to that person (Marwick & Boyd, 2011). Currently, the most
popular Twitter accounts are those of celebrities and public figures with Lady Gaga, Justin Bieber, Katy Perry, Kim Kardashian, and Barak Obama comprising the top five most followed accounts (“The top 100 most followed on Twitter,” 2011). Because Twitter allows celebrities to talk about their work and personal lives at any point in the day, it can help celebrities develop a feeling of closeness and familiarity with their followers. By posting pictures and links within their tweets, celebrities can expand upon this pseudo-relationship.

Parasocial Phenomena

In 1956, Horton and Wohl first introduced the concept of parasocial interaction (PSI), which has since been studied in multiple communication subfields such as computer-mediated communication (Ballantine & Martin, 2005) and health communication (Brown & Basil, 2010). Horton and Wohl used PSI to describe how mass media users interact with media characters, “personae,” as if they are engaging in an interpersonal, social exchange (Auter & Palmgreen, 2000). This engagement can involve affective, behavioral, and cognitive responses during the viewing process (Rosaen & Dibble, 2008). Examples include sympathizing with personae, verbally responding to characters, and rationalizing and predicting characters’ actions respectively. As users develop a sense of familiarity through PSIs and feel as if they understand the persona intimately, a parasocial relationship (PSR) with a media persona develops (Chory-Assad & Yanen, 2005).

Some researchers often refer to these closely related phenomena interchangeably, however parasocial interactions and parasocial relationships are distinctly different (Schramm & Wirth, 2010). Parasocial interaction is the process that occurs while
consuming media; whereas a parasocial relationship describes the pseudo-interpersonal relationship a person holds with a persona outside the interaction process (Schramm & Hartmann, 2008). Essentially, a PSI describes a momentary event, whereas a PSR is a long-term interaction that continues after media exposure.

Parasocial phenomena and social relationships

As this pseudo-friendship unfolds, it mirrors the process of forming real life relationships and often exhibits psychological characteristics of social relationships (R. B. Rubin & McHugh, 1987; Derrick, Gabriel, & Hugenberg, 2009). Parasocial research notes that the parasocial phenomenon relates to interpersonal relationship concepts like perceived homophily (Turner, 1993; Schiappa, Allen, & Gregg, 2007), social attraction (R. B. Rubin & McHugh, 1987; Tian & Hoffner, 2010), and empathy (R. B. Rubin & A. M. Rubin, 2001). The idea of homophily explains that people are drawn to develop relationships with others who share similar attitudes and background (Turner, 1993; Alperstein, 1991). Thus, media viewers will more likely develop PSRs with media figures who are similar to themselves. Social attraction or likeability also contributes to the relationship development (R. B. Rubin & McHugh, 1987). Additionally, research shows that empathy—a person’s affective, often concordant response to another person’s emotion or situation—plays a role in both parasocial and social relationships (Derrick et al., 2008). According to Klimmt et al. (2006), empathetic reactions are the primary emotional reaction type occurring in a parasocial interaction. Although parasocial and social relationships have similarities, parasocial relationships are weaker than social relationships because they only “create the illusion of intimacy at a distance” (Ballantine
& Martin, 2005, p. 186). However, the growth of social media could play a role in decreasing this distance.

Parasocial relationships’ connection to media

Traditionally, most research on parasocial relationships has focused on the television medium (Giles, 2002). But, the televised media persona’s lack of self-disclosure with the PSI restricts the unidirectional interaction from becoming truly interpersonal (Schiappa et. al, 2007). Media figures can develop and strengthen the parasocial relationship however, by using certain strategies and methods. For instance, media figures can break the “fourth wall” (i.e. the barrier between the media figure and the audience) by directly addressing the audience, which positively impacts the relationship (Auter, 1992; Cortese & A.M. Rubin, 2010). Through this and other techniques such as close-up shots and actors’ gestures, media figures attempt to provide media users with the sense that they intimately know them (R.B. Rubin & A. M. Rubin, 2001; J. Cohen, 2004).

Social media platforms can serve as additional and distinct tools to potentially impact the parasocial relationship between media figures and media users. Twitter presents a way for celebrities to interact directly with fans, further dismantling the “fourth wall” and providing more immediate access via real-time tweeting. Popular actors, singers, politicians, and even fictional characters can have large followings as celebrity tweeters (“The top 100 most followed on Twitter,” 2011). Celebrity tweeters have the option to directly respond to fans’ tweets however this action does not occur regularly (Marwick & Boyd, 2011). Often, celebrities tweet more intimate details about their lives
than can be found in other media sources, post personal pictures, and give their own opinions on issues (Kassing & Sanderson, 2010; Marwick & Boyd, 2011).

Celebrities are becoming more careful about what they tweet due to the potential impact their opinions can have. For instance, Ashton Kutcher, a popular presence on Twitter, turned control of his Twitter account over to his management team in November of 2011. This was in response to a controversial tweet he posted protesting the firing of Penn State football coach Joe Paterno that sparked outrage (Ettus, 2011). It is not uncommon for celebrities to allow their management or public relations team to either tweet on behalf of the famous individual or else approve the tweets prior to the celebrity posting them to skirt potential issues (Marwick & Boyd, 2011). This indicates the potential power and pervasiveness of a single celebrity tweet.

Horton and Wohl (1956) noted that a person can end parasocial relationships, like social relationships, if he or she becomes unsatisfied with the relationship. However, most research on parasocial relationship dissolution focuses on involuntary break-ups with personae such as when a television series goes off the air (J. Cohen, 2004; Eyal & J. Cohen, 2006; Lather & Moyer-Gusé, 2011). Although E. Cohen (2010) has examined voluntary parasocial break-ups, there is a need to explore this area further.

Fundamental Attribution Error

The parasocial phenomena can have a strong impact on how media users perceive actors. Because the development of parasocial relationships reflects that of social relationships, interpersonal communication theories and concepts enhance our understanding of the parasocial phenomena. With regard to audience perceptions of an actor, attribution theory presents relevant ideas.
An attribution is defined as a personal explanation about the causes of another’s social actions (Manusov, 2001). People engage in attribution processes to create impressions when first meeting someone and subsequently, when forming a relationship with that person (R.B. Rubin & A. M. Rubin, 2001). Attribution theory suggests that people are motivated by a psychological need for information, meaning that individuals attempt to explain and predict their social environment by attributing others’ behaviors to either dispositional (internal) or situational (external) factors (Heider, 1958). However, people are often biased when making these attributions (Nisbett & Ross, 1980; Tal-Or & Papirman, 2007). One such bias, the fundamental attribution error (FAE), occurs when a person attributes another’s behavior to dispositional elements and underestimates the potential situational explanation for the actions (Nisbett & Ross, 1980). Fundamental attribution error is related to the concept of correspondence bias however; most of the research in parasocial phenomena has talked about this in terms of fundamental attribution error (Tal-Or & Papirman, 2007).

In 1967, Jones and Harris published one of the first experiments documenting the FAE. Participants read essays that either supported or opposed Fidel Castro’s presidency in Cuba. The experimenters told the participants either that the writer freely expressed his or her attitudes about Castro or had been told to espouse a particular opinion that may or may not have aligned with his or her own. When asked to speculate on the writers’ actual opinions about Castro, participants in both the free-attitude and forced-attitude conditions inferred that the attitudes in the essay reflected the writers’ actual positions. The results for the forced-attitude condition were surprising because the participants knew that the essay writers were instructed to take a particular stance on Castro. In judging the writer,
the participants evaluating this condition committed the fundamental attribution error by attributing the behavior to dispositional factors, despite the presence of a situational constraint. Other studies have also documented people’s propensity to ignore situational factors (e.g. Ross, Amabile, & Steinmetz, 1977).

Most research on attribution theory and FAE falls in the realm of social relationships, however efforts have been made to go beyond the interpersonal realm. A. M. Rubin and R. B. Rubin (2001) have linked attribution to parasocial interaction by suggesting that people who relate parasocially with a character make attributions about his or her actions. Tal-Or and Papirman (2007) have recently extended FAE to the audiovisual medium and found that viewers tend to attribute an actor’s onscreen portrayal of a character to the actor’s personality (dispositional) rather than the script the actor follows (external). Media viewers’ tendency to blend the traits of the actor with the character played by the actor, impacts their perception of the actor and expectation of the actor’s behaviors. Taken together, these findings support the utility of extending the FAE to the parasocial realm.

Causes of the Fundamental Attribution Error

Researchers have yet to fully understand the causes and consequences of the FAE (Gilbert & Malone, 1995). Scholars suggest there are four stages or mechanisms of the FAE however, the two that are most central to parasocial phenomena are (a) lack of awareness of situational constraints and (b) incomplete corrections (Gilbert & Malone, 1995; Gawronski, 2004).

When people commit the FAE due to their lack of awareness of situational constraints, they do not realize that situational forces are impacting the other’s behavior.
This cause of the FAE suggests that the observer does not understand, overlooks, or ignores the situation. Because the situational factors are not obvious to the observer, he or she then makes dispositional attributions based on the observed person’s behavior (Gilbert & Malone, 1995). This invisibility parleys into parasocial relationships with an actor because the media viewer cannot see the script from which the actor is acting. Even though the viewer most likely understands that a script is directing the actor’s words and behavior, because it is invisible viewers forget that the actor is following to the script and attribute the character’s actions to the personality of the actor.

Additionally, even if an observer remembers the actor is following a script, he or she still may commit the FAE by misconstruing the character’s attitudes for the actor’s internal attitudes. This construal problem is similar to that which occurred in the Fidel Castro experiment (Jones & Harris, 1967). Even though the participants knew the essayist in the forced-attitude situation was instructed to voice a particular attitude, they attributed that attitude to reflect the essayist’s own opinion.

The second cause of the FAE related to parasocial relationships is incomplete corrections. The FAE can occur when observers “lack either the motivation or the capacity to correct trait inferences they may have spontaneously and effortlessly made.” (Gilbert & Malone, 1995, p. 30). Gilbert, Pelham, and Krull (1988) suggest that when people try to understand another person, they first identify the other’s behavior. Secondly, they infer actions based on dispositional factors or personality traits. Thirdly, they then check these inferences with the situation to see if the person’s behavior matches and can be attributed to situational rather than dispositional factors. The first two steps are resource efficient but the third is less so. People only consider the situation and
change their attribution if they are paying enough attention. Therefore if people are unable or unwilling to devote enough cognitive resources to step three, they just rely on the inferences of step one and two, thus making them more likely to commit the FAE (Gilbert & Malone, 1995). Additionally, those high in need for cognition are less likely to commit the FAE because they are more motivated to process information (D’Angostino & Fincher, 1992; Tal-Or & Papirman, 2007).

Connecting FAE with Parasocial Relationships

Although scholars have made strides in connecting the FAE to media viewing, researchers have not specifically looked at the fundamental attribution error in terms of parasocial relationships. Tal-Or & Papirman’s (2007) study examined the FAE after participants’ brief exposure to a television character and found that viewers attributed an actor’s behavior in a television drama to internal characteristics (personality), rather than external characteristics (following a script). Additionally, the researchers found that viewers still committed the FAE after seeing one actor in multiple roles; the last scene or role viewed determined the assessment of the actor’s characteristics. To build on this work, the present study observed how participants’ extended contact with and increased knowledge of a popular television character (via a parasocial relationship) might impact the attributions made about the actor based upon the fictional character he or she plays. Because this relationship between FAE and parasocial phenomena has not been fully explored, two opposing hypotheses are posed. The first hypothesis is advanced based on the idea of incomplete corrections associated with the FAE (Gilbert & Malone, 1995). Viewers who have a weak parasocial relationship with an actor are more likely to commit the FAE (make attributions about the actor based on his or her character). Due to their
weak parasocial relationship with the actor, the viewers are less likely to be motivated to
search for more information about the actor. This lack of motivation contributes to the
viewers’ maintaining their original attributions about the actor and rather than correcting
them, thus maintaining the FAE.

H1a: PSR with an actor will be positively associated with information seeking
about the actor which will, in turn, decrease the likelihood of committing the
FAE.

Alternatively, a person with a strong parasocial relationship with an actor may be
more likely to demonstrate the FAE than someone with a weak PSR. A possible reason
for this is that a PSR with an actor leads to someone more frequently viewing the actor’s
television show. Because the viewer watches the actor so much in character, it could be
difficult for the viewer to separate the actor from his or her character, which would lead
to the FAE.

H1b: PSR with an actor will predict increased exposure to the actor’s character on
television which will, in turn, increase the likelihood of committing the
FAE.

Need for cognition could also influence the relationship between PSR and FAE.
Researchers have noted that those high in need for cognition are more motivated to
process information, which causes them to be less likely to commit the FAE
(D’Angostino & Fincher, 1992; Tal-Or & Papirman, 2007). Based on this, the following
hypothesis is advanced.

H2: Individuals high in need for cognition will be less likely to commit the FAE,
regardless of the strength of the parasocial relationship.
Expectancy Violations

When expectancy violations theory (EVT) was first introduced into the communication field, scholars used it to explain people’s expectations about others’ nonverbal behaviors and their reactions to behaviors that violated expectations (Burgoon, 1978). Expectancy violations theory has moved beyond nonverbal actions to look at verbal transgressions in relationships (Afifi & Burgoon, 2000). Research on EVT in interpersonal relationships is based on the assumption that individuals center their close relationships on shared expectations of the other’s behavior (Planalp & Rivers, 1996). Over time, these relationship expectancies develop as individuals observe others’ behaviors in various situations, learn to generalize those actions, and respond accordingly in future circumstances (Burgoon & Hale, 1988). Thus, how individuals process information about another’s behavior is greatly influenced by those individuals’ expectations of that behavior (Burgoon, 1993). Actions that deviate from these expectations result in expectancy violations (Burgoon & Hale, 1988).

When expectancy violations occur, EVT predicts that a person evaluates the violation and the violator in order to gain understanding (Guerrero & Bachman, 2010). The valence and reward value of the violation impacts his or her response to the expectancy violation. The valence of the message discrepancy can be either positive or negative. A positive expectancy evaluation exceeds the expectation of the interaction whereas a negative expectancy evaluation disappoints initial expectations (Guerrero & Bachman, 2010). Reward value determines how favorably or unfavorably someone
values the expectancy violator in the relationship (Burgoon, Floyd, & Guerrero, 2010). According to EVT, people with high reward value have more flexibility in violating expectations (Le Poire & Burgoon, 1996). This means that people high in reward value can violate expectancies negatively to some degree and yet still maintain positive evaluations (Burgoon et al., 2010).

The communicator, the relationship, and contextual characteristics influence the development of expectancies (Burgoon, 1993; Johnson & Lewis, 2010). Communicator characteristics include demographics such as biological sex and personality traits such as verbal aggression (Johnson & Lewis, 2010). Relationship characteristics could involve variables like level of intimacy within the relationship or length of relationship. The more individuals know each other, the better they can predict the others’ behavior (Burgoon & Hale, 1988). With parasocial phenomena, this knowledge of a persona would be strengthened by outside information search and multiple viewings of the persona on different news and media outlets. Finally, contextual characteristics pertain to issues unique to the situation or others involved in the interaction. In the case of parasocial relationships, contextual characteristics could include the program viewed or the medium promoting the PSI. For the purpose of the current study, EVT is examined by violating expectations through mock-tweets of four television actors. The actors were chosen based on their stark contrasts with the characters they play and the potential for participants’ wide range of familiarity and parasocial relationships with the actors. The study will place participants in one of two conditions (neutral or negative). In the neutral condition, participants will read tweets by the actors designed to not violate expectancies. Conversely in the negative condition, the tweets are intended to be negatively valenced
and conflict with the actors’ actual personalities by sounding more like the characters the actors portray. The reasoning behind this disparity between the tweets and the actors’ personalities is that participants holding stronger PSRs with each actor will be more surprised by the violation because the tweet does not align with the actor’s personality, with which they are familiar.

According to this information on expectancy development, I propose the following hypotheses.

H3a: The negative violation condition will lead to less expectedness of behavior than will the neutral condition.

H3b: The strength of the relationship between PSR and expectedness of behavior will be moderated by condition so that those in the negative violation condition who also have high PSR will demonstrate less expectedness of behavior.

H3c: The strength of the relationship between PSR and expectedness of behavior will be moderated by outside information seeking about the actor.

Relationships are built on different expectations; therefore violations differ across relationships, as do reactions to those violations. Relationships that are more voluntary, replaceable, and self-supporting are more susceptible to damage from expectancy violations (Blieszner & Adams, 1992). Logically parasocial relationships are more vulnerable than social relationships because of their one-sided nature and ability to be replaced more easily than social friendships (E. Cohen, 2010). However, when compared within the parasocial realm, PSRs with different persona differ in strength and ease of replacement.
Uses and Gratifications

Parasocial research employs the framework of uses and gratifications to explain how PSR is an important gratification sought and/or obtained by media users (Auter, 1992). As Giles (2002) explains, PSI is seen as a good predictor of television use. Thus, parasocial relationships could also be good predictors of social media use in terms of monitoring celebrities. Johnson and Yang (2009) found through the uses and gratifications approach that Twitter is used primarily as an information source (e.g., participate in discussion, gather information, learn interesting things, meet new people, and share information or advice). However, these scholars did not have a specific focus on the uses and gratifications people sought by following famous people on this medium. Potentially, people could use Twitter as a way to gather more information about celebrities, characters, and other people to strengthen their parasocial relationships. In order to gain an enhanced perspective of the motivations for following celebrities, the following research question is advanced:

RQ1: What are the uses and gratifications for following celebrities on Twitter?
Chapter 3: Method

To assess the influence of parasocial relationships on the fundamental attribution error as well as their impact on expectancy violations, individuals completed an online 2 (no violation, negative expectancy violation) x 4 (actor) mixed experiment. The experiment involved participants completing a survey and reading tweets from four popular television actors’ Twitter pages designed for this study to test expectancy violations. Participants were randomly assigned to one of two conditions (neutral or negative).

Participants

Participants were recruited from undergraduate communication courses at a large Midwestern university and received extra credit in exchange for their participation. A total of 421 individuals completed the pre-test. However demographic information was only collected in the post-test, which was completed by 287 participants (99 male, 188 female) between the ages of 18 and 36 ($M=21.31$, $SD=2.426$). Over two-thirds of the respondents (76.3%) identified themselves as Caucasian, 9 % identified as African Americans, 10.1% identified as Asian or Pacific Islander, 3.14% identified as Hispanic, 1.39% identified as Native American, 1.74% identified as multiracial, and 2.44% reported their race or ethnicity as “other.”
Procedure

All data were collected in May of 2012. The participants completed the two portions of the experiment via Qualtrics, an online survey program, on computers of their choosing. Each portion took approximately 20 minutes to complete. Participants accessed the pre-test of the survey through a link in the study recruitment form. Two days after completing the pre-test, each participant was emailed through the survey system and asked to take the post-test of the study. The pre-test survey asked questions about four specific characters on current television shows while the post-test asked about the actors who played those characters. The selected actors (and their characters/TV shows) were as follows: Leighton Meester (Blair Waldorf/*Gossip Girl*), Hugh Laurie (Gregory House/*House*), Jim Parsons (Sheldon Cooper/*The Big Bang Theory*), and Sandra Oh (Christina Yang/*Grey’s Anatomy*). These actors were selected because their personalities are distinctly different from their characters, which aided the point of the experiment and development of stimuli. Selection was also based on the potential familiarity participants had with the characters and actors and the wide range of participants’ PSI strength with the actors and characters.

Individuals who participated in the post-test were randomly assigned to one of two conditions (neutral or negative) and read tweets in a randomized order off of the four actors’ mock-Twitter feeds designed to test expectancy violations. In the neutral condition, individuals read only tweets that were generic and neutral in nature. These neutral tweets were interchangeable among the actors and were designed to elicit no expectancy violation from participants. Conversely, participants in the negative condition read tweets with a negative valence that violated social expectations (i.e. made offensive,
disrespectful, or inappropriate comments). The negative violations were not interchangeable. Each was designed to be more similar to each character played by the actor rather than the actor. The character-specific tweet was meant to present a harsh distinction to the actor’s actual personality. Thus, people familiar with the actor should be surprised by this negative violation appearing on the actor’s Twitter page, whereas those only familiar with the character should indicate a smaller violation.

See Appendix C for the phrasing of the stimuli, which differ by actor and valence. The stimuli were presented as if they were published on the actors’ actual Twitter pages. The left side of the Twitter page included the actor’s profile picture and username. The middle of the page featured the newsfeed of his or her most recent tweets however all were blurred with the exception of the tweet designed for the study. The actual Twitter names were used for Leighton Meester and Hugh Laurie who had verified Twitter accounts.

Pre-test

Two days prior to viewing the stimuli and completing a post-test survey, respondents completed a pre-test survey via Qualtrics. Respondents were asked to fill out parasocial scales for the four characters played by the actors used in the stimuli. Additionally, respondents completed measures to assess their FAE with each character, their television show viewing frequency, need for cognition, and Twitter usage. Participants were only asked about the characters in the pre-test to avoid telegraphing the point of the study. Additionally, the pre-test preceded the post-test by two days to further reduce the likelihood that participants would remember completing measures specifically about character.
Pre-test measures

Parasocial Relationship As mentioned previously, researchers often do not distinguish between PSI and PSR. This study investigated PSR as we are interested in the media user-figure relationship that extends beyond the viewing process. However, PSR was measured using the Parasocial-Interaction-Scale (Rubin & Perse, 1987). Despite its name, this scale was selected because its questions actually measure PSR more so than PSI (Schramm & Hartmann, 2008). Additionally, researchers have used the scale to test PSR in the past (Cohen, J., 2004). Each participant completed this measure using A. M. Rubin and Perse’s (1987) 10-item, 5-point parasocial interaction scale (Blair Waldorf: $\alpha=.92; M=2.96; SD=.71$; Gregory House: $\alpha=.92; M=3.10; SD=.66$; Sheldon Cooper: $\alpha=.92; M=3.08; SD=.70$; Christina Yang: $\alpha=.92; M=3.05; SD=.70$). Respondents were asked to focus on the character and express their agreement with statements like *XX makes me feel comfortable, as if I am with a friend.*

FAE Traits Participants indicated the perceived traits of each character on a modified version of Tal-Or and Papirman’s (2007) 7-point semantic differential (reverse coded) scale of characteristics (and their opposites): Social, pleasant, has warm feelings, and polite (Blair Waldorf: $\alpha=.67; M=4.45; SD=.89$; Gregory House: $\alpha=.81; M=3.03; SD=1.12$; Sheldon Cooper: $\alpha=.75; M=3.87; SD=1.07$; Christina Yang: $\alpha=.85; M=4.22; SD=1.12$).

Frequency and familiarity Participants noted their viewing frequency of each of the four television series by reporting how often they watch each show on a 6-point *more than once a week to I don’t watch this show* (reverse coded) scale (Gossip Girl:
$M=2.00; SD=1.51; \text{House: } M=2.59; SD: 1.45; \text{The Big Bang Theory: } M=2.90; SD: 1.84; \text{Grey’s Anatomy: } M=2.36; SD: 1.56$).

Need for cognition Need for cognition was measured using Cacioppo, Petty, and Kao’s (1984) 18-item 5-point *extremely uncharacteristic of me* to *extremely characteristic of me* scale ($\alpha=.87$, $M=3.26$, $SD=.59$).

Twitter use Participants completed a series of questions concerning Twitter use. Individuals indicated how often they recalled seeing tweets in places other than Twitter on a 7-point *less than once a month* to *more than twice a day* scale ($M=4.21$, $SD=1.88$). Participants also reported if they had a Twitter account (76.4% were on Twitter, 6.4% used to have a Twitter account, 17.1% did not have an account). Those who own or owned a Twitter account indicated how often they used Twitter and their reasons for using Twitter on a 5-point *strongly disagree* to *strongly agree* scale. To increase the accuracy of individuals’ assessments of their Twitter use, respondents read a prompt adapted from Fox, Warber, and Makstaller’s (2012) work on Facebook use.

Post-test

Two days after finishing the pre-test, all participants were asked to fill out the post-test survey (287 did so). Participants completed parasocial and FAE measures for the actors. Individuals were then randomly assigned to either the neutral or negative violation condition and exposed to the stimuli. After viewing the stimuli, participants rated the expectancy violation for each actor. Questions designed to obscure the purpose of the study were also be asked with the expectancy violation questions. Respondents answered questions regarding information seeking about the actors, familiarity, and
motivations to avoid the actors. Additionally, participants indicated if they followed the actors on Twitter. General demographic information was collected as well.

Post-test Measures

Parasocial Relationship Respondents completed the same 10-item parasocial scale used in the pre-test, but were asked to focus on the actor, not the character (Meester: $\alpha=.95; M=3.08 \ SD=.73$; Laurie: $\alpha=.88; M=3.24; SD=.56$; Parsons: $\alpha=.91; M=3.20; SD=.59$; Oh: $\alpha=.91; M=3.09; SD=.60$).

FAE traits and the Fundamental Attribution Error Participants indicated the perceived traits of each actor on the same FAE scale used in the pre-test (Meester: $\alpha=.85; M=4.64 \ SD=1.00$; Laurie: $\alpha=.88; M=4.28; SD=1.09$; Parsons: $\alpha=.83; M=4.43; SD=.89$; Oh: $\alpha=.88; M=4.59; SD=.95$). The FAE variable was calculated by comparing the mean of participants’ character trait evaluation with the mean of their corresponding actor trait evaluation (measured in the post-test). The actor/character pairings were selected so that the character and corresponding actor’s personalities were distinct from each other, with the character ranked as being more negative in the selected traits than the actor. Thus, the FAE occurred when characters were evaluated more positively than their actor (causing the FAE variable to be negative). The FAE results are described by actor: (Meester: $M = -.21 \ SD = .97$; Laurie: $M = -1.26; SD = 1.50$; Parsons: $M = -.57; SD = 1.19$; Oh: $M = -.38; SD = 1.19$).

Condition Participants were randomly assigned to one of the two conditions. One hundred-forty-two individuals viewed the negative tweets, and 148 viewed the neutral tweets.
Expectedness and Valence of Behavior

Expectedness and valence of behavior measures were adapted from Afifi and Metts’ (1998) work on expectancy violations. Both measures used a 7-point strongly disagree to strongly agree scale and were presented in a randomized order. Two-items comprised the expectedness of behavior (e.g. “The actor’s tweet was surprising/not surprising”) (Meester: α=.74; M=3.85 SD=1.03; Laurie: α=.80; M=3.77; SD=1.21; Parsons: α=.74; M=3.78; SD=1.07; Oh: α=.68; M=3.96; SD=.99). The valence or evaluation of the tweet was measured on one item (e.g. “The actor’s tweet was a statement I liked a lot/did not like at all”). A manipulation check indicated that the participants in the negative condition rated their tweets as more negative than individuals in the neutral condition (Mnegative= 2.82; Mneutral= 4.31; F (1, 287) = 13.52, p < .001). Measuring these items helped to verify the extent to which each tweet is fitting for its condition and provide information about how the participant viewed the violation.

Information seeking

The measure was modified from a smoking information seeking scale (Xiaoquan & Xiaomei, 2008). This variable measured the subjects’ information seeking behavior in relation to the four actors in a randomized order. Subjects indicated their exposure to and search for information about each actor through media in the past 30 days on a 2-item, 7-point Likert not at all to a lot scale. Meester: α=.83; M=1.47 SD=.81; Laurie: α=.820; M=1.45; SD=.73; Parsons: α=.77; M=1.48; SD=.80; Oh: α=.83; M=1.36; SD=.67.

Twitter Following

Participants were asked if they followed the four actors on Twitter. Only Leighton Meester and Hugh Laurie actually have verified Twitter
accounts. For each actor, less than 10 percent (out of 287 participants) reported that they followed or used to follow him or her on Twitter. Meester: 27 (9.4%), Laurie: 20 (7%), Parsons: 26 (9.1%), Oh: 15 (5.2%).

Data Analysis

A series of analyses were conducted in order to test the hypotheses and answer the research question. First, a simple mediation model was examined for both H1a and H1b. The indirect effect was calculated through OLS regression and its’ significance was calculated through bootstrapping (Hayes, 2009). Hypotheses H2 and H3a were tested through regressions while hypothesis 3(b-c) employed simple a moderation model. Hypotheses’ mediations and moderations were estimated using the SPSS macro PROCESS (Hayes, 2012). The research question was addressed using frequency statistics.
Chapter 4: Results

Hypotheses 1a and 1b made opposing predictions about the connection between a parasocial relationship with the actor and the fundamental attribution error. In particular, H1a predicted a simple mediation model whereby PSR with the actor led to less FAE, mediated by information seeking. The parasocial relationship with the character was used as a control variable. Figure 1 displays the unstandardized path coefficients and significance test for each path of the simple mediation model.

As predicted, greater PSR with each actor was associated with less FAE. Also as expected, PSR with each actor was associated with significantly greater information seeking. However, in most cases, this information seeking was not related to FAE. One exception to this was the case of the actor Hugh Laurie. In this case, greater info seeking was associated with more FAE ($b = .32, p = .008$) — the opposite of the prediction made in H1a. Taken together, these results show that PSR with the actor leads to less FAE, but this relationship is not mediated by information seeking. Thus, H1a was not supported.

Of note, the relationship between PSR with the character and FAE was tested while controlling for PSR with the actor. In most cases, PSR with each character was associated with increased FAE (Blair Waldorf: $b = .43, p = .000$; Gregory House: $b = .73, p = .000$; Christina Yang: $b = .32, p = .02$). Sheldon Cooper was the only nonsignificant case ($b = .20, p = .13$). So, while PSR with an actor reduces FAE, PSI with a character increases FAE in most cases.
As with H1a, H1b was a simple mediation model and used PSR with the character as the control. Figure 2 outlines the interactions in more detail by displaying the unstandardized path coefficients and significance tests for each path of the simple mediation model. H1b predicted that viewing frequency of each actor’s television show mediates the relationship between parasocial interaction and FAE. For instance, H1b suggested that a person’s strong PSR with Leighton Meester would predict greater exposure to *Gossip Girl*. Because the person has increased exposure to *Gossip Girl* he or she is more likely to commit the FAE because it is more difficult to separate the character’s traits from that of the actor.

Contrary to the prediction for H1b, increased PSR with each actor was associated with less FAE. This is not surprising given that this direct effect was discovered when testing the opposing hypothesis, H1a. As predicted, greater PSR with each actor was associated with significantly greater viewing frequencies for all four actors. However in three cases, increased viewing frequency was associated with significantly less FAE (Hugh Laurie: $b = -.12, p = .05$; Jim Parsons: $b = -.31, p = .000$; and Sandra Oh: $b = -.26, p = .000$)—the opposite of the prediction made in H1b. Overall, these results demonstrate that PSR with an actor leads to less FAE. Additionally, PSI with an actor leads to increased viewing frequency, which results in a decrease in FAE. However, viewing frequency may serve as a proxy for another mechanism impacting FAE. H1b is not supported because both the direct and indirect effects occur in the opposite direction as predicted.

A hierarchical regression was used to observe whether high need for cognition resulted in lower FAE independent of PSRs with actors and characters (H2). After
controlling for the parasocial variables, the relationship between need for cognition and FAE was not significant for any actors. So, although the coefficients were in the proposed direction, H2 is not supported. See Table 1 for the list of the need for cognition variables’ coefficients and t-values for each actor/character pairing.

Hypotheses 3a-c made predictions about possible variables that could impact participants’ expectedness of behavior in the experiment. The hypotheses build on each other to delve further into the connections between expectedness of behavior, parasocial relationship, condition, and information seeking.¹

H3a predicted that that the negative violation condition would lead to less expectedness of behavior than would the neutral condition. This relationship proved to be nonsignificant for all actors (see Table 2 for more details) thus H3a was not supported.

To further explore what influenced participants’ expectedness of behavior for each actor, H3b was put forth. This hypothesis proposed that condition and PSI with an actor would interact to influence expectedness of behavior. More specifically, participants in the negative condition who also had high PSR with an actor would demonstrate less expectedness of behavior. For all actors, the relationship was not significant (see Table 3). Therefore H3b was not supported.

Hypothesis 3c predicted that, in the negative condition, the strength of the relationship between PSR with an actor and expectedness of behavior would be moderated by outside information search. In the negative condition, strong PSR with an actor

¹ The analyses were run with following the actors on Twitter as a covariate for Leighton Meester and Hugh Laurie (who have verified Twitter accounts). However, it did not change the significance of the findings and is not included as a control in the reported results.
actor was predicted to interact with a high level of information search about that actor to produce a low expectedness of behavior (meaning the participant was surprised by the stimuli). However, the moderation was not significant for any actor (see Table 4 for details), thus H3c was not supported.

While the hypotheses were not fully supported, the participants’ reports of Twitter use presented interesting results. Seventy-six percent (320) of the participants indicated that they owned a Twitter account while 6.4% used to but not longer have an account, and 17.1% of the participants never had an account.

Because Twitter has become so pervasive in society, all participants were asked to recall how often they saw tweets mentioned in news reports or media outside of Twitter. Participants noted seeing tweets reported by outside media a little more than once a week ($M=4.21, SD=1.88$). Participants with or who used to have Twitter accounts reported that they checked the social network multiple times a week ($M=5.47, SD=2.07$) and tweeted more than once a week ($M=4.49, SD=2.11$). Other activities such as reply tweeting ($M=3.95, SD=2.13$), retweeting ($M=3.84, SD=2.11$), and direct messaging through Twitter ($M=1.76, SD=1.43$) were performed less often. Participants indicated their different uses of Twitter with the top five being to (1) follow friends, (2) pass the time, (3) surf for fun, (4) get up-to-date news, and (5) follow celebrities (See Table 5 for reference).
Chapter 5: Discussion

Research on parasocial relationships has been studied from many different angles. However, exploration of its connection to the fundamental attribution error and expectancy violations needs to be expanded. This research was designed to help reduce the gap between these interpersonal and media theories. The study explored the relationship between parasocial relationships with popular actors and the fundamental attribution error moderated by information seeking and viewing frequency. The role of need for cognition was also studied in connection to the FAE. Additionally, the relationship between parasocial relationships with actors and expectancy violations was tested through Twitter feeds.

Overall, the results suggest a few important conclusions. First, an individual’s strong parasocial relationship with actors will reduce his or her likelihood of committing the fundamental attribution error, but not for the reasons hypothesized. Conversely, strong parasocial relationships with characters will increase the FAE. Furthermore contrasting from past research, need for cognition does not significantly reduce the likelihood of committing the FAE. In terms of expectancy violations the experimental manipulation failed to reach significance and therefore future studies are needed to further investigate this area. The study’s key findings are interpreted and discussed below.
Fundamental Attribution Error

Two opposing hypotheses (H1a and H1b) were made to expand research on the PSR and FAE relationship. A main effect exists between PSR and FAE for all four actors, indicating that a high PSR with an actor reduces FAE. This aligns with Tal-Or and Papirman (2007) who noted that media users link characters’ personalities with the actors that play them, which leads to the FAE. Gilbert and Malone (1995) assert that a cause of FAE is people’s unwillingness to devote enough cognitive resources to correct inaccurate inferences. This supports the study’s findings, that a person who strongly parasocially relates to an actor would more actively draw distinctions between the actor and the corresponding character more than a weak PSI holder. This also explains why PSR with a character and the FAE have a positive relationship. People holding a PSR with a character, as opposed to an actor, may not be as motivated to correct the FAE because their focus is on the character, not the actor.

Although PSR with an actor was found to reduce FAE, this was not caused through the proposed mediation of information seeking. The parasocial relationship with each actor significantly increased information seeking about that actor, however that information seeking did not significantly reduce the FAE. Additionally, data on Hugh Laurie conflicted with the hypothesized mediation by demonstrating that information seeking about Hugh Laurie significantly increased the FAE. This disparity with Hugh Laurie may be due to the increased media coverage surrounding the actor and the final episodes of series, which were airing when the survey was distributed (“Hugh Laurie,” n.d.). At this time, the media coverage’s main focus was on House and the titular character, not on the actor’s personal life. Therefore, it is plausible that participants who
reported seeking information on Hugh Laurie did not encounter information that would help them draw distinctions between the actor and character, thus allowing for a positive effect with the FAE.

In the future, researchers might consider tweaking the information seeking measures. In this study, the information seeking questions only asked participants about information seeking and scanning behaviors in the last 30 days. This measure was pulled from smoking information seeking literature (Xiaoquan & Xiaomei, 2008) and people may have different information gathering habits when it pertains to media. Because individuals may have a long-standing parasocial relationship with an actor, they may have looked up a large amount of information about the actor over a period of time. The 30-day timeframe may provide a limited view of their actual information seeking about an actor. The cumulative effect of past information gathered may impact their responses. Future measures could extend the timeframe posed in these questions or measure the amount of information gathered. Additionally, as seen in the case with Hugh Laurie, the type of information may be an important factor. Specifically asking what types of information (e.g. talk show interviews, biographic articles, upcoming projects) people researched could clarify information seeking’s relationship with FAE.

As with information seeking, PSR with an actor was positively associated with the viewing frequency of the corresponding television show for all actors. However, this is a cross sectional relationship between PSR and viewing frequency, so the causal direction cannot be confirmed. In some cases, the relationship may be reversed in that increased viewing of a show leads to a viewer forming a PSR with a featured actor.
Of note, in three cases the effect of viewing frequency on FAE presented an unexpected finding in this mediation. For all but one actor, viewing frequency significantly reduced the likelihood of the FAE. A possible explanation for this is that viewing frequency is a proxy for another mechanism in this relationship. A person viewing a show more often than others may also be engaging in other actions related to the show or actor. One possible mediator could be the amount of exposure to an actor’s body of work. Actors work on more than one project, often portraying characters that differ from other roles. The data indicates that strong PSRs with actors lead to increased information seeking about the actor and are also related to viewing frequency of the actor’s show. If a person parasocially relates to an actor, he or she may also seek out or be familiar with the actor’s other shows and movies. For instance, Hugh Laurie is well known for *House*, however his previous performances in British television comedies like *Black Adder* and *A Bit of Fry and Laurie* drastically differ from Dr. House, thus showing the range of the actor ("Hugh Laurie,” n.d.). Seeing an actor as different characters may aid in the reducing the FAE because the viewer does not typecast the actor into a specific role.

A particular factor of note is the nature of the media user-figure relationship, specifically how the user was first introduced to the media figure. Interpersonal communication research suggests that first impressions can have a long lasting impact on people’s relationships. Even if people are presented with disconfirming information, it is still difficult for them to override the impression gained from their first interaction with a person (Gawronski, Rydell, Vervliet, & De Houwer, 2010). In terms of research involving parasocial relationships with media figures, researchers should consider how
individuals first “met” the actors involved in the study. For example, did people discover the actor through a particularly memorable role or was it through a tabloid story? Simply, did the individual meet the character or actor first? Each presentation of the actor or his or her respective character could impact how a person assesses the actor’s personality. In the case of this study, the participants most likely were familiar with the character role prior to the actual actor. This is because the study’s four characters were breakout roles for the actors, meaning that most of the U.S. American population was not familiar with the actors before they played these roles. Thus, the majority of this audience’s first impressions of these actors were formed and tied to their characters. Future research could delve into this idea of first impressions by considering how audiences meet actors and the impact this has on the development on PSR, information seeking, and motivation to view the actor in other roles. Conducting experiments using actors known for multiple roles or considering actors who often appear in celebrity gossip news would be an interesting comparison to current PSR and FAE research.

In past FAE research, scholars have found that individuals high in need for cognition have more motivation to process information, which leads to a lower likelihood of committing the FAE (D’Angostino & Fincher, 1992; Tal-Or & Papirman, 2007). This current study’s results were consistent with these expectations, however they were not significant. After controlling for PSRs with the actor and character, the personality trait of NFC did not impact a person’s likelihood of committing the FAE. This may suggest that, in this case, the FAE has more to do with interest level in the actor than an inherent personality trait. These findings differ from past research most likely because of the studies’ designs. Hypotheses about fundamental attribution error in this study were not
tested through a controlled experiment but through survey measures. Past studies usually observe the FAE in an experimental setting, thus allowing for more control over the mechanisms involved.

Expectancy Violations

The manipulations for expectancy violation did not reach significance in any of the hypothesized relationships. Despite this, the majority of the relationships were in the proposed direction. Although the experiment did not succeed, it does not mean there isn’t a relationship between PSR, condition, information seeking and expectedness of behavior. Future work in this area should look for ways to improve the manipulation and continue testing these interactions. There are many possible reasons the experiment did not work. First, due to time constraints, researchers could not conduct a pilot study to test the stimuli, which could have highlighted certain problems in the manipulation. For instance, the pilot study could have noted the negative condition did not significantly decrease the expectedness of behavior and researchers could have addressed the issue before the actual experiment. While designing the experiment, researchers found it difficult to find characters/actors to use in the stimuli. This was because so many factors had to be considered. Participants needed to know whom the actors and characters were and exhibit a wide range of PSRs with the actor/character pairings. Additionally, the actors had to be distinctly different from their characters (in order to measure the FAE). However, participants also needed to closely associate the actor with the character (i.e. he or she was well known for and/or identified by that role) so if the FAE was committed, we could safely predict the character that blended with the actor. Therefore actors well known for many roles or their versatility could not be used. The small pool of actors
fitting all of these requirements may have impacted the ability to create stimuli that violated expectancies. The negative tweets themselves may have been the reason for the lack of violation and should perhaps be more negative in future studies.

Uses and Gratifications

Because the experiment used actors’ tweets to attempt expectancy violations, the study also asked questions about participants’ uses and gratifications involving Twitter. Just over three-fourths of the total individuals surveyed owned a Twitter account, which indicates that Twitter is overwhelmingly popular with young adults. Hargittai and Litt (2011) noted that interest in celebrities and entertainment is a strong predictor of Twitter adoption among young adults. Although the study did not ask about reasons for Twitter adoption, following celebrities is a popular use of Twitter. Additionally, individuals used the micro-blogging site to keep in touch with friends, stay updated on important news, and pass the time. Twitter’s popularity within the college population indicates its presence on their daily life as participants indicated high rates of checking the social network and tweeting to others. Future studies should look at how and when people connect to Twitter in order to reveal more about our social networking use. For instance, questions like “do people check Twitter more often on their computer or through their mobile device and why?” could paint a clearer picture of Twitter use. Additionally, gathering this information for more than just the college-aged population would aid this research.

Limitations

Limitations related to specific findings and hypotheses were discussed previously; however general limitations for the study still must be addressed. A potential limitation
of the study is that it was taken online. Because the experiment was not performed in a lab, individuals may have been distracted while participating in the study, possibly influencing the results. However, this potential for increased validity was sacrificed in order to be more time efficient. Additionally, the sample size would have been greatly reduced if the experiment given within the confines of a lab.

Additionally, the use of college students as the sample participants limits the generalizability of the findings. However, funding and timing restricted the sample. Also, as this study examined a new area of parasocial, FAE, and EVT research and used a medium (Twitter) popular with people of this age group to do so, the sample was fitting for the study.

In summary, this research has taken steps to enhancing our understanding of the relationship between parasocial relationships and the fundamental attribution error. This study sets the path for researchers to further explore the mechanisms impacting this relationship. Additionally, this project sought to expand research on parasocial relationships and expectancy violations of actors in a realistic Twitter environment. Complications with the experiment will hopefully provide guidance and ideas for future studies to further test the relationship between PSR and expectancy violations. In all, more research connecting the areas of parasocial relationships, fundamental attribution error, and expectancy violation should be done. Increased understanding of the interactions of these areas will expand our theoretical knowledge and also lead to practical implications in terms of viewers’ relationships with actors and characters.
References

(n.d.) What is following?. Retrieved from https://support.twitter.com/articles/14019-what-is-following.

older adults' involvement with favorite television performers. *Journal of
Broadcasting & Electronic Media, 49*(2), 182-201.
doi:10.1207/s15506878jobem4902_3

doi:10.1080/08824091003737836

Cohen, J. (2001). Defining identification: A theoretical look at the identification of
doi:10.1207/S15327825MCS0403_01

Cohen, J. (2004). Parasocial break-up from favorite television characters: The role of
attachment styles and relationship intensity. *Journal of Social and Personal

Cortese, J., & Rubin, A. M. (2010). Uses and Gratifications of Television Home
doi:10.1080/15456870903554924

television programs provide the experience of belonging. *Journal of Experimental

Johnson, P. R., & Yang, S. (2009). Uses and gratifications of Twitter: An examination of user motives and satisfaction of Twitter use. Paper presented at the Communication Technology Division of the annual convention of the Association for Education in Journalism and Mass Communication in Boston, MA.

Appendix A: Tables of Results
<table>
<thead>
<tr>
<th>Actor/character grouping</th>
<th>b</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leighton Meester/Blair Waldorf</td>
<td>-.02</td>
<td>-.32</td>
<td>.75</td>
</tr>
<tr>
<td>Hugh Laurie/Gregory House</td>
<td>-.02</td>
<td>-.42</td>
<td>.68</td>
</tr>
<tr>
<td>Jim Parsons/Sheldon Cooper</td>
<td>-.72</td>
<td>-1.27</td>
<td>.21</td>
</tr>
<tr>
<td>Sandra Oh/Christina Yang</td>
<td>-.05</td>
<td>-.95</td>
<td>.34</td>
</tr>
</tbody>
</table>

Table 1. H2: Betas, t- and p-values depicting participants’ NFC impact on FAE. $df = (1, 285)$

<table>
<thead>
<tr>
<th>Actor/character grouping</th>
<th>b</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leighton Meester/Blair Waldorf</td>
<td>-.22</td>
<td>-1.80</td>
<td>.07</td>
</tr>
<tr>
<td>Hugh Laurie/Gregory House</td>
<td>-.257</td>
<td>-1.80</td>
<td>.07</td>
</tr>
<tr>
<td>Jim Parsons/Sheldon Cooper</td>
<td>-.13</td>
<td>-1.05</td>
<td>.30</td>
</tr>
<tr>
<td>Sandra Oh/Christina Yang</td>
<td>.06</td>
<td>.52</td>
<td>.61</td>
</tr>
</tbody>
</table>

Table 2. H3a: Betas, t- and p-values depicting condition’s impact on expectedness of behavior. $df = (3, 283)$.
Table 3.

<table>
<thead>
<tr>
<th>Actor/character grouping</th>
<th>b</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leighton Meester/Blair Waldorf</td>
<td>.04</td>
<td>.24</td>
<td>.81</td>
</tr>
<tr>
<td>Hugh Laurie/Gregory House</td>
<td>-.10</td>
<td>-.40</td>
<td>.69</td>
</tr>
<tr>
<td>Jim Parsons/Sheldon Cooper</td>
<td>.30</td>
<td>1.37</td>
<td>.17</td>
</tr>
<tr>
<td>Sandra Oh/Christina Yang</td>
<td>.20</td>
<td>1.03</td>
<td>.31</td>
</tr>
</tbody>
</table>

Table 3. H3b: Betas, t- and p-values depicting impact of PSI with actor on expectedness of behavior moderated by condition. df = (3, 283).

Table 4.

<table>
<thead>
<tr>
<th>Actor/character grouping</th>
<th>b</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leighton Meester/Blair Waldorf</td>
<td>-.06</td>
<td>-.44</td>
<td>.66</td>
</tr>
<tr>
<td>Hugh Laurie/Gregory House</td>
<td>-.30</td>
<td>-1.37</td>
<td>.18</td>
</tr>
<tr>
<td>Jim Parsons/Sheldon Cooper</td>
<td>.13</td>
<td>.47</td>
<td>.64</td>
</tr>
<tr>
<td>Sandra Oh/Christina Yang</td>
<td>-.04</td>
<td>-.20</td>
<td>.84</td>
</tr>
</tbody>
</table>

Table 4. H3c: Betas, t- and p-values depicting the interaction between PSI with an actor and information seeking impact’s on expectedness of behavior (in the negative condition). df = (3, 283)
Table 5. RQ 1: Uses for Twitter on a 5-point (1=strongly disagree to 5=strongly agree) scale.

<table>
<thead>
<tr>
<th>I use Twitter to:</th>
<th>M</th>
<th>SD</th>
<th>I use Twitter to:</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow my friends</td>
<td>3.90</td>
<td>1.15</td>
<td>Express myself</td>
<td>3.35</td>
<td>1.32</td>
</tr>
<tr>
<td>Pass the time</td>
<td>3.84</td>
<td>1.17</td>
<td>Keep up with trends</td>
<td>3.31</td>
<td>1.25</td>
</tr>
<tr>
<td>Surf for fun</td>
<td>3.71</td>
<td>1.17</td>
<td>Learn about new products</td>
<td>2.81</td>
<td>1.20</td>
</tr>
<tr>
<td>Communicate with my friends</td>
<td>3.68</td>
<td>1.25</td>
<td>Find new websites</td>
<td>2.74</td>
<td>1.20</td>
</tr>
<tr>
<td>Get up-to-date news</td>
<td>3.65</td>
<td>1.21</td>
<td>Communicate with celebrities</td>
<td>2.50</td>
<td>1.22</td>
</tr>
<tr>
<td>Follow celebrities</td>
<td>3.43</td>
<td>1.22</td>
<td>Buy things</td>
<td>1.59</td>
<td>.79</td>
</tr>
</tbody>
</table>
Appendix B: Figures of Results
Figure 1. Hypothesis 1a (controlling for PSI with character). This tests an indirect relationship between PSI with actor and FAE moderated by information seeking about the actor. Note: All coefficients are unstandardized. * = p < .05
Figure 2. Hypothesis 1b (controlling for PSI with character). This tests an indirect relationship between PSI with an actor and FAE moderated by viewing frequency.

Note: All coefficients are unstandardized. *= p < .05
Appendix C: Survey Given to Participants
Pre-test

A. Parasocial Interaction Measure (Character) *measure was repeated for each character in random order

Please answer the following questions about your XXXX character. Please note that these questions are about the character, not the actor who portrays the character. Please answer on a scale from 1 to 5, with 1 meaning, “strongly disagree” and 5 meaning, “strongly agree.”

1. XXXX makes me feel comfortable, as if I am with a friend.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

2. I see my XXXX as a natural, down-to-earth person.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

3. I look forward to watching XXXX on the next episodes of his/her show.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

4. If XXXX appeared on another television program as that character, I would watch that program.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

5. XXXX seems to understand the kinds of things I want to know.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

6. If I saw a story about XXXX in a newspaper or magazine, I would read it.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

7. I miss seeing XXXX during the breaks between seasons or after shows are cancelled.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

8. I would like to meet XXXX in person.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree

9. I feel sorry for XXXX when they make mistakes.
 Strongly Disagree 1 2 3 4 5
 Strongly Agree
10. I find XXXX to be likable.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

B. Fundamental Attribution Error (character)
*measure was repeated for each character in random order

Please indicate XXXX’s personality in relation to the following traits.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Social</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Antisocial</td>
<td></td>
</tr>
<tr>
<td>12. Pleasant</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Unpleasant</td>
<td></td>
</tr>
<tr>
<td>13. Violent</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Peaceful</td>
<td></td>
</tr>
<tr>
<td>14. Educated</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Uneducated</td>
<td></td>
</tr>
<tr>
<td>15. Smart</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Dumb</td>
<td></td>
</tr>
<tr>
<td>16. Quiet</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Loud</td>
<td></td>
</tr>
<tr>
<td>17. Has warm feelings</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Has cold feelings</td>
<td></td>
</tr>
<tr>
<td>18. Polite</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Impolite</td>
<td></td>
</tr>
<tr>
<td>19. Primitive</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Modern</td>
<td></td>
</tr>
<tr>
<td>20. Extremist</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>21. Nervous</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Calm</td>
<td></td>
</tr>
<tr>
<td>22. Patient</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Impatient</td>
<td></td>
</tr>
<tr>
<td>23. Stubborn</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Flexible</td>
<td></td>
</tr>
<tr>
<td>24. Gentle</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Rough</td>
<td></td>
</tr>
</tbody>
</table>

56
25. Overdramatic
 1 2 3 4 5 6 7
 Understated

26. Mean
 1 2 3 4 5 6 7
 Nice

27. Arrogant
 1 2 3 4 5 6 7
 Humble

28. Secure
 1 2 3 4 5 6 7
 Insecure

29. Unfunny
 1 2 3 4 5 6 7
 Funny

30. Refined
 1 2 3 4 5 6 7
 Coarse

C. TV show viewing frequency/familiarity & character familiarity *measure was repeated for each show in random order

31. How often do you watch XXXX show?
 More than once a week
 Once a week
 Twice a month
 Once a month
 Less than once a month
 I don’t watch this show

32. How many episodes of XXXX show have you seen?

 None Almost none Less than half About half More than half Almost all of them All of them
 1 2 3 4 5 6 7

33. How familiar are you with XXXX show?"
 Not at all familiar
 Very familiar
 1 2 3 4 5 6 7

34. How familiar are you with XXXX character?"
 Not at all familiar
 Very familiar
 1 2 3 4 5 6 7

57
D. Need for Cognition
Please answer the following questions to the best of your ability.

35. I would prefer complex to simple problems.
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me

36. I like to have the responsibility of handling a situation that requires a lot of thinking.
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me

37. Thinking is not my idea of fun.*
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me

38. I would rather do something that requires little thought than something that is sure to challenge my thinking abilities.*
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me

39. I try to anticipate and avoid situations where there is likely a chance I will have to think in depth about something.*
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me

40. I find satisfaction in deliberating hard and for long hours.
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me

41. I only think as hard as I have to.*
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me

42. I prefer to think about small, daily projects to long-term ones.*
 Extremely uncharacteristic of me 1 2 3 4 5
 Extremely characteristic of me
43. I like tasks that require little thought once I’ve learned them.*
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

44. The idea of relying on thought to make my way to the top appeals to me.
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

45. I really enjoy a task that involves coming up with new solutions to problems.
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

46. Learning new ways to think doesn’t excite me very much.*
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

47. I prefer my life to be filled with puzzles that I must solve.
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

48. The notion of thinking abstractly is appealing to me.
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

49. I would prefer a task that is intellectual, difficult, and important to one that is somewhat important but does not require much thought.
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

50. I feel relief rather than satisfaction after completing a task that required a lot of mental effort.*
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me

51. It’s enough for me that something gets the job done; I don’t care how or why it works.*
 Extremely uncharacteristic of me
 1 2 3 4 5
 Extremely characteristic of me
52. I usually end up deliberating about issues even when they do not affect me personally.

<table>
<thead>
<tr>
<th>Extremely uncharacteristic of me</th>
<th>Extremely characteristic of me</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Extremely uncharacteristic of me
Extremely characteristic of me

E. Twitter usage

53. How often do you see tweets recalled in the news, on blogs, or places other than the actual Twitter website?

Less than once a month

Once a month

Once every two weeks

Once a week

2-4 times a week

Every day

More than twice a day

54. Do you have a Twitter account? *If no or used to, then end this part of the survey

Yes I used to but I don’t anymore No

Prompt:

Given the prevalence of computers and smartphones in our daily lives, we often spend more time than we think online. Often we multitask and go back and forth between getting work done on the computer and checking our Twitter page. In addition to regular Twitter use while seated at the computer, we often have small increments of time throughout the day that we are also on Twitter. For example, we can access Twitter from anywhere on smartphones.

Take a moment to think about your typical (week/weekend) day. Think about different parts of your day: getting up in the morning, traveling to work/class, sitting at work/class, eating meals, waiting on someone or something, studying, watching TV or other media, and getting ready for bed. Think about the time you spend actively looking at Twitter during these times (i.e., reading, looking at posted pictures, or posting material as opposed to just having it open in the background). Consider both long periods of Twitter use as well as brief periods of use, such as when you spend five minutes looking at it before class or checking in at a restaurant. How much time do you feel you spend actively using Twitter on the average (week/weekend) day?

55. On average, how often do you check/log on to your Twitter account?

Less than once a month

Once a month
Once every two weeks
Once a week
2-4 times a week
Daily
More than twice a day

56. **On average, how often do you tweet (exclude reply tweets and retweets)?**
Less than once a month
Once a month
Once every two weeks
Once a week
2-4 times a week
Daily
More than twice a day

57. **On average, how often do you reply tweet?**
Less than once a month
Once a month
Once every two weeks
Once a week
2-4 times a week
Daily
More than twice a day

58. **On average, how often do you retweet?**
Less than once a month
Once a month
Once every two weeks
Once a week
2-4 times a week
Daily
More than twice a day

59. **On average, how often do you direct message someone through Twitter?**
Less than once a month
Once a month
Once every two weeks
Once a week
2-4 times a week
Daily
More than twice a day

60. **On average, how long do you spend on Twitter each day? _____ hours _____ minutes**

Please rate your agreeability to each statement based on your current use of Twitter

61. **I use Twitter to follow my friends**
 Strongly Disagree 1 2 3 4 5 Strongly Agree

62. **I use Twitter to communicate with my friends**
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>63.</td>
<td>I use Twitter to follow celebrities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>64.</td>
<td>I use Twitter to communicate with celebrities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>65.</td>
<td>I use Twitter to express myself</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>66.</td>
<td>I use Twitter to get up-to-date news</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>67.</td>
<td>I use Twitter to learn about new products</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>68.</td>
<td>I use Twitter to pass the time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>69.</td>
<td>I use Twitter to buy things</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>70.</td>
<td>I use Twitter to find new websites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>71.</td>
<td>I use Twitter to keep up with trends</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>72.</td>
<td>I use Twitter to surf for fun</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Post-test

F. Parasocial Interaction Measure (Actor) **This measure will be repeated for each actor in random order**

Please answer the following questions about your XXXX actor. Please note that these questions are about the actor, not the character portrayed by the actor. Please answer on a scale from 1 to 5, with 1 meaning, “strongly disagree” and 5 meaning, “strongly agree.”

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>73. XXXX makes me feel comfortable, as if I am with a friend.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>74. I see my XXXX as a natural, down-to-earth person.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>75. I look forward to watching XXXX on the next episodes of his/her show.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>76. If XXXX appeared on another television program, I would watch that program.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>77. XXXX seems to understand the kinds of things I want to know.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>78. If I saw a story about XXXX in a newspaper or magazine, I would read it.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>79. I miss seeing XXXX during the breaks between seasons or after shows are cancelled.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>80. I would like to meet XXXX in person.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>81. I feel sorry for XXXX when they make mistakes.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>82. I find XXXX to be likable.</td>
<td>Strongly Disagree</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

63
G. Fundamental Attribution Error (actor) **random order

Please indicate XXXX’s personality in relation to the following traits.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

83. Social Antisocial
 1 2 3 4 5 6 7
84. Pleasant Unpleasant
 1 2 3 4 5 6 7
85. Violent Peaceful
 1 2 3 4 5 6 7
86. Educated Uneducated
 1 2 3 4 5 6 7
87. Smart Dumb
 1 2 3 4 5 6 7
88. Quiet Loud
 1 2 3 4 5 6 7
89. Has warm feelings Has cold feelings
 1 2 3 4 5 6 7
90. Polite Impolite
 1 2 3 4 5 6 7
91. Primitive Modern
 1 2 3 4 5 6 7
92. Extremist Moderate
 1 2 3 4 5 6 7
93. Nervous Calm
 1 2 3 4 5 6 7
94. Patient Impatient
 1 2 3 4 5 6 7
95. Stubborn Flexible
 1 2 3 4 5 6 7
96. Gentle Rough
 1 2 3 4 5 6 7
97. Overdramatic Understated
 1 2 3 4 5 6 7
98. Mean Nice
 1 2 3 4 5 6 7
99. Arrogant
 1 2 3 4 5 6
99. Humble
 7

100. Secure
 1 2 3 4 5 6
100. Insecure
 7

101. Unfunny
 1 2 3 4 5 6
101. Funny
 7

102. Refined
 1 2 3 4 5 6
102. Coarse
 7

Stimuli

The following images are of each actor’s mock Twitter page featuring the negative stimuli. The neutral condition included four options of neutral phrases that were randomly interchanged between actors. The neutral condition tweets are listed below.

1. I feel as though most of my tweets revolve around food.
2. Drinking through a straw makes the whole beverage taste better. FACT.
3. Taking the day off.
4. Laundry day. Missing 5 socks.

Figure 3. Sample stimuli used for Leighton Meester manipulation.
Figure 4. Sample stimuli used for Hugh Laurie manipulation.

Figure 5. Sample stimuli used for Jim Parsons manipulation.
Figure 6. Sample stimuli used for Sandra Oh manipulation.

H. Expectancy violation measure
Participants will see the sample stimuli for each actor in either the neutral or negative condition (random assignment) and report their expectancy violation.

103. XXXX’s tweet was surprising:
Strongly Disagree
1 2 3 4 5 6 7

104. XXXX’s tweet was completely expected
Strongly Disagree
1 2 3 4 5 6 7

105. XXXX’s tweet was completely unexpected:
Strongly Disagree
1 2 3 4 5 6 7

106. XXXX’s tweet was positive.
Strongly Disagree
1 2 3 4 5 6 7

107. XXXX’s tweet was a statement I liked a lot
Strongly Disagree
1 2 3 4 5 6 7
108. I would like to read more tweets by XXXX.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

109. XXXX’s tweet made me feel more confident in my predictions of his/her behavior.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

110. After viewing XXXX’s tweet, I feel that I know him/her a lot better than I thought.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

111. XXXX’s tweet increased my ability to accurately predict his/her future behavior.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

112. XXXX’s tweet was completely to the situation.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

113. XXXX’s tweet was typical of his/her personality.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

114. XXXX’s tweet was typical of how he/she acts on Twitter. Include “I don’t know” as a possible answer.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

115. XXXX’s tweet was typical of how he/she acts in general. Include “I don’t know” as a possible answer.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

I. Distraction Questions

116. XXXX’s tweet was funny.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

117. After reading XXXX’s tweet, I would follow him/her on Twitter.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

118. XXXX’s tweet was interesting.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |

119. XXXX’s tweet was thought-provoking.

| Strongly Disagree | 1 | 2 | 3 | 4 | 5 | 6 | Strongly Agree | 7 |
120. XXXX’s tweet was happy.
Strongly Disagree
1 2 3 4 5 6 7
Strongly Agree

121. XXXX’s tweet was inspiring.
Strongly Disagree
1 2 3 4 5 6 7
Strongly Agree

J. Info seeking **asking about each actor
122. In the past 30 days, how much have you read or heard about XXXX?
None
Very Little
Some
Quite a bit
A great deal
1 2 3 4 5

In the past 30 days, how much have you read or heard about XXXX from the following?

123. Social networking sites (excluding Twitter)
None
Very Little
Some
Quite a bit
A great deal
1 2 3 4 5

124. Twitter
None
Very Little
Some
Quite a bit
A great deal
1 2 3 4 5

125. In the past 30 days, how much have you actively looked for information about XXXX?
None
Very Little
Some
Quite a bit
A great deal
1 2 3 4 5

In the past 30 days, how much have you actively looked for information about XXXX from these sources?

126. Social networking sites (excluding Twitter)
None
Very Little
Some
Quite a bit
A great deal
1 2 3 4 5

127. Twitter
None
Very Little
Some
Quite a bit
A great deal
1 2 3 4 5

K. Actor familiarity (order randomized)
128. How familiar are you with XXXX actor?
Not at all
Very familiar
familiar
1 2 3 4 5 6 7
L. Motivation to avoid actor

129. I prefer XXXX actor to his/her character.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

130. I wish XXXX actor was more like his/her character.

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

131. I want to know more about XXXX actor as a person

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neither Agree nor Disagree</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

M. Twitter following (randomized) **Participants who do not have a Twitter will not be asked this question.

132. Do you follow XXXX actor on Twitter?

 Yes No

N. Demographic Questions

133. What is your age in years? _____

134. What is your sex? Male Female

135. What race do you consider yourself? (check one)

 African-American_____ Asian- or Pacific Islander_____

 Native American _____ Non-Hispanic White ______

 Spanish or Hispanic Origin _____ Multi-racial or mixed race ______