The Industrial Uncanny

Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Fine Arts in the Graduate School of the Ohio State University

By

Willard Tucker, B.F.A.

Graduate Program in Department of Art

The Ohio State University

2010

Dissertation Committee:

Malcolm Cochran, Advisor

Dorothy Noyes

Michael Mercil
How can I imagine a way to reorient the perception of technological development to include the heap of externalities it continues to amass? Designing a sustainable system and enacting one on the ground may be conflicting assertions. The questions I continually ask in my work concern the increasingly dislocated spatial condition of art and how such visions compensate for anxieties about the environment and energy politics. Since my early site-based installations that focused on the specific histories of found sites, I have turned my attention to the institutional spaces, like the gallery and the museum. The work I have been making attempts to mediate between the viewer’s body and the surrounding architecture to strip the neutral connotations of the white cube so to link it to a system of real physical consequence. I want the work to shock, to overwhelm, to seduce, and to hypnotize the viewer with forms that summon the electrical grid like a phantom.
Dedication

to Laura
Acknowledgments

I would like to thank Dorry Noyes, Michael Mercil and Malcolm Cochran for their thoughtful encouragement.
Vita

2002 to 2006…………………………………University of Kentucky, Summa Cum Laude

2007 to 2008…………………………………University Fellow, Department of Art, The Ohio State University

2008 to present………………………………Graduate Teaching Associate, Department of Art, The Ohio State University

Field of Study

Major Field: Sculpture
Table of Contents

Abstract...ii

Dedication...iii

Acknowledgments...iv

Vita... v

List of Figures...vii

Introduction... 1

Body.. 2

Conclusion.. 20

References... 22
List of Figures

Figure 1. “Flow” .. 5
Figure 2. “Flow” detail shot ... 6
Figure 3. “Landing” view from underneath ... 7
Figure 4. “Landing” view of pedals ... 8
Figure 5. “Bound” .. 9
Figure 6. “Portal” with figure .. 12
Figure 7. “Portal” ... 12
Figure 8. “Developer” .. 15
Figure 9. “Developer” during flash .. 15
Figure 10. “Loopstation” ... 18
Figure 11. “Loopstation” detail ... 19
No passion so effectually robs the mind of all its power of acting and reasoning as fear. To make anything terrible, obscurity seems in general to be necessary.

Edmund Burke, *On The Sublime and the Beautiful*

Hence the sardonic wisdom of the Nervous System’s scrawling incompleteness, its constant need for a fix. Which is what, if only there were time, gives me pause. How does one sidestep the NS’s sidestepping? How does one intervene in the power of what Burke designated as its judicious obscurity wherein, without warning, the referent bursts through into the representation itself?

Michael Taussig, *The Nervous System*

Introduction

I work primarily by arranging available materials in relation to the physical conditions of a space. Most often this approach results in installation work and architectural interventions; I have also made a few video works. In the two years I have been in graduate school I have been asking myself questions that deal with the relationship of local knowledge to a decentered cultural landscape. Though I began working in as a site-specific artist, I have become concerned increasingly with the life an artwork leads after its particular moment of origin. If it can only be experienced on site, in person, why do I primarily experience site-specific art in photographs? As a result, I have been looking for ways to disrupt the photograph’s ability to mediate experience. My other questions stem from my sense of local identity. Why is it the more that I talk about my Kentucky background, the further I get from it? Why, the more I attempt to represent the environmental conditions of rural Kentucky, do I find myself absorbed by a spatial system that no longer recognizes the importance of geographic location?

I assembled this writing much like I construct my artwork, by piecing together as I go, molding a loose structure of concerns that unravel at the seems. The writing I have done meanders through patterns of association that cycle between material and conceptual issues. I have rearranged the layers as I go and as they fray into one another.
The nervous system is to the body as the electrical grid is to the body politic. Electrical infrastructure trickles out from a central axis across the landscape like neural pathways from center to periphery. Its electrical current hovers overhead, gathering in transformers, and tracing back to its sources along pylon towers and recycled into the base load. Its scrawling incompleteness, its inability to self-sustain maintains its constant need for a fix, a perpetual energy crisis justifies continued lapses in the system and environmental abuse. To make bearable the constant state of emergency, the technological sublime provides the social opiate that keeps electrical current veiled behind the spectacle of an unbounded system. Unlike the natural sublime’s overwhelming sense of risk, the technological sublime presents an image of absolute control that supersedes the massive expanses of nature in power and efficiency.

Growing up in rural Kentucky, near the hills of central Appalachia, my sense of the electrical grid has been skewed by how I experienced its effects on the ground. For over thirty years, coal companies have practiced mountaintop removal against the Appalachian Plateau, a radical form of surface mining that permanently destroys the most biologically diverse temperate forest on the planet, buries mountain streams, and pollutes rivers like the Kentucky, where my family gets our drinking water, with a sluice of heavy metals like mercury, arsenic and lead. The coal recovered from mountaintop removal is sold across the globe to fuel the coal-fired power plants that maintain national electrical grids and the global information economy. Printed on their equipment is the slogan, “The Power to Move Mountains.”

Since its implementation, the electrical superstructure has been used as a model for top-down social organization. During the process of Soviet collectivization, for Lenin, electrification meant modernized farming practices and the centralization of state power, all the while destroying the reactionary foundation of the countryside. By replacing customary practices with the designs of the technocratic elite, they installed in its place an overhead authoritarian system.

For post-industrial capitalism’s vision of a free market, the electrical grid is a naturalized condition of the environment. The technological sublime is used to superimpose images of silicon circuit boards overtop the electrical grid’s grotesque infrastructure. With such images, the leviathan architectures of coal-fired power plants have been erased by a spectacle of self-perpetuating technology.

In the case of Constellation Energy, a national energy corporation and global commodities trader of mountaintop removal coal, the strategy is to alternate between images of the decentered market and militaristic state power, between the hallucination and its fix. According to their website, Constellation Energy owns a “national fleet” of power plants diversified by fuel source, technology and geographical location, streamlined to succeed in a “deregulated marketplace.” In such language, the fluctuating images of state power and the deterritorialized network, keep the flow of electrical
current in mid air, neutralizing the actual social and environmental frictions where the grid meets ground level.

Problematic geographies and populations in the way complicate the synoptic view of technological development. To create distance, the narrative of steady technological progress representationally situates land-based communities in the past, sequestered from the interests of the central population. Representations of hillbilly figures in the media follow a cosmopolitan wanderer up into the mountains and back in time, to recover an uncanny cultural residue. In horror films, these characterizations present the hillbilly as a grotesque other, often as deformed zombies, literalizing the rural agrarian’s “undead” status within a post-industrial chronology. Such images depict an autistic zombie emerging from the mist, deranged from severe deprivation, craving the flesh of holidaying city folk. The hillbilly inhabits a landscape encrusted in the debris of industrial production, where truck chassis hang from limbs like field dressed carcasses, with appliance parts dug from the ground and reconfigured like Frankenstein’s monster. The image of radical inefficiency vents a technological society’s anxiety about dysfunction and what lies at the other end of the wire.

Most of our materials were salvaged from construction sites scrapped by the developments popping up across the county. The rest were left-overs from agricultural processes: shingles, clap boards, chicken wire, roofing rubber and tar, straw and manure, ashes and tobacco sticks. We formed potato bins from masonite fragments and hinges from a barn door. We fashioned dirt graters from wire fencing sections bound to railroad ties, and flower planters from dry-rotted tires. The finished structures resembled something teetering between design and faded matter, like the flapping of a pale blue tarpoleum, tied down, edges unraveling against the sky.

Our most intricate structures were the quail cages; tall plywood lofts with angled roofs, keeping out the rain and housing a maze of chicken wire tunnels. For sport, my dad runs birddogs, requiring a supply of bobwhite quail for field-working his dogs. During the winter months, quail centralize into coveys to protect against cold, hunger and predators. Quail track across miles of field, honing into a fixed center by call and response. I vividly remember their sounds passing over the fields on winter nights, sitting on the fence’s edge. The captive
Minimalist artwork of the 1960s highlighted the universality of the grid and assumed a narrative of steady technological progress, culminating in mass production.

“This order is not based on previous art orders, but is an order so basic to the culture that its obviousness makes it nearly invisible. The new three-dimensional work has grasped the cultural infrastructure of forming itself which has been in use, and developing, since the Neolithic times and culminates in the technology of industrial production.” - Robert Morris

The tendency with this language is to present “the technology of industrial production” as a nonhierarchical matrix, lacking a center, and naturally embedded in the order of things. But the danger of accepting the grid as given and invisible is to reify the lens of industrial power and representations of efficiency like the assembly line. In order for an a priori schema to become successful, it must be dispersed across a field leveled to its conditions, justifying the bulldozing of geographic particulars and customary practices for centralized vision.

Science Fiction play-acts the inevitability of a hyper-efficient technological future fueled by a self-perpetuating energy supply. I began looking back at science fiction references from my youth to understand my sense of the technological sublime. As a kid, I was fascinated by the utopian vision of the city in the sky in films like *Star Wars* and *2001: A Space Odyssey*. In grade school, my classmates and I were indoctrinated into the nationalist spectacle of the Space Industry. We watched videos of Buzz Aldrin slurping at zero gravity spheres of Coca-Cola and were awed by images of the flag planted on the moon.
Figure 1: Flow

Figure 2: Flow (detail)
Flow

Flow is an installation involving two loosely related components juxtaposed in a large, open space. A video projector wired to a laptop sits atop a rolling cart in the center of the space. It projects a moving image that fills the opposite wall. In the foreground, a suspended oven coil bent like the tubes of a neon sign into cursive letters, radiates orange light. The pitch black room is only illuminated by the two glowing elements, viewers navigate the space using only this light, giving the sources a pulse of seduction to accompany the sense of the propulsive and repulsive provided by the hot coil and the glowing Starfield.

Like a stalled monitor between sessions, the projected image seems strange. At this scale (roughly 16’x13’), a propulsive virtual reality is created by the rapid unidirectional movement, as if the room were a space capsule hurling through a wormhole. The wall-sized projection of the Windows 98 Starfield screensaver cycles through a loop of white star pixels radiating from the center of the screen at intervals organized by an algorithmic pattern. The viewers instinctively gather opposite the image, as if at a drive-in cinema or before a spectacular natural phenomena like Aurora Borealis. Despite the implied trajectory of the video image, its proximity to its mundane source, the laptop, dilutes its sense of zero gravity, virtual reality.

The radiating text form with its 220V electrical cords draping to the floor was installed off center and several feet in front of the wall. The electrical cords drape down to the floor and trace back to a welder outlet. I weighted down the ground wire with a brick. The text reads flow calling to mind something fluid, spilling out in indeterminate directions. Like the uncanny tension between the laptop’s physical screen and the projector’s ethereal image, the glowing text coil, illuminated by circuit resistance, cycles between images of the fluid and the solid, make two sentences here like how Marx described the ectoplasmic transmutation of capital, all that is solid melts into air. In the dark space, it hovers seemingly without support, the electrical connection barely discernable at floor level. The clear danger of the bare high voltage circuit solidifies a viewing perimeter, as translucent as a proscenium and as forcefully material as an electric fence. Since electricity is mostly invisible, its resistance within the oven coil calls attention the energy pulsing through its circuits in unison with the electrical grid.
Figure 3: *Landing* (view from underneath)
The initial thought for this piece stemmed from a collection of Styrofoam I began accumulating while in grad school. As a kid, I experienced Styrofoam packaging material much like the way Roswell residents described the wreckage from the 1948 incident, unmarked and of unclear origin. Overtime, dust settles in its crevices filling in between the swollen beads. I found all my foam in dumpsters, on the side of the highway or floating in drainage ditches, encrusted in the residues of the industrial landscape.

When I began imagining Landing, I was interested in the centripetal and
centrifugal nature of grids, radiating out, collapsing in, and tethered by a central axis. Developing this notion further, I discovered a way to extend a drill chuck with a section of steel pipe and spin large compositions of foam around the rotating center. From here, I welded on angle iron bars at right angles as supports for gluing on the Styrofoam and stabilizing it while spinning. I hung the drill from the ceiling by its cord and began layering the foam, allowing the form to develop intuitively. The foam composition was assembled and disassembled, collaged and decollaged until it reached formal clarity. I then fitted it with a steel and airline cable safety harness to catch the mass in case the cord of the drill failed. Using a pulley system, I hoisted the pieces 15-35’ up in the space directly over the viewing area. The cord of the drill jutted up into the ceiling and back down on to the floor where it was plugged in sequence with a variable voltage foot switch. This allowed viewers to start and stop the drill and to adjust the speed of the spin. Once triggered on, the piece rotates around two axes, at the center of the drill and at the slanted drill handle connection, in the pattern of a mobius strip. As the spinning form gains speed, it releases stray pieces of foam into the air and they raining down onto the viewers. The overhead bodies repeat the visual language of the futuristic city in the sky, but made from Styrofoam coolers and packaging materials, they straddle the line between the sublime and mundane. The electrified cord hums like an electric guitar string, reverberating with the pulsing current. Tugged by the jolting weighted section, the hanging cord whips through the air, striking against the wall and entangling the viewer. Over the course of its duration, the worn cord begins smoking, filling the air with fumes and intensifying the sense of impending failure.

I once saw my dad press the end of a 2x4 through the car window and against the throat of a waterline inspector. They had been surveying in our front field, even though our complaint was in review. It was only the city municipalities stalling the developers, and the zoning change had given them the green light. The trailer parks had a sewage problem, and this was their explanation to widen the road and dig up a tenth of the acreage. They were a breeding ground for a pack of feral, pregnant and three-legged dogs. Some had names and belonged to specific owners, but all were without shots and lived off of what was available. The children had perpetual chapped lips and in the summer went without shoes--mossy toys strewn about exposed septic tanks, swamped in backflow. Lice had been epidemic. The trailers stacked along the hill emptied into the creek, gorging out a drainage seep for hydraulic fluid and scattered computer hardware. The
sinkholes were plugged with engine chases and refrigerator parts. At the neighborhood meeting, the waterline was introduced as a way to centralize and improve the sewage problem.

Figure 5: Bound

Bound

This project began as a site-determined intervention in an abandoned animal sciences laboratory on the OSU campus, a facility designed for studying the effects of industrial agriculture practices. I initially became interested in the space because of its right angle geometry of laboratory cabinets, painted black and white, and its electrical capability. During my brainstorming process, I removed the drawers from the laboratory cabinets and stacked them as a wall blocking the entrance doors confronting the viewer with the room’s compartmented grid and emphasizing its visual scheme of hard edge rationality. My focus became how to destabilize the rational order of the grid using its visual terms.

I am fascinated by the visual languages of electrical infrastructure, by the mathematical harmonies of electrical towers studded with transformers and ceramic insulator bulbs. The electric fence became an interesting to me as a radical boundary like
the separation of functions within a factory. Channeling its high voltage capability and cabinet architecture, I wanted to emphasize the violence underlying the rational divisions within the laboratory grid. I began experimenting with nichrome wire, a material that creates circuit resistance and glows when electrified; its most common applications are as the heating elements in kilns and toaster. The four 220V circuits in the space installed to power the air conditioners and ventilation hoods allowed for 82 feet of electrified 17-gauge wire. The other two fence wires came from two 120V circuits installed directly into the cabinet structure. The 220V outlets had to be transferred from the outside walls by conduit that I installed from the wall to the ceiling and down into the cabinet lid. As a result, the two cabinet units became the electrical center for the space, centralizing the currents like a transformer station.

When nichrome wire is electrified it heats to nearly 700°F creating a problem for the fence’s horizontal suspension. I found ceramic insulators used in electric kilns to house the suspended wires, and mounted them to the cabinet corners by fabricated angle iron supports, like the insulators used on electrical tower lines. As the nichrome heats, its material expands, creating slack in the wire. To resolve this issue, I utilized expansion springs that pulled the wire into a tight band around the cabinet edges. When the piece was turned on at the breaker box located outside the space, the springs expanded, releasing the wire around the ceramic insulators and producing tensed reverberations. The wires stretched like rubber, groaning against the suspension points. Since all the room’s circuits were pushed to the brink of their capacity, the wires in the wall began to vibrate under the straining alternating current. The friction between the nichrome alloy and the pulsing electrical current caused the wire to break down, scaling like forged steel. The counteracting spring pressure and ceramic friction coupled with the decomposing material eventually ruptured the wire, arcing wildly and casting the released wire like a fishing line across the room. The piece continued until nearly all of the six fence lines had failed. Because of the very real danger presented by the uninsulated current, the room was only made accessible from outside the doorway, allowing the viewer only enough room to peer in. From the hallway, the viewer could also watch the circuits be flipped on and off at the breaker box located on the outside of the laboratory.
Figure 6: Portal (with figure)

Figure 7: Portal
Portal

Appliances fall between the human hand and the industrial superstructure. Its vessel is filled by the hidden power of electricity. Alternating current pulses from the generator, spans electrical towers, pours through the appliance circuits before returning to the base load. Appliances age like furniture. At their inception, they arrive designed for the ages, etched in the image of smooth efficiency, drawing like a medium from the electrical grid’s amorphous sublime. But the white enameled surface gathers dust and the aged refrigerator, caked in dry rotted vegetable matter. Because of their proximity to family life, appliances hold the power to channel household anxieties, like the refrigerator leak, metal in the microwave, and baby’s hand on the hot coil. All of these pale in comparison to the toaster’s sacred danger.

Like neon signs, the elements in a toaster glow orange hot, radiating heat. The casing shields the glowing filaments that charge its slots like nerve-endings. My initial idea for this piece was to expand a toaster into a room sized environment by making a series of thresholds out of the electrified wires. A threshold is both an opening and a closure. Like electricity, it alternates between the two.

As I planned to construct this piece, I had to consider the specific capabilities of the Clean Space at the Sherman Studio, and how to attach the electrified wire to the supporting structure. I fabricated a steel support system out of found rod iron. The connection points where the nichrome wire meets the support were fitted with ceramic insulators in a way that referenced the cross-girdered aesthetic of electric towers. The secondary connection points were bolted to the floor with expansion springs that were also attached with ceramic connection points. I used five circuits, wired from the ceiling, and fastened along the wall in lines parallel to the grid of the white cube. By using 17 ft. sections of electrified nichrome, I wired each circuit to its capacity causing the walls to vibrate under the strain. The piece was shown in total darkness so that only the red-hot wires illuminated the space as the temperature of the room rose to nearly 100°. Viewers were invited to walk through the electrified opening. Passing through it felt as if entering a completely vectored environment, fixed to grid coordinates. The portal format creates a sense of transference, like moving walkways of the airport, and its use of repeated linear elements references dynamism, the Futurist’s trope of representing movement. At the same time, the claustrophobic enclosure created subverted the sense of spatial transcendence.

Like the electronic network, Portal contains fluid and static characteristics that zigzag between a sense of open circulation and the gridlocked architectures of central power. Unlike the despatialized connotations of electrical flows, the dual threat of the hot electrified wire constantly reorients the viewer’s attention to the real experience of literal space.
Half of a mile down the road Fayette County had built a water treatment plant to chemically sterilize the water flowing downstream from the city before it reached Hickman creek and our woods. In the morning the valleys would be clouded in sulphuric mist from settlement ponds warmed by chemical breakdown, “like rotten eggs” people would say. Fayette County managed the plant across its border in rural Jessamine County, a kind of industrial trespassing made visible by a ten-foot security fence tracing a mile perimeter around the plant facilities. The city represented power, affluence and the future, but grown monstrous and viral—committing routine atrocities in the name of economic development and environmental “protection.”

As teenagers, we would sneak out of windows and meet in the backfields to wade through undulating expanses of tobacco and soybeans swallowed in darkness. Silent, wrapped up like samurais, we hopped fences parting secret trails. The sewer plant was the ultimate thrill-seeking destination. We had marked where fallen limbs had shook loose the barbwire allowing us to catapult over in a matter of seconds. Once Ben and I had crossed the threshold and climbed a ridge, the plant opened up along the horizon like a miniature city, organized horizontally like a circuit board. The containment ponds spilled out across a landscape scraped flat by in loaders, hauntingly massive but gridlocked in rectangular compartments. Metal halide bulb glare silhouetted on the surface of still black water.
Figure 8: Developer

Figure 9: Developer (during flash)
This video project documents the effects of five different types of light bulbs activated by the electrical current of a microwave. The finished document is shown primarily as a video projection where the pulsing image of the bulb rotates in place, calling to mind the projector’s position between the wall current and the image.

I began by collecting bulbs of different sizes, shapes, wattages and protective coatings to explore their diverse reactions to a microwave environment. First, I placed each bulb on the carousel plate, turned on a video camera to record what would occur, and then started the microwave. Once the light bulb receives current, the camera’s auto focus strained for a stable aperture saturated in a white blur like the film recordings of nuclear trials in the Nevada Desert. After the lens finds its focal range, the settled image reveals a glowing bulb enmeshed by the microwaves protective shield, the light pouring from its sequestered openings like water though a colander. The bulb rotates atop the microwave carousel, wobbling slightly, echoing the camera’s spinning cassette reels. The microwave groans electrical fuzz while plasma arcs resonate the bulbs pressurized interior like steel pellets spiraling within a glass jar—convex sound shapes, trickling through the air like water spilled into hot oil. The light bulb channels the current from the microwave’s floating electrons through its metallic threading and into its chamber where it congeals in plasmatic auroras. Energy pools in the most elevated pockets and is redirected back to its core by the circling carousel. Building pressure, the hued arcs intensify lingering at the bulb’s protruded crown. In a flash, the edge pops like a balloon followed by a guttural bellowing, the surge saturating the frame in white light. The camera reel drops frames, missing information, pushed beyond its limit. The image settles as if from a cloud of dust with the bulb’s erupted fissure spewing like solar prominence. The molten surface cools forming a fluted protuberance, ghostly silhouetted by the flickering strobe. The ruptured bulb rests as if the life gasped from it in its shattered particulate like a lightning bug smeared across sun-warmed asphalt. I press the microwave’s stop button and the image winks out.

After a moment’s pause, a new cycle begins with the sound of the closing door, the click of start button then the soft roar of the microwave’s high voltage transformer and cavity magnetron compressing and extruding the wall current. Once the aperture adjusts, the image is replaced with a chrome coated 250-watt heat lamp bulb, funnel-shaped and capped, convex like the exterior of the eye. The chrome coating conducts more current than before, sizzling and peeling away from the surface like the stratified membranes of an onion. Vapor rises from the evaporating chrome, hissing like droplets spilled in a skillet, eaten away by the slithering, wormlike surges. The swift temperature rise amputates the bulb’s hemispherical cap; it falls against the glass carousel and instantly shatters. The filament continues to strobe washing out the screen, leaving violettobluetowhite afterimage, in concentric waves, pulsing from the center and gathering at the edge, like a gas puddle ignited from its midpoint by a singular fallen ash. Pixelized, the afterimage cycles through the color spectrum, like a storm pattern drifting.
in sequenced intervals across a Doppler radar. The rotating carousel strains against the shards at its base, groaning like heavy machinery, as the camera circuits struggle to capture the volume of emitted light. It produces ghost images like a lens pointed to the sun.

As we moved closer, we found illuminated circular pools planted around the warehouse edges. Elevated above the surface were rotating catwalks fixed to plates and a sprayer system churning steaming chemical batches. We took turns hopping on to the spinning catwalks watching the industrial landscape loop out between bursts of mist like Friederich’s Wanderer above the Sea of Fog. Prefabricated aluminum buildings sat adjacent to the pools with red emergency lights mounted above the entrances, all the doors were left open. Descending staircases lead to underground shafts filled with massive pipes in bolted gridworks from wall to floor to ceiling. The opening continued underneath the fields conducting serialized water flows like a submarine cave filled with buttons and dials. We played them like a keyboard until the lights flashed on and the sirens began to sound, then running out into the darkness, hearts thumping.

During the summer of 2008, I witnessed the Bodies exhibit where, for the first time, I viewed a specimen of the human nervous system, plasticized and encased in a vitrine like a sacred relic. The dendritic form sprawled out like a dehydrated jellyfish with the eyeballs still attached to the cranial lobe, comically returning the gaze. As alien as it seemed, its spine-tingling effect recalled the delicate structure of my own perceptual system, on edge, in a constant flux.
Figure 10: Loopstation
I began looking for formations created by the transfer of electrical current and stumbled upon images on the Internet of the burn marks left on the bodies of people struck by lightning. Lichtenberg figures, the branching traces that appear on the surface of insulating materials after high voltage electrical discharges, take many forms all with the same distinctly fern-like shape. The pink and white discolorations spanned across their glossy skin like an excavated root system flattened behind glass. Stemming from a central column, the horizontal sub-branches fray in multiple directions like sharpened fingers scorched into the skin and outlined by ruptured capillaries.

Like the Lichtenberg figure, the dendritic structure of the nervous system inspired the form for this piece. I became interested in the sublime’s primarily visual nature and its ability to destabilize the most rational sense. Since much of my work is time-based, its photographic record is vital to its continued existence after the piece is disassembled. The photograph’s clear boundaries create a finite formula of light, time, and the limits of the frame, ubiquitizing the sublime by its reproducible means. The strategy for this piece was

Figure 11: Loopstation (detail)
to challenge the camera’s focal limits, drawing a parallel between the lens and the eye, using the nervous system as a structural model. The tripod became an associative hinge between the camera’s structural support and the triangulated geometry of bifocal vision, a symbol of stabilized perspective. I collected tripods from dumpsters and off craigslist and began assembling them in my studio. Attaching the leg of one to the base of another, the structure became increasingly splintered and began to resemble a dendrite. The assemblaged technique gave the form a provisional aesthetic like a trailer park experiment. Before attaching the live electrical components, I painted the structure with coal ash tempura to subdue its clashing color palettes and giving it a carboniferous residue like fossils found in sheets of coal.

As I was gathering tripods, I began experimenting with high voltage neon sign transformers to produce Jacob’s Ladders, a fixture from early Frankenstein films. When two parallel conductive rods are electrified with high voltage current, a sizzling ribbon of electricity begins at the shortest spark gap and rises vertically, expanding its width as it reaches the top. Each leg of the tree-like structure was equipped with its own ladder, fashioned from copper electrodes and denoded spark plugs serving as insulators. I purchased vintage neon sign transformers, because those built after 1980 are installed with reset switches that prevent sudden current changes. The aged transformers came with in a cold war era military grade aesthetic, slate gray, conducting 12 KV currents from tar insulated copper coils. I installed the tripod structure inside a open white cube large enough to contain its roughly 14ft height. At its base, I arranged seven neon sign transformers and wired each to 4 separate ladders, totaling 28 in all. The wires were pulled tight at the first conjoined tripod section, and attached along each leg, gathering slack before they were clipped to the electrodes like limp wires hanging from an electric pole. The wires transversed from the transformer stack to the tripod structure collapsed into a singular connection point like the jittering scrawl of never-endings from a dissected hand.

Scattered around the perimeter of the structure, I placed microphones attached to their stands and wired in sequence with a mixer board and guitar amplifier. From years of playing the electric guitar, I knew that amplifiers could pick up variable frequencies; often I would receive CB radio signals in my bedroom. I rotated the amplifier’s volume to ten and turned the microphones off before switching on the tripod structure from the breaker box. As the electrical currents conducted up the Jacob’s Ladders, emitting light like a welder arc, the sound equipment echoed the pulsing fuzz at bone vibrating frequencies. The microphones functioned like neural receptors, recirculating the electromagnetic signals like an aggravated nerve.

Conclusion

Just as sites cannot be bracketed by the limits of specific locations, the space of flows cannot be pried from the regions where it extracts its natural resources. Drawing from images of smooth technology and cryptic infrastructure, I want to emphasize the interplay
of forces that uphold an image of electronic communication systems as separate from its land-base. With the current environmental crisis, the image we are being sold increasingly is of greener, more efficient technologies with zero-impact on the ground. Like the popular fantasy of the zero-emissions coal plant, when the veil is pulled back from this image, it reveals the bare mechanics of the industrial system. I want the recurrent themes of danger and the uncanny in my artwork to mark the return of the real, the reemergence of coal-fired infrastructure that has plagued the landscape of the electrical grid since Edison’s time. To draw out the repressed, I want my work to intersperse the anxieties and euphoria of the technological sublime like specters of the phantasmagoria.

How can I imagine a way to reorient the perception of technological development to include the heap of externalities it continues to amass? Designing a sustainable system and enacting one on the ground may be conflicting assertions. The questions I continually ask in my work concern the increasingly dislocated spatial condition of art and how such visions compensate for anxieties about the environment and energy politics. Since my early site-based installations that focused on the specific histories of found spaces, I have turned my attention to the institutional spaces, like the gallery or the museum. The work I have been making attempts to mediate between the viewer’s body and the surrounding architecture to strip the neutral connotations of the white cube so to link it to a system of real physical consequence. I want the work to shock, to overwhelm, to seduce, and to hypnotize the viewer with forms that summon the electrical grid like a phantom.
References

