HARMONIC SYNTAX
IN DELIUS’S LATE PERIOD CHAMBER MUSIC (1905-1930)

DISSERTATION

Presented In Partial Fulfillment of the Requirements for
the Doctoral Degree of Philosophy
in the Graduate School of The Ohio State University

By

HyonKyoung Yie, B.M.A, M.M.

The Ohio State University
2008

Dissertation committee:
Professor Burdette Green, Adviser
Professor Gregory Proctor
Professor Lora Dobos

Approved by

Adviser

Graduate Program in Music
ABSTRACT

This study seeks to establish a better understanding of the harmonic syntax of Frederick Delius (1862 – 1934) by analyzing and examining his lesser known chamber music, especially works composed after 1905. The chosen chamber works provide a more disciplined source for investigating the highly chromatic language of his mature period. More specifically, this study provides a systematic description of Delius’s chromatic harmony by analyzing these works that inhabit the ambiguous realm of early twentieth-century diatonic and chromatic tonality.

As a basic step, it examines the general characteristics of Delius’s harmonic vocabularies and resources through statistical analysis, and discusses common vertical sonorities and their arrangements, orders, and connections. It examines his characteristic devices, interpolation and substitution, which transform a diatonic into a chromatic passage – for instance, a circle-of-fifths progression into a linear progression. The examination of Delius’s distinctive harmonic progressions based on linear scalar motion and chromatic mediant relations reveals the fact that, although he adorned progressions with colorful chromatic harmonies, his system at the middle-ground level is still based on traditional underpinnings. The examination of harmonic progressions also shows his employment of both the common pedal point and the internal broken pedal point to interconnect remotely related chromatic chords and to establish the tonal center.
Through examining Delius’s reharmonization techniques in repeated figures, sequences, and themes, the study not only describes the application of the various devices of harmonic syntax, but also their roles in the construction of a structural unity. Finally, this analysis reveals how manipulations of harmonic devices affect the overall formal structure.
To GOD
ACKNOWLEDGEMENTS

I would like to acknowledge the commentaries, suggestions, and contributions made by all of my committee members: Dr. Gregory Proctor, Dr. Lora Dobos, and especially Dr. Burdette Green who gave up much of his valuable time to read and discuss various drafts along the way. Special thanks go to my husband and parents who provided the encouragement and support necessary for the completion of this work.

For granting permission to reprint copyright material, I am indebted to BOOSEY & HAWKES, INC. (Violin Sonatas in B, No. 2, and No. 3 © Copyright 1924 by Hawkes & Son (London) Ltd.)
VITA

1972……………………………………Born – Seoul, Korea

1991 – 1995…………………………Bachelor in Music of Arts, Ewha Womans University (Seoul, Korea)

1997 – 1999…………………………Music Director, Good News Church (NJ)

1999 – 2003…………………………Graduate Teaching Associate, The Ohio State University

1999 – present………………………Ph.D. in Music, The Ohio State University (Columbus, Ohio)

FIELDS OF STUDY

Major Field: Music
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Vita</td>
<td>vi</td>
</tr>
<tr>
<td>List of Examples</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xii</td>
</tr>
<tr>
<td>List of Graphs</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Diagrams</td>
<td>xv</td>
</tr>
</tbody>
</table>

Chapters

1. Introduction ... 1

2. The Chamber Works Chosen For Analysis 14

3. General Characteristics of the Harmonic Language 25
 3.1. Harmonic Vocabulary: the Preference for Tetrads 25
 3.2. Harmonic Vocabulary: the Structure of Tetrads 30
 3.2.1. Harmonic Vocabulary: Seventh Chords for Color 34
 3.2.2. Harmonic Vocabulary: Tertian Structures with Added Second and/or Sixth .. 38
 3.2.3. Harmonic Vocabulary: Augmented Sixth Chords 42
 3.3. Harmonic Resources from Special Scales 47
 3.3.1. Pentatonic Scale ... 47
 3.3.2. Church Modes ... 51
 3.3.3. Chromatic Scale .. 53
 3.3.4. Whole Tone Scale .. 58
 3.4. Dissolving the Rules of Doubling, Spacing, and Voice-Leading 59
 3.4.1. Doublings and Spacing .. 60
 3.4.2. Voice Movements: Parallel Motions 63
 3.4.3. “Out of Sync” Voice Movement 64
 3.5. Analysis of Root Movement .. 66
3.6. Analysis of Bass Movement ...75

4. Chord Progression: Modification, Prolongations, Common Tones, Peals84
 4.1. Chromatic Transformation of Authentic Cadences through Substitutions and
 Interpolations ..84
 4.2. Linear Progression as Prolongation ..93
 4.3. Diatonic, Chromatic, and Disjunct Mediant Relationships...............102
 4.3.1. Chromatic Mediant and Disjunct Mediant Relationships at the
 Foreground Level..102
 4.3.2. Mediant Relations in Sequential Patterns and between Tonal Areas
 ...109
 4.4. Pedal Points, Internal Pedals, and Common Tones Links..................112
 4.5. Combined Techniques in an Extended Chromatic Passage..............118

5. Modification of Repetitions: Reharmonization ..125
 5.1. Reharmonizations in Immediate Reiterations126
 5.2. Reharmonizations in Distant Recurrences141
 5.3. The Effects of Perception on Reharmonizations151

Conclusions..154

Selected Bibliography...157
LIST OF EXAMPLES

Example

2.1. Sonata in B for Violin and Piano, Mvt. I (mm.1 – 19) ..18
2.2. Delius’s chromatic progression in Sonata in B for Violin and Piano, Mvt. II
(mm.106 – 110) ...19
3.1. Sonata for Violin and Piano, No.2 (m.186) ..26
3.2. Resultant tetrads (3+1) in Sonata for Violin and Piano, No.2 (mm.48 – 49)..............28
3.3. A pentad resolves to a tetrad in Sonata for Violin and Piano, No.3 (mm.93 – 95)...........29
3.4. Unresolved sevenths in the parallel voice leading in Sonata for Cello and Piano
(mm.72 – 73) ..35
3.5. Unresolved sevenths in a typical diatonic progression in String Quartet, Mvt.II
(mm.12 – 15) ..36
3.6. A fully-diminished sevenths as a passing chord in Sonata for Violin and Piano,
No.3, Mvt.I (mm.53 – 4) ..37
3.7. Different uses of the fully-diminished seventh chord in String Quartet, Mvt.II
(mm.19 – 20) ..37
3.8. An incomplete seventh chord with added sixth in Sonata for Violin and Piano,
No.1 (m.174) ...39
3.9. Added notes as common tones for smooth connection Sonata for Violin and
Piano, No.1 (mm.170 – 172) ..39
3.10. Emphasis on added sixths in the second theme of Sonata for Violin and Piano,
No.1 ...41
3.11. Feigned bi-chordal sonorities in Sonata for Cello and Piano (mm.1 – 2).................41
3.12. Ger*6 and major-minor seventh chords used for color effect in Sonata for Violin
and Piano, No.1 (mm.325 – 328) ...43
3.13. Pentatonic scale in Sonata for Violin and Piano, No.3, Mvt.I (mm.34–42) (same in
mm.78–87) ..48
3.14. Pentatonic scale in Sonata for Violin and Piano, No.3, Mvt.III (mm.4–13)..............49
3.15. Pentatonic melody of sequences in Sonata for Cello and Piano (mm.46 – 52).50
3.16. Pentatonic melody of sequences in Sonata for Cello and Piano (mm.156 – 162)
..50
3.17. B Phrygian melody in Sonata for Cello and Piano (mm.1–4)51
3.18. E Locrian mode in Sonata for Violin and Piano, No.3, Mvt.1 (mm.1 – 3)........52
3.19. Linear chromatic harmonies in *String Quartet*, Mvt.II (mm.68 – 91)54
3.20. Chromatic melody on chromatic harmony in the development section of *Sonata for Cello and Piano* (mm.70 – 81) ..56
3.21. Reharmonized sequences in chromatic mediant relations in *String Quartet*, Mvt.IV (mm.98 – 100) ..59
3.22. Unusual doublings of seventh chords in *Sonata for Cello and Piano*, (mm. 3 – 4) ...61
3.23. Feigned bi-chordal sonority in *Sonata for Violin and Piano*, No.2 (mm.258 – 259) ...61
3.24. Parallel fifths on the bass in *Sonata for Violin and Piano*, No.1 (mm.191 – 207) ...63
3.25. Out-of-sync voice movement in *String Quartet*, Mvt.II (mm.80 – 83)65
3.26. Tritone root movement in *Sonata for Violin and Piano*, No.1, Mvt.III (mm. 145 – 149) ...74
3.27. Linear scalar motion in the bass *Sonata for Violin and Piano*, No.3, Mvt.I (mm.23 – 30) ...81
3.28. Tritone interval in the bass with tritone related root progression *Sonata for Cello and Piano* (mm.35 – 36) ..82
3.29. Tritone interval in the bass with chromatic mediant related root progression in *Sonata for Violin and Piano*, No.3, Mvt.II (75 – 77)82
3.30. Tritone interval in the bass with chromatic stepwise related root progression of *Sonata for Violin and Piano*, No.1 (mm.166 – 167)83
4.1. Substitution and Interpolation of the Fr\(^+6\) for a dominant chord in *Sonata for Violin and Piano*, No.2 (mm.70 – 75)87
4.2. Fr\(^+6\)/ I as V\(^7\)\(_5\) in a cadence in *Sonata for Violin and Piano*, No.3, Mvt.II (mm.72 – 73) ...88
4.3. Ger\(^+6\)/ I as a dominant chord in a cadence *Sonata for Violin and Piano*, No.1 (mm.218 – 220) ..89
4.4. Half-diminished seventh chord as an augmented sixth chord in *Sonata for Violin and Piano*, No.3, Mvt.II (mm.53 – 55) ...90
4.5. Half-diminished seventh chord as a modified augmented sixth chord in *String Quartet*, Mvt.IV (mm.98 – 100) ..91
4.6. Linear bass progression used as prolongation in *Sonata for Violin and Piano*, No.2 (mm.47 – 55) ..94
4.7. A Circle-of-fifths progression with substituted chord Fr\(^+6\) *Sonata for Violin and Piano*, No.3, Mvt.I (mm.77 – 78) ...97
4.8. Linear movements in *Sonata for Violin and Piano*, No.3, Mvt.I (mm.71 – 75) ..99
4.9. Extensive use of tritone substitution in *Sonata for Violin and Piano*, No.3, Mvt.III (mm.46 – 51) ..101
4.10. Chromatic mediants interpolated in fifth relations in *Sonata for Cello and Piano* (mm.59 – 61) ..104
4.11. Doubly chromatic mediant relation by the use of mode mixture and secondary dominant chord in *String Quartet*, Mvt.II (mm.78 – 80)105

x
4.12. Chromatic mediant relations in the process of one-chord (A₇) prolongation in *Sonata for Violin and Piano*, No.3, Mvt.I (mm.8 – 10) ... 107
4.13 Sequences in mediant relationship in *Sonata for Cello and Piano*, (mm.46 – 52) (and mm.222 – 228) ... 109
4.14. Tonic pedal point in *String Quartet*, Mvt. III (mm.101 – 121) 113
4.15. Internal tonic pedal point in *String Quartet*, Mvt.II (mm.76 – 87) 115/116
4.16. Internal pedal point in *Sonata for Violin and Piano*, No.2 (mm.48 – 55) 117
4.17. *Sonata for Violin and Piano*, No.2 (mm.1 – 37) .. 119 – 121
5.1. Modification by addition of a passing chord within a repeated chord prolongation in *Sonata for Violin and Piano*, No.1, Mvt.III (mm. 55 – 56 vs. 57 – 58) 127
5.2. Modification by harmonizing unfolded chord members in *String Quartet*, Mvt.IV (mm.27 – 50) ... 128
5.3. Differences of reharmonizations between reiteration and recurrence in *Sonata for Cello and Piano* (mm.142 – 166) .. 129
5.4. Reharmonization by out-of-sync voice movement in *Sonata for Violin and Piano*, No.2 (mm.17 – 18 vs. mm.21 – 22) .. 132
5.5. Reharmonizations by voice-exchanges and altering two voices in *Sonata for Violin and Piano*, No.3, Mvt.I (mm.4 – 5) .. 133
5.6. Real T₇ sequences reharmonized by an independent cello part in *String Quartet*, Mvt.I (mm.210 – 215) ... 134
5.7. Reharmonized real sequences in *Sonata for Cello and Piano* (mm.46 – 52) (and mm.222 – 228) ... 135
5.8. Reharmonized T₄ sequences in *String Quartet*, Mvt.II (mm.15 – 19) 137
5.9. Reharmonization of the initial motive in *String Quartet*, Mvt.III 139/140
5.10. Slight reharmonization in *Sonata for Violin and Piano*, No.1, Mvt.II (mm.1 – 9 vs. mm.70 – 78) ... 143/144
5.11. Reharmonization at transitional passages in *Sonata for Cello and Piano* (mm.58 – 60 vs. 234 – 236 and 66 – 68 vs. 242 – 244) ... 147/148
5.12. Tritone substitution in *Sonata for Violin and Piano*, No.1, Mvt. III 150
LIST OF FIGURES

Figure
1.1. Chromatic mediant relationship .. 8
1.2. Disjunct mediant relationship .. 9
1.3. Feigned bi-chordal sonority ... 9
1.4. Inner pedal point .. 10
1.5. Reharmonization by modification of out-of-sync voice movement 11
1.6. Tritone substitution for G7 .. 12
2.1. Diatonic progression in the early chamber work of Example 2.1. 19
3.1. Categories of tetrad structures ... 31
3.2. Major and minor triads with added major sixth 38
3.3. Ger\(^{+6}\) as a substitution and an interpolation for the dominant........ 43
3.4. Chromatic voice leadings with the Ger\(^{+6}\) substitution for the dominant G\(_7\) .. 44
3.5. Fr\(^{+6}/I\) vs. V\(_{\flat 5}\) .. 44
3.6. Two different resolutions of \(\flat ii_7\) ... 45
3.7. A half-diminished seventh chord as an unconventional augmented sixth chord. 46
3.8. \(\flat ii_7\) as a modified Fr\(^{+6}\) with a non-chord tone to the tonic 46
3.9. Tonic (C major) prolongation in String Quartet, Mvt.II (mm.68 – 77) 55
3.10. Tonic (C major) prolongation in String Quartet, Mvt.II (mm.86 – 91) ... 55
3.11. Chromatic lines of String Quartet, Mvt.II (mm.68 – 91) 55
3.12. Reharmonization by modification of out-of-sync voice movement 64
4.1. Feigned dominant to tonic voice-leading of \(\flat ii_7\)\(^{+6}\) – I progression 91
4.2. Sonata for Violin and Piano, No.2 (mm.47 – 55): Harmonic Reduction ... 96
4.3. Chromatic voice-leadings in Sonata for Violin and Piano, No.3, Mvt.I (m.9) ... 108
4.4. Symmetric chord progression in the first sequence pattern in Sonata for Cello and Piano (mm.46 – 47) ... 110
4.5. Harmonic outline based on the circle-of-fifths progression in Sonata for Violin and Piano, No.2 (mm.1 – 37) ... 121
4.6. V – I progression with three different chord interpolations 123
5.1. Initial chords of reharmonized sequences in String Quartet, Mvt.II (mm.15 – 19) .. 138
LIST OF GRAPHS

Graph

3.1. Distribution of chord densities in *Sonata for Cello and Piano*26
3.2. Distribution of chord densities in *Sonata for Violin and Piano*, No.226
3.3. Distribution of chord densities in *Sonata No.3 for Violin and Piano*, Mvt.I27
3.4. Distribution of chord densities in *Sonata No.3 for Violin and Piano*, Mvt.II ...27
3.5. Distribution of chord densities in *Sonata No.3 for Violin and Piano*, Mvt.III ...27
3.6. Distribution of tetrad structures in the sampled works...........................32
3.7. Root movement analysis: *Sonata for Cello and Piano*.........................68
3.8. Root movement analysis: *Sonata for Violin and Piano*, No.1, Mvt.I68
3.9. Root movement analysis: *Sonata for Violin and Piano*, No.1, Mvt.II68
3.10. Root movement analysis: *Sonata for Violin and Piano*, No.1, Mvt.III......68
3.11. Root movement analysis: *String Quartet*, Mvt.I...............................69
3.12. Root movement analysis: *String Quartet*, Mvt.II..............................69
3.13. Root movement analysis: *String Quartet*, Mvt.III............................69
3.15. Root movement analysis: *Sonata for Violin and Piano*, No.2...............70
3.16. Root movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.I........70
3.17. Root movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.II......70
3.18. Root movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.III.....70
3.19. Average percentages of root movements...71
3.20. Bass movement analysis: *Sonata for Violin and Piano*, No.176
3.23. Bass movement analysis: *String Quartet*, Mvt.II.............................77
3.25. Bass movement analysis: *String Quartet*, Mvt.IV............................78
3.27. Bass movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.I........79
3.28. Bass movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.II......79
LIST OF TABLES

Table
1.1. Symbols used as an abbreviation ... 12
2.1. Threlfall’s chronology of Delius’s chamber works15
3.1. The consistent preference for tetrads ...28
3.2. Tabulation of tetrad structures found in the sampled works33
3.3. Subclass root movement analysis: Sonata for Violin and Piano, No.172
3.4. Subclass root movement analysis: Sonata for Cello and Piano72
3.5. Subclass root movement analysis: String Quartet72
3.6. Subclass root movement analysis: Sonata for Violin and Piano, No.273
3.7. Subclass root movement analysis: Sonata for Violin and Piano, No.373
3.8. Average percentages of bass movement intervals80
List of Diagrams

Diagram
3.1. Harmonic relations of Sonata for Cello and Piano (mm.74 – 81) ………57
4.1. Reharmonized sequences in chromatic mediant relations in String Quartet,
Mvt.IV (mm.98 – 100) …………………………………………………………………………91
4.2. Chromatic mediant relations in and between sequence statements in Sonata for
Cello and Piano (mm.46 – 47) ……………………………………………………………………110
4.3. Mediant key relations in Sonata for Cello and Piano ………………………………111
5.1. Changes in distant repetitions in Sonata for Cello and Piano ……………………146
5.2. Distant Repetitions in Sonata for Violin and Piano, No.1, Mvt.III …………149
5.3. Arch structure by reordering the recurrences in Sonata for Violin and Piano, No.3,
Mvt.III ……………………………………………………………………………………………151
5.4. Comparison of reharmonizations in a distant recurrence in Sonata for Violin and
Piano, No.3, Mvt.III (mm.19 – 22 vs. mm.100 – 103)………………………………………153
5.5. Comparison of reharmonization in an immediate reiteration in Sonata for Violin
and Piano, No.3, Mvt.III (mm.100 – 103 vs. mm.104 – 107)……………………………153
CHAPTER 1
INTRODUCTION

Frederick Delius (1862-1934) is best known for his opulent orchestral works. These pieces are typically programmatic or pictorial in character and their harmonic language is often shaped by extra-musical influences. His lesser known chamber music, especially works composed after 1905, provide a more disciplined source for investigating the highly chromatic language of his mature period. These works depend less on color value and more on linear construction. This study seeks a better understanding of Delius’s harmonic syntax by analyzing and examining works that inhabit the ambiguous realm of early twentieth-century diatonic and chromatic tonality. More specifically, this study provides a systematic description of Delius’s chromatic harmony and expanded tonality.

1 ‘Syntax’ is: the positioning of words in a sentence and their relationship to each other; the grammatical rules governing this; the branch of linguistics that is concerned with the study of such rules; the order and arrangement of elements in a logical statement, computer program, etc; and the rules governing these. Harmonic syntax refers to the underlying control of chord progressions in music. It concerns how chords are arranged, ordered, and connected.
Many currently available music theory textbooks suggest that there is a stylistic disconnection between common-practice tonal music and the atonal music of the twentieth century. An abundant amount of discussion concentrates on the traditional common practice and on twentieth-century atonal music, but the transitional styles which do not clearly fit into one of these classifications have not fared so well. The music of the period is often termed variously as “chromatic tonal,” “triadic atonal,” “triadic post-tonal,” “extended tonal,” or “post-tonal diatonic.”

These many descriptive terms underscore the difficulty we have in formulating an accurate definition of the musical style of this transitional period. Its tertian chromatic harmonies exist on the boundary of tonality and atonality. Therefore, neither traditional tonal analysis nor pc-set analysis can offer satisfying analytic results.

This problem has been recognized by many scholars, theorists and critics, who have attempted to explain the works of the late nineteenth and early twentieth-century composers. Unfortunately Delius’s music has been overlooked in this recent scholarship. Several leading composers and their works have received attention, but many other composers’ works remained untouched. As Carl Dahlhaus claimed, “originality” was an important issue to late nineteenth-century composers and their compositional techniques differ from one another. Thus, one composer’s techniques cannot fully explain another composer’s composition, even though they were contemporaries. For late nineteenth-century composers reacting to Beethoven’s style,

3 Richard Cohn claims that both terms “chromatic tonality” and “triadic atonality” are equivalent in meaning and suggests a new term, “triadic post-tonality.”

harmony satisfied the need for “originality.” Dahlhaus describes the phenomenon as the “individualization of harmony.”

[In the second half of the [nineteenth] century, … with its reliance on chromatic alteration and its consequent tendency towards “wandering” or “floating” tonality (that is, a linear succession of fragmentary allusions to keys), the accent falls on harmonic details – on single chords or unusual progressions – and there is such a degree of differentiation in the compositional technique (the interrelationship of harmony and instrumentation) that it is no exaggeration to speak of an individualization of harmony, which is hardly less important than that of thematic and motivic material.]

Delius’s harmonic language is one of the most striking aspects of his music. Fellow composer, Philip Heseltine, in *Frederick Delius*, asserts that “his chief power lies in his extraordinary harmonic resources.” Anthony Payne briefly specifies some of the devices of Delius’s harmonic language.

The strength of Delius’s personality is most evident in a harmonic style which sounds quite unlike the work of any other. His chordal vocabulary never strays beyond late Romantic practice, relying on triads, secondary sevenths and dominant discords, with a comparatively narrow range of chromatic alterations and diatonic discords. But the syntax is entirely individual. The rate of harmonic change is extremely flexible, sometimes so fast as to border on atonality, at other times hypnotically slow.

In *Delius: the Paris years*, Lionel Carley claims that Delius’s harmony is not only the principal element of composition, but also the idiosyncratic and unique element which is “not founded on any real school”, “had few imitators”, and “fitted into no easily identifiable stylistic category.”\(^9\) Frederick Delius often described himself in letters as a unique composer who has not been influenced by any others. He shunned the study of works of his contemporaries or even composers of the past.

You needn’t ask me to listen to the music of the immortals. I can’t abide ’em. I finished with them long ago!... It is a great mistake for young composers to study too much... People with a little talent nearly always kill it by too much learning. Learning kills instinct. It is just as dangerous as too much reflection.\(^{10}\)

His friend, Eric Fenby also commented on Delius’s detachment.

I have never heard of any artist who was so completely and utterly himself, so detached and aloof from the world of his art and so little interested in the work of any other artist, past or present.\(^{11}\)

Although Delius’s harmony has been credited as his most important compositional device, discussions never go deeply enough to suggest a systematic description. It has been generally agreed that Delius “has no harmonic system which can be defined and analyzed as readily as those of Debussy or Scriabin.”\(^{12}\) His harmonic techniques are, indeed, very different from the common practice. He was

\(^{10}\) Fenby, *Delius, As I Knew Him* (London: G. Bell and Sons, 1936), pp.195 – 196.

\(^{11}\) Ibid. pp.194 – 195.

\(^{12}\) Heseltine, *Frederick Delius*, p.141.
more interested in the color value of sonorities and their arrangement, than in the clarity in tonal formations maintained by the “rules” of common practice. Although he may have ignored these rules on the musical surface, he nevertheless maintained a systematic harmonic syntax at the middle-ground levels.

Two substantial studies of Delius’s style of music at least partially investigate his harmonic syntax. In his dissertation, Francis Wilcox Proctor examines several orchestral works (Brigg Fair, In a Summer Garden, A Song of Summer, On Hearing the First Cuckoo in Spring, and Summer-Night on the River) to show how Delius’s harmonic technique relates to his orchestration.\(^\text{13}\) He discusses several influences on Delius and describes the basic harmonic techniques. However, he still agrees with Heseltine’s notion that “[Delius’s work] has no harmonic system which can be defined and analyzed. … He had no well-defined system of harmonic technique, but that … was governed, rather, by an inner feeling for harmonic variety…” He claims that Delius’s coloristic harmony is maximized when it combines with orchestral color.

In 1984, Andrew J. Boyle\(^\text{14}\) examined several early works of Delius, composed in the years 1885-1892, that have been ignored by Delius scholars – works such as Irmelin, The Magic Fountain, Koanga, and A Village Romeo and Juliet. Boyle credits those seven years as the period of Delius’s style development, the period which fostered the idiosyncratic compositional techniques of his mature style. Boyle thoroughly discusses the essential influences on Delius’s compositional technique: the

\(^\text{13}\) Francis Wilcox Proctor, “The Harmonic Technique of Delius and Its Relation to His Orchestration.” M.A. Thesis. (University of Rochester. 1940)

Afro-American music he heard in Florida; Chopin, as his admired predecessor; and Grieg’s Norwegian folk dance style. Boyle also points out specific harmonic vocabularies and techniques that stem from the developmental period. Although Boyle shows that there are no clear-cut technical differences between his early and mature style, he only discusses how Delius’s techniques started.

In order to reduce the large amount of material to a manageable quantity, this study analyzes only the chamber music from his later period, because these works are purely instrumental and represent his stylistic maturity. Chamber music is considered to be an absolute music without influences from descriptive extra-musical ideas such as texts or stories. Since absolute music is “relatively independent of extra-musical influences on its style and form,” it does not, for instance, suddenly shift chords or keys from one to another as a means of expressing texts. The music is expressed and controlled by its own elements such as melody, harmony, texture, and form.

Also, chamber music has the power to present music that has structure to it. Chamber music is, at least apparently, a conservative art form. According to Dahlhaus it has served as a correlated genre of Bildung (“musical education”)16. He claims that chamber music was able to provide the “logic of coherence” in chromatic tonal music, through its employment of thematic-motivic development. Therefore, it seems advised to examine a non-programmatic musical genre to develop a systematic description of the concrete and pure (not deformed or affected by the extra-musical elements) devices used in Delius’s harmonic syntax.

Although chordal color was a major concern for Delius, it is not the only element that governs his composition. Despite Francis Wilcox Proctor’s attempt to link the color value of Delius’s harmony to his use of orchestral color as the most appropriate course to follow, this one-sided examination would underestimate the merits of Delius’s chamber works and lead to the conclusion that he has no systematic harmonic system to define. In my view, that sort of the colorfulness may be minimized in the works with limited numbers and kinds of instruments, such as in solo piano works or chamber works.

As a basic step, the harmonic vocabulary and resources of Delius’s chamber music are examined to identify the general characteristics of his harmonic language. In particular, statistical tabulations are used to show his preferences for a typical number of pitch classes (PCs) and individual chord structures. Similarly, tabulations of root movements and bass movements are employed to find patterns. In an attempt to discover the harmonic syntax of the surface level, the root movement analysis includes all verticalities that can reasonably be considered to be chords and ignores those combinations that obviously arise out of the short term melodic movement of voices, such as passing notes, neighboring notes, appoggiaturas, etc. In general, my analysis for assigning roots relies on Delius's chord spellings. Because it is difficult to identify correct roots for some chords, such as fully diminished seventh chords, such chords are excluded in the analysis. To uncover the typical voice-leadings of chord arrangements, all the bass movements are also statistically analyzed.

Reductive analysis is employed to examine the harmonic relationships in his hierarchical harmonic system. Although traditional functional hierarchies are obscured, reductive analysis shows that there is still a diatonic middle-ground
prolonged by means of chromatic harmonies. My study attempts to trace tonal relevance in Delius’s music and to describe the breakthrough process he used to modify the tonal aspects.

1.1. Glossary of Special Terms

Chromatic Mediant Relationship\(^{17}\)

Two triadic chords of the same quality whose roots are a major or minor third apart. The two chords have at least two chromatic notes and one common tone. Delius often increases the number of common tones by adding a color note. (See Example 4.12. Chromatic mediant relations in the process of one chord (A\(^7\)) prolongation in *Sonata for Violin and Piano*, No.3, I (mm.8 – 10))

\[\text{Figure 1.1. Chromatic mediant relationship} \]

Disjunct Mediant Relationship\(^{18}\)

Two triadic chords of opposite quality whose roots are a third apart but share no common notes. Delius often adds one common tone by adding a color note. (See

\(^{18}\) This is also same as Salzer’s term “double mixture.” (Ibid., p.180) and Kostka’s term “doubly chromatic median relationship” (Ibid., p.3).
Example 4.12. Chromatic mediant relations in the process of one chord (A7) prolongation in *Sonata for Violin and Piano*, No.3, I (mm.8 – 10))

<table>
<thead>
<tr>
<th>G</th>
<th>Eb</th>
<th>Gm7</th>
<th>E7</th>
</tr>
</thead>
</table>

Figure 1.2. Disjunct mediant relationship

Feigned Bi-Chordal Sonority

It is formed by unusual doubling with emphasis on an secondary chord member, or by special spacing of a triad with an added sixth, a major seventh chord, or a minor seventh chord. These chords are often ordered into two fifths and placed separately, one at the bottom and the other at the top. As a result, it sounds like two chords played together. However, the bi-chordal sonority does not consist of two well-defined distantly related chords which make harmonic contrast and dissonance to let us clearly distinguish them as two chords. Feigned bi-chordal sonority is likely to have two related chords set a third apart, and therefore, able to mingle well together. These processes imply two keys but rarely confirm a definite tonality. (See Example 3.23. Feigned bi-chordal sonority in *Sonata for Violin and Piano*, No.2 (mm.258 – 259))

Figure 1.3. Feigned bi-chordal sonority
Internal Pedal Point

A common tone shared by several chords of a chromatic harmonic progression. The common tone is usually the local tonic which sustains throughout the passage. It plays an integral part in Delius’s characteristic complex harmonic progression by confirming the tonic and providing tonal stability. (See Example 4.16. Internal pedal point in *Sonata for Violin and Piano*, No.2 (mm.48 – 55))

![Figure 1.4. Inner pedal point](image)

Linear Scalar Motion

Stepwise movements in scalar motion in one direction

Linear Progression\(^\text{19}\)

A harmonic progression based on stepwise movements in scalar motion in one direction (linear scalar motion), that is clearly distinguishable to the listener for its remarkable texture and partly predictable progression that sets it apart from the surroundings. (See Example 4.6. Linear bass progression used as prolongation in *Sonata for Violin and Piano*, No.2 (mm.47 – 55))

\(^{19}\) The term ‘linear progression’ is not same as the Ernst Oster’s translation of Schenker’s term “Zug” in Heinrich Schenker, *Free Composition*, trans. by Ernst Oster, NY: Longman Inc., 1979, p.73.
“Out-of-Sync” Voice Movement

The staggered movement of voices when one of the chord members is reached and the other chord members move to form a different chord. “Out-of-sync” voice movement creates tonal instability, especially when it is applied to the V – I progression. (See Example 3.25. Out-of-sync voice movement in String Quartet, Mvt.II (mm.80 – 83))

\[(1) \quad C \quad G_6 \quad Am_6 \quad C \quad G_6 \quad B^o \quad Am_6 \quad Cm \quad G_6 \quad B^b \]

Figure 1.5. Reharmonization by modification of out-of-sync voice movement

Reharmonized Real Sequences

Sequential patterns in which the melody repeats exactly at a new pitch level, while the harmonization is modified. It shows Delius’s fondness for reharmonization even when he uses real sequences. (See Example 5.8. Reharmonized T₄ sequences in String Quartet, Mvt.II (mm.15 – 19))

Tritone Substitution

The term “tritone substitution” is borrowed from jazz theory. It refers to the chord substitution for a chord whose root is a tritone distant. It is one of Delius’s characteristic devices to transform a diatonic passage into a chromatic progression. (See Example 4.9. Extensive use of Tritone Substitution in Sonata for Violin and Piano, No.3, III (mm.46 – 51))
1.2. Symbols Used as Abbreviations

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Type of chord and Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>a major triad</td>
</tr>
<tr>
<td>Cm</td>
<td>a minor triad</td>
</tr>
<tr>
<td>C#</td>
<td>an augmented triad</td>
</tr>
<tr>
<td>C⁷</td>
<td>a diminished triad</td>
</tr>
<tr>
<td>C₇</td>
<td>major triad with minor 7th</td>
</tr>
<tr>
<td>C₇ tong</td>
<td>major triad with major 7th</td>
</tr>
<tr>
<td>C₇ tong</td>
<td>minor triad with minor 7th</td>
</tr>
<tr>
<td>C⁷ tong</td>
<td>diminished triad with minor 7th</td>
</tr>
<tr>
<td>C⁷ tong</td>
<td>diminished triad with diminished 7th</td>
</tr>
<tr>
<td>C⁷ tong</td>
<td>major-minor 7th with a lowered 5th above the root</td>
</tr>
<tr>
<td>Ger⁶ or Fr⁶/Capital letter</td>
<td>Fr⁶/C of which ⁶ resolves to C in common way</td>
</tr>
<tr>
<td>6 5⁴ 4 3⁴ or 4 2</td>
<td>First or second inversion of a triad</td>
</tr>
<tr>
<td>add⁶</td>
<td>First, second, or third inversion of a 7th chord</td>
</tr>
<tr>
<td>add ⁶</td>
<td>A chord with an added major 6th above the root</td>
</tr>
<tr>
<td>xP or xN</td>
<td>A chord with an added minor 6th above the root</td>
</tr>
<tr>
<td>Tn</td>
<td>Transposed level (‘n’ indicates the transposition interval)</td>
</tr>
</tbody>
</table>

Table 1.1. Symbols used as abbreviations
Chapter 2 surveys Delius’s chamber works and provides the rationale for limiting the study to certain works chosen for analysis.

Chapter 3 outlines the general characteristics of the selected works. It identifies his preference for a specific number of chord members and structures, and it examines root movements and bass movements to show common harmonic patterns.

Chapter 4 discusses Delius’s system of chord progression through modifying authentic cadences, prolonging structural chords, and connecting harmonies in various ways. The first section outlines Delius’s modification of a diatonic progression by interpolations and substitutions. Sections 2 and 3 examine chromatic devices in the process of a prolongation based on stepwise bass/root movement, chromatic/double-chromatic mediant relationships. Section 4 examines a special application of pedal points within chromatic harmonies.

Chapter 5 investigates Delius’s modification of repetition through reharmonization which not only gives rich color to the music but also unifies and integrates it. Section 5.1 examines reharmonizations in ‘immediate reiterations’ and sequences of figures or motives. Section 5.2 examines reharmonizations in ‘distant recurrences’ of longer themes and assesses the effect this procedures has on formal structure. Section 5.3 reviews the different consequences of reharmonization in immediate reiterations and distant recurrences.
CHAPTER 2
THE CHAMBER WORKS CHOSEN FOR ANALYSIS

Delius composed only ten chamber works including incomplete works,¹ but these show his involvement with the genre throughout his life. Table 1 lists his entire output arranged in chronological order with titles and completed year. Square brackets used in the list indicate incomplete works.

¹ It is a comparatively very small amount compared to his 9 stage works, 38 symphonic pieces, 43 vocal works, and 60 songs.
<table>
<thead>
<tr>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[String Quartet]</td>
<td>1888</td>
</tr>
<tr>
<td>3. Adagio, con molta espressione</td>
<td></td>
</tr>
<tr>
<td>4. Allegro molto ed agitato</td>
<td></td>
</tr>
<tr>
<td>Romance for Violin and Piano</td>
<td>1889</td>
</tr>
<tr>
<td>Sonata for Violin and Piano in B major</td>
<td>1892</td>
</tr>
<tr>
<td>[String Quartet]</td>
<td>1893</td>
</tr>
<tr>
<td>Romance for Violoncello and Piano</td>
<td>1896</td>
</tr>
<tr>
<td>Sonata No.1 for Violin and Piano</td>
<td>1914</td>
</tr>
<tr>
<td>With easy movement but not quick</td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td></td>
</tr>
<tr>
<td>With vigour and animation</td>
<td></td>
</tr>
<tr>
<td>Sonata for Violoncello and Piano</td>
<td>1916</td>
</tr>
<tr>
<td>Allegro ma non troppo</td>
<td></td>
</tr>
<tr>
<td>Lento, molto tranquillo</td>
<td></td>
</tr>
<tr>
<td>Tempo primo</td>
<td></td>
</tr>
<tr>
<td>String Quartet</td>
<td>1916</td>
</tr>
<tr>
<td>1. With animation</td>
<td></td>
</tr>
<tr>
<td>2. Quick and lightly</td>
<td></td>
</tr>
<tr>
<td>3. Late Swallows</td>
<td></td>
</tr>
<tr>
<td>4. Very quick and vigorously</td>
<td></td>
</tr>
<tr>
<td>- with bright and elastic movement</td>
<td></td>
</tr>
<tr>
<td>Sonata No.2 for Violin and Piano</td>
<td>1923</td>
</tr>
<tr>
<td>Sonata No.3 for Violin and Piano</td>
<td>1930</td>
</tr>
<tr>
<td>1. Slow</td>
<td></td>
</tr>
<tr>
<td>2. Andante scherzando</td>
<td></td>
</tr>
<tr>
<td>3. Lento</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1. Threlfall’s chronology of Delius’s chamber works²

2.1. Precursors of the Style Change

According to Anthony Payne, Delius achieved his mastery of a distinctive harmonic manner (his personal richer harmony) in the works composed after 1900. After 1900, Delius departed from the influences of Chopin, Wagner, Grieg, and Strauss to develop his own compositional language, “Delius’s own fully developed brand of impressionism.” Payne claims that the work, Paris (1899), was the turning point of a vast change that took place in the compositional style of Delius. The works prior to the 1900 are, according to Payne’s appraisal, “of no more than passing interest” and his harmonic syntax is “nothing much else besides conventional harmony and modulation.” His statement, “nothing much” seems to be an exaggerated description of the harmonic language of Delius’s early period. Andrew J. Boyle claims, after his close examination in “Delius’s years of development (1885 – 1900),” that the early works offered a hint of the individual language of his mature style. However, as he also admitted, they are impaired by “structural weaknesses and harmonic derivativeness.” Delius, himself, remarked: “It was a long, long time before I understood exactly what I wanted to say, and then it came to me all at once.”

The studies of Payne and Boyle are mostly based on their examination of Delius’s programmatic works to support their claim that the works before 1900 are not yet mature in style. Nevertheless, the same style changes are also evident in Delius’s chamber works. The harmonic vocabulary of his early chamber works is quite simple. Although he uses color chords such as seventh chords and several

4 Ibid. p.12.

5 Fenby, As I Knew Him, p.194.
added-note chords, plain triads dominate. The harmonic rhythm is extremely slow and the harmonic syntax is strongly diatonic. For instance, the representative harmonic progression of the first 19 measures of *Sonata in B major for Violin and Piano*, Mvt. I (1892) is strongly diatonic in B major: I – ii7 – V7 – I. (See Example 2.1 and Figure 2.1.) Measures 1 – 6 prolong the tonic with diatonic submediant chords used as neighboring chords. Then, the next 8 measures maintain only one chord, C#m(7) with inversions. An authentic cadence in B major, follows these slow chord changes. Only two chromatic chords appear. In measures 5 – 6, one augmented tonic chord is used to connect the tonic chord to the supertonic chord. In measures 15 – 16, a neighboring chord connects the supertonic chord with the following dominant chord.
Example 2.1. *Sonata in B for Violin and Piano*, Mvt. I (mm. 1 – 19)
Harmonic Reduction

Figure 2.1. Diatonic progression in the early chamber work of Example 2.1.

However, the harmonic content of the sonata is not entirely diatonic. For instance, a transitional passage in the second movement shows the consecutive use of seventh chords, the scalar descending linear progression, a circle-of-fifths progression with a tritone substitution, and a chromatic mediant relation.

Example 2.2. Delius’s chromatic progression in *Sonata in B for Violin and Piano*, Mvt. II (mm.106 – 110)

Although this passage reveals some of Delius’s characteristic devices, the harmonic syntax of the movement is still very typical of the romantic period and the harmonic structure is conventional.
2.2. Survey of Works Chosen for Analysis

The non-programmatic Sonatas and the String Quartet are perhaps the most unconventional works of Delius’s late period. Their appearance is surprising since they were composed in the period 1905 – 1930 following an abundant output of works based on extra-musical elements.

Sonata for Violin and Piano, No.1 (1905 – 1914)

In 1905, Delius began the Sonata for Violin and Piano, No.1 and completed the first two movements. Then he put it away for about nine years to work on the Requiem and other works. He finally completed the sonata in 1914. It was premiered in Manchester on 24 February 1915 by Arthur Catterall and R.J. Forbes. There is no record of whether the first two movements were revised at the time he took up the work for the third movement. Despite the long gap, there is not a big style change among these movements. Since the five chamber works of his mature period show a similar harmonic vocabulary, compositional techniques, and harmonic syntax, one can assume that he already had established his idiosyncratic language at the time he started the sonata in 1905.

The sonata is written as three movements in one: (1) With easy movement but not quick, (2) Slow, and (3) With vigour and animation. The first and the third movements are ternary in form, while the slow second movement is constructed by repetitions of a figure with modification and reharmonization, one of Delius’s characteristic compositional techniques. The first movement is in sonata-allegro form centered on D. The tonal center of the second movement figure is in E minor, but it

ends in its relative major key, G major. The third movement ends on B major without a clear authentic cadence. While each movement has a different tonal center, these centers are not entirely obvious because of the ambiguous nature of his colorful chords. The tonal centers of the first and second movements (D major and G major) stand in mediant relation to that of the last movement (B major).

Sonata for Cello and Piano (1916)

Sonata for Cello and Piano, composed in 1916, is dedicated to the English cellist, Beatrice Harrison (1893 – 1965). She first played it with May Harrison, on 6 June, 1919, at the Salle Gaveau. The work is in one movement with three sections; *Allegro ma non troppo; Lento, molto tranquillo; Tempo primo*. The strongly diatonic middle section contrasts with the flowing melody of the chromatic outer sections.

String Quartet (1916/1917)

The original version of Delius’s *String Quartet* (1916) has three movements. The first performance of this version was given by the London String Quartet, leader Albert Sammons, in the Aeolian Hall, London, on 17 November. In 1917 Delius revised it and added a scherzo, making it a four-movement work.\(^7\) The added scherzo is the present second movement; it is based on the second movement of the unpublished quartet (1888). The revised quartet was given for the first time in London on 1 February, 1919. The third movement “Late Swallows” was later arranged for string orchestra by Eric Fenby in 1963.

The first movement resembles a sonata form balanced by themes in quite contrasting tonal relationships. The pentatonic melody of the first theme and the more chromatic melody of the second theme interplay in the development section. The second movement is a ternary form with the lightly moving broken-chord theme contrasting with the cantabile linear theme of the middle section. Initially the tonality is ambiguously in G minor but soon it modulates to E minor. Since the middle section is in C minor, these tonalities are all in mediant relationship, which is one of Delius’s favorite relationships both for chords or sections. The last movement, which was added to the quartet a year later, is a ternary form somewhat similar to the first movement’s sonata-like form. Both first and second themes are based on the major pentatonic scale. Following Delius’s typical pattern, themes are repeated with modified elements and different harmonizations. Moreover, a figure used in the introduction also recurs in transitions and the coda section. Along with the repetition of themes, this use of a similar figure for non-thematic sections unifies the movement as a whole.

Sonata for Violin and Piano, No.2 (1923)

Delius had to dictate the *Sonata for Violin and Piano, No.2* to his wife Jelka because of severe health problems. After he recovered, he finished the work. The first performance was given at the Aeolian Hall, London, by Albert Sammons and Evlyn Howard-Jones on 7 October 1924, and then recorded by them. This one-movement sonata begins ambiguously in the key of C with some degree of emphasis on the added sixth (A) and ends in C major with a perfect authentic cadence. Its rondo-like form, also involves a quasi-arch design. A descending melody of dotted-note figures
returns several times with different harmonizations.

Sonata for Violin and Piano, No.3 (1930)

In 1928, during the period of Delius’s serious illness, he composed this sonata with the assistance of Eric Fenby. Delius dictated the score to Fenby at Delius’s home in Grez-sur-Loing. The first movement was already sketched much earlier in 1918, and several scattered sketches existed. The opening page for the first movement had already been written by Delius himself – 3 bars in ink, another 17 in pencil. Also, about six measures of the second movement were dictated and dated by Jelka in October 1924. Fenby recorded and assisted in completing the work in March 1930. It was first performed by May Harrison and Arnold Bax at the Wignore Hall, London, on 6 November 1930, and then published in the following year.

Unlike his other sonatas, this work consists of three separate movements. The first movement divides into two sections which are balanced by the tonalities of D and E. In the first section, the scalar ascending E-Locrian melody contrasts to the D-pentatonic melody, while in the second section the scalar ascending D-Locrian melody contrasts to the E-pentatonic melody. After a six-measure chromatic passage, it returns to E and quickly ends with a perfect authentic cadence. The second movement is a ternary form and in each section the themes repeat with different harmonizations. The first section in D starts with a dance-like melody in 12/8 meter.

10 The melody resembles to the Dark Fiddler's music in *A Village Romeo and Juliet*. notes from the
The contrasting middle section has an expressive melody outlining the G minor triad in 4/4 meter. In the reprise of the first section, the first appearance of the dance theme continues in the G minor key of the middle section. Then it modulates back to the tonic key D minor at the repetition of the theme and ends in that key. The third movement starts with lento pentatonic melodies in the violin, appropriately introduced by three measures of solo piano. The sonata achieves a good balance because the last movement tonally balances the first movement. It starts in E minor which soon becomes vague and moves around E and G with an emphasis on the sixth scale degree of G. It closes in D with a return of the introductory melody. These five works provide an excellent sample of Delius’s methods of construction. Because it is my purpose to define Delius’s idiosyncratic and rich harmonic syntax, only the five chamber works composed between 1914 and 1930 will be analyzed in this study.

Delius based his harmonic language on the triadic sonorities of the common practice period, but his personal preferences and procedures greatly altered the tonal character of his music. This chapter defines the basic harmonic vocabulary of his mature chamber works according to two factors: (1) the number of pitch classes (PCs) in individual harmonies, and (2) the types of chord structure that he selected.

3.1. Harmonic Vocabulary: the Preference for Tetrads

In the analysis, Delius’s verticalities were tabulated by number of chord members to determine his preferred combinations. Doublings were ignored, and only PCs that function as chord members were counted. Those non-chordal PCs that obviously arise out of the short-term voice-leading movement were ignored. Instances in which the accompaniment consists of arpeggiated chord movement were excluded in the tabulation, because the non-chord tones are not clearly distinguishable. Some of these passages can be interpreted in more than one way. In Example 3.1, it is unclear whether a chord is a ninth chord or an augmented sixth chord with a passing note.
Example 3.1. *Sonata for Violin and Piano*, No.2 (m.186)

As the following graphs show (Graphs 3.1 – 3.5), the works sampled (1 for each decade) clearly indicate that tetrads are by far the most common vertical sonority. Indeed, Delius prefers tetrads in all the works analyzed in the study.

Graph 3.1. Distribution of chord densities in *Sonata for Cello and Piano*

Graph 3.2. Distribution of chord densities in *Sonata for Violin and Piano*, No.2

Graph 3.3. Distribution of chord densities in *Sonata for Violin and Piano*, No.3, Mvt.I

(\%) 12 : 80 : 8 : 0 = (#) 28 : 187 : 20 : 1

Graph 3.4. Distribution of chord densities in *Sonata for Violin and Piano*, No.3, Mvt.II

Graph 3.5. Distribution of chord densities in *Sonata for Violin and Piano*, No.3, Mvt.III
<table>
<thead>
<tr>
<th>Work</th>
<th>Percentages of Tetrads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonata for Cello and Piano (1916)</td>
<td>63%</td>
</tr>
<tr>
<td>Sonata for Violin and Piano, No.2 (1923)</td>
<td>68%</td>
</tr>
<tr>
<td>Sonata for Violin and Piano, No.3 (1930)</td>
<td>I (72%), II (80%), III (67%)</td>
</tr>
</tbody>
</table>

Table 3.1. The consistent preference for tetrads

As Graphs 3.1–3.5 show, trichords account for only about 15% of all the verticalities. Simple triads are generally employed in final cadences to clarify the tonality or sometimes in passages that introduce themes. An important consideration here is that not all trichords are simple triads; some are seventh chords with fifth omitted. Typically the soloist’s PCs duplicate the chord members of the accompaniment. When a PC other than those chord members of the accompaniment chord appears in the melodic line, the accompaniment is usually a trichord, and the collective result is a tetrad. For example, in the Sonata for Violin and Piano, No.2, 26 out of 111 accompaniment trichords form tetrads with the note in the melody. (See Example 3.2.)

Example 3.2. Resultant tetrads (3+1) in Sonata for Violin and Piano, No.2 (mm.48 – 49)
Pentads and hexads are often non-functional chords used as suspensions or anticipations, and they usually resolve to a tetrad. Successive pentads and hexads are sometimes used with doublings for the purpose of reaching a thicker contrasting texture at the point of climax. The following example shows the typical use of trichords, tetrads, and pentads. Example 3.3 presents the final cadence in the first movement of the *Sonata for Violin and Piano, No.3*. The first chord, a pentad, acts as a suspension that resolves to the following tetrad. The rest of the chords are all tetrads except the final tonic triad.

Example 3.3. A pentad resolves to a tetrad in *Sonata for Violin and Piano, No.3* (mm.93 – 95)

The progression from pentad to tetrads to a trichord makes an effective closure by means of chordal density reduction.
3.2. Harmonic Vocabulary: the Structure of Tetrads

The task of analyzing the structures of Delius’s preferred tetrads is no simple matter. His chord spellings are not entirely reliable. Sometimes he considers normal voice-leading by writing flatted notes for descending and sharpened notes for ascending movement, regardless of the function of the chord; sometimes he simplifies the spellings to make them easier to read by replacing double-sharps or flats with enharmonic equivalents. Unfortunately, he does not follow a consistent set of rules. Chord functions are frequently disguised. For instance, a major-minor seventh spelled chord may resolve as a Ger$^+$6; or a Ger$^+$6-spelled chord may not resolve the tendency notes of the augmented sixth. Because sonority seems to outweigh function in chords such as these, they are classified together in Table 3.2. Their different uses in context will be discussed in Chapter 4.

The chord types are labeled with abbreviated symbols. Following the common symbols, the capital letter ‘M’ indicates a major quality, while the lower case letter ‘m’ indicates minor quality. In seventh chords, the former indicates the quality of the triad and the latter the quality of the seventh added. For example, $^+$m7 refers a tetrad constructed of an augmented triad with a minor seventh added. Also, (inc.)Mm7add6, (inc.)Mm79 and (inc.)Mm$^♭$79 in Table 3.2 all refer to incomplete chords with the missing fifths, thus tetrads.

1 Therefore, Mm7 and Ger$^+$6; Mm$^♭$7 and Fr$^-$6; Madd6 and m7; and m$^{add♭6}$ and M7 are considered equivalents.

2 Kostka and Payne, Tonal Harmony, p.47.
Figure 3.1. Categories of tetrad structures
Graph 3.6. Distribution of tetrad structures in the sampled works
<table>
<thead>
<tr>
<th>Quality</th>
<th>Work</th>
<th>Vc-Pf</th>
<th>Vn-Pf No.1-I</th>
<th>Vn-Pf No.1-II</th>
<th>Vn-Pf No.1-III</th>
<th>Vn-Pf No.2</th>
<th>Vn-Pf No.3-I</th>
<th>Vn-Pf No.3-II</th>
<th>Vn-Pf No.3-III</th>
<th>SQ I</th>
<th>SQ II</th>
<th>SQ III</th>
<th>SQ IV</th>
<th>App. Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn^7 / Ger^δ</td>
<td>93</td>
<td>74</td>
<td>68</td>
<td>117</td>
<td>94</td>
<td>48</td>
<td>46</td>
<td>61</td>
<td>166</td>
<td>92</td>
<td>72</td>
<td>173</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>mm^7(m^7)</td>
<td>49</td>
<td>45</td>
<td>24</td>
<td>45</td>
<td>62</td>
<td>55</td>
<td>44</td>
<td>31</td>
<td>53</td>
<td>40</td>
<td>47</td>
<td>76</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>n^7</td>
<td>38</td>
<td>32</td>
<td>10</td>
<td>48</td>
<td>47</td>
<td>36</td>
<td>27</td>
<td>19</td>
<td>79</td>
<td>42</td>
<td>54</td>
<td>94</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>b^7</td>
<td>23</td>
<td>19</td>
<td>6</td>
<td>47</td>
<td>33</td>
<td>18</td>
<td>32</td>
<td>7</td>
<td>31</td>
<td>10</td>
<td>18</td>
<td>54</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Mn^7,5 / Fr^δ</td>
<td>29</td>
<td>22</td>
<td>5</td>
<td>16</td>
<td>29</td>
<td>31</td>
<td>10</td>
<td>19</td>
<td>27</td>
<td>25</td>
<td>10</td>
<td>34</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>MM^7(M^7)</td>
<td>14</td>
<td>21</td>
<td>15</td>
<td>28</td>
<td>28</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>16</td>
<td>26</td>
<td>17</td>
<td>22</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>(inc.)Mn^3</td>
<td>38</td>
<td>23</td>
<td>13</td>
<td>28</td>
<td>29</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>31</td>
<td>5</td>
<td>6</td>
<td>23</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>a^7</td>
<td>5</td>
<td>15</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>(inc.)Mn^8</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>20</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>(inc.)Mm</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>M^1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>m^2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.2. Tabulation of Tetrad Structures found in the Sampled Works
Table 3.2 shows that Delius’s harmonic vocabulary is primarily based on standard tertian structures. Although he had a great fondness for colorful chords, he rarely used non-tertian structures.\(^3\) In particular, most of the tetrads are expanded triads transformed by the addition of a dissonant note such as seventh, ninth, or sixth, or by alterations such as the raised fifth or lowered fifth. The transformations fit into three categories: (1) chords by assimilation\(^4\) of sevenths such as the major-minor seventh chord or the diminished seventh chord; (2) chord by the assimilation of decorative tones such as the added sixth or added second; and (3) the augmented sixth chords, especially the French sixth and German sixth types. Although other kinds of tetrad are found, these are the most common. While these dissonant structures give color to the sonority, the distribution of chord elements, the spacing and the doubling, also account for Delius’s style. In brief, his treatment of the color chords establishes his idiosyncratic harmonic syntax.

3.2.1. Harmonic Vocabulary; Seventh Chords for Color

In Delius’s chamber works, seventh chords are employed more for their color value than for their tonal function. As Palmer points out, “Delius, like Chopin, Grieg, and Debussy, emphasized the beauty of the sonority rather than the functions of the chords.”\(^5\) Thus, Delius often employs major-minor seventh chords or diminished seventh chords without preparation or resolution. This technique undermines the tonality instead of fortifying it in the conventional way. Example 3.4 presents the use

\(^3\) Exceptions include the dominant 7th chord with split thirds in Sonata, No.1, measures 17, 19, 28, and 37, quartal chords in Sonata, No.1, measure 250, and the whole-tone chord in Sonata, No.1, measure 69.

of major-minor sevenths in the development section of the *Sonata for Cello and Piano*. This passage primarily consists of an ascending planing of major-minor seventh chords with fifth omitted. The chord sevenths slide upward and maintain the ascending voice leading instead of resolving the tension. These chords are not functional dominant sevenths; they are merely the outcome of the parallel voice leading for color effect.

![Musical notation]

Example 3.4. Unresolved sevenths in the parallel voice leading in *Sonata for Cello and Piano* (mm.72 – 73)

Example 3.5 manifests Delius’s preference for unresolved seventh chords employed for color effect, even in a diatonic progression. The passage occurs at the beginning of the second movement of the *String Quartet*. Though this passage is based on a standard progression, iv – V – I, the voice leading ignores normal tendencies. Instead of resolving down to D, the E♭ in the second violin part moves by augmented second to F♯, while the seventh of the V7 leaps down a fourth in the viola part. The diatonically stable chord progression sounds unconventional, and consequently
colorful, because of the voice leadings. This passage is balanced by the following passage (mm.14 – 15), which presents a similar progression with conventional voice leadings.

Example 3.5. Unresolved sevenths in a typical diatonic progression in *String Quartet* (1916), Mvt.II (mm.12 – 15)

Delius also employs the fully diminished seventh chord unconventionally for color effect. He often employs it as a chromatic passing or neighboring chord to fill in the space of unfolded members of a prolonged chord or to fill in the space between structural chords. In a short C#m7 prolongation (See Example 3.6.), a C#06 serves as a passing chord that moves smoothly to a neighboring chord, F#06, whose root lies a fourth from the prolonged chord.
Example 3.6. A fully-diminished sevenths as a passing chord in
Sonata for Violin and Piano, No.3, Mvt.I (mm.53 – 4)

This progression is organized by chromatically descending major sixths, one of Delius’s favorite parallel motions. The C# of the fully-diminished seventh chord moves downward to maintain the descending voice leading. In chromatically sliding passages, the normal directional pull of the chord members is no longer valid.

Example 3.7. Different uses of the fully-diminished seventh chord in
String Quartet, Mvt.II (mm.19 – 20)
Example 3.7 shows a passage with two different uses of the fully-diminished seventh chord. The F♯⁰₇ at the first beat of measure 20 prolongs the dominant, D, on the first beat of measure 19, and it resolves to the following tonic chord, Gm. Another diminished seventh chord, E⁰₇, forms a chromatic slide within the doubly chromatic mediant move from D to B♭ m. Both B♭ m and E⁰₇ chromatically connect the unfolded dominant D and F♯⁰₇.

3.2.2. Harmonic Vocabulary: Tertian Structures with Added Second and/or Sixth

After the seventh, the most frequent of the added notes is the sixth, then the second, and rarely the fourth. Delius prefers the minor triad with added major sixth more than the typical major triad with added major sixth. The sonority of the former has more tension than the latter, since a tritone occurs between the chord third and the added note. (See Figure 3.2.) Thus, it has the same tension quality as the half-diminished seventh chord.

![Figure 3.2. Major and minor triads with added major sixth](image)

Delius also adds notes to the seventh chords. When all chord members are present, this procedure forms a pentad, but when the fifth is omitted, it forms a useful tetrad. The substitution of major sixth for the fifth in an incomplete major-minor seventh chord produces a doubly dissonant tetrad. (See Example 3.8.)
Example 3.8. An incomplete seventh chord with added sixth in *Sonata for Violin and Piano*, No.1 (m.174)

Added notes cast as anticipations or suspensions, may serve as common tones with the following chord. Example 3.9 shows a modified tonic prolongation in the key of G major.

Example 3.9. Added notes as common tones for smooth connection *Sonata for Violin and Piano*, No.1 (mm.170 – 172)
The added sixth, E of the first tonic chord (G majoradd6 \textsubscript{add2}), becomes the third of the following C\textsubscript{7} chord. The note E sustains until the first beat of the next measure, where it acts as an added sixth of G\textsubscript{M7}. The added second, A, of the first tonic chord, becomes an added sixth of the C\textsubscript{7} chord; it then resolves up to B 7 of the G\textsubscript{M7}add6.

There is only one common tone in the process of general prolongation of the tonic chord with the subdominant chord used as a neighboring chord (I – IV – I).

As shown in the reduction, the chord progression keeps three common tones, the tonic, the fifth and the sixth (G, D and E) to smoothly connect the progression and give it coherence. But, the added notes also add tonal ambiguity between G major and E minor. This ambiguity is enhanced by the employment of the V – I progression in E major in measure 172.

Although added notes stem from the process of assimilation, Delius usually gives them prominence by placing them in the top voice or in the solo instrument; by placing them on the accented down beat; or by adding them without preparation or resolution. While he emphasizes the added notes, he often states the root and the fifth of the chord in the bass at the same time. Example 3.10 shows a C major triad with added sixth at the beginning of the second theme of the \textit{Sonata for Violin and Piano}, No.1. The added note, A, is emphasized by its appearance in the solo line, and also by its appearance as the highest note in the piano accompaniment. While the piano part asserts the chord as C major by the sustained open fifth, C and G in the bass, the violin melody, along with the emphasis on the added note, actually outlines an A minor triad.
Delius’s peculiar way of emphasizing and dividing an added sixth chord produces a feigned bi-chordal sonority. Consistent employment of these mixtures results in a vague tonality wavering between relative major and minor keys. Feigned bi-chordal sonority is not the same as true bi-tonality. Although a passage with consecutive use of feigned bi-chordal sonorities gives an impression of two keys sounding together, the tonal implications are not well defined. Therefore, the resulting effect colorfully mingles keys together. This effect can be seen at the beginning of the Sonata for Cello and Piano (Example 3.11).
The cello melody emphatically arpeggiates a B minor seventh chord by placing the root on the down beats. The piano accompaniment, however, suggests D major because of the two D major triads on the down beats and the neighboring F#m\(^4\)\(^2\) which contains all three members of the dominant chord on A (A C# E). The feigned bi-chordal sonority of the passage creates color and beauty. In some situations feigned bi-chordal sonority is more easily obtainable through the use of unusual doublings. This procedure will be examined in Section 3.4.1.

3.2.3. Harmonic Vocabulary: Augmented Sixth Chords

Delius frequently employs the Ger\(^+6\) and the Fr\(^+6\), but rarely the It\(^+6\) because of his preference for tetrads. In common-practice music augmented sixth chords typically have the single function of serving as pre-dominant chords, so that the tension of the augmented sixth interval releases to the octave on scale degree \(\hat{5}\). Delius does not limit himself to the pre-dominant functions.

With regard to function, Delius’s spellings of augmented-sixths chords are quite unreliable. He interchangeably spells the chords whose sonorities are identical to each other, as in case of Mm7 and Ger\(^+6\). The following passage from the Sonata for Violin and Piano, No.1 illustrates the point. There are five chords of the same sonority in this short passage (See Example 3.12.): three spelled as Mm7 and two as Ger\(^+6\). In measure 328 he uses the Ger\(^+6\) without its normal resolution. The first chord is notated as the Ger\(^+6\) of A, but it progresses to G#7 chord instead. Thus, it does not function according to its spelling or as a dominant seventh chord spelled enharmonically. It functions simply as an augmented sixth chord for color effect.
Example 3.12. Ger+6 and major-minor seventh chords used for color effect in *Sonata for Violin and Piano*, No.1 (mm.325 – 328)

The chord progression can be analyzed as B\textsubscript{b} 7 (or A\#\textsubscript{7}) – G\#\textsubscript{7}, a simple parallelism, as in the preceding progression (mm. 326 – 327). Whether the chord is spelled as Mm\textsubscript{7} or Ger+6, the chords here are all color chords moving in a parallel progression. Augmented sixth chords often interpolate between the dominant and tonic chords instead of preparing the dominant. Also, they frequently substitute for a dominant, no matter whether the dominant is diatonic or chromatic. For example, in the key of C, the Ger+6/C may take the place of the G\textsubscript{7} (Ger+6/I – I) or mediate between the G\textsubscript{7} and C chords (V\textsubscript{7} – Ger+6/I – I). (See Figure 3.3.)

Figure 3.3. Ger+6 as a substitution and an interpolation for the dominant
It is noteworthy that the altered notes of the substituted chord may intensify the pull to the following tonic chord. In the case of G7 and Ger⁴⁶/C the notes D and G are altered to D♭ and A♭ so that each voice progress smoothly in a chromatic line.

![Figure 3.4](image1.png)

Figure 3.4. Chromatic voice leadings with the Ger⁴⁶ substitution for the dominant G7

Though Delius occasionally employs the Ger⁴⁶ chord, he seems to prefer the Fr⁴⁶ over the Ger⁴⁶ chord and he uses it in a similar way. The Fr⁴⁶/I seems nicely substitute for the V⁷ structure. In the case for G7 and Fr⁴⁶/C, three notes (G, B, and F) are the same and the D of G7 becomes D♭ which moves chromatically to the root of following tonic, C. In the case of the second inversion of Fr⁴⁶/C (D♭ F G B), the G is in the bass and its resolution sounds much like the progression from dominant to tonic, and the chord can appropriately be reinterpreted as a modified dominant chord, the V⁷♭₅. (See Figure 3.5.)

![Figure 3.5](image2.png)

Figure 3.5. Fr⁴⁶/I vs. V⁷♭₅

44
Another feature of Fr+6 chord structure is that it contains two tritones, which cause it to be tonally ambiguous and unstable. It can have two functions without altering its sonority. A harmonic progression with such chord substitutions and interpolations loses the strong sense of tonal progression, but gains smoother chromatic voice leadings.

Delius uses another chord that shares features of the standard augmented sixth chords. A half-diminished seventh chord sometimes leads to a chord whose root is a minor second lower, instead of proceeding up a half-step to its tonic. (See Figure 3.6.)

![Figure 3.6. Two different resolutions of ♭ ii^9_7](image)

In such a progression, the tendency tones, the root and seventh, enharmonically act as an augmented sixth which resolves outward.6

6 Louis and Thuille, in \textit{Stuttgart: Gruninger}, recognize six types of augmented sixth chord which include the “big three” augmented sixth chords, namely Italian, French and German, and an incomplete French sixth without the third (a major third above the root?). Another type is an augmented triad with an added augmented sixth and the other is the incomplete French sixth with an added augmented second. The last type can be respelled as a half-diminished seventh chord. Also, Daniel Harrison calls the last type as the “dual” German sixth chord which constructs of “its inversive intervallic relationship to the German sixth.” He also recognizes the “Till” chord (Richard Strauss’s \textit{Till Eulenspiegel}, mm.46-49) as the “dual German sixth.” Daniel Harrison, “Supplement to the Theory of Augmented-Sixth Chords,” \textit{Music Theory Spectrum}, The Journal of the Society for Music Theory, Vol. 17, No.2 (1995); pp.182, 185.
Figure 3.7. A half-diminished seventh chord as an unconventional augmented sixth chord

Figure 3.7 shows how respelling clarifies the function of this chord structure and also shows that none of the common Roman number symbols is quite adequate. Delius does not restrict his spellings to this $D \frac{9}{7}$ formulation, but freely interchanges it with the enharmonically spelled chord, $C#\frac{9}{7}$. Because of the importance of the augmented sixth interval, the chord can be considered as a modified form of the Fr^{+6}/I chord.

Figure 3.8 shows how an interpolated $\frac{b}{ii} \frac{9}{7}$ chord modifying a Fr^{+6}/I chord could be considered as a chord containing (a) an anticipated mediant of the following major tonic, or (b) a passing tone resolving to a minor tonic.

(a)

C: V\(\frac{7}{\text{Fr}} \) Fr\(^{+6}/I \) \((b\ ii^{9})^{+6}/I \) I

(b)

C: V\(\frac{7}{\text{Fr}} \) Fr\(^{+6}/I \) \((b\ ii^{9})^{+6}/i \) i

Figure 3.8. $\frac{b}{ii} \frac{9}{7}$ as a modified Fr\(^{+6} \) with a non-chord tone to the tonic
These subjects of chord interpolation and substitution by augmented sixth chords and the use of half-diminished seventh chord as a modified augmented sixth are discussed further in Section 4.1.

3.3. Harmonic Resources from Special Scales

Despite the fact that Delius’s harmonic vocabulary is based on the traditional tertian system, his harmonic syntax stretches the bounds of tonality to a considerable extent through the mixture of harmonic resources from pentatonic, modal, chromatic, and other special scales.

3.3.1. Pentatonic Scales

One of Delius’s favorite harmonic sources is the pentatonic scale, a common feature of the Afro-American music that attracted him during his earlier experiences in Jacksonville, Florida. Nevertheless, he recognized the harmonic limitations of pentatonic scales. Vincent Persichetti, in his *Twentieth-Century Harmony: Creative Aspects and Practice*, conveniently reviews these limitations.

Since most pentatonic scales lack a semitone relationship, their use for both melody and harmonization tends to lead to static results. Therefore, pentatonic melodies must be either harmonized with chords from the other scale a fifth higher or a pentatonic passage must soon modulate to the other pentatonic passage to avoid the lack of driving force. Delius either harmonizes pentatonic melodies with harmonies derived from other kinds of scales, or he follows one of the procedures outlined above.

Example 3.13 is taken from the second theme section of *Sonata for Violin and Piano*, No.3. Delius mixes chromatic scales with the D major scale to harmonize the pentatonic melody. The harmonization based on a chromatically descending bass line lacks directional pull because of the symmetry of the scale.

The lack of directional pull of both the pentatonic scale and the chromatic scale is compensated for by a passage harmonized in the D major scale and by the two chromatic neighboring notes applied to the pentatonic melody. The chromatic neighboring notes, E# and C#, emphasize the surrounding notes, F# and D which are the members of the D major tonic triad.
Example 3.14 presents another example of Delius’s use of pentatonic scales. In this passage, the harmonization of the pentatonic melody is based on the same scale. However, Delius’s modulation from one pentatonic to the other pentatonic avoids the lack of driving force. Several other examples of his use of pentatonic melody are shown in Examples 3.15 and 3.16.
Example 3.1. Pentatonic melody of sequences in *Sonata for Cello and Piano* (mm.46 – 52)

Example 3.16. Pentatonic melody of sequences in *Sonata for Cello and Piano* (mm.156 – 162)
3.3.2. Church Modes

The use of church modes was revived by composers in the nineteenth century. Chopin, Berlioz, and Liszt used the modes extensively, and later composers, such as Mussorgsky, Faure, Borodin, Debussy, Sibelius, and Vaughan-Williams, took modal elements from earlier works and used the modes as a fresh source of harmony and tonality. For Delius the use of modes derived from Norwegian folk music by way of Grieg’s influence. The modes permeated Delius’s works, both as a source of melody and of harmonic progression. The use of harmonic progressions based on modes, intermingled with major and minor scales, expands the tonal bounds and weakens the tonality. Example 3.17 shows how an initial B-Phrygian melody and its harmonization based on the mixture of modes can still connote the tonic key of D.

Example 3.17. B Phrygian melody in *Sonata for Cello and Piano* (mm.1 – 4)

The first movement of the *Sonata for Cello and Piano* is composed in the key of D. However, the first phrase starts with an arpeggiation of Bm7 and emphasizes B, the

added sixth of D. The melody sounds in B Phrygian mode and the harmonies mix B Phrygian and D major/ minor. The non-functional chord of A major and the neighboring tone, C# of the first two measures lead the passage into a D major that is somewhat weakened by the minor dominant chord (A minor). Later, this ambiguous passage is reasserted in the coda, but there the melody of the initial passage is clearly based on the D major scale instead of a mixture with B Phrygian mode, and it ends with a perfect authentic cadence. The Phrygian mode also appears prominently in the development section, which swings back and forth between two themes, one based on D Phrygian mode and the other on a pentatonic scale.

Delius uses the Locrian mode in the *Sonata for Violin and Piano*, No.3.

In the first movement, the violin melody starts with the scalar ascending E Locrian mode. Delius carefully avoids the diminished tonic and only hints at the tonic key of the work. To avoid the tonic triad, E diminished, he employs the tonic seventh chord (E ø7) in inversion to create a more stable sound. The placement of the perfect fifth of the chord third and seventh in the bass converts the E Locrian tonic chord into a G minor triad with added sixth. (See Example 3.18.) Although the movement is not
restricted to this E Locrian melody, it is used as a motive that appears five times in
different pitch levels. These Locrian statements provide a strong color effect and
produce an interesting tonal ambiguity. Delius constructs a viable structure by
repetition of the motive and its reharmonizations.

3.3.3. Chromatic Scales

Delius often uses the chromatic scale in support of the diatonic scale.
Typically the melody is mostly diatonic with harmonies that are largely chromatic.
The chord chromatic structure is not the result of mixed intervals from the chromatic
scale; rather it is based on tertian chords. Thus, the chromatic harmonies are often
used as auxiliaries to an outlining diatonic chord progression. (See Example 3.13
above.)
Example 3.19. Linear chromatic harmonies in *String Quartet*, Mvt.II (mm.68 – 91)
Example 3.19 shows the cantabile theme section from the second movement of the *String Quartet* (1916). It illustrates Delius’s use of linear chromatic descending harmonies with a diatonic melody. The first half of the passage (mm.68 – 77) and the last 6 measures (mm.86 – 91) prolong the tonic, C major. (See Figures 3.9 and 3.10.)
At times chromatic harmony supports chromatic melody. The development section of the *Sonata for Cello and Piano* (mm.70 – 81) illustrates the use of chromatic harmonies built on a chromatically ascending bass line for the sake of a tonic B♭ prolongation. (See Example 3.20.) One passage (mm.71 – 75) modulates from B♭ to E, and another passage (mm.76 – 81) modulates back to B♭.

Example 3.20. Chromatic melody on chromatic harmony in the development section of *Sonata for Cello and Piano* (mm.70 – 81)
In the return to B♭ chromatic harmonies proceed to the dominant F♮ in measure 79. B♭ is tonicized by a typical circle-of-fifths progression, C – F – B♭. Also, the dominant chord is emphasized by several pre-dominant chords, the secondary vii♭ø4 – V42 of V and the borrowed chord, ii♭ø3. However, instead of directly resolving the secondary dominant chord to the dominant, the borrowed chord, ii♭ø3, is interpolated between them, and results in weakened tonality but with smooth voice-leadings.

The brief modulation to E within the passage stands in a tritone relation to the tonic key. These distantly related chords, E and B♭, are smoothly connected by sequential harmonic patterns in a chromatic mediant relation, E♭3 – E♭ø4 and C4 – C♭ø4, and the circle-of-fifths progression on C – F – B♭.

Diagram 3.1. Harmonic relations of Sonata for Cello and Piano (mm.74 – 81)

The harmonies of each pattern, E♭4 – E♭ø4 and C4 – C♭ø4, share two common tones (E / D and C / B♭) and there are two chromatic notes. The smooth voice-leadings make it possible to arrange these distantly related chromatic harmonies in progression.

These harmonic relations of measures 75 – 81 are shown in Diagram 3.1. The

9 Chromatic mediant relationship is discussed in Section 4.3.
chromatic melody and harmony, and the distant modulation result in an extremely chromatic passage which seems to approach the boundary of atonality.

3.3.4. Whole Tone Scale

Because symmetrical scales have less tonal force than the diatonic modes, they offer effective ways to weaken the shackles of functional tonality. Although Delius had a great fondness for chromatic scales, he sometimes employed the whole-tone scale to interact with the chromatic scale. The T₄ sequences of measures 98 – 100 of the String Quartet, Movement IV have strong whole-tone implications (Example 3.21). This passage shows reharmonized sequences from a transition within the second theme section, which prolongs A₇, the dominant of the following second theme section in D major. As is common in Delius’s works, the harmonic rhythm on the surface is fast; chords change on every quarter note. The T₄ sequence, starting from A₇, progresses through a series of ascending tonicizations a whole tone apart. Although the melodic line is a chromatic ascent that spans an octave from A, the harmonization implies an ascending whole-tone scale (A to G) at the same time. Chords with roots on A, B, C#, D#, F, and G are tonicized by augmented sixth chords. This sort of symmetric division of the octave is a characteristic device of Delius’s harmonic syntax.
Example 3.21. Reharmonized sequences in chromatic mediant relations in *String Quartet*, Mvt.IV (mm.98 – 100)

3.4. Dissolving the Rules of Doubling, Spacing, and Voice-Leading

Christopher Palmer observed that “Chopin, Grieg, and Delius were all harmonists in that they concentrated on the idea of the chord as an entity, adjusting not only its essential intervals but also its balance and distribution of notes to obtain an effect of pure and beautiful sonority.”

Clearly, Delius was more concerned about the color of the individual chord, than about its tonal function. As shown in Sections 3.1 and 3.2, Delius added notes to basic sonorities to increase their color.

10 Palmer, *Delius*, p.48
value. His distinctive treatment of the arrangement of chord members and their spacing and doubling also contributed uniqueness in sonority. This emphasis on the color of sonority resulted in the abandonment of traditional rules of doubling, spacing, and voice-leading.

3.4.1. Doublings and Spacing

Delius's chamber works are mostly homophonic and dense in texture. While his harmonic vocabulary consists mostly of tetrads, he often thickens them by doubling or even tripling chord members. Conventional doubling rules are designed to reinforce the stability of chords in a tonal context. In general, one is advised to double the root of consonant chords in root-position and the bass of six-four chords, also, to avoid doubling tendency tones or chromatic notes. In many cases, Delius maintains these doubling principles. When he chooses to double only two chord members, he usually doubles the root and the fifth of major triads, or the third and the fifth of minor triads. Also, he mostly doubles the root or sometimes the root and the fifth of the seventh and ninth chords that are extensions of consonant triads.

Sometimes, however, Delius does not double chord members as common ways. When he wishes to undermine the prevailing tonality, he freely resorts to unusual doublings. He may double the third and the seventh of a minor seventh chord or a major seventh chord rather than the root and the fifth. Doublings such as these undermine the identity of the chord. In other words, doubling the third and the seventh results in vagueness of chord identity (quality) as between a minor seventh chord and a major triad with an added sixth, or between a major seventh chord and a minor triad with an added sixth.
The dense homophonic texture of Example 3.22 illustrates a peculiar doubling that results in a feigned bi-chordal sonority. The PCs of the last chord of measure 3 and the second chord of measure 4 identify them as F⁷ and D⁷. However, the sonority of these chords is not firm due to the unusual doublings. The doubled thirds and fifths suggest A minor triad for the former and F major triad for the latter. Nevertheless, each F⁷ and D⁷ is asserted by the deployment of the root and the fifth (in root-position) on the bass. This unusual doubling and spacing thus result in a feigned bi-chordal sonority. (See Section 3.2.)

The second chord of Example 3.23 shows a more obtainable feigned bi-chordal sonority.

Example 3.23. Feigned bi-chordal sonority in *Sonata for Violin and Piano*, No.2 (mm.258 – 259)
The chord clearly seems to be a C major in root-position with the root and the fifth at the bottom. However, the upper parts undermine the C major sonority by emphasizing the pitch-classes of A minor through doubling (and even tripling). The unusual balancing results in vagueness of identity.

As seen in the previous examples, Delius’s opposition of a seventh chord and a triad with an added sixth is characteristic. He often separates the chord members into two fifths and places one at the bottom and the other at the top. Whether a third is added between the fifths or not, the impression is that of two triads stacked together instead of one seventh chord. When these stacked chords are sounded, they intermingle because of their close relation and the two common tones they share. Their unusual doubling and the special voicing create the impression of a bi-chordal sonority.

Also, as seen at the first chord of Example 3.23, Delius often doubles the third and the seventh of a major-minor seventh chord. When he doubles these tendency tones, he tends to disregard their tendencies. In measure 258, the F♯ moves down to E rather than resolving up by a half-step to G in spite of the fact that there is a G in the following Cadd6. Also, the seventh (C) leaps down to A rather than resolving down a step. Clearly he doubles these tendency tones for the sake of color.

Delius often places an open fifth on the bass, and even uses fifths in parallel series. (See Example 3.24.) This sort of parallel fifth movement is a common feature in his works. Example 3.24 illustrates his preference for open fifths on the bass and for the serial use of these fifths. This example also shows feigned bi-chordal sonorities in measure 198. The Em7, C M7, and G M7 chords separated into two triads, one on the bottom and the other on the top. This separation gives an impression that while the bottom part progresses Em – C – G, the top part progresses G – Em – Bm.
3.4.2. Voice Movements: Parallel Motions

In addition to movement in parallel fifths, Delius has a fondness for other parallel movements, not only the planing of intervals but also of entire chords. Such planing results in obstructing the resolution of tendency tones because of the dominating parallelism. Moreover, adjacent chromatic notes do not always remain in the same voice, but often move to another voice, which results in voice crossing. Delius often employs semi-planing, either partially or completely. Sometimes there is
an independent voice beneath the planing, or two separated planings moving at the same time. Example 3.4 above presents an instance of planing with an independent voice. While the lower parts ascend in a planing of major-minor seventh chords with fifth omitted, the solo instrument and the piano top part play an independent melody. The melody consists of different chord members from each chord, for instance the seventh of A#7, the root of C7, the fifth of D♭7 and so forth, leading to an arpeggiation of A♭M7. An instance of a compound-planings is shown in Example 3.22 above. There, a planing in the upper part moves independently from another planing in the lower part.

3.4.3. “Out-of-Sync” Voice Movement

Some of Delius’s color chords are produced by “out-of-sync” voice movement, a situation in which as one of the chord members is reached, while the other chord members move to form another chord. This process often creates more colorful chords in faster harmonic rhythm. This simple rhythmic modification brings about a transformation of a simple chord progression into a more complex one. (See Figure 3.12.)

![Figure 3.12. Reharmonization by modification of out-of-sync voice movement](http://www.societymusictheory.org/mto/issues/mto.03.9.1/mto.03.9.1.hussey.html)

As seen in Figure 3.12, the harmonic progression of (2) is formed by the addition of an out-of-sync voice movement to (1). Diatonically related chords, Am₆ and B⁹, are added to the simple C – G₆ progression. Chromatic passing notes are added to the progression of (3), and the addition results in chromatic substituted chords for the chords of (2). This movement creates instability and ambiguity in tonality, especially when out-of-sync voice movement is applied to the V – I progression.

Example 3.25. Out-of-sync voice movement in *String Quartet*, Mvt.II (mm.80 – 83)

Example 3.25 shows the first cadence in C major of the cantabile theme section from the second movement of the *String Quartet* (1916). It is an imperfect authentic cadence (vii⁶₅ – I⁹⁷ᵃᵈḍ₆) in which the dominant functioning chord is approached by the secondary dominant, D⁷. On the down beat of measure 80, the D⁷ is colored with added second (E) and sixth (B). The accented second is soon resolved down to the root of the chord (D) while the sixth chromatically descends to the fifth of the chord (A) on the down beat of the following measure 81, via lowered sixth.
When the fifth (A) is reached at measure 81, the third (F#) has moved to F♭ and the seventh (C) has moved to B. Both F# and C resolve chromatically to B♭6 in measure 81.

Similar voice movements appear in measures 82–83. The suspended note (D) of the melody and the sixth and seventh added to the tonic chord, C major, are resolved on the down beat of measure 83. The suspended second (D) is resolved down to the root of the chord, (C), while the sixth (A) chromatically descends to the fifth of the chord (G) on the down beat of the following measure 81, via lowered sixth (A♭). When the root (C) and the fifth, (G) are reached, the third (E) has moved to D and the root (C) has moved to F at the down beat of measure 83. These voice movements produce the neighboring chord Gm7 which finally resolves back to the tonic chord on the last beat of measure 83. The process weakens the imperfect authentic cadence even further. The tonic key is asserted in other ways by the pedals C and G of the cello part and by the diatonically descending melody in the C major scale of the first violin part throughout the first passage of the second theme, measures 68 – 91. (The passage is examined in detail in section 3.3.5.) As shown in the example above, the out-of-sync voice movement adds color and tensional notes to simpler diatonic chords, D♭7,add6 and C♭7,add6. It even produces an auxiliary chord, Gm7 between structural chords.
3.5. Analysis of Root Movement

The peculiar sonorities of Delius’s chamber works arise not only from his unique arrangements (doubling and spacing) of chords as examined in Section 3.4, but they also arise from the idiosyncratic ordering and arrangement of chord progressions. Therefore, it is essential to examine root movements in the study of his harmonic syntax. In the theory of Fundamental Bass, Rameau claimed that there are only two fundamental chords, the tonic and the dominant and that the perfect cadence is the model for strong harmonic progressions. Although root movements by fourth or fifth still predominate, their use decreased in nineteenth-century works, and the use of root movements by thirds considerably increased. Because chordal structures are such a prominent feature of Delius’s music, Rameauian theory provides a useful method for exploring Delius’s foreground chordal deployments. Many of his root movement patterns reveal systematically ordered chord progressions. As a first step the root movements of his tertian chords will be tabulated according to conventional measures.

There are six conventional root progressions: rising second, rising third, rising fourth, falling fourth, falling third, and falling second. Other conventional movements are inversions of these. In the following graphs, the letters F and R indicate Falling and Rising. Thus, F4 refers to a falling perfect fourth interval while R4 refers to a rising perfect fourth.

Graph 3.7. Root movement analysis: *Sonata for Cello and Piano*

Graph 3.8. Root movement analysis: *Sonata for Violin and Piano*, No.1, Mvt.I

Graph 3.9. Root movement analysis: *Sonata for Violin and Piano*, No.1, Mvt.II

Graph 3.10. Root movement analysis: *Sonata for Violin and Piano*, No.1, Mvt.III
Graph 3.11. Root movement analysis: *String Quartet*, Mvt.I

Graph 3.12. Root movement analysis: *String Quartet*, Mvt.II

Graph 3.13. Root movement analysis: *String Quartet*, Mvt.III

Graph 3.14. Root movement analysis: *String Quartet*, Mvt.IV
Graph 3.15. Root movement analysis: *Sonata for Violin and Piano*, No.2

Graph 3.16. Root movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.I

Graph 3.17. Root movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.II

Graph 3.18. Root movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.III
The analysis discloses a substantial use of root movements by seconds and by thirds showing that each of these is about same amount as the movement by fourths. Unlike the frequent use of root movement by fourth in common practice music, there seems to be no preferred root movement in Delius’s harmonic progressions. The pie-chart above (Graph 3.19) illustrates the similar percentages of root movements by fourth, third, and second: the movements by fourth are about 29%; by third are about 28%; and by second are about 37%.

Tables 3.3 – 3.7 divide the classes of root movements by thirds and seconds according to the following code: D = diatonic, C = chromatic, DM = disjunct, M = major, m = minor.
<table>
<thead>
<tr>
<th>Root Interval</th>
<th>Number of Instance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>35</td>
<td>108</td>
</tr>
<tr>
<td>R4</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>32</td>
<td>63</td>
</tr>
<tr>
<td>C</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>DM</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>24</td>
<td>42</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>DM</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>57</td>
<td>71</td>
</tr>
<tr>
<td>m</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>47</td>
<td>76</td>
</tr>
<tr>
<td>m</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 3.3. Subclass root movement analysis: Sonata for Violin and Piano, No.1

<table>
<thead>
<tr>
<th>Root Interval</th>
<th>Number of Instance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>4</td>
<td>115</td>
</tr>
<tr>
<td>R4</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>24</td>
<td>91</td>
</tr>
<tr>
<td>C</td>
<td>42</td>
<td>67</td>
</tr>
<tr>
<td>DM</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>28</td>
<td>81</td>
</tr>
<tr>
<td>C</td>
<td>38</td>
<td>53</td>
</tr>
<tr>
<td>DM</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>39</td>
<td>75</td>
</tr>
<tr>
<td>m</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>60</td>
<td>92</td>
</tr>
<tr>
<td>m</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 3.4. Subclass root movement analysis: Sonata for Cello and Piano

<table>
<thead>
<tr>
<th>Root Interval</th>
<th>Number of Instance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>137</td>
<td>459</td>
</tr>
<tr>
<td>R4</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>105</td>
<td>211</td>
</tr>
<tr>
<td>C</td>
<td>57</td>
<td>106</td>
</tr>
<tr>
<td>DM</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>77</td>
<td>169</td>
</tr>
<tr>
<td>C</td>
<td>70</td>
<td>92</td>
</tr>
<tr>
<td>DM</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>133</td>
<td>249</td>
</tr>
<tr>
<td>m</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>177</td>
<td>315</td>
</tr>
<tr>
<td>m</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>94</td>
<td>94</td>
</tr>
</tbody>
</table>

Table 3.5. Subclass root movement analysis: String Quartet
Table 3.6. Subclass root movement analysis: *Sonata for Violin and Piano*, No.2

<table>
<thead>
<tr>
<th>Root Interval</th>
<th>Number of Instance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>51</td>
<td>124</td>
</tr>
<tr>
<td>R4</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>D 36</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>C 7 20</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>DM 13</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>D 24</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>C 7 10</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>DM 3</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>M 45</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>m 86</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>M 64</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>m 50</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 3.7. Subclass root movement analysis: *Sonata for Violin and Piano*, No.3

<table>
<thead>
<tr>
<th>Root Interval</th>
<th>Number of Instance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4</td>
<td>35</td>
<td>108</td>
</tr>
<tr>
<td>R4</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>D 63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DM 3</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>D 42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DM 4</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>M 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m 71</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>M 147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m 29</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Among root movements by seconds (the most frequent class), about half of them move by a minor second. Most of these movements by a minor second appear in the connection of two major triads or their transformations, such as major with an added sixth, major-minor seventh, Ger+6, and Fr+6. When one of the two major triads, whose roots are separated by a minor second, is substituted for by a tritone related chord, the root movement by minor second turns into a root movement by fifth. Tritone
substitution is one of Delius’s characteristic devices for transforming a passage based on diatonic harmonies into a chromatic progression.

Most of Delius’s tritone root movements occur between two major chords or their transformations. These two-chord progressions can be reduced to one static chord by a tritone substitution. Example 3.26 illustrates the use of root movements by a minor second and by a tritone in the *Sonata for Violin and Piano*, No.1, Movement III. This chromatic passage can be reduced to a typical progression based on the circle-of-fifths. The chord progression in measures 147 – 149 consists of root movements by falling minor seconds between A7 – A♭7♭5 and D♭7, as well as a tritone root movement between A♭7♭5 – D7.

When a chord which is a tritone apart substitutes for one of those two chords, here A♭7♭5 of the first and the last progressions and D♭7 of the second progression, the whole progression attains the following circle-of-fifths structure: Em (– A♯07 – Em7) – A7 – D♭7♭5 – D7 – G7 (– F♯07 – G6). While the first and second progression based on falling minor second root movement are altered into progressions by fourth (A – D and D – G), the third progression based on tritone root movement is altered into a
static chord of G by tritone substitution. This example reveals the relevance of traditional practice to Delius’s harmonic syntax, although it may seem that his harmonic progression is extremely chromatic. In short, when tritone substitutions are applied, root movements by fourths become the underlying structure in Delius’s chromatic harmonies. This distinctive technique of tritone substitution is discussed at length with concrete examples in Chapter 4.

The subclass root movement analyses disclose the employment of chromatic mediant relations as well. Tables 3.3 – 3.7 show that about one half of root movements by third consist of chromatic mediant relations and doubly chromatic mediant relations. Chords in chromatic mediant relationships were traditionally used as elements within a tonic region or as substitutions for the tonic to add color. However, they are more widely utilized and expanded in Delius’s harmonic language. His employment of mediant relations, especially chromatic and doubly-chromatic mediant relations are discussed in detail in Section 4.3.

3.6. Analysis of Bass Movement

While harmonic progression explains the means by which chords are selected, voice leading shows how these chords are physically connected. It is important to examine both aspects in the study of harmonic syntax. Although some of Delius’s distinct voice-leadings are discussed in Section 3.4, here the bass movements are analyzed in detail for two reasons: the examination of bass movement represents Delius’s characteristic deployment of chords and reveals his techniques for their horizontal displacement.
Intervals between bass notes will be calculated and represented graphically. This analysis will show patterns in two main ways. It will document the order of preferred bass movement(s), and it will identify specific groupings such as a linear stepwise movement. The labeling system of the following graphs is similar to that of the root movement analysis, but here major and minor intervals are examined separately because they make a significant difference in the analysis. Each M and m indicates the major or minor quality of intervals. Thus, F2M refers to falling a major second, and R3m refers to rising a minor third, etc. Intervals larger than a fourth are considered to be the same as their inversion: 5th = 4th, 6th = 3rd, and 7th = 2nd. Thus, there are 11 possible bass movements: F4, R4, F2M, R2M, F2m, R2m, F3M, R3M, F3m, R3m, and tt (tritone). The results for bass movements in Delius’s music are as follows:

Graph 3.20. Bass movement analysis: *Sonata for Violin and Piano*, No.1
Graph 3.21. Bass movement analysis: *Sonata for Cello and Piano*

Graph 3.22. Bass movement analysis: *String Quartet*, Mvt.I

Graph 3.23. Bass movement analysis: *String Quartet*, Mvt.II
Graph 3.24. Bass movement analysis: *String Quartet*, Mvt.III

Graph 3.25. Bass movement analysis: *String Quartet*, Mvt.IV

Graph 3.26. Bass movement analysis: *Sonata for Violin and Piano*, No. 2
Graph 3.27. Bass movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.I

Graph 3.28. Bass movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.II

Graph 3.29. Bass movement analysis: *Sonata for Violin and Piano*, No.3, Mvt.III
The graphs above disclose the order of Delius’s preferred bass movements. Although there are slight differences depending on individual works, the general order of preference is as follows: F/R2m, F/R2M, R4, F3M/m, F4, R3m/M, and then tt. It is clear at a glance that bass movements by minor seconds dominate. Table 3.8 summarizes the percentages of bass interval occurrences.

<table>
<thead>
<tr>
<th>Interval</th>
<th>F4</th>
<th>R4</th>
<th>F2M</th>
<th>R2M</th>
<th>F2m</th>
<th>R2m</th>
<th>F3M</th>
<th>R3M</th>
<th>F3m</th>
<th>R3m</th>
<th>tt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vn. Sonata No.1</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td>6</td>
<td>20</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>SQI</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>20</td>
<td>33</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>SQII</td>
<td>2</td>
<td>12</td>
<td>16</td>
<td>7</td>
<td>22</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>SQIII</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>5</td>
<td>31</td>
<td>22</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>SQIV</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>25</td>
<td>21</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Vc. Sonata</td>
<td>6</td>
<td>10</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>18</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Vn. Sonata No.2</td>
<td>5</td>
<td>11</td>
<td>16</td>
<td>25</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Vn. Sonata No.3.I</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>44</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Vn. Sonata No.3.II</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>49</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Vn. Sonata No.3, III</td>
<td>3</td>
<td>5</td>
<td>18</td>
<td>5</td>
<td>37</td>
<td>13</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Averages</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>9</td>
<td>27</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>22</td>
<td>43</td>
<td>8</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3.8. Average percentages of bass movement intervals

As tabulated above, the most used bass movement is by minor seconds, both falling and rising. The average of bass movements by minor seconds is 43%.

Furthermore, the average of bass movements by both minor and major seconds is 65%. The usage of an interval (in this case, a second) for 65% of bass movements

13 The bass movement by minor seconds both falling and rising is the most used, except in the Sonata for Violin and Piano, No.2. Here, movement by major seconds, is the most favored. The average of these bass movements is 43%, except in the Sonata for Cello and Piano (about 29%) in which, though
is a sufficiently high percentage to have a marked sonorous effect on the music. This dominance of bass movements by seconds is one of the elements that creates the impression of a chromatic harmonic syntax.

Example 3.27. Linear scalar motion in the bass
Sonata for Violin and Piano, No.3, Mvt.I (mm.23 – 30)

Bass movements by seconds are, in many instances, employed in successive movement and most often serially in scalar motion. (See Example 3.27.) In this study those stepwise movements are described as having “linear scalar motion.” Harmonic progressions based on linear scalar motion are described as “linear progressions.” Linear scalar motion yields very smooth voice leading. The instances of linear scalar motion in Delius’s chamber music can be divided into two categories: (1) as a way to prolong a chord, especially the tonic or the dominant; (2) as a way to modulate from one key to another. These categories will be discussed at length in Section 4.4.

It is noteworthy that only 4% of Delius’s bass movements move by tritone. Although this is the least used of his bass movements, his usage is rather frequent compared to common practice. Clearly his taste for tritones, both vertical and horizontal gives a marked dissonance to his music.

R2m is the most used, a fairly even distribution of all kinds of bass movements exists.
Various chord progressions have tritone bass movement. In the diatonic system, there are only six possibilities ($V_6 - IV, V_6 - ii_6, V_6 - V_4^d, iii_4^6 - IV, iii_4^6 - ii_6,$ and $iii_4^6 - V_4^d$). The first two progressions are not common; the third progression is merely a displacement of a single chord. Delius does not limit the deployment of the tritone bass movement to only these diatonic progressions. He extensively uses chromatic progressions, such as the tritone root related progression (Example 3.28), the chromatic mediant related progression (Example 3.29), and the chromatic root related progression (Example 3.30).

Example 3.28. Tritone interval in the bass with tritone related root progression

Sonata for Cello and Piano (mm.35 – 36)

Example 3.29. Tritone interval in the bass with chromatic mediant related root progression in *Sonata for Violin and Piano*, No.3, Mvt.II (mm.75 – 77)
Example 3.30. Tritone interval in the bass with chromatic stepwise related root progression of *Sonata for Violin and Piano*, No.1 (mm.166 – 167)

Although he could have used a smoother bass movement by half-steps in the examples shown above, he chose to place a striking dissonance in the bass to add more color and tension to the chromatic progression.
CHAPTER 4

CHORD PROGRESSIONS:
MODIFICATIONS, PROLONGATIONS, COMMON TONES, PEDALS

This chapter investigates Delius’s system of chromatic chord progression through modifying authentic cadences, prolonging structural chords, and connecting harmonies in various ways. Section 4.1 discusses his chord substitutions and interpolations as the primary means of modifying authentic cadences, and underlying fifth-related harmonies. Section 4.2 focuses on prolongations based on linear progressions. Section 4.3 deals with his use of diatonic and chromatic mediant-relations, and Section 4.4 examines his technique of linking chromatic harmonies by means of common tones and pedals. Section 4.5 analyzes a passage (mm.1 – 18) in Sonata for Violin and Piano, No.2 to show his applications of these typical chord progressions in a circle-of-fifths progression. These investigations show that, at middle-ground levels, his syntax conforms to conventional harmonic norms.

4.1. Chromatic Transformation of Authentic Cadences through Substitutions and Interpolations

Delius obscures fifth-related progressions by modifying the chords in a variety of ways. The earlier analysis in Section 3.5 shows that Delius’s foreground
root movements are far removed from traditional movements based predominantly on fifth-relations. However, a more detailed analysis reveals that, although his progressions are extremely chromatic on the surface, they are modifications of underlying fifth-relations. This section deals with two of his most important means for heightening interest through chromaticism: chord substitution and interpolation. It examines, especially, the transformations of authentic cadences, because they best illustrate Delius’s methods for transforming and obscuring the solid underpinnings of the fifth-related harmonies into chromatic harmonies.

Before examining Delius’s technique of substitutions and interpolations, it is important to point out again the relationships between chord labels and their functions. He seems to interchangeably use chords with enharmonically equivalent spellings, such as Fr\(^{+6}\) and V\(^{7\,b\sharp5}\), or Ger\(^{+6}\) and V\(_7\). Sometimes the bass note may differentiate the Fr\(^{+6}\) and V\(^{7\,b\sharp5}\), depending on whether \(b\) 2 or 5 is in the bass. However, such distinction does not always clarify the chord functions in his progressions. Chord sonorities outweigh the chord spellings; therefore, their true functions are frequently disguised in the scores.

Delius employs augmented sixth chords as interpolated chords or substituted chords for dominant seventh chords. Measure 74 of Example 4.1 illustrates the use of interpolated Fr\(^{+6}/I\) between the dominant and the tonic at the cadential point. The note, E\(_b\) in the bass, intensively leads to the root of following tonic chord, D. The two-chord progression in measures 74 – 75 shows the ordinary resolution of Fr\(^{+6}/D\) in measure 74 to the following chord D in measure 75. However, the wider range progression from measure 70 supports the fact that the Fr\(^{+6}/D\) is a modified dominant seventh chord of D in several ways. First, the harmonizations of the dominant chord members from the piano’s linearly descending top line are forms of the dominant
chord, A. The harmonizations of the E in measure 71, the C# in measure 72, and the A in measure 74 are $V^{11}_{9}\text{add}6$, V^4_2, and the Fr$^{+6}/I$ respectively. Then, the relabeling V^4_3b5, better illustrates its function. In addition, the repetition of the violin figure of measure 72 in the piano at measure 74 unifies the prolongation of the dominant (see brackets). Also, two other dominant seventh chords with lowered fifth appear in the last beats of measures 71 and 73 (V^4_2b5/E and V^4_3b5/A respectively) anticipating the V^4_3b5/D. (Asterisks indicate these chords.)

Therefore, the harmonic progression of measures 71–74 shows a prolongation of the dominant seventh chord by unfolding and filling in the space. The bass unfolds the dominant chord members, the root A, the seventh G and the lowered fifth E♭. The second-inversion of V^7_{b5} leads to its goal tonic by the strong attraction of the altered fifth, E♭. The dominant chord further prolongs through filling in the space between the dominant chords with the secondary functioning chords, V^1_2b5/E of measure 71 and vii$^67/V$, V_7/V, and V^4_3b5/V of measure 73. (In the harmonic reduction, the white note-heads indicate unfolded dominant members, and black note-heads indicate the filling-in of the dominant members. The beamed notes show the linear voice leadings in the process of dominant prolongation.) In short, the augmented sixth chord is not just an interpolated chord, but also functions as a dominant substitution. This cadence is a modified form of authentic cadence with an augmented sixth chord substituted for the dominant.
Example 4.1. Substitution and Interpolation of the Fr\(^{+6}\) for a dominant chord in

Sonata for Violin and Piano, No.2 (mm.70 – 75)
Example 4.2 illustrates how the same chord structure (Fr⁶) of Example 4.1 clearly substitutes for the dominant chord. The passage displays the final cadence from the second movement of the *Sonata for Violin and Piano*, No.3, showing the use of same chord members of Fr⁶/I in a different inversion functioning as a modified dominant chord.

The second chord of measure 72 with A in the bass moving by fifth to D, offers a strong impression that it is the dominant chord with lowered fifth. Even without a preceding dominant chord, the progression is able to serve as the final cadence of the movement.

Delius occasionally employs the Ger⁶ as an interpolated or substituted chord. Example 4.3 shows a cadential passage based on the circle-of-fifths with the Ger⁶/I substituted for the dominant.
A circle-of-fifths progression with a tritone substitution

D: iii vii V7/V Ger7+6 I7

Example 4.3. Ger7+6/ I as a dominant chord in a cadence

Sonata for Violin and Piano, No.1 (mm.218 – 220)

When the Ger7+6 is relabeled as its enharmonically equivalent dominant seventh chord (E♭7), it stands a tritone away from the substituted chord, (A7). This tritone substitution adds more color to the circle-of-fifths progression and makes the progression chromatic also with the V7/V on the first beat of measure 219 (E7 – E♭7 – D M7). It is an inevitable consequence that the tonal progression is weakened by the substitution.

Delius occasionally employs a modified form of augmented sixth chord at a cadence,1 a (♭ ii♭7) chord, whose resolution is similar to an augmented sixth chord, resolving to a chord a semitone lower. As Vincent Persichetti affirmed, because the resolving force of the augmented sixth is strong enough, the function of the chord remains intact with an added note or a modified note.2 Example 4.4 shows the

1 The basic manipulation of ♭ ii♭7 chord employment as a modified augmented sixth chord is examined in Section 3.2.

formation of $b \, ii_7^0$ within the linear progression (which will be examined in Section 4.2) of the dominant prolongation of measures 53 – 54.

Example 4.4. Half-diminished seventh chord as an augmented sixth chord in Sonata for Violin and Piano, No.3, Mvt.II (mm.53 – 55)

The dominant chord D_7 is prolonged and filled-in by chords built on a chromatically descending bass line. When the dominant chord members (F# and D) are encountered, they are reharmonized with substitutions and alterations. The first chord, $A \, b_2$, is built on the third of the dominant, F#, enharmonically spelled as G$.^b$. Thus the $A \, b_2$ is the tritone substitution for the D_7. The first chord on D in measure 54 may be interpreted as the dominant seventh chord with the lowered fifth. Following the V^7_5, a $b \, ii^{\text{aug}_3}$ built on the same dominant bass finally resolves to the following tonic chord.

Example 4.5 shows the use of a half-diminished seventh chord as a modified augmented sixth chord in sequences.
Example 4.5. Half-diminished seventh chord as a modified augmented sixth chord in *String Quartet*, Mvt.IV (mm.98 – 100)

<table>
<thead>
<tr>
<th>measure</th>
<th>beat</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>m.98</td>
<td>A7</td>
<td>A11</td>
<td>A7</td>
<td>(b ii0)+6/B</td>
<td>B7</td>
<td>(b ii0)+6/C#</td>
<td></td>
</tr>
<tr>
<td>m.99</td>
<td>C#7</td>
<td>C#11</td>
<td>C#7</td>
<td>(b ii0)+6/D#</td>
<td>D#7</td>
<td>(b ii0)+6/F</td>
<td></td>
</tr>
<tr>
<td>m.100</td>
<td>F7</td>
<td>F11</td>
<td>F7</td>
<td>Fr#6/G</td>
<td>G7</td>
<td>F#9</td>
<td></td>
</tr>
<tr>
<td>m.101</td>
<td>Fr#6/E</td>
<td>E7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram 4.1. Reharmonized sequences in chromatic mediant relations in *String Quartet*, Mvt.IV (mm.98 – 100)

Figure 4.1. Feigned dominant to tonic voice-leading of (b ii0)+6 – I progression

The passage is excerpted from a transition within the second theme section which prolongs A\textsubscript{7}, the dominant of the following second theme section in D major. The harmonic rhythm on the surface is typically fast; chords change in every sub-beat.

The sequence is transposed a major third up from A\textsubscript{7} through a series of major-minor
seventh chords which are a whole tone apart.\(^3\) The second half of the third sequence is modified and extended, which ultimately leads to \(E_7\) (\(V_7\) of \(A\)) instead of ending up on \(A\).

The major-minor seventh chords are either prolonged with a neighboring chord or tonicized by either a Fr\(^{+6}\) or a half-diminished seventh chord. The second chord of each pattern, which shares three common tones with the adjacent chords, is a neighboring chord prolonging the initial chord. The half-diminished seventh chords (the fourth and the sixth chords) in measures 98 and 99 are modified forms of an augmented sixth chord, which is examined in Chapter 3.2. The half-diminished seventh chords do not resolve normally to the tonic a half step up, but instead tonicize the tonic a half step down. Though these chords are spelled as half-diminished seventh chords, they function as augmented sixth chords, and thus, can be relabeled as \((b\ ii^0)\ +6\).

Along with the Fr\(^{+6}\) chords of measures 100 and 101, these modified augmented sixth chords are substitutions for dominant seventh chords. The voice-leading makes this clear. Here, the fifth of \(b\ ii^7\) in the bass and the seventh in the soprano, resolve to the root of following chord. (See Figure 4.2.) This particular voicing of the \(b\ ii^7\) – I feigns a series of the traditional progressions based on dominant to tonic. Although the harmonic progression from \(b\ ii^7\) chord to the tonic is weaker than \(V\) – I progression, it still offers the effect of strong tonicization.

\(^3\) The implication of the whole-tone scale is examined in Section 3.3.4.
4.2. Linear Progression as Prolongation

As the Analysis of Bass Movements (Section 3.6) shows, Delius employs stepwise motion both falling and rising about sixty percent of the time. This is a considerably high, even overwhelming percentage. He mostly deploys stepwise movement serially in scalar motion either ascending or descending. Linear bass movement and harmonic progression based on linear bass movement are clearly distinguishable from the surroundings because of the remarkable texture and predictable progression. Linear progression, especially chromatic linear progression can easily weaken the local tonality.

4 Because the chromatic scale is symmetrical, it is often realized through a recurring pattern that does not define a key. However, depending on rhythmic emphasis and harmonization on a chromatic line, the same chromatic scale can either fit in a tonal context without disrupting the tonality, or it can push the boundaries of that tonal context. A more detailed analysis reveals that, although Delius’s progressions are extremely chromatic on the surface, they are often anchored by strong, underlying fifth-relations. Delius obscures these fifth-relations by prolonging the structural chords in a variety of ways.

Delius often combines linear bass progression and linear root progression to confirm the local tonality. Linear progression can support the tonic through prolongation of a structural chord even with chromatic harmonies. The first section of the Sonata for Violin and Piano, No.2, illustrated Delius's use of descending linear bass progression in the process of prolonging an A major chord. (See Example 4.6.)

The descending bass line unfolds the chord members A, C#, and E, which are circled in the example, and spans one octave through seven measures. What seems to be a dynamic progression at the foreground level is basically a static harmonic passage which consists of an A major chord prolongation at the middle-ground level. The linking chords are passing chords. Whenever the structural chord members appear on the bass, they are set with some form of A major chord, such as a seventh chord, a triad with added sixth, or a ninth chord. Nevertheless, the A major chord confirms itself in the prolongation.

Example 4.6. Linear bass progression used as prolongation in

Sonata for Violin and Piano, No.2 (mm.47 – 55)
The descending linear bass movement divides into two phrases. The first phrase (mm.47 – 50) diatonically descends from A down to C# beneath a chromatically descending upper part. The second phrase (mm.51 – 55) chromatically descends from C# down to A beneath a more static upper part. The bass notes of the first phrase move in whole notes; those in the second move in half notes.

A comparison of the two phrases clarifies Delius’s use of substitution and interpolation techniques in linear progressions. The chords of the first phrase are mostly from the key of D major. The last chord of measure 48 spelled F#, A, E♭, and B, seems to be a chromatically derived passing chord, but its Mm7 sonority (B7) makes clear its function in the circle-of-fifths heading to D (F#m7 – B♯3 – Em♭ – A♭3 – Dm7). The harmonic rhythm of the passage – every half-beat get a chord change – supports its function as the dominant of the following Em♭.

The harmonic progression of the second phrase (mm.51 – 55) is similar. It includes chromatic passing chords F♯6/4 – 6/4 – Am♭ between F#m7 and B7 and a modified chord (Fr♯6/A) which substitutes for Em♭ of the previous phrase. Although the harmonic progression seems very chromatic with these color chords, it is also based on a circle-of-fifths scheme. Applying the device of tritone substitution to the passing chord in measure 51, F7, transforms it into B7, and the modified chord Fr♯6/A of measure 52 can be relabeled as E♭7♭5. In short, as the comparison of these two phrases shows, the linear progressions are based on a circle-of-fifths progression, although the harmonies vary because of different passing notes. Figure 4.2 clarifies the out-of-sync voice movement of the two phrases.
Figure 4.2 *Sonata for Violin and Piano*, No.2 (mm.47–55): Harmonic Reduction

Two parallel strands independently move in the first phrase. The left-hand part of the accompaniment forms a parallel motion of diatonic thirds, while the right-hand part and the violin melody form another parallel motion of major sixths. The chromatically descending inner voice of the second phrase forms another parallel motion in major thirds to the bass line. When Delius uses parallel motion continuously, he often obscures the parallel motion with inserted notes and rhythmic delays as seen in the parallel major sixths of the first phrase and in the major thirds of the second phrase. The out-of-sync voice movements bring forth various kinds of color chords in linear progression.

Example 4.7 is a representative example of how Delius converts the circle-of-fifths progression into a linear progression through tritone substitutions. The initial
chord of measure 77, E^{add6}, reappears at the next measure following five chromatic chords in between. The five chromatic chords consist of three Fr^{+6} chords and two major-minor seventh notated chords one of which functions as the Ger^{+6} in a string of a seven-chord progression which prolongs the tonic E. The passage becomes a unique chromatic progression by employment of the Fr^{+6}, a chord that has a dual function, and thus, easily substitutes for a chord standing a tritone away. While the dual function of the Fr^{+6} creates the sense of tonal ambiguity in the progression, it also induces a smoother progression.

Example 4.7. A Circle-of-Fifths progression with substituted chord Fr^{+6} in
Sonata for Violin and Piano, No.3, Mvt.I (mm.77-78)
If one were to maintain a circle-of-fifths progression using consecutive dominant (seventh) chords in this passage, the return of the E chord could be achieved only by completing the whole cycle \((E - A - D - G - C - F - B - E - A - D - G - B - E)\) or by inserting a tritone root related substitute such as this \((E - A - D - G - C - F - B - E)\). These series of dominant chords create a patterned sound that is highly predictable. Delius, however, does not employ those highly predictable progressions, but twists the progression by substituting the Fr\([46] \) chords for the dominant chords. As seen above, when the E chord is prolonged with a circle-of-fifths the Fr\([46] \) chords induce a smoother return to the E chord. When the Fr\([46] \) (\(V^7_9\)) chords and the \(C_7\) (Ger\([46] \)) are replaced with their tritone substitutions in the form of dominant seventh chords, the circle-of-fifths progression becomes clear. The chord progression can be relabeled in two other ways because of the dual function (double meaning) of the Fr\([46] \) and its availability for tritone substitution: (a) \(E - A_7 - D_7 - G_7 - C_7 - F_7 - E\) or (b) \(E - E_b 7 - A_7 - D_7 - G_7 - B_7 - E\). Both (a) and (b) present clear circle-of-fifths progressions which stand at the distance of a tritone. While (a) starts the circle-of-fifths from the initial E add6 chord, (b) progresses heading to the final E add6 chord. The mixture of the two circle-of-fifths progressions, (a) and (b), mediated by Fr\([46] \) chords induces smoother and more chromatic voice leading than a simple circle-of-fifths progression.

Reharmonization of the harmonic progression by tritone substitution can also produce chromatically descending linear progressions such as (c) \(E - E_b 7 - D_7 - D_b 7 - C_7 - B_7 - E\) or (d) \(E - A_7 - A_b 7 - G_7 - G_b 7 (= F#7) - F_7 - E\), the mixture of (a) and (b). Whether these are viewed as progressions based on the circle-of-fifths or as a string of chromatically descending chords, both are very simple and predictable.
Delius makes his progressions vital by combining these procedures. To make the progressions even more vigorous he also varies the chord qualities.

Example 4.8 contains transitional material from the first movement of the *Sonata for Violin and Piano*, No.3. This passage illustrates the use of a linear bass progression for the prolongation of one chord, C# minor. Its chord members, C#, E, and G# are unfolded in the bass line. (These bass notes are indicated with white note-heads.) The space between them is filled in a descending bass line which spans two octaves through five measures. The first octave is filled with notes from the ascending form of the C# melodic minor scale, but in descent. The second octave is filled with the C# natural minor scale supplemented with several chromatic passing notes. The extensive use of chromaticism in this passage evokes a sense of tonal ambiguity.

```
C#m\(^{add6}\) C#m\(^6\) C#m\(^7\) C#m\(^7\) C#m\(^{add6}\*) C#m\(^{**}\)
```

* the added sixth (A#) is spelled as a B♭

** the root C# is spelled as D♭ like a chromatically descending passing tone.

Example 4.8. Linear movements in
Sonata for Violin and Piano, No.3, Mvt.I (mm.71 – 75)
Nevertheless several features support the proposition that the passage is a static one-chord prolongation. First, as mentioned above, the linear bass progression ranges two octaves from C#, the root of the prolonged chord, and each octave resembles a kind of C# minor scale. Second, a kind of C# m chord is constructed on every C#m chord member in the bass line, and, with one exception (m.72), these occur on the downbeat of each measure. (Even in measure 72, the C# minor triad initiate a phrase.) While the bass descends in stepwise motion, the upper voice of the accompaniment states three times a major third spanning figure (G# – (F#) – E), that supports the embellished G# pedal point in the violin. All together these features confirm and establish the prolongation.
In addition to the prolonging of a single structural chord, linear progressions may serve to link structural chords. In Example 4.9 (Sonata for Violin and Piano, No.3, Mvt. III (mm. 46 – 51)) the tonally strong progression from the dominant B7 in measure 46 to the tonic E in measure 51 is interrupted by a four-measure string of chromatic chords. Although Delius twists all the elements by modifying and mixing on the surface, the harmonic substructure is the traditional V – I progression.

Example 4.9. Extensive use of tritone substitution in Sonata for Violin and Piano, No.3, Mvt. III (mm. 46 – 51)
Actually, this section manifests the transformation of a circle-of-fifths progression into a linear root progression through tritone substitutions and interpolations where the bass-notes repeat in measures 47 and 48. Also, it shows the use of linear progression in the process of prolongation.

4.3. Diatonic, Chromatic, and Disjunct Mediant Relationships

Delius took full advantage of mediant relationships, especially chromatic mediants, to enrich expanded his harmonic language. He utilized diatonic (sharing two common tones), chromatic (sharing one common tone), and even disjunct mediant relationships (sharing no common tone).

This section examines typical applications of chromatic mediant (CM) and disjunct mediant (DM) relationships to show their structural roles in his harmonic language. This section divides into two sub-sections: mediant relationships involving adjacent events at the foreground level; and mediant relationships involving more distant roles at middle-ground levels.

4.3.1. Chromatic Mediant and Disjunct Mediant Relationships at the Foreground Level

As indicated earlier in Section 3.5, analysis shows that root movements by third account for an average of 28% of the total. Among these, chromatic (CM) and disjunct mediant (DM) relationships account for more than half, while common diatonic mediant relations, relative (R) and leading-tone exchange (L) account for less

than half. Diatonic mediants, R and L, are easily applied without disturbing one’s sense of tonality, but applications of CM and DM require more care in tonal works. Although CM involves mode mixture and adds color to a passage rather than substantially changing the function, in successive application its symmetric character can easily disrupt the tonality.

Delius often interpolates median related chords, especially CM and DM, in progressions by fifths to mask the strong tonal effect. The passage in Example 4.10 from the second theme of the Sonata for Cello and Piano illustrates his use of chromatic mediants as interpolation between the tonic and dominant. The progression can be viewed as the combination of a diatonic progression and a circle-of-fifths progression merged into a series of chromatic mediant relationships.

This essentially diatonic progression $I – (IV) – ii – V – I –$ is modified by transforming the diatonic chords into chromatic dominant chords and by modifying the progression with a series of chromatic mediants. The dominant preparation chord (ii) is transformed into a V^9/IV (C^9), and the $I – IV$ and $V/ii – V/V$ progressions are weakened by interpolated chords. The move from I ($B^\flat \, 7$) to IV ($E^\flat \, 9 \, 7$) is interrupted by the $V^\flat 9/ii$ ($G^\flat 9$). On the other hand, the interpolated chord $V^\flat 9/ii$ ($G^\flat 9$) does not move directly to its common resolution V/V but is, in turn, interrupted by IV. Thus, the progression contains three chromatic mediant relations: $B^\flat 7 – G^\flat 9$, $G^\flat 9 – E^\flat 9$, and $E^\flat 9 – C^9$. Moreover, the addition of E^\flat /F on the downbeat of m.60 results in the disturbance of another fifth progression from V^9/IV (C^9) to $V^\flat ^{add6}$ ($F^\flat ^{add6}$). Actually, the IV (E^\flat) triad placed above the dominant bass indicates that the IV is merely an embellishing color chord akin to a V^{11} (F^{11}).

clear emphasis on IV (the color tones), thus, implies a CM progression of V⁹/ V to IV (C⁹ – E♭) and reflects the previously encountered mediant relationship of these chords.

![Sheet music image]

<table>
<thead>
<tr>
<th>measures</th>
<th>59</th>
<th></th>
<th>60</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatonic progression in the key of B♭</td>
<td>B♭⁷</td>
<td>E♭⁹</td>
<td>F⁷ add6</td>
<td>B♭⁹</td>
</tr>
<tr>
<td>B♭ :</td>
<td>(VⅦ/Ⅳ)</td>
<td>IV</td>
<td>VⅦ</td>
<td>I</td>
</tr>
<tr>
<td>Circle-of-fifths progression proceeding to B♭</td>
<td>B♭⁷</td>
<td>G♭⁹</td>
<td>C⁹</td>
<td>F⁷ add6</td>
</tr>
<tr>
<td>B♭ :</td>
<td>I</td>
<td>V/ii</td>
<td>V/Ⅳ</td>
<td>VⅦ add6</td>
</tr>
</tbody>
</table>

Example 4.10. Chromatic mediants interpolated in fifth relations in *Sonata for Cello and Piano* (mm.59 – 61)

The third is the designing idea of the second theme, and it dominates in the overall composition. The theme melody consists of skips of third, and the theme
transposes in thirds. In addition, in this passage, thirds govern not only in the chordal relations, but also the arrangement of these chords. All adjacent chord members are able to move in half-steps because of the chords in the chromatic relationships and the added sevenths and ninths. Although, this passage could have been based on a chromatic linear movement, the chords move in a progression of semi-planing, jumping down in thirds.

Example 4.11, from the *String Quartet*, Mvt.II (mm.78 – 80), shows an authentic cadence weakened and colored in various ways. The tonally strong voice-leadings of D – C of the first violin and G – C of the cello part are disguised by the out-of-sync voice movements.

Example 4.11. Disjunct mediant relation by the use of mode mixture and secondary dominant chord in *String Quartet*, Mvt.II (mm.78 – 80)

The harmonic and melodic rhythms do not confirm the cadential point by slowing down. Instead, the end of the phrase (mm.82 – 83) becomes the initial idea of the next
phrase by way of phrase elision. Nevertheless, Delius asserts the tonic key of C in the following phrase by using a tonic pedal point to prolong the tonic throughout the phrase, and by giving rhythmic emphasis to the tonic triad at the end of the phrase (m.91). (See Example 3.25 of Section 3.4.) Delius’s employment of mode mixture enriches this conventional harmonic progression (I- V7/V – V – I). The passage includes a minor iv7 chord (Fm7) in the circle-of-fifths progression driving to the tonic, C major. His employment of the secondary dominant chord following iv results in a disjunct mediant relation in measure 80, (Fm – D). By adding a seventh and sixth to these triads to obtain tetrads, his favorite chord density, he gains a tonic common tone (C) within the disjunct “doubly chromatic” relation. This simple borrowed chord within a typical circle-of-fifth harmonic progression adds a strong sense of chromatic color to the passage.

Chords in various mediant relations can also be employed in the process of prolongation. The passage of Example 4.12 from the Sonata for Violin and Piano, No.3, Mvt.I (mm.8 – 10) is basically a prolongation of an A7 chord, the dominant of D. By employing chords in various mediant relations, Delius creates a very colorful progression.
Example 4.12. Chromatic mediant relations in the process of one-chord (A\textsubscript{7}) prolongation in *Sonata for Violin and Piano*, No.3, Mvt.I (mm.8 – 10)

The first A\textsubscript{7} of measure 8 is prolonged to the second A\textsubscript{7} of measure 9 by means of voice exchange. The gap is filled with three chords, each standing in a different
mediant relationship (diatonic, chromatic, and disjunct). The second A7 (m. 9) is also prolonged to the third A7 (m.10) by a neighboring chord, B7, in between.

Each of the progressions from A7 (m.9) to B7 and from the B7 to A7 (m.10) is interrupted by a chord in a disjunct mediant relationship. As a result, measure 9 contains two disjunct relationships joined together by a tritone root relationship – an extremely chromatic progression. In spite of the uncommon root movements, the overall progression sounds smooth because all of the note relationships between adjacent chords are chromatic. The voice leading is framed by chromatically ascending parallel minor thirds and chromatically descending parallel major thirds. (See Figure 4.3.), but Delius does not write the chromatic notes in the same voices.7

\[\text{Figure 4.3. Chromatic voice-leadings in} \]
\[\text{Sonata for Violin and Piano, No.3, Mvt.I (m.9)} \]

The result is a chromatic progression with CM and DM, which does not simply substitute chords with common tones for the prolonged chord (A7) but instead attracts the prolonged chord with “tendency tones.” A progression with R and L in the process of prolongation sounds stable simply because of the common tones shared with the prolonged chord. Therefore, the entire passage sounds like one static chord with neighboring tones. A progression with CM and DM creates

7 Such voice-crossing is very common in Delius’s chamber works.
tendencies toward the prolonged chord because the chromatic notes play a role that is rather close to the dominant. In this passage, it helps that the A₇ chords are emphasized by placement on the down beats.

4.3.2. Mediant Relations in Sequential Patterns and between Tonal Areas

Example 4.13 from *Sonata for Cello and Piano*, illustrates sequences in which mediant relations exist in the chord progression of the pattern as well as between statements of the patterns.

Example 4.13 Sequences in mediant relationship in *Sonata for Cello and Piano*, mm.46 – 52 (and mm.222 – 228)
The first harmonic pattern of the sequence is framed by chords in chromatic mediant relationship, (F – A), and these chords are connected by two diminished chords, (G° – B°). The relation of these diminished chords is as ii° to the adjacent major chords, and the resulting progression shows an arch-like symmetry. (See Figure 4.4.)

Figure 4.4. Symmetric chord progression in the first sequence pattern in *Sonata for Cello and Piano* (mm.46 – 47)

Although the chord progression transforms in each statement, their patterns are all based on chromatic mediant relations (F – A, A♭ – C, and C – E). The successive statements also transpose up by a third (T₃ and T₄).

Delius sometimes symmetrically divides an octave by employing sequential patterns in mediant relations. Examples of T₄ sequences that divide an octave by three major thirds occur in the *String Quartet*, Movement IV (mm.98 – 100) (see Section 3.3, Example 3.21, Section 4.1, Example 4.5.), and the *String*
Quartet, Movement II (mm.15 – 19) (see Section 5.1, Example 5.8.). These sequences proceeding in equal division of an octave momentarily weaken the tonality, but they prolong and confirm the tonal center by returning to it.

Delius, like many of his contemporaries, frequently utilized mediant keys for secondary themes and other non-tonic episodes. The second theme section in Sonata for Cello and Piano shows mediant relations in the middle-ground level that have structural roles in the work. In the exposition, Delius repeats the second theme in F at its fifth, B♭. Each of these keys has a chromatic mediant relation to the tonic key of D. (See Diagram 4.3.)

<table>
<thead>
<tr>
<th>Section A</th>
<th>Section A’</th>
</tr>
</thead>
<tbody>
<tr>
<td>First theme section</td>
<td>First theme section</td>
</tr>
<tr>
<td>mm.1 – 45</td>
<td>T₀</td>
</tr>
<tr>
<td>D</td>
<td>mm.176 – 221</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Second theme section</td>
<td>Second theme section</td>
</tr>
<tr>
<td>mm.46 – 126</td>
<td>T₉</td>
</tr>
<tr>
<td>mm.46 – 57</td>
<td>mm.222 – 233</td>
</tr>
<tr>
<td>(F)</td>
<td>mm.233</td>
</tr>
<tr>
<td>T₄</td>
<td>mm.236 – 244</td>
</tr>
<tr>
<td>B♭ m</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Diagram 4.3. Mediant key relations in Sonata for Cello and Piano

The two sections of the second theme recur in the tonic key in the recapitulation. Each transposes by thirds: the first section by T₉, the second by T₄. These

transpositions stabilize the tonality in the recapitulation. Modulations in the Development section are also all based on chromatic mediant relations. Although the employment of chromatic median relationships at middle-ground levels is harmonically not as startling as at the foreground level, these relations still add interest to the structure. In this sonata these relationships serve a structural role by adding and resolving tension and color in the middle-ground level.

4.4. Pedal Points, Internal Pedals, and Common Tones Links

Since Grieg directly influenced Delius in many ways, Eleanor Bailie’s description of Grieg’s use of pedal points is instructive and relevant:

Pedal points play an integral part in Grieg's harmony, not only in the typical drone effects of folk music but also in the creation of characteristic complex resonances, and in the discordant effects of bass pedals beneath long passages of shifting harmonies.\(^9\)

Delius also made extensive use of the drone or pedal point in his early music. He adds stability and asserts the key center with the tonic or the dominant pedal point and, in general, he follows the rules for pedals in common practice – he maintains consonant pedal points at the beginning and end. In addition, he interconnects remotely related chromatic chords by means of common tones and pedal points. In spite of the fewer possibilities for sharing common tones in chromatic than in diatonic progressions, his chords often share at least one common tone as a linking device.

The coda section of *String Quartet*, Movement III (mm.101 – 121) illustrates his use of the tonic pedal point. (See Example 4.14.) In this coda, there is no clear authentic cadence to confirm the D tonic; just a few modified cadences give feeble support to the tonic. Instead, the ending section solidly confirms the tonic key through the prolongation of the tonic chord and the tonic pedal point. A chromatic descending linear bass movement spanning an octave from D3 to D2 is also employed as part of a D prolongation (mm.106 – 111). Except for this passage with the chromatic bass line, a D pedal point in the bass controls the entire section.
Example 4.14. Tonic pedal point in String Quartet, Mvt. III (mm.101 – 121)
Example 3.19 of Section 3.3 also shows an instance of employment of a tonic pedal point in the *String Quartet*, Mvt.II (mm.68 – 91). As the examination showed, the passage is based on a diatonic harmonic progression in C major embellished with linear chromatic descending harmonies. The C major tonality is asserted by the prolongation of the tonic C major and by the tonic C pedal point in the bass for the first 8 measures and the last 4 measures. The chord members of the other 12 measures (mm.76 – 87) also maintain one common tone, C, except in measure 81 in which a modified dominant chord is stated to confirm the following tonic chord as in the authentic cadential progression. (See Example 4.15.) Although the C common tone roams about the four string parts, the same common tone maintains a thread for several measures that is as effective as an internal pedal point.
The following Example 4.16 from the *Sonata for Violin and Piano*, No.2 (mm.48 – 55) represents another internal pedal point within a chromatic harmonic progression in fast harmonic rhythm. This passage was already examined in Section 4.2, Example 4.6 for the chromatic harmonies of the linear bass progression. All chords of the progression, which prolongs A major, contain the note A as a chord member except for three brief passing chords. Although the pedal point is broken and scattered, it still unites and integrates all the chromatic chords.
Those three chords without an A as a chord member have a G# instead. The G# functions not only as a chromatic neighboring tone, but also as a leading tone to the A tonic. These chords add color to the passage as well as emphasize the tonic. The three chords with G# can be interpreted as follows: G#7 of measure 50 is the leading tone chord to A; Fr+6/A of measure 52 also functions like a dominant chord which leads to A major; and the chromatic neighboring chord of measure 54 embellishes A7 chord.

While there are several examples of conventional pedal points to be found, most of Delius’s pedal points are internal and broken. Among extremely chromatic harmonies, a common tone between adjacent chords smoothly connects them.
Moreover, one common tone shared by several chords in succession surely provides a core to the progression that tends to have the effect of a pedal point. Although his pedal points are broken and often shifted about the texture, they still are effective as connective devices.

As the previous examples show, internal pedal points are usually the regional tonic which prolongs throughout the passage. Whenever there is a chord without the same common tone, that chord usually consists of the leading-tone and/or the dominant to the common tone, the regional tonic. This typical device is found in many passages. For more instances, see the *Sonata for Violin and Piano*, No.1 (mm.73 – 76: D common tone), the *String Quartet*, Movement II (mm. 23 – 27: A common tone, mm.39 – 46: E common tone, mm.171 – 174: B common tone, and mm.175 – 181: E common tone), etc.. The employment of a pedal point, even a broken internal pedal point, plays an integral part in Delius’s characteristic complex harmonic progressions. In other words, the common-tone/ pedal point is one of the elements which confirms the tonic and tonal stability, and which counteracts the disruption caused by the chromatic scale.

4.5. Combined Techniques in an Extended Chromatic Passage

This section examines the opening section of the *Sonata for Violin and Piano*, No.2 (mm.1 – 37) which illustrates the various applications of chromatic chord progressions examined in Sections 4.1 – 4.4. (See Example 4.17.)
Example 4.17. Sonata for Violin and Piano, No.2 (mm.1 – 37)
Example 4.17. continued
Example 4.17. continued

The harmonic progression in this 37-measure long passage is based on the circle-of-fifths. (See Figure 4.5.) The progression starts with C and leads to G. In the first six measures the tonic, C, is prolonged through two neighboring chords, Dm\(^4\)\(_2\)\(^{\text{add6}}\) (m.4) and F\(\#\)\(_7\)\(_5\)/G (m.5). Both of these neighboring chords include the note C as a chord member, and thus this thread holds the chord progression in a six-measure prolongation.

The appearance of the chord F\(\#\)\(_7\) at measure 7 undermines the function of the C. The passage progresses in the diatonic circle-of-fifths of G (C – F\(\#\) – B – E – A – D – G), instead of in the diatonic circle-of-fifths of C with F\(\#\)\(_7\). The appearance of F\(\#\)\(_7\) which is a tritone away, disintegrates the C chord as tonic, and sets up its function
as subdominant of G. The appearance of F#\textsubscript{7} is prepared in measure 5 by the neighboring chord of C, F#\textsubscript{6} that is a leading-tone chord to G. Also, the fast moving circle-of-fifths progression lingers on D, the dominant of G, for 16 measures (mm.13–28). Delius employs not only modified chromatic chords, but also chord interpolations to make the passage convincingly chromatic. A passing chord is interpolated in the chord progression from F#\textsubscript{7} to B\textsubscript{7} (m.7); a chromatic mediant related chord is interpolated in the chord progression from B\textsubscript{7} to E\textsubscript{7} (m.8); and an ascending stepwise chord movement is interpolated in the progression from E\textsubscript{7} to A (m.10). These three kinds of interpolation are often employed in Delius’s works.

The chord interpolated between F#\textsubscript{7} and B\textsubscript{7} (mm.6–7) might be analyzed as Fr\textsubscript{+6}/B which leads to the following chord, B\textsubscript{7}. Said in other way, it is simply F#\textsubscript{7} with the lowered fifth (C♭) used as a chromatic passing note between the C# and B of the bass. This V–I progression with interpolated Fr\textsubscript{+6} chord is a common feature in Delius’s chromatic harmony. The second interpolated chord, G\textsubscript{7}, in the progression from B\textsubscript{7} to E\textsubscript{7} stands in chromatic mediant relationship to the previous and the following chord. This chromatic mediant interpolation is also a typical V–I elaboration. The chords interpolated between the E\textsubscript{4} and the A\textsubscript{6} (mm.9–11) are F#\textsubscript{4} and G#\textsubscript{4}. With the interpolated chords, the passage becomes an ascending stepwise planing from E\textsubscript{7} to A. Figure 4.6 illustrates these three different ways of interpolating chords to embellish progressions by fifths. In Figure 4.6, the chords with black note heads indicate passing chords interrupting the underlying circle-of-fifths progression. In every case but the last, a single common tone serves as a connecting thread.
V – I interpolated with a passing augmented sixth chord

\[\begin{align*}
V & \rightarrow I \\
& \text{F}^\#_4 \quad (F^\#_4/B) \quad B_7 \\
& C^b_7 / F^\#_7
\end{align*} \]

V – I with an interpolated chord of chromatic mediant relationship

\[\begin{align*}
V & \rightarrow I \\
& B_7 \quad G^6_5 \quad E^4_3
\end{align*} \]

V – I with interpolated chords of stepwise movement

\[\begin{align*}
V & \rightarrow I \\
& E^4_3 \quad F^\#_4 \quad G^\#_4 \quad A^6_4
\end{align*} \]

Figure 4.6. V – I progression with three different chord interpolations

At first glance Delius’s extremely chromatic passages seem to set forth chromatic harmonies in no particular order. However, many of them can be interpreted as progressions based on the circle-of-fifths with substituted and/or interpolated chords. As examined above, they turn the displacement of one chord (for
instance, $C_7 - C^6_5 - C^4_3$) into a chromatic chord progression with a tritone substitution $(C_{M7} - Ger^{46}/F (G \flat 4) - C_7)$ or they turn a circle-of-fifths progression (for instance, $E_7 - A_7 - D_7 - G_7 - C_7$) into chromatically descending linear progression ($E_7 - E \flat 7 - D_7 - D \flat 7 - C_7$). Substitutions and interpolations are the devices that chromatically modify simple progressions and that also prolong functional chords. Therefore, even though Delius’s chromatic passages seem to consist of chords changed on every beat, they can be reduced to simpler relationships. The reductions present a solid middle-ground structure and reveal an underlying harmonic syntax.
CHAPTER 5
REHARMONIZATION AS A SOURCE OF FORMAL INTEREST

… Delius had a well-nigh perfect sense of form for what he had to say. In his mature works he said things as lucidly and expressively as he could. There is no ‘passage-work,’ no ‘working-out,’ no meaningless repetition, and in the sustained intensity of the rhapsodic flow of his music the decorative detail is caught up and transformed into the framework of his own particular sense of architectural design.¹

As Fenby aptly observes in this quotation, Delius’s personal approach to musical form differs from conventional methods of thematic development and reiteration. To avoid “meaningless repetition” Delius prefers to modify the settings of repeated motives and thematic statements through a variety of means, the most interesting of which is reharmonization. Section 5.1 examines reharmonizations in ‘immediate reiterations’ and sequences of figures or motives. Section 5.2 examines reharmonizations in ‘distant recurrences’ of longer themes and assesses the effect this procedure has on formal structure. Both sections examine typical examples of reharmonization techniques. Other considerations, such as doubling and spacing, are discussed only if they play an important role in producing the reharmonizations.

¹ Fenby, Delius as I Knew Him, pp.198-199.
Section 5.3 reviews the different consequences of reharmonization in immediate reiterations and distant recurrences.

5.1. Reharmonizations in Immediate Reiterations

Delius almost never directly restates tonal ideas without modifications such as reharmonization. The following samples of important passages will illustrate his procedures in various contexts. In a transitional passage of the Sonata for Violin and Piano, No. 1, he modifies an immediate reiteration by adding a passing chord to the chordal progression. (See Example 5.1.) The violin’s Figure-X₁ (mm.55 – 56) repeats an octave higher in measures 57 – 58 basically on the same chord progression. However, the weakly suggested B₇ of Figure-X₁ at the end of measure 55 transforms into a passing chord (D♯/G₂) in measure 57. At Figure-X₂, instead of the chord members (B, F♯, and A) that appear as non-chord tones, the related diminished chord appears with more emphasis. Delius places a block chord on the passing bass note (C) at the fourth beat. The leading-tone chord (E) clearly points to the following E₇. Also, the E₃, add₄ of Figure-X₁ (m.56), which arpeggiates like a quartal chord, reappears in clear structure at the Figure-X₂ (m.58) without the added fourth. The reharmonization at the repetition results in supporting the E₇ chord by directing the progression to E and simplifying the chord by omitting the color note.
Example 5.1. Modification by addition of a passing chord within a repeated chord prolongation in *Sonata for Violin and Piano*, No.1, Mvt.III (mm. 55 – 56 vs. 57 – 58).

Delius modifies restatements by harmonizing passing notes or unfolded chord members. The first measure of the reiteration (m.45) in Example 5.2, *String Quartet*, Movement IV (mm.27 – 50), shows reharmonization of each melodic note which is a member of one chord B_{b} (with an added sixth) in the original statement (m.27). This procedure is similar to the reharmonization of Example 5.1. He harmonizes each of the melodic notes ($F - G - G - B_{b}$) by adding chromatically passing notes. The third leaps of the first violin ($D - F$) and the second violin ($B_{b} - D$) in measure 27 transform into chromatically ascending linear movements of the second violin ($D - E_{b} - E^{\#} - F$) and the viola ($B_{b} - B^{\#} - C - C^{\#} - D$) in measure 45. The addition of passing notes may result in the reharmonization with distantly related chords which share only the melodic note as the common note.
First Statement (mm.27 – 32): melody on the cello

Second Statement (mm.45 – 50): melody on the violin I and cello

Example 5.2. Modification by harmonizing unfolded chord members in *String Quartet*, Mvt. IV (mm.27 – 50)

Delius typically alters the chordal sonority by emphasizing a different chord member and using a different inversion. When inversion is applied to chords with added color notes, the effect of sonority change seems greater than the inversion of simple triads or seventh chords. In the *Lento, molto tranquillo* section (mm.142 – 166) of the *Sonata for Cello and Piano*, a four-measure pentatonic melody occurs three times and the reharmonizations maintain most of the original chord members. The first and the third statements appear at the same pitch level with similar harmonizations, while the second statement appears a whole-tone lower with a distantly related harmonic progression. (See Example 5.3.)
Example 5.3. Differences of reharmonizations between reiteration and recurrence in *Sonata for Cello and Piano* (mm.142 – 166)
Unlike Delius’s usual practice of using fast harmonic rhythm on the surface, the harmonic rhythm here is very slow. The first three measures (mm.142 – 144) contain only one chord, G major. However, the G major chords of each measure are varied by the addition of different color notes. The second pentatonic melody transposes a whole-tone down, and the harmonic analysis shows that some chords are not related by any of the close relations of common-practice such as the parallel or the relative relation. If the second statement is compared at the same pitch-class level as the first statement, its progression is G\(^9\)\(_7^{add6}\) – A\(^4\)\(_2^{9}\) – Gm\(^9\)\(_7\) – C\(^9\)\(_7\). The first and the third chords appear to be closely related to the chords of first statement, while the second and the fourth chords are not. The first chords are the same but with different added notes (G\(^6\)\(_4^{add6}\) vs. G\(^9\)\(_7^{add6}\)) and the third chords have a parallel relationship (G\(^9\)\(_7\) vs. Gm\(^9\)\(_7^{add6}\)).

Although the second and fourth chords show no such relations, they do share many members in common and vary by just one or two notes. The second chords (G\(^6\)\(_4^{add6}\)\(_{add2}\) and A\(^4\)\(_2^{9}\)) share G, A, B, and E as common tones, and the D of G\(^6\)\(_4^{add6}\)\(_{add2}\) chromatically alters to C# of A\(^4\)\(_2^{9}\). The fourth chords (C\(^#\)\(_3^{o4}\) and C\(^9\)\(_7\)) share three common tones (E, G, and B), and the C# of C\(^#\)\(_3^{o4}\) chromatically alters to C and D of C\(^9\)\(_7\).

The harmonization of the third statement (mm. 163 – 166) is closely related to the first statement. Here, the measure-by-measure addition of color notes differs from the first statement. Moreover, a neighboring chord appears in measure 164. Delius emphasizes the added sixth note (E) of the G chord in measure 144 by doubling the note, placing an E major chord in the right hand of the piano part, and stating it as a block chord instead of sneaking it into the arpeggiated accompaniment. The added neighboring chord stands in chromatic mediant relation with the original chord. Although the relation is not a closely related one, both chords share many
common tones because of the added color notes. The added sixth to G major in measure 144 turns into the root of the substituted chord. In addition, the added seventh to the substitution, D, also increases the number of common tones between these mediant related chords. Actually the G# is the only note altered from the chord in measure 144, and these chords share three common tones (E, B, and D). Although the reharmonized chords share many chord members in common with the chords of first statement, differences in chord position and emphasis on different shared notes cause changes in chord roots and chordal relations within the progressions. Therefore, the modification of the chordal sonority is effected with just one altered note.

Delius also modifies repetitions by rhythmically altering the voice movements in out-of-sync fashion. In Example 5.4 a transition in the *Sonata for Violin and Piano*, No.2 consists of an immediate reiteration modified by out-of-sync voice movement. The scalar violin melody of measures 17 – 19 repeats at the octave in measures 21 – 23, but with a modified piano part. The simple G – G# – A voice movement of the first figure switches into (F#) – G – G# – (B) – A. The accented non-chord tones are indicated by parentheses. Because of the out-of-sync movements, the harmonic progression \(G^4_\text{M} - 3 - (G^#4_\text{M}) - E^4_2 - D^4_3\) transforms into \(Bm^6_6 - G^6_4 - E^4_2 - D^4_2\). The resultant chords are diatonic substitutions, and when the notes by out-of-sync movement are considered as non-chord tones, the outlining chord progression is basically same for both figures (G – D\(_7\)).
Example 5.4. Reharmonization by out-of-sync voice movement in
Sonata for Violin and Piano, No.2 (mm.17 – 18 vs. mm.21 – 22)

The modification and the reharmonization smoothly lead to the following B
major in measure 23. The first passage already prepares the B major through
emphasizing the note B in several ways. The first G\textsubscript{M7} chord doubles unusual note
members, the third (B) and the seventh (F#), instead of the root (G) and the fifth (D).
Also, the violin melody outlines a scalar descent from F# through B, respectively the
dominant and the tonic of B. In addition, the accented non-chord tone (A# of the
violin in measure 19) acts as the leading-tone of B and supports the following note B.

The modification at the second figure (mm.21 – 22) emphasizes the note B
even more. The out-of-sync voice movement in the right hand of the piano delays the
appearance of G, by adding F# on the down beat. This process results in a Bm\textsubscript{6}
harmonization on the down beat. Moreover, the other added note by the out-of-sync voice modification, B of measure 22, is the highest note of the piano part at the down beat, and it results in another Bm triad over the bass C. In short, the modification of the immediate reiteration not only adds color to the transition, but also prepares and leads to the following chord in the process of linking two different tonal centers.

Delius often reharmonizes immediate reiterations by altering one or two voice parts. In Example 5.5, a short figure repetition connects theme statements in the *Sonata for Violin and Piano*, No.3, Movement I.

![Linear voice movements](image)

Example 5.5. Reharmonizations by voice-exchanges and altering two voices in *Sonata for Violin and Piano*, No.3, Mvt.I (mm.4 – 5)

Even though the violin and piano melodies of measure 4 exactly repeat in measure 5 at the fifth, other piano parts differ because of voice-exchange and a voice alteration. The inner voice-exchange leads a voice movement transposed at the fifth (F→C) into an extended line (F→ E – E b). In addition, the linear movement of the other voices frees them from the transposed level at the fifth and results in the reharmonizations.
In sequences, the successive repetitions are more systematic and motion
directed, since more than two patterns are separated by the same intervals. Most of
Delius’s sequences may be characterized as ‘reharmonized real sequences.’ This
refers to sequences in which the melody of each pattern exactly repeats in its
transposed level as in real sequences, while the harmonic progressions undergo
alterations. Example 5.6 represents a typical case. Here Delius reharmonized the
sequences by addition of a separate, independent line. The passage from the String
Quartet, Movement I, measures 210 – 215 consists of sequences reharmonized by an
independent cello voice.

Example 5.6. Real T₇ sequences reharmonized by an independent cello part in
String Quartet, Mvt.I, (mm.210 – 215)

The passage consists of real sequences of a two-measure pattern, each of which
transposes up a perfect fifth. The violins and viola repeat at their transposed levels,
but the harmonization varies because the cello arpeggios move independently.

The sequential patterns in mediant relation shown in Example 5.7 (Sonata
for Cello and Piano, measures 46 – 52 (and measures 222 – 228))² show slight

² This passage is discussed as an example of mediant relationships in the middle ground level. (See
Example 4.13.)
alterations of inner voices, while the doubled melodic lines exactly repeat at their transposed levels.\(^3\)

Example 5.7. Reharmonized real sequences in *Sonata for Cello and Piano*, mm.46 – 52 (and mm.222 – 228)

All the voice movements of the first and third patterns are in real sequence constructing the same harmonization. However, slight alterations in the inner voices

\(^3\) The note A♭ at the pick-up to measure 50 may be a misprint of A-natural. I do not see a reason for the modification of the melodic pattern. Delius usually does not modify the melody but only the harmonization for color. Moreover, these sequences reappear later (mm.222 – 227) and the melody of the third sequence pattern is exact at T₄ without the modification of the initial note.
of the second pattern result in a reharmonization. The parallel thirds of inner voices harmonize the doubled melodic lines. Among the parallel thirds, the bottom notes are in exact sequences while the upper notes vary slightly. These alterations transform the quality of the thirds, a minor third into a major and vice versa, and thus, the quality of the chords.

This example also presents a case of the substitution of Fr.\(^6\) for a diminished chord. Chapters 3 and 4 have already examined Delius’s application of the half-diminished seventh chord as a modified form of Fr.\(^6\). Although this example does not show the resolution of a half-diminished seventh chord as an augmented sixth chord, it shows Delius’s free exchange of these two chord-types.

Example 5.8 from the *String Quartet*, Movement II (mm.15 – 19) shows reharmonized real sequences with substituted chords. The passage is basically a prolongation of D major through the sequences. Starting at measure 15, four T\(_4\) transpositions of a pattern result in the return of the prolonging chord, D major.\(^4\) The real sequences of outer voices appear three times in measures 16 – 18. Although the outer voices repeat their patterns four times each, they appear out-of-sync. While the cello starts the sequential pattern from measure 15 and prepares the sequences with the similar harmonic progression, the pattern of the first violin continues in measure 19 after the sequences.

\(^4\) This symmetrical division of an octave by major thirds showed Delius’s preference on mediant relationship in middle-ground level.
The initial chords of each sequence are not identical in their transpositions; they are Gm (B♭ add6), D, G♭ 7, B♭ 7 with b5, and D respectively. Although the initial chords differ in quality, they are strongly related. If a major triad were tabbed as the prime form, the B♭, D, G♭, B♭, and D major chords could be regarded as the prime chord at its transpositions. Then, the initial chord of measure 15 (Gm) might be seen as the diatonic mediant of the B♭ triad or as the prime chord with an added sixth substituted for the fifth. The initial chord of measure 17 (G♭ 7) would be the prime chord with a minor seventh. The last one, B♭ 7♭5, which sounds same as the Fr♭6, would be the prime chord with a lowered fifth and a minor seventh. These initial chords, except the D major triad (measure 16), that is the center of the passage, are all chords colored by the addition of a dissonant note. They all can be considered to be of the same chord family (iv or b VI add6, b VI, b VI7, and b VI♭5♭3). These
chords maintain their roots and the thirds in sequences, while the other members vary. (See Figure 5.1.) Thus, they easily substitute for each other without spoiling the original function of the chord and the sequence.

Figure 5.1. Initial chords of reharmonized sequences in *String Quartet*, Mvt.II (mm.15 – 19)

Delius may reharmonize reiterations with distantly related chords by maintaining only one or two common tones. The harmonic analysis of Example 5.9 illustrates the reharmonizations of reiterations with distantly related chords. In the third movement of the *String Quartet*, the initial motive (mm.1 – 2) appears six times in the exposition. Although the melodic lines are same, the six figures are distinctive because of the different harmonizations at the foreground level. The chord progression of the initial motive (mm.1 – 2) is quite diatonic. While the harmonic rhythm is very fast at the foreground level, it is much slower at the middle-ground level. Although chords change whenever a melodic note changes in the first two measures, the progression actually prolongs one chord, the tonic D. This first outline, I – V – vi – (ii) – V – I, also serves as the harmonic frame of the other reharmonizations. Thus the elements that unify the section are the repeated melodic figure and the similar harmonizations that begin each passage.
Example 5.9. Reharmonization of the initial motive in *String Quartet*, Mvt.III
Example 5.9. continued
The fourth and the sixth motives are also in D major, the tonic key. Since the sixth motive statement appears at the return of Section A to signify the return of the first section, its harmonization is very close to the initial one. Nevertheless, Delius does not simply restate the initial motive. He reharmonizes through the slight modification of each voice movement by placing the linearly descending notes on different beats and by adding chromatic passing notes. Many chords from the fourth motive are substituted by borrowed chords from the parallel minor, for instance, v_7, vi^0_7, ii^0_7, and $b\ V_I$. The second motive in F is also based on the same harmonic progression, although the non-functional chords between the structural chords are different. The third and the fifth statements sound even more distant from the initial one because of chromatic harmonies and different initial chords. However, the structural chords maintain their functions and thereby maintain the harmonic progression in the middle-ground level.

5.2. Reharmonizations in Distant Recurrences

Generally speaking, distant repetitions usually consist of longer passages such as a theme or theme section. Delius often unifies a piece by returning to a theme that provides aural continuity even at distance.5 His cyclic usage of themes usually results in forms akin to an A – B – A, a sonata-allegro form, or other cyclic form. Unlike immediate reiterations, distant recurrences without any modifications often appear in the chamber works, especially in the first theme sections. Instances include the first

5 For a discussion of this technique, see Neela Delia Kinariwala, Debussy and musical coherence: A study of succession and continuity in the preludes, Ph.D. diss. The University of Texas at Austin, 1987, p.14.
theme sections of the *Sonata for Violin and Piano*, No.1, Movement I (mm.1 – 11 and mm.76 – 86); the *Sonata for Violin and Piano*, No.1, Movement III (mm.1 – 26 and mm.108 – 133); the *Sonata for Cello and Piano* (mm.1 – 45 and mm.171 – 228); the *String Quartet*, Movement I (mm.1 – 44 and mm. 145 – 188); the *String Quartet*, Movement II (mm.1 – 67 and mm. 207 – 274); the *String Quartet*, Movement II (mm.68 – 91 and mm. 181 – 190); the *String Quartet*, Movement III (mm.1 – 4 and mm. 87 – 90); the *String Quartet*, Movement IV (mm.1 – 67 and mm. 207 – 274); and *Sonata for Violin and Piano*, No.2 (mm.107 – 125 and mm.165 – 181).

Delius may modify the beginning or ending passage of distant recurrences that are now set in a different context. If necessary, he may adjust a few notes of the beginning or ending melodic line and its harmonization for smoother connection to the following section or from the previous section, while maintaining the rest of the material intact. In the second movement of *Sonata for Violin and Piano*, No.1, the slow first theme passage (mm.1 – 9) and its return at measures 70 – 78 show a few modifications for this purpose. (See Example 5.10.)

The melodic outline of measures 1 – 2 based on leaps of an octave down and a fifth up (see beamed-notes), receives a few changes in measures 70 – 71 that lead to modifications in the first three chords. The sonorities of the three chords in measures 1 – 2 are very colorful because of the intervallic relations between the violin melody and the bass. The outlining notes of the violin melody (E – E – B) and the bass notes which are also the chord roots (F – B♭ – A) produce dissonant intervals – the major seventh, the tritone, and the major ninth.
First Statement (mm.1 – 9)

Recurrence (mm.70 – 78)

Example 5.10. Slight reharmonization in
Sonata for Violin and Piano, No.1, Mvt.II (mm.1 – 9 vs. mm.70 – 78)
Example 5.10. continued

At the recurrence in measures 70 – 71, changes in the melodic outline (D – E – B) and different bass notes (G – C – B) transform the dissonant intervals between these lines, into the consonant intervals – the perfect fifth, the major third, and the octave, and thus, stabilize the (I – IV - iii) chord progression. While the beginning melodic line and the harmonizations (mm.1 – 2) are adjusted for smoother connection from the previous movement, those at the recurrence (mm.70 – 71) rather confirm the tonic of the movement (G). Most of modified chords are the same as the originals but in different inversion, such as the chords $A_{7}^{9,3\text{add}6-5}$ (m.71) and E_{7} (m.76), which substitute for $A_{7}^{9,\text{add}6}$ (m.2) and E_{7}^{3} (m.7) respectively, or the diatonically related chord, G_{M7} (m.78), which substitutes for the last chord of the first passage, Bm.
(m.9). There is, however, a tritone substitution. The second chord of measure 75, F\(^9\)_7, substitutes for the second chord in measure 6, B\(^{+4}\)_2, a chord of tritone away. Tritone substitutions enharmonically share two common tones. Both the original seventh chord and its tritone substitution have similar strengths of tension, though these chords have different directional tendencies. The adding of color notes to these chords, can result in the sharing of more common tones. The raised fifth of B\(^{+4}\)_2, and the added ninth to F\(^9\)_7 are the tones common to both chords. Also, the unusual doubling makes these chord seem even closer in relation because, here, the doubled seventh, A of B\(^{+4}\)_2 is the third of F\(^9\)_7. The substitution G\(_{M7}\) in measure 78 is the tonic of Movement II. While the beginning passage (mm.1 – 9) does lead into the second Movement by introducing the new theme, it hardly confirms the tonic of the movement with the harmonization. However, these modifications at the recurrence assure and confirm the center, G.

Instead of concentrating on the reharmonization of the individual chords to add color to distant recurrences, Delius modifies the key relations. The modification of key relations is akin to reharmonization but at the middle-ground level, and it has a structural function in addition to adding color. In *Sonata for Cello and Piano*, the second theme section (mm. 46 – 126) recurs in measures 222 – 265 with transpositions. (See Diagram 5.1.) The first theme recurrence faithfully maintains in the original key of D. The second theme section divides into two passages, the statement in F (mm. 52 – 60) and its direct reiteration with modifications in B \(\flat\) m (mm. 60 – 68). When they recur in section A’, the original statement in F occurs a minor third down, and its immediate reiteration in B \(\flat\) m occurs a major third up, thus, both into D. In other words, the theme statement (mm. 52 – 60) of the section A repeats at \(T_9\) in the section A’ (mm.228 – 236), while the direct reiteration (mm. 60 –
68) repeats at T_4 (mm. 236 – 244). The transpositions offer stability of tonal relationships in the recapitulation section.

![Diagram 5.1. Changes in distant repetitions in *Sonata for Cello and Piano*](image)

Traditional passages in the second theme also underwent modifications in the recurrence. The first statement stays in the same key by simply repeating the mediant chord progression in measure 235 (G – E) instead of moving a perfect fifth down as in measure 59. Therefore, the T_9 relation between the initial-theme statements smoothly transforms into the T_4 relation of the reiteration statements. The modifications and reharmonizations at the transitions are shown in detail in Example 5.11.
Example 5.11. Reharmonization at transitional passages in *Sonata for Cello and Piano* (mm.58–60 vs. 234–236 and 66–68 vs. 242–244)
Example 5.11. continued

Diagram 5.2 illustrates the interesting changes of key in the second theme section of *Sonata for Violin and Piano*, No.1, Movement III. In sub-section A’ the first theme section exactly repeats without modification or reharmonization except for just one chord in measure 117. A chromatic mediant related chord, C♯₃ of measure 117, that is the dominant chord to the following F♯ chord, substitutes for A♯₂ of measure 11. While the first theme section recurs almost without change in measures 108 – 133, the second theme section repeats in different pitch levels.
Sub-Section A

<table>
<thead>
<tr>
<th>First theme section</th>
<th>Second theme section</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm.1 – 27 Bm</td>
<td>mm.28 – 38 D – Am</td>
</tr>
<tr>
<td></td>
<td>mm.39 – 46 Gm</td>
</tr>
<tr>
<td></td>
<td>mm.51 – 58 F#m</td>
</tr>
<tr>
<td></td>
<td>T<sub>2</sub></td>
</tr>
<tr>
<td></td>
<td>T<sub>3</sub></td>
</tr>
</tbody>
</table>

Sub-Section A’

<table>
<thead>
<tr>
<th>First theme section</th>
<th>Second theme section</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm.108 – 133 Bm</td>
<td>mm.135 – 143 E – Bm</td>
</tr>
<tr>
<td></td>
<td>mm.144 – 151 Em</td>
</tr>
<tr>
<td></td>
<td>mm.152-160 Bm</td>
</tr>
</tbody>
</table>

Diagram 5.2. Distant Repetitions in *Sonata for Violin and Piano*, No.1, Mvt.III

Measures 39 – 46 and 51 – 58, repeat with transpositions at T₃ and T₅ in measures 144 – 151 and 152 – 160 respectively. The distant key relationships of themes in the opening section (Bm – Am – Gm – F#m) now turn into very stable relationships around the tonic key of Bm (Bm – Bm – Em – Bm). In sub-section A’ the harmonizations of the second theme sections repeat almost exactly at their transposed levels. One noticeable reharmonization of measures 41 – 43 occurs in measures 146 – 148. (See Example 5.12.) The harmonic progression of measures 41 – 43 (Gm – C₇ – F₇ – Ger⁶/A – F#⁶/2 – B_♭6^{add2}) is based on the circle-of-fifths. The second chord of measure 42 spelled as a Ger⁶/A can be relabeled as a dominant seventh chord (B_♭7) with its sonority intact. In addition, although the first chord of measure 43 is spelled as F#⁶/2, it functions as the leading-tone chord to the following B_♭. Thus, the chord can be relabeled as the enharmonically equivalent A[♭]3, and the progression ends up as a circle-of-fifths progression with a neighboring chord to B_♭: Gm – C₇ – F₇ – B_♭7 – A[♭]3 – B_♭6^{add2}.
Example 5.12. Tritone substitution in *Sonata for Violin and Piano*, No.1, Mvt. III

This typical circle-of-fifth progression of measures 41 – 53 repeats at a minor third lower in measures 146 – 148 with the inclusion of two tritone substitutions. The exact repeated harmonization of measures 41 – 43 in measures 146 – 148 at its transposed level would be Em – A\(_7\) – D\(_7\) – Ger\(^{+6}\)/F\# \((G\(_7\)) – F\#\(^{04}\) – G\(_6\)\(^{add2}\). Here, however, Delius reharmonizes the two chords in measure 147 where the arpeggiated piano accompaniment changes into block chordal movement. The first chord of measure 147, Fr\(^{+6}\) (Fr\(^{+6}/G\)), substitutes for the D\(_7\). The spelling of the chord on the down beat shows that the first chord, A\(_b\)\(^7\)\(_b\), can also be relabeled as its tritone substitute, D\(_7\)\(_b\). Thus, the Fr\(^{+6}\) (Fr\(^{+6}/G\)) can be seen as the original D\(_7\) with the modification by lowering the fifth. The second chord of measure 147 also clearly presents this tritone substitution technique. Although the second chord has the same
Ger+6 quality as its original in measure 42, its tritone substitution, Ger+6/C (D\textsubscript{♭}7) replaces the Ger+6/F\# (G\textsubscript{7}). These two tritone substitutions transform the circle-of-fifth progression into a more chromatic progression.

Delius reverses the order of theme statements in the recapitulation as in *Sonata for Violin and Piano*, No.3, Movement III, thereby forming an arch structure. (See Diagram 5.3.)

![Diagram 5.3. Arch structure by reordering the recurrences in *Sonata for Violin and Piano*, No.3, Mvt.III](image)

5.3. The Effects of Perception on Reharmonizations

As shown above, Delius reharmonized direct repetitions more colorfully than distant repetitions. According to Patricia Carpenter’s observations in her article, “The musical object”, listeners perceive these two sorts of repetition in different ways.

Immediate repetition (reiteration) has been distinguished from repetition that returns after some time (recurrence), and these organize succession on two different levels. Reiteration emphasizes differences; it focuses attention on small-scale detail, on “texture.”
Recurrence emphasized similarities and articulates more far-reaching moment passage of time; the other tends to stabilize time for contemplations. In this way, repetition may stylize a musical whole either toward process or object, toward the pole of becoming or toward that of being.\(^6\)

Carpenter carefully distinguishes reiteration (direct repetition) from recurrence (distant repetition) and points out the functional differences of these two kinds of repetition. She explains that when a figure is repeated immediately (reiteration), any modifications are readily perceived. On the other hand, when repetition appears at a distance, our perception is more apt to grasp the similarities rather than the modifications. Thus, “even the slightest variations of reiteration stand out as elements of contrast against this background of sameness, and recurrence is a primary element involved in a structural hearing.”\(^7\)

Carpenter’s observations seem to offer a convincing rationale for Delius’s reharmonization procedures. In direct repetitions Delius emphasizes the harmonic color more than in distant repetitions. In distant repetitions, he reharmonizes with more closely related chord choices and asserts the tonal center more strongly.

Diagrams 5.4 and 5.5 compare examples of reharmonizations for an immediate reiteration and a distant recurrence. The end of *Sonata for Violin and Piano, No.3*, Mvt.III (mm.100 – 107) restates and repeats the theme of measures 19 – 22. The recurrence is at a minor third above (T\(_3\)). It seems that none of the harmonies of the first restatement (mm.100 – 103) matches with the harmonies of the original passage (mm.19 – 22). Although the restatement starts with distant chords, the harmonies get closer to the original harmonization toward the end of the statement.

The recurrence is close enough to the original to remind the listener of the first statement not only through the restatement of the melody, but also through the harmonizations.

Diagram 5.4. Comparison of reharmonizations in a distant recurrence in *Sonata for Violin and Piano*, No.3, Mvt.III (mm.19 – 22 vs. mm.100 – 103)

However, the immediate reiteration of mm.100 – 103 in mm.104 – 107 shares only one common chord (Gm\(^6\) of m.106) and the others are mostly subdominant chords (Diagram 5.5).

Diagram 5.5. Comparison of reharmonization in an immediate reiteration in *Sonata for Violin and Piano*, No.3, Mvt.III (mm.100 – 103 vs. mm.104 – 107)

In addition to this violin sonata, all the samples examined in Sections 5.1 and 5.2 reveal that Delius reharmonizes immediate reiterations with more distantly related chords than in distant recurrences.
CONCLUSIONS

This dissertation started by questioning the viewpoint taken by Philip Heseltine and others that Delius "has no harmonic system which can be defined and analyzed as readily as those of Debussy and Scriabin." Indeed, Delius himself agonized to create his own musical language by willfully departing from previously established practice. Despite the many complexities, detailed study of his chamber works has uncovered techniques that describe a unique harmonic syntax based on conventional underpinnings.

This study has examined the general characteristics of Delius's harmonic vocabularies and resources through statistical analysis, and has discussed common vertical sonorities and their arrangements, orders, and connections. It examined his characteristic devices, interpolation and substitution, which transform a diatonic into a chromatic passage—for instance, a circle-of-fifths progression into a linear progression. The examination of his distinctive harmonic progressions based on linear scalar motion and chromatic mediant relations showed that, although he adorned progressions with colorful chromatic harmonies, his system at the middle-ground level is still based on traditional relationships. He employed both the common pedal point and the internal broken pedal point to interconnect remotely related chromatic chords and to establish the tonal center.
Through examining Delius’s reharmonization techniques in repeated figures, sequences, and recurrent themes, the study described not only the application of the various devices of harmonic syntax but also their roles in the construction of structural unity. Finally, this analysis revealed how manipulations of harmonic devices affect the overall formal structure.

Even though it seems reasonable to assume that the harmonic syntax of Delius’s programmatic works is not radically different from that of chamber works examined here, there is a need for more detailed analyses of these works. Other studies have shunned detailed syntactic analysis of the descriptive and have focused on examining extra-musical elements such as orchestral color and mood. I hope that the harmonic syntax examined in this dissertation will offer a starting place. Such work might confirm whether the harmonic syntax examined here is applicable, and it might also uncover additional techniques, differently applied in his programmatic works.

Many of Delius’s contemporaries developed harmonic languages that also exist on the boundary of conventional tonality and extended tonality. Each composer seems to have taken a different path to create “individualized” harmonies and forms, but they all sought new musical ground through extensions and modifications of the conventional tonal system. Therefore, it is possible that, a similar approach to the harmonic syntax, of their works might yield interesting results.

Despite the accomplishment of this study, more research needs to follow. Although the claims made here would be even more robust if a rigorous statistical analysis of the root movements and bass movements were undertaken.
For the sake of simplicity, the statistical tabulations have been allowed to speak for themselves. I trust that future work will support my methods and findings, and I hope that my work will foster interest in this fascinating repertoire and inspire others to engage in related research.
SELECTED BIBLIOGRAPHY

