LABORATORY SCHOOLS: A CRITICAL LINK IN FACILITATING AND
ENHANCING PRESCHOOL TEACHER EDUCATION

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the
Graduate School of The Ohio State University

By
Lori E. Arnold-Grine, M.A.

*****

The Ohio State University
2007

Dissertation Committee:
Dr. Mary Jo Fresch, Adviser
Dr. Laurie Katz
Dr. Rhoda Becher

Approved by

________________________________________
Adviser
College of Education and Human Ecology
ABSTRACT

School reform is changing and expanding the notion of early childhood. State content learning standards now exist for preschool-age children. Thus, teachers must be prepared to teach at the preschool level, and teacher training programs must adapt to prepare quality preschool teachers. Field experiences are key components of teacher training programs, so it is important that they include well-organized experiences at the preschool level. Laboratory preschools offer the elements of proximity to universities and the opportunity to connect theory to practice. Lab preschools provide models of best practice, an important component of education that also serves societal interests. Exemplary models for preschool teacher training can inform educational practice and improve the field of teacher education.

The purpose of this study is to show the effectiveness of preschool teacher training in a laboratory preschool setting. This study emphasizes the need for highly qualified teachers for the youngest learners. It shows that hands-on experiences and observation, key components of early childhood education, are readily accessible in a lab preschool setting. Theory to practice is actualized in the lab preschool setting if used for teaching training. This study will address what the use of lab preschools for the training
of teachers can do for the early childhood field. This description of laboratory preschools with their three-fold mission will show ways to improve field experience offerings for early childhood teacher training.
ACKNOWLEDGMENTS

I am thankful for the memory and guardian spirit of my mother, LaDonna Arnold, who went to her Heavenly Home during this process. Knowing how proud she would be and feeling her love has fueled my work.

I thank the wisest person I’ll ever have known in my entire life, my father, Lewis Arnold. His encouragement has paved the way for my education, and along with my mother he has helped me become the person that I am today. I am proud to use his family name on my work.

I am eternally grateful for my husband, Mark Grine, whose loving support has kept me going through this arduous process. He kept my eye on the light at the end of the tunnel and has held my hand all the way. His daily encouragement and technical support are irreplaceable.

I also wish to thank my greatest gifts in life, my children – Tiffany, Kelsey and Kaleb – who have been so patient and encouraging. They know that they always come first, but they see in me an example of determination, a love for learning, and a drive to achieve a life goal. I know that my work has been an inspiration for their own lives.

Finally, to my colleagues at Heidelberg College and my committee members at The Ohio State University, whose patience, role-modeling, and guidance have brought
me to this point. I especially thank my adviser, Dr. Mary Jo Fresch, for her intellectual and enthusiastic support. I will always cherish her as a dear mentor and friend.

Above all, I give praise and thanks to my Heavenly Father and Lord of my life, who has blessed me with a thirst for knowledge as well as a passion for young children and education, both which have opened doors for my life work. He is the One who sustains me daily and guides my every step. All glory and praise be unto Him.
VITA

1984 Bachelor of Arts in Elementary Education/Music Heidelberg College - Tiffin, Ohio
1984-1990 Elementary Educator - Lutz School - Fremont, Ohio
1990-1993 Elementary Educator - Washington School - Tiffin, Ohio
1991 Masters of English - Bowling Green State University
1993-2001 Elementary Educator - Clinton School - Tiffin, Ohio
1994 Correspondence Writing Degree Institute of Children’s Literature - Connecticut
2001-2007 Assistant Professor of Education Heidelberg College - Tiffin, Ohio

PUBLICATIONS


FIELDS OF STUDY

Major Field: Education

Studies in Early Childhood Education

Studies in Language Arts

Studies in Schools and Teaching
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>Vita</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List of Diagrams</td>
<td>xi</td>
</tr>
<tr>
<td><strong>Chapters:</strong></td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose of Study</td>
<td>2</td>
</tr>
<tr>
<td>1.2 History</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Statement of Problem</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Significance of Study</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Research Questions</td>
<td>10</td>
</tr>
<tr>
<td>1.6 Definitions</td>
<td>11</td>
</tr>
<tr>
<td>2. Review of Literature</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Early Learning and Teacher Quality</td>
<td>14</td>
</tr>
<tr>
<td>2.2 The Impact of Preschool</td>
<td>18</td>
</tr>
<tr>
<td>2.3 Laboratory Preschools</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Theory-to-Practice</td>
<td>26</td>
</tr>
<tr>
<td>2.5 A Connected Experience</td>
<td>29</td>
</tr>
<tr>
<td>2.6 A Community of Learners</td>
<td>31</td>
</tr>
<tr>
<td>2.7 Summary and Rationale for Dissertation Study</td>
<td>33</td>
</tr>
</tbody>
</table>
3. Research Design and Method ................................................................. 37
   3.1 Purpose of the Study ........................................................................ 37
   3.2 Rationale for Approach/Site Selection/Population ...................... 40
   3.3 Role of Researcher ........................................................................ 43
   3.4 Data Collection Procedures .......................................................... 44
   3.5 Informants ..................................................................................... 45
   3.6 Interviews ..................................................................................... 46
   3.7 Questions ..................................................................................... 47
   3.8 Recordings .................................................................................... 47
   3.9 Data Analysis Strategies ............................................................... 48
   3.10 Member-Checking ....................................................................... 53

4. Findings .................................................................................................. 55
   4.1 Case Study 1 .................................................................................. 56
   4.2 Case Study 2 .................................................................................. 59
   4.3 Case Study 3 .................................................................................. 61
   4.4 Case Study 4 .................................................................................. 65
   4.5 Case Study 5 .................................................................................. 68
   4.6 Case Study Summary .................................................................... 72
   4.7 Research Focus .............................................................................. 73
   4.8 Environment .................................................................................. 75
   4.9 Relationships ................................................................................ 82
       4.9.1 Multiple Layers of Relationships ........................................... 83
       4.9.2 Means of Interaction ............................................................... 86
       4.9.3 Mediation .............................................................................. 100
       4.9.4 Immersion ............................................................................ 114
       4.9.5 Identities ............................................................................ 119
       4.9.6 College Community Involvement ........................................... 131
   4.10 Three-Fold Purpose ..................................................................... 137
   4.11 Lab Preschools of the Future ......................................................... 142
   4.12 Summary ..................................................................................... 151
5. Discussion ...................................................................................................................... 153
   5.1 Implications ............................................................................................................. 153
   5.2 Gathering Information .......................................................................................... 154
   5.3 Limitations of Study ............................................................................................. 156
   5.4 Challenges for Lab Schools of the Future ............................................................ 159
   5.5 Future Research Directions .................................................................................. 162
   5.6 Conclusion ............................................................................................................. 164

Appendices

   A. Inquiry Letter and Permission Form ............................................................. 166
   B. Consent Form ................................................................................................. 170
   C. Interview Guides ............................................................................................ 175

Bibliography ................................................................................................................. 179
LIST OF TABLES:

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Lab Preschool Visits</td>
</tr>
<tr>
<td>3.2</td>
<td>Observational Guidelines</td>
</tr>
<tr>
<td>3.3</td>
<td>Cultural Domain Analysis</td>
</tr>
<tr>
<td>3.4</td>
<td>Cultural Theme Categories</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparative Components of Lab Preschools</td>
</tr>
<tr>
<td>4.2</td>
<td>Semantic Relationships</td>
</tr>
<tr>
<td>4.3</td>
<td>Interaction Domain</td>
</tr>
<tr>
<td>4.4</td>
<td>Relationships</td>
</tr>
<tr>
<td>4.5</td>
<td>Collaboration</td>
</tr>
<tr>
<td>4.6</td>
<td>Frequency Distribution of Titles and Perceived Attitudes Toward Students as “Teachers”</td>
</tr>
<tr>
<td>4.7</td>
<td>Frequency Distribution of Department Heads of Lab Schools</td>
</tr>
<tr>
<td>Diagram</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>4.1 Web of Networks</td>
<td>82</td>
</tr>
<tr>
<td>4.2 The Layers of Relationships at a Laboratory Preschool</td>
<td>83</td>
</tr>
<tr>
<td>4.3 Constructivist Philosophy</td>
<td>100</td>
</tr>
<tr>
<td>4.4 Experience Transition Continuum</td>
<td>113</td>
</tr>
<tr>
<td>4.5 Wheel of Campus Connections</td>
<td>131</td>
</tr>
<tr>
<td>4.6 Three-fold Purpose of Lab Preschools</td>
<td>136</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Laboratory schools have existed since the 1830s and played a significant role in the child development movement during the first half of the twentieth century. They offer unique components for a teacher training setting. They continue to exist but are not widely known in the field of early childhood teacher education. Little research has been done to unfold the characteristics of these settings and make them visible possibilities for the training of early childhood educators, particularly in the preschool realm. With increased emphasis on teacher accountability and school readiness issues, the search for viable training situations for preschool teachers is a main concern in the early childhood field. This look at lab preschools will focus on their uniqueness and unfold their settings as exemplary early childhood teacher training sites.

A laboratory school (hereafter called “lab preschool”) offers unique features as an early childhood educational setting. The preschool facility is traditionally right on the campus of a four-year higher educational institution. College students interested in pursuing a bachelor’s degree in early childhood education do field experiences in the actual preschool, where experienced preschool classroom teachers (hereafter called “mentor teachers”) model teaching styles and coach the pre-service teachers. The mentor teachers work with students at two levels - the preschool children and the college students...
in training to become early childhood educators (hereafter called “pre-service teachers”).
The purpose of the lab preschool is not solely for child care and education, but balanced with teacher training as well. The parent can be assured that the young child will be surrounded by several adults and have access to multiple layers of relationships, with both the experienced mentor teachers and the eager teacher candidates. The mentor teachers, accustomed to working with the multiple layers of learning, also benefit from the new ideas of the college students. Another key linkage is the connection with the institute of higher education environment, where trained professionals in the early childhood sector instruct the courses in theory and relate to the lab field experiences.
There is a connection between all levels of teaching and involvement. All the educators collaborate and work together to plan age-appropriate curriculum and activities. State-of-the-art methods and ideas are modeled for both levels of “students.” Children also benefit from involvement in other areas and disciplines of the campus setting. Support of the lab preschool means support of well-rounded early childhood education/care as well as the support of exemplary early childhood teacher training.

PURPOSE OF DISSERTATION STUDY

The purpose of this research is to describe the effective components of lab preschools for training teachers at universities or colleges and how such settings can offer a unique component to campus communities. Existing lab preschools have rich histories of providing high quality services to children and families as well as training early childhood professionals. At the same time they are also like nice surprises (LP1, PT) to
early childhood education majors, as college students are often unaware that the labs exist until they become involved with them through a course requirement.

With increased emphasis on preschool teaching preparation, this research explores a phenomenon (lab preschools) that needs a redefinition and renewal of importance for the field of early childhood education.

This study

• contributes new information and knowledge by exposing the unique opportunities that a lab preschool provides for preschool teacher training;
• provides significance and usefulness for practice and policy in the realm of early childhood education (specifically in the preschool sector); and
• brings forward a voice to reveal new insights and deepen understanding of the learning communities that exist within lab preschools.

This research will examine what five colleges offer in terms of a lab preschool training for early childhood education majors and how these sites can offer exemplary training facilities. An examination of five successful labs will offer models for the arrangement of similar pre-service teaching sites to meet the needs of modern teacher training.

HISTORY

Early childhood care programs initially emerged to serve different functions. Many were designed as child care support for working parents whereas others were designed to enhance young children’s development and learning. Now, many serve a variety of community needs, including both social and economic. In economic terms,
there are positive human capital returns to investment in early childhood care and education; investment in early care and education has economic payoff in terms of human capital, and thus, future social benefits (Zaslow, 2006). Child care and education for young children in the U.S. currently consists of a diverse array of public and private programs in a wide range of settings.

Lab schools (serving a range of ages from infant through school-age) were historically professional development schools, modeled after the teaching hospital as a laboratory for the preparation of medical professionals (National Council for the Accreditation of Teacher Education, 2001). College and university laboratory schools were among the first preschools established in the United States. Lab preschools have existed on many campuses since the first one in 1830 in Lexington, Massachusetts, affiliated with normal schools (the predecessors of teacher colleges). Another early one was the Hampton Institute in 1873. In 1896 John Dewey established his famous laboratory school at the University of Chicago. The school served as a laboratory for experimentation with Dewey’s ideas about child-centered curriculum. In his work Dewey demonstrated a respect for and valuing of inquiry into practice. In the 1920s there was an explosion of nursery schools, mainly ones established to offer educational advantages rather than for the former social needs of freeing parents to work. Important contributions to early childhood education occurred as a result of government programs such as the Perry Preschool Project (1962) and Head Start (1965) both designed to provide early intervention education to disadvantaged children. The first half of the twentieth century also brought the start of the child development movement, and lab schools (serving a range of ages from infant to school-age) set about to conduct research
(child study), training, and service related to children and families. Several disciplines became interested in the growth of the young child. Thus began the work of many of the child development laboratory programs as we know them today (Barbour, 2003).

Between 1917 and 1927 five child study sites were initiated in the United States. Among these programs were the Bank Street School in 1919, begun by Harriet Johnson; and the laboratory nursery school at Columbia Teachers’ College, started in 1921 by Patty Smith Hill. They attempted a multidisciplinary approach, blending voices from psychology and education with those of home economics, nursing, social work, and medicine. A wide range of services for families and children were offered, along with providing opportunities for research. The preparation of teachers also occurred at these sites, as these campus child care centers began to combine child care services with the laboratory function of teacher training all in one setting.

The 1970s ushered in an increase in the need for quality childcare, shifting the emphasis from academics to service. This set in motion a trend toward the threefold function that lab preschools serve today: service, training, and research. This three-part mission of facilitating and supporting teaching, research, and outreach activities guides the activities of child development laboratory programs today (Barbour, 2003). More specifically, the lab preschool serves as a setting for:

(1) education and training of future professionals in the fields of child development and early childhood education;

(2) scientific inquiry and research of a wide range of issues pertaining to child development and early childhood education; and
(3) best practice and educational innovation to provide for the optimal early education experiences of young children and their families (M. Clawson, cited in McBride and Barbour, 2003, p.70).

The research mission of the lab preschool program promotes viability and visibility within the university community, utilizing as many faculty and students and departments as possible to utilize the program for research (Horn-Wingerd, Warford, & Penhallow, 1999; McBride & Barbour, 2003). The teaching part of the mission provides observation sites for teaching and hands-on experiences with young children for training teachers. Lab preschools can make important contributions to an education department’s funding base and attract students to the education field (McBride & Lee, 1995). Some are associated with schools of education, some with departments of child and family studies, and others with departments of psychology, child development, and related disciplines. They encourage the joining of psychology, medicine, and other related fields to early education. These centers have students engaged in fulfilling practicum or student-teaching requirements and faculty engaged in supervision or research projects. Finally, for the service component of lab schools, they provide service in terms of support, education, and involvement to children and their families. The laboratory staff should be considered valuable resources in the community (Wright, in McBride and Barbour, 2003). For all these reasons, a close examination and description of some existing notable lab preschools offers insight into the challenges and needs of such entities for the future.
STATEMENT OF PROBLEM

Lab preschools have historically played important roles in teacher training. They offer high quality programs both for child care/education and early childhood teacher training. They bridge theory, research and practice in teacher education. If lab preschools are model teacher training sites, why don’t more exist in the United States? Why do they face both internal and external challenges? Why wouldn’t parents choose lab preschools for education and child care sites for their children? Issues such as cost, support, and space affect the institutions of higher education that usually house lab preschools and challenge their survival. Issues of affordability and accessibility affect families who choose these spaces for their children. Yet, this study will reveal the benefits that should outweigh the challenges to the existence of lab preschools as teacher training sites and the need for quality early childhood care and education. Lab preschools must be acknowledged for what they offer to the field of early childhood teacher training: best practice and updated knowledge, hands-on experience and preparation, opportunities for inquiry and research, and guidance by experienced mentor teachers.

One of the most pressing issues at all lab schools studied is their need to share their story and show what a viable part of a campus community they really are. As one lab school director described it: “I think lab schools are a win, win, win, win…all the way around. A win for the community, a win for the college, a win for the [teacher] candidates, a win for the children. It’s something where everyone benefits” (LP1, MT). Thus, this research takes a necessary look at lab preschools and their connected partnership approach to preparing and training preschool teachers, both to share a voice and to promote an exemplary model of early childhood teacher training.
SIGNIFICANCE OF STUDY

In the spirit of a genuine efficacy for the field of education, it is important to seek out the most effective settings for training early childhood teachers. Preschool is a formative experience that paves the way for future schooling experiences. Increased emphasis on accountability issues focuses on the need for school readiness, putting more pressure on those who provide children with learning opportunities prior to school entry. Thus, an exemplary preschool teacher training model is needed. This look at lab preschools will address what their use for the training of teachers can do for the early childhood field by providing viable teacher training sites and opportunities to connect theory to practice.

On-site lab preschools offer convenience for scheduling observation time into the pre-service teachers’ busy schedules. They add a new dimension of young people – the children in the preschool - to the college campus community. Learning occurs in many layers. The preschools have a vast array of resources right at their fingertips. This relationship is mutual, in that the entire campus community can also benefit from experiences with the lab school children due to their very presence and visibility on the campus. The very existence of a lab preschool on a campus offers a networking opportunity to consider what all uses it can provide to serve various campus community needs, such as several departments involving college students with learning and social experiences with the children. It also increases the opportunities for placements for preschool teacher-training experiences.

The case for child development laboratory programs has never been more pressing than it is at this time (McBride & Barbour, 2003). Now many are being asked to
provide justification for their continued existence because in recent years campuses have reconsidered how the lab programs fit within their missions. Many programs face unique economic challenges due to shifts in financial situations at their supporting institutions. Child development lab preschools are vulnerable for many reasons beyond financial issues, but funding dilemmas loom as one of the most serious threats (McConnaha, 1999). Some universities are placing more emphasis on providing child care services for young children, making it increasingly difficult for lab programs to continue addressing their three-part mission (McBride & Barbour). Other lab program differences exist nationwide, such as the types of programs provided, populations served and structural features (Clawson, 1999). A closer look at modern lab preschools will reveal their alignment with the supporting institution’s mission and goals, and often resulting funding. The supporting financial institution will look at whether the lab preschools depend on other parts of the college community for support and if they can adapt to the changing needs and resources of the institution. The goal is to see if the lab preschools’ historic mission and functions of teaching, training, and research can remain despite the modern changes and challenges.

Child development lab schools have long played a significant role in contributing to our understanding of child development and new and innovative educational practice, but they need to be continually reinvented and reconstructed to meet changing societal and institutional demands. According to Stemmel, Hill, and Fu (in McBride and Barbour, 2003), “As models for the early childhood community, lab schools should be on the leading edge of what theory and research informs us are best practices in early childhood education and child development” (p.89). Well-established lab schools are
surviving, yet new ones are not being formed due to monetary and administrative constraints. They must be seen for the unique culture that they offer in order to keep them alive and part of the training regime for early childhood education majors.

Lab preschools are accountable to federal guidelines, state certification agencies, and accreditation organizations, yet they still have flexibility to develop and implement program changes free from bureaucratic encumbrances (McConnaha, 1999). Most importantly, the lab preschools provide models of best practice, an important component of education for all students, preschoolers and college students. They serve as professional models for the public at large for what is good in child care and education.

RESEARCH QUESTIONS

Focus Question: What makes a lab preschool unique?

A. What are the unique components of lab preschools as teacher training sites?

B. What is the relationship between lab preschools and their supporting institutions?

   B1. What types of interactions occur among the professors, lab school faculty and pre-service teachers?

   B2. How do the education courses connect with the lab preschool practices?

   B3. How is the pre-service teacher’s time spent in the lab?

C. Does the lab preschool serve the historical threefold purpose of education, service, and research?
DEFINITIONS

Accreditation = established standards and criteria that contribute to children’s optimal development and learning and set the norm for high-quality program (Driscoll & Nagel, 2002)

Action research = a form of participant-observation research done by teachers within the classroom in an effort to improve practice; “Action research has at its essence the intent to change something, to solve some sort of problem, to take action…” (Glesne, 1999, p.10)

Best practice = education programs having the necessary teaching and learning tools and techniques to adequately prepare an early childhood education teacher for modern needs (backed by current research and accreditation guidelines)

Child-centered = activities and curriculum are based on children’s interests and needs

Children = the preschool-aged children, ages 3-5

Collaboration = sharing of ideas and planning efforts, involving the pre-service teachers, mentor teachers, preschool director, college instructors, who meet as a team to share plans and activity ideas based on the children’s learning needs

Community of Learners = with the preschool being considered a community, the preschool children, families, pre-service teachers (college students), mentor teachers, college instructors, and preschool directors unite as a team and learn from one another

Constructivism = the theory of building or constructing knowledge as a result of a hands-on approach to learning

Content Standards = represent what students should know and be able to do within a particular discipline (Zaslow, 2006)

Culture = the habits, beliefs, values, practices, language, and people of a social setting; in this study, each preschool classroom has its own unique culture, determined by the mixture of these attributes

Curriculum = the teaching plan, including lessons, activities, assessment, materials and other necessary considerations to carry out the objectives.

Diversity = differences (including learning styles, socioeconomic status, race, culture, family styles, gender, learning styles)

Early learning standards = expectations about the learning and development of young children
Emergent Curriculum = teaching activities and ideas that come from the children’s interests

Field experience = the training component of early childhood education that takes place in an actual school setting (in this study, a lab preschool) with a mentor teacher as a guide

Hands-on experience = learning by doing, through involvement and interaction with the children during the field experience

Immersion = first-hand involvement or direct experience; the pre-service teachers are immersed within the lab preschool setting

Interdependence = a reliance on one or more people with whom one is interacting; all persons benefit and learn from the actions and perspectives of the each other

Laboratory preschools = A lab school functions as an observation and practicum site for students training to be early childhood educators or other professionals who work with children and families. It is analogous to a teaching hospital used in the training of medical personnel. Lab schools are designed to implement the training methods found to be most effective with adult learners. These include demonstration, observation, modeling, hands-on practice or application and feedback (Horm-Wingerd et al., 1999)

Mediation = the sharing and co-construction of thoughts and ideas

Mentor Teacher = the experienced teacher with whom a college student is assigned for the field experience; serves as a role model and is a vital member of the “team”

Observation deck or booth = an area where a preschool classroom can be observed through a one-way mirror or deck area; used for research and parent observation

Pre-service teacher = a student at the college or university that is pursuing a degree in early childhood education and completing a field experience in the lab preschool

Professional development = the overall level of activities that occur within a formal education system, plus training activities that occur outside the formal education system (Zaslow, 2006)

Scaffolding = assisting and leading a learner toward a higher level of learning than they could do on their own (Gordon & Browne, 2007)

School Readiness = “the need for children to arrive in school with the necessary skills and competencies to engage productively, to progress, and to succeed” (Zaslow, 2006, p.2).
Social identity = how one situates, positions and perceives him or herself within society, including issues of self, gender, student, and peer; an important element in child development.

Stakeholders = persons most closely involved with and linked to a situation; in this study, members of the lab preschool team (college students, mentor teachers, instructors, director).

Theory-to-Practice = taking knowledge learned in the college classroom and applying it to real practice in the field, or classroom experience.

Transference = learning occurs due to experience, not merely given or told from teacher to student.

Transformation = when a change occurs, or learning is internalized, due to a direct experience.

Transition = a change from one stage or activity to the next within a preschool classroom.

Waiting list = when enrollment is at a maximum number, there is a list of prospective students for future enrollment when spaces open.

Zone of Proximal Development = the range of learning that is beyond what novices could learn alone but within their grasp with help (Gordon & Browne, 2007).
CHAPTER 2: REVIEW OF LITERATURE

EARLY LEARNING AND TEACHER QUALITY

This chapter will review the literature about teacher quality, the impact of preschool on the early learning years, and the need for laboratory preschools as teacher preparation programs. Finally, the unique components of lab preschools will be presented as a rationale for this study.

The quality of learning that young children experience is of crucial importance for both their future and that of their nation (Association for Childhood Education International, 1998, P.1). Research finds that young children’s learning and development clearly depends on the educational qualifications of their teachers (Barnett, 2003). There are high expectations of professionals in early childhood education, as the knowledge and skills of teachers are among the most important factors in determining how much a young child learns. The executive summary of the 2000 conference entitled “Eager to Learn: Educating Our Preschoolers” stated that “the professional development of teachers has been shown to be related to quality of early childhood programs, and program quality predicts developmental outcomes for children” (p.275). Caregivers with higher levels of education, and those who majored in a child-related field at a higher educational level, provide higher quality care than other providers (Burchinal, Cryer, & Clifford, 2002).
“Teacher quality matters. In fact, it is the most important school-related factor influencing student achievement” (Rice, 2003, p.v). The International Reading Association and the National Association for the Education of Young Children’s (1998) position statement on early literacy development provided guidance to those who work with young children as standards for best practice that support literacy learning with preschool-aged children. The National Association for the Education of Young Children [NAEYC] research shows that a key step in raising the quality of early childhood programs is improving preparation and support of early childhood teachers, and that teachers are the single most important factor in determining program quality (Bredekamp & Knuth, 1992). A national poll conducted by Public Agenda (2003) showed that the public ranks having knowledge of how to teach and understanding of how people learn as the most important qualities of teachers (Haselkorn & Harris, 1998). Thus, a solid background of early childhood development and practical application of this to field experiences with children is needed in early childhood teacher preparation.

The No Child Left Behind Act [NCLB] of 2001 also called for highly qualified teachers (United States Department of Education, 2002), causing training institutions to look at issues of accountability. Early childhood training field experiences would need to be improved so that pre-service teachers would be given the opportunity to work with experienced teachers. In 2003, 57% of teachers met the mandated qualifications for early childhood educators, up from 51% in 2002. Additionally, in 2002, 45% of teachers without degrees were enrolled in a degree program (Schumacher & Irish, 2003). Approximately half of the states (about 38) that sponsor pre-kindergarten programs are changing their staffing requirements, requiring lead teachers to have bachelor’s degrees
(Barnett, 2003). The Head Start mandate (NAEYC, 2004) also called for an increased percentage of teachers to obtain a B.A. degree and increased availability of quality coursework in institutions of higher education. The early childhood field must meet the demand for quality early childhood educators. As most states are seeking to expand their pre-kindergarten programs, they are being confronted with an insufficient supply of qualified early childhood teachers (in Zaslow, 2006). Maxwell & Clifford reported that as of 2005, it would be unclear how the early childhood field would recruit and retain the number of qualified professionals it needs; and that programs and policy makers will need innovative approaches to build the future workforce without sacrificing quality of preparation (Zaslow, p.301).

The introduction of preschool early learning content standards in language arts and math (Ohio Department of Education, 2003) has further increased the need for highly qualified preschool teachers. Also, the new Standards for Early Childhood Professional Preparation approved in 2001 by the National Association for the Education of Young Children [NAEYC] and the 2001 National Council for the Accreditation of Teacher Education [NCATE] affirmed the importance of teacher relationships with family, of developmentally appropriate (age appropriateness) curricula and teaching practices, and of professionalism. Specifically significant for preschool education and teacher licensure, the NAEYC Teaching and Learning Standard 4 (NAEYC Standards for Early childhood Professional Preparation, 2001) includes the key element of understanding content knowledge in early education, described as “extensive, research-based knowledge and skill” (see chapter 11). Wheatley (2003) says these requirements represent a shift in focus of the early childhood profession, with responsibility to balance attention to
academic content standards with responsiveness to individual learners and appropriate
teaching approaches. These competencies require years of study and preparation in
teacher preparation programs in tune with the latest content and research updates.

States vary on their requirements for teacher preparation and licensure. Ohio, in
particular, has a fragmented system of early educator preparation in which different
“neighborhoods” of professional groups (e.g. Head Start, child care, and others) maintain
their own standards and requirements for entry (Kantor, Fernie, Scott, & O’Brien, 2000).
The two most notable education reform initiatives that have shaped early educator
preparation in Ohio have been the changes in teacher licensure in 1998 (specializing
preschool through grade three); and the state adopted P-12 Academic Content Standards
(2001) in English and Language Arts. Vast differences still remain, however, in teacher
requirements for positions in various early childhood settings. In Ohio alone, a total of
71 higher education institutions offer postsecondary degrees in early childhood
education, including 47 bachelor degree programs and 13 early childhood master’s
degree programs (Roskos & Neuman, in Zaslow, 2006). Keeping up with the state
requirements and expectations for providing early childhood teacher training places a big
responsibility on institutions of higher education to provide the avenues and placements
for preparing quality educators.

The National Day Care Study [NDCS] (Ruopp, Travers, Glantz, & Coelen, 1979)
results indicated that college education with specialized training in early childhood
education is a critical ingredient for creating a high-quality learning environment. Many
researchers have further identified student teaching during the practicum experience as
the most valuable aspect of teacher education programs. Study after study shows that
experienced and newly certified teachers alike see clinical experiences as a powerful – sometimes *the single most powerful* – component of teacher preparation. Increased access to high-caliber early learning programs for field practices is required to improve student teaching experiences. Through better opportunities for field placement, improved early learning programs could help preschool teacher education as well as children (Edwards, 1999). It is important that these placements include quality experiences in preschool to support the importance of the impact of preschool on young children’s learning experiences.

THE IMPACT OF PRESCHOOL

Preschool has an impact on young children as the stage is set for future learning. A report in *The New York Times Magazine* (2004) gave evidence for quality education from another model preschool project that has lasted nearly four decades. The High/Scope Perry Preschool Study (1962) findings confirmed the enduring impact of preschool as an investment in the future (Kirp, 2004). Teachers in training are also investing in their futures as they prepare to teach these young children. Both sets of students gain from the joined services and cooperative learning that exist in laboratory preschool settings.

With increased emphasis on the learning content of preschool years, there is an increased need for quality sites for field experience at the preschool level. This need is also enlarged by the push for preschool educators to have at least a 4-year Bachelor of Arts degree (NAEYC, 2004). “Teachers of young children, first and foremost, need depth and breadth of education and experience…the type of knowledge, skills, and
stimulation acquired most handily through 4-year degree programs” (McMullen & Alat, 2002, p.15). Research shows that there is a positive relationship between the education and consistency of staff and the care of children (National Center for Early Development and Learning [NCEDL], 1997). The body of research on early childhood development emphasizes the relationship between the child and the caregiver as the central element of quality in early care and educational settings. This relationship also serves as a predictor of children’s readiness for school (Zaslow, 2006).

Now, more than ever, the importance of education to individual fulfillment and economic success has focused attention on the need to better prepare children for academic achievement (Bowman, B., Donovan, M., & Burns., M., 2001). Since states are held accountable for providing children with experiences necessary to succeed in school (NCLB, 2001), there is pressure on the field of early childhood education to adequately prepare teachers through teacher training and professional development. The No Child Left Behind [NCLB] presidential initiative Good Start, Grow Smart (NCLB, 2001) calls for early childhood training programs to lay out professional development plans that will foster the development of competencies in early childhood caregivers that will support young children’s early learning. “If we as a nation truly want no child left behind, then high-quality preschool education is a useful and necessary step toward that goal” (Barnett in Zaslow, 2006, p.313). This research contends that lab preschools can provide such high-quality training experiences in the preschool setting.

A set of longitudinal studies offered important milestones in research of the early childhood realm and were based on real lab preschool settings. One of Gray’s (1969) early longitudinal studies on the importance and lasting effects of preschool shared that
two of the most desirable aspects of an early intervention program (the initiative for their studies) are a high adult-to-child ratio in a warm, and presumably consistent environment, and a high stimulus potential in the environment. These same needs for an early intervention program can be applied to any early childhood program. Gray’s hope that evaluations like these studies offer can be useful in designing reasonable promises for future programs. Another study, called the Early Training Project (1962-1980) showed that children’s aptitudes for school-type activities in the early years would set in motion attitudes about school that could be maintained and strengthened over time in school if reinforced by successes along the way. The interactions with a child’s peers and teachers were of prime importance in determining if such motivations would endure. The mix of teachers and college students in a lab preschool helps to provide this desired ratio (even though pre-service teachers are not usually included in their quoted ratios) as well as providing opportunities for more stimuli to enhance the learning situation for the child and provide school readiness. Chances of later success are raised by preschool experiences, although it is also dependent on many other factors as well (the child’s circumstances, community support, and other factors). Gray wrote (1982), “There’s clear and consistent evidence of a difference of considerable importance in the real-life outcomes for the children studied...a fine crop of daisies, as it were. If one wants a rose, one had better invest more funds and effort in initial planting and in continued care” (Consortium for Longitudinal Studies, 1983, p.474). These studies offer strong policy claims for early intervention that can be applied to preschools – that with quality programs, there are notable, durable, long-lasting effects.
Providing more historical support for such programs was the landmark onset of Head Start in 1965, which was the only response of the federal government to the needs for early childhood care and education. A study of the effects of Head Start (Oden, S., Schweinhart, L., & Weikart, D., 2002) shared findings by Reynolds (1992) - after studying the Chicago Child-Parent Center [CPC] programs - that the effects of preschool are stronger given these conditions (compared to children who did not attend preschool):

- that the children had entered kindergarten at higher levels of cognitive readiness;
- that the teachers had positively rated children’s progress after preschool;
- that the parents were involved in the children’s education;
- that the children had stability in the home as well as in the school, and
- that the children had not been retained in a grade (Oden et al., p.23).

The implication of this research was that studies should take into account factors that may mediate the effects of Head Start or other early childhood programs. This report also highlighted results of five long-term studies that showed that strong preschool programs can result in early positive effects that can also have lasting impact:

- improved educational achievement
- fewer negative school outcomes, and
- better social adjustments continuing into young adulthood (Oden et al., p.25).

One of the general conclusions about Head Start research (Oden, 2002) showed that program outcomes varied more across early childhood sites than across curriculum models. This generalization can be applied to other preschool sites like lab preschools to
show that it is important to consider how the cultural setting and environment of each site is different, thus resulting in varied outcomes. Yet, the more consistent they are within a site with planning and collaboration, the better results this will have for both the pre-service teachers and the preschool students. The implications of these landmark studies provide useful information to be considered when examining lab preschools as teacher training sites and outline characteristics that would define them as viable settings for teacher preparation.

LABORATORY PRESCHOOLS

Having shown the importance of the impact of preschool on early learning, this section will outline how effective laboratory preschools can adequately provide the necessary circumstances to prepare preschool teachers. Laboratory schools embedded within the context of university settings provide a practical, constructive environment for preparing early childhood teachers, particularly in the formative preschool years. This sets the stage for the rest of early childhood learning and teacher practice in the early stages of school.

The Association for Childhood Education International’s (ACEI, 1998) position is that early childhood teachers should have “well-planned laboratory experiences under the supervision of experienced and qualified teachers of young children, at a variety of levels throughout the teacher education program” (p.3). Experiences should include observation, participation, student teaching and seminar discussion. The program should encompass “ongoing and increasingly more complex involvement with children in a variety of education settings” (ACEI, p.3). In addition, field experiences should be
conducted at quality sites that are accredited or licensed (ACEI). NAEYC also recognizes high-quality Baccalaureate and Graduate Programs, as part of the accreditation system of the National Council for Accreditation of Teacher Education (NCATE, 2001). Research indicates that effective practices in early learning programs include frequent verbal and educational interactions between teacher and child, teacher training that is balanced in child development, and some degree of professional teaching experience in early learning programs (Edwards, 1999). These experiences will also help pre-service teachers solidify their understandings of theory as it is applied through experience while giving young children dynamic learning experiences.

One of the most effective components of lab preschools is the close affiliation with college teacher preparation programs. The laboratory preschool is a critical link in facilitating and enhancing early childhood teacher education efforts (Lindauer & Austin, 1999). According to Van Til (1969), campus laboratory preschools can and should be the ideal partners for teacher education programs (in Gilbert, 1999). Lab preschools have a reputation for providing very high quality early childhood education programs. These are ideal places to begin learning about the preschool teaching profession (Driscoll & Nagel, 2002). They have low teacher-to-child ratios, small groups, and well-qualified faculties (Gilbert). Field experiences in lab preschools provide an opportunity for teachers to have experience with the age group of teaching interest, as well as to use their laboratory experiences as a framework for integrating classroom course content (Lindauer & Austin, 1999). They are also good settings for exploring educational possibilities for children, curriculum, and programs. Lab preschools not only enhance the educational
environment for training teachers and educating children but also serve to attract potential students for university enrollment. Thus, lab schools should be model programs in the field of education to prepare quality early childhood educators.

A 1999 report on recommendations for strengthening campus early childhood laboratory schools included this objective: “Campus early childhood laboratory schools must continue to strive to be exemplary early childhood programs” (Lindauer & Austin., 1999, p.60). University lab preschools can be models by offering the best in practice and updated knowledge from the college education departments’ state requirements, therefore increasing the likelihood of quality preschool education for children. “They should be exemplary programs in the field of education, with the flexibility to be innovators and experiment with the newest curriculum” (Gilbert, 1999, p.71). With the education departments and the preschool staffs working together, the lab preschool can provide this needed level of updated knowledge and innovation for training.

College and university laboratory preschools are model programs dedicated to research, teacher training, and noteworthy educational practices (Morrison, 2003). They play an important role in teacher-training programs by providing a clinical setting for students to observe, participate, and benefit from the guidance and direction of teachers and professors. John Dewey’s 1964 “laboratory” environment enhances the mode of inquiry and the reflective decision-making process beyond the acquisition of teaching skills. Students get to analyze, experiment, observe, question, test, and try different teaching methods and theories learned in university courses. “They are safe places where students can reflect on teaching and philosophy” (Gilbert, 1999, p.71). Classroom-focused research is ideal in a lab school because it simultaneously creates new knowledge
for the field and informs and enhances local practice. In this sense, then, laboratory schools are defined as “places of experimentation, inquiry, and research, which do not conflict with, and indeed enhance the program agenda. Such an approach bridges the schism between laboratory schools as research sites and as programs serving young children and their families” (Fernie & Kantor, 1994, p.164). Pre-service teachers cannot experience the same level of theory-to-practice connections in other preschool settings where the focus is not on teacher training. The key element in this connection in the lab preschool setting is the trained mentor teacher who works closely with college personnel.

Lab schools can provide depth and breadth of preparation due to the proximity to the campus and the availability for hands-on experience. Due to its “highly integrative function” (Fernie & Kantor, 1994, p.165) the lab school setting provides a standard for preschool teacher preparation program because of the accessibility for pre-service teachers to be actively engaged and learn on the spot (Fernie & Kantor). College students have reported that “hands-on activities are their preferred mode of learning and that such activities assist in making connections between theory and practice” (Horm-Wingerd & Cohen, 1999, p.29). Several studies have found a positive effect of experience on teacher effectiveness; specifically, the learning by doing effect is most obvious in the early years of teaching (Rice, 2003). Also, classrooms are inherently social places. Vygotsky believed that learning always involves interaction with others (Vygotsky, 1978). Placing preschools on college campuses where teacher training takes place contributes to the need for practical application of teaching methods. Gilbert (1999) called campus laboratory schools “the ideal partners for teacher education programs” (p.71). This setting facilitates the partnerships and social interaction between pre-service teachers, mentor teachers and
college supervisors, connecting practice to theory and vice versa. Pre-service teachers as learners themselves are exposed to high quality early childhood environments in lab preschools that allow them to observe and apply concepts learned in their coursework while being supported in developing and implementing innovative curriculum approaches and teaching strategies (Clawson, in McBride and Barbour, 2003). This sets the stage for making the needed theory-to-practice connections that lead to constructive learning.

THEORY-TO-PRACTICE

The fields of child development and early childhood education have looked to laboratory programs as essential contributors of knowledge about theory and practice (Lindauer & Austin, 1999). The laboratory practices provide the optimum context for constructivist teacher education. In the spirit of Constructivism, laboratory preschools make the theory-practice-reflection process readily accessible during lab preschool experiences for college teachers to connect classroom theory to actual practice. Based on ideas from Dewey and Piaget and supported by sociocultural theory (which views learning as a social process - Vygotsky, 1978, Bakhtin, 1981), Constructivism engages a child in tasks designed to create personal meaning (Wertsch, 1991). Learning is an active process, based on the belief that knowledge is constructed by the learner rather than transferred from the teacher to the child (Gordon & Browne, 2004). Laboratory preschools are exemplary settings for constructivist learning for both the children and the pre-service teachers. The unique learning situation in a lab school creates a prism – an image of unity evoked as we reflect on the full spectrum of activities in our childhood and higher education at the same time. It evokes the notion of a prism with multiple and
parallel levels of education facing the same direction and purpose – facets facing a solid center (Fernie & Kantor, 1994). The solid center of this particular enterprise is the lab school, where the multiple levels of education and training come together with a solid purpose for improving the early childhood setting.

Laboratory preschools play a role in *bridging the gap* between theory and practice in child development programs in early childhood education (McBride & Barbour, 2003). According to Laird (1998), teaching school and learning education theory should not be mutually exclusive activities. Lab preschools have been characterized by the presence of expert teachers who demonstrate quality early childhood practices, and then make available to students opportunities for refining their own teaching skills. Additionally, the lab preschool serves as a setting where students apply principles of child development and early childhood education learned in their coursework while completing a field experience. University-based early childhood programs may be more likely than community-based settings to implement techniques that are both supported by theory and research and considered optimal for young children (Clawson, in McBride & Barbour).

What students read about, question, discuss, and experience in the college classroom, they then apply in the laboratory classrooms. In turn, the students’ observations and analyses of their experiences become part of the data that the laboratory teachers use in projecting and planning their curriculum (Rowan & Barbour, 1999).

The NAEYC recommends that theory and practice be clearly linked in order to advance the professional development of early childhood educators. However students do not always make these connections on their own. Students do not always tie together units of work or whole courses in ways that inform their student teaching (Goodlad,
For example, given the importance of hands-on activities to pre-service teachers’ learning, it is likely that when faced with inconsistencies between what they are learning in academic classes and practicing in the lab school, most students will retain the practical, rather than the theoretical knowledge (Horm-Wingerd et al., 1999). Sometimes during teacher training there is discontinuity between coursework and application. For example, student teachers are more likely to use spontaneous and reactive responses to children’s behavior, rather than approaching classroom management using child development knowledge. They are also more likely to use an eclectic, rather than a theory-informed, approach to implementing curriculum and interacting with children (Grossman & Williston, 2001). Within a lab preschool teacher training context, consistency is more likely to be present due to the lab’s commitment to teacher training as one of its major functions. Consistency between early childhood education courses and lab preschool practices is necessary to fully achieve the potential of lab schools relative to producing optimal adult learning (Horm-Wingerd et al.). This element is present in lab preschools as part of their threefold purpose.

Since a lab school traditionally serves a threefold purpose, that of integrating teaching, research and educational service activities, Fernie and Kantor’s study of the “multifaceted enterprise” of a laboratory preschool environment called it “a locus for teaching and research activities” (in Goffin & Day, 1994, p.157). It creates a social constructivist framework for transformative learning experiences for both teachers and students at all levels. Fernie and Kantor referred to laboratory schools as ideal settings, with the main function to envision and explore educational possibilities (Goffin & Day). Emphasis is on demonstration teaching and learning-by-doing through hands-on
opportunities for teachers-in-training. Students construct their own learning about teaching by active involvement with the teaching and learning of young children, thus providing the necessary context to bridge theory to practice.

A CONNECTED EXPERIENCE

A lab preschool’s mission is to provide three components:

- training child development professionals,
- conducting/disseminating research, and
- serving children and families. (McBride and Barbour, eds., 2003)

McBride (1996) notes that by effectively combining these three mission components, laboratory programs will continue to play a vital role in articulating the interconnections between theory, research, and practice in the early childhood field (Lindauer & Austin, 1999). Faculty must examine courses in the undergraduate curriculum with respect to content and design and make necessary course revisions in order to reduce any discontinuity between theory and practice (Clawson, in McBride and Barbour, 2003). Research also indicates that undergraduates are better able to link concepts and application through experiences involving direct observations of early childhood strategies, discussions with professionals, and engaging in relatively brief, supervised interactions within the lab preschool setting at first (Grossman & Williston, 2001). Other vital elements include “mutual planning, peer observation and joint review” in a “setting in which reflection is the key: reflection about planning, teaching, evaluating, and assessing (Cardellichio, 1997, p.788). The relationship between mentor teachers and pre-service teachers is enhanced by the use of such tools as reflection and collaboration,
elements that promote a connected learning experience that is a mainstay of lab preschools. In the sense of a micro-teaching center such as lab preschools offer, early childhood students should be allowed to implement curriculum, observe their own teaching, critique teaching techniques, and receive constructive feedback from lab preschool mentor teachers and college supervisors (Gilbert, 1999). All of these experiences are promoted in a lab preschool situation.

Linking course content with application in the lab school need not be limited to upper-level courses of early childhood education. Early experience with students in the lab preschool setting (even if just observation opportunities) helps to link theory to practice. Renwick and Boyd (1985) contend that practical experience embedded in introductory coursework improves students’ skills with children and adults, enhances content knowledge of child development, and builds interest in the field. Participant observation opportunities increase knowledge of children and are readily available in the lab preschool setting for all levels of pre-service training. Glesne (1999) says that participant observation requires being a part of a social setting in order to understand the research context, its participants, and their behavior (p.45). Participant observation assignments promote reflective thinking, which requires students to observe, record, interpret, and evaluate behaviors of children, teachers, and themselves (Grossman & Williston, 2001). Such early observation opportunities are encouraged when students have the accessibility to preschool classrooms such as in a lab preschool setting, and especially when the support of research and observation are included in the lab’s main objectives. These connected learning experiences all lead toward the development of a community of learners whose members share a common goal.
A COMMUNITY OF LEARNERS

University-based lab preschools for young children have played an important role in the contribution of new knowledge to the fields of child development and early education since their inception in the early 1920s. They have also played a critical role in articulating the relationship among theory, research, and practice, but achieving a balance among the three has not been easy (McBride & Lee, 1995). Where there is a connection between theory, research, and practice in general, Zeichner (1999) feels that lab schools as communities of learners can have an important influence on practice in teacher education. The key is to have students engage in the ongoing and reflexive process of connecting what they do with children to the way they are guided and supported in their own developmental journeys. Faculty, head teachers, and students are continually engaged in the process of collaborative inquiry. This collaboration and relationship facilitates the bridging of theoretical knowledge and teaching practice (Zeichner). It is important for this relationship that head teachers (also known as mentors, or cooperating teachers) possess abilities and a knowledge base that goes beyond that of the typical early childhood teacher (McBride & Lee). The organization of all of these elements supports a balance between theory, research, and practice.

Lab preschools also need to recognize the contributions of the pre-service teachers to schools. In this unique setting the college students are not the only ones learning about new and innovative teaching methods. “Certainly, the lab school enhances students’ educational experiences; however, students also make valuable contributions in lab school functioning” (Clawson, in McBride and Barbour, 2003, p.52). This can be facilitated through the planning and communicating that should occur between all the
adults involved. The following points based on empirically-based research information conveys how the university student’s involvement adds to the lab preschool setting:

(Geismar, Gelormino, & Sheehan, 1982)

- Students’ presence improves the adult-child ratio and increases adult-child interaction, both of which are imperative characteristics of high quality early childhood programs.
- Student’s coursework allows them to develop current knowledge of child development theory and research, enabling students to provide a resource to lab preschool staff and families for up-to-date information.
- Students bring unique backgrounds, skills, and talents to the classroom which enhance diversity and enrich experiences of children, families, and teachers.
- Students are enthusiastic and typically develop good rapport with children.
- Students can lessen the workload of lead teachers when given appropriate responsibilities, such as planning activities, arranging the environment, interacting with children, conducting assessments, and meeting with parents.
- Students want to be highly involved and generally are willing to devote extra, out-of-class time to the lab preschool, particularly if they are invited to do so.

(in McBride & Barbour, 2003, p.73)

In sum, the value of undergraduate student roles is a major factor in the mission and purpose of lab preschools. These points give evidence to the valuable training that lab preschools can offer early childhood prospective teachers.

The service component (of the 3-part mission of lab schools) includes making connections with families and the community. An advantage of lab preschools concerns
collaboration with the surrounding community. Due to well-established relationships with the surrounding community, additional resources can be provided to the lab preschool in addition to those provided by the university. Connections with the community position the lab preschool as a model program. It exemplifies high quality teaching/learning and demonstrates new developments in early childhood education for other programs in the community since it routinely implements best practice and tests innovative approaches (Geismar et al., 1982).

The research component of the laboratory school situation allows exploration of educational possibilities for children, curriculum, and teacher training programs. “Classroom-focused research is a very relevant and useful kind of research for a laboratory school. It simultaneously creates new knowledge for the field and informs and enhances local practice” (Fernie & Kantor, 1994, p.164). Many research opportunities are available to other parts of the college campus as well when the lab preschool supports the research function. Children as subjects of study are readily available and parental approval is granted when the lab preschool supports research as one of its functions.

**SUMMARY AND RATIONALE FOR DISSERTATION STUDY**

The early childhood issues described above – early learning and teacher quality; the impact of preschool; the threefold mission of lab preschools; a connected experience; a community of learners - suggest that the child development laboratory preschools should play a *leading role* in the field of early childhood education. However, lab preschools face both external and internal challenges. The external challenges include shrinking university budgets, retrenching staff members, shifting child care needs of
families, competition for space in the university environment, and society’s low regard for professionals in early childhood education. Today’s changing family demographics with more single-parent families and more parents in the work force create a greater need for child care and early learning facilities. These factors have implications for internal factors such as limitations in funding, space, and staffing. Neglect of any one has potentially adverse affects on another (McBride, 1996).

Many lab preschools have been experiencing decreasing financial support for their programs because of the shrinking resource base available at most supporting colleges and universities (McBride, 1996). While lab preschools are vulnerable for many reasons beyond financial issues, funding dilemmas loom as one of the most serious threats to these programs (McConnaha, 1999). “How can it be that campus laboratory programs, the spawning grounds for basic research and educational innovations, face harder-than-ever battles for survival?” (Brown and Freedman, in McBride and Barbour, 2003, p.39). The struggles of today’s laboratory preschool programs in the areas of funding, collaboration, research, training, and service are not unique to our times and have plagued lab programs in the past as well (Barbour, 2003). However, the benefits of lab preschools as training institutions for early childhood teachers outweigh the threats to their existence. This research will support the need to strengthen existing lab preschools and build relationships for new partnerships to develop.

Recommendations for strengthening campus laboratory preschools have been offered to keep them as partners in teacher education programs: (Gilbert, 1999, p.71-73)
The curricula of campus lab preschools should reflect the various theoretical foundations and frameworks present in the early child care and education.

The faculty at campus lab preschools must serve as mentors, allowing for student questioning, probing, evaluating, demonstrating, supervising, and learning from mistakes.

Lab faculty should translate text content into real action and aid in solidifying understanding of university course objectives and translation from theory to practice.

The mode of inquiry and reflective decision-making must be practiced at the lab preschools and embedded within the early childhood teacher education programs.

Campus laboratory preschools must continue to strive to be exemplary early childhood programs.

Campus lab preschools must continue to be a liaison between the university and the early childhood community.

The lab preschools of tomorrow, especially tied to the importance of quality preschool education and future schooling preparation, have a huge role to play. Toward the end of the past decade, a reform was needed, as laboratory, demonstration, and clinical schools were perceived as having failed to prepare tomorrow’s teachers. Needed was a new kind of laboratory preschool founded on a truly collaborative relationship between schools and universities (Holmes Group, 1990). Such a reform would lead to “better schools and better teachers through better education” (McBride & Barbour, 2003,
Studies by Horm et al. (cited in McBride and Barbour) show that there are benefits of collaboration to the broader university (such as networking, community building, and other such connections). They add that it is also important to build a strong lab preschool internally. “We believe that collaboration is the key to building internal strength” (p.159). The most important strategy to employ to financially protect child laboratory preschools is to align the program to the mission of the supporting institution. It should be an integral part of an academic program (McBride & Lee, 1995). Lab preschool administrators and staff need to be knowledgeable of the mission of their institution and make sure that their program meets all the criteria (Lindauer & Austin, 1999). These elements will be explored in this research of five strong lab preschool programs.

High quality and dynamic laboratory preschools can adapt to changing needs and resources and represent important links between departments, colleges, and the community. They can also meet the research, teaching, and service needs of their sponsoring institutions (Wright, in McBride and Barbour, 2003). Lab preschools should continue to play an important role in bridging theory, research, and practice in the field of early childhood education.
CHAPTER 3: RESEARCH DESIGN AND METHOD

PURPOSE OF STUDY

This is a descriptive study with an ethnographic perspective of several laboratory preschools at universities/colleges. The purpose is to examine these contexts and their cultures and unique components with an emic view. The descriptions of existing lab preschools will provide knowledge for expanding the opportunities for preparation for pre-service teachers, particularly at the preschool level. Since constructivist grounded theory “celebrates firsthand knowledge of empirical worlds” and studies people in their natural settings (Denzin & Lincoln, 2000, p.510), ethnography in an anthropological framework is the natural choice of study. This approach combines a cultural anthropological perspective on the study of social life (Spradley, 1980). The goal is not to generalize in order to predict or control but rather to describe what people do and say within local contexts. The purpose is to create descriptive accounts, or case studies, of five laboratory preschools in order to create a “vivid reconstruction of the culture studied” (LeCompte & Preissle, 1993, p.235). Spradley describes ethnography as the work of describing a culture (p.3). A study of culture requires a description of the people and their way of life, environment, beliefs, and practices. It leads toward a description of human activities and gives insight into the thoughts and actions of the participants (Mead, 1973). Classrooms are inherently social places and provide the elements needed to study
a culture: cultural behavior, cultural knowledge, and cultural artifacts (Spradley, p.5). The preschool classrooms were perceived as a culture in which a group of people construct knowledge, language, and patterned ways of engaging with each other through interactions (Green & Meyer, 1991).

The basic theoretical framework of this study is Social Constructivism, which calls for both exploration and collaboration so that researchers can gain empirical insight into meaning-making and the multiple dimensions of the culture of study. Culture is defined by Spradley (1980) as “the patterns of behavior, artifacts, and knowledge that people have learned or created” and that “every human society is culturally situated” (p.86). It is the ethnographer’s role to participate, observe, and ask questions to discover the cultural meanings. This also requires an anthropological approach in the style of Margaret Mead (1973), who considered the observational approach to provide “a contribution to our knowledge of how much human character and human capacities and human well-being of young people depend on what they learn and on the social arrangements of the society within which they are born and reared” (p.xiii). Through examining the culture of lab preschool classrooms, this insight will contribute to understanding of preschool environments and the levels of learning that take place within these social arrangements.

It is necessary to understand the physical environment and culture of these particular lab preschools of study. Through ethnographic tools of investigation and interviews, this account provides an inside view of five lab preschools with presentation in the form of case studies. Yin (2004) compared case studies to other ethnographic study methods and found the strength of the case study is “its ability to examine, in-depth, a
The case study method is pertinent in this situation since the main research question addresses a descriptive query: What makes a lab preschool unique? This is a logical approach to collecting data in a natural setting.

“Qualitative research is a field of inquiry in its own right” (Denzin & Lincoln, 2000, p.2). It means different things in different situations, but it is always a situated activity that locates the observer in the world and “makes the world visible” (p.3). Lincoln (2002) also contends that the researcher should be deeply involved and closely connected to the scene or site of study. Wax (1971) adds that immersion, or being there, matters! Geertz (1973) recommends that researchers must be able to “grasp what is going on before they can represent it for others” (p.10). Then the researcher must fit together a set of representations about a complex situation, as is always the setting in the field of education, and have sufficient evidence to support the claims.

The research is truly emergent in nature as it changes and takes new forms as different tools, methods, and techniques of interpretation are added to the puzzle. Many educational researchers have embraced ethnographic methods. The province of qualitative research is “the world of lived experience…where individual belief and action intersect with culture” (Geertz, 1973, p.8). This requires active participant observation by the researcher, resulting in being able to give a voice to the education world. Many observations of education are made through publicity, yet often there is not a voice to speak from the inside, or from an emic perspective. According to Janesick (1994), in choreographing the “dance of research design” (p.379) postmodernists have forced us to return to the heart of the matter: individual lives and how they are exploited in organizations on a daily basis. This exploitation occurs in schools, so a voice is needed
to share the stories of what is happening and how that can be effectively used in the field of education and teacher training. As Belenky, Clinchy, Goldberg & Tarule’s 1988 research did, the purpose here is to bring forward a voice – the intention being to share, not prove observations. One of the mainstays or promises of such detailed ethnographic accounts is to contribute to deeper understanding of human life (Eishenhart, 2001). Wilson (1994) proposed that evidence should be “observable” (p.28), “shared and made public” (p.30), and “compelling” (p.30). This approach is also from an anthropologist’s perspective, because as Molotch (1994) said, they have a richer tradition of “going into the field with body and soul” (p.221). This research takes us into a field that has been minimally uncovered; thus, the story of lab preschools needs to be shared at such a formative time for early childhood educational training.

RATIONALE FOR APPROACH, SITE SELECTION, POPULATION

The ethnographic approach enables researchers to capture the complexities of a single case (Knapp, 1979, p.126). A single case is an example of some phenomenon of interest (Merriam, 1998). While a single case may provide a detailed understanding of a phenomenon, multiple cases allow for greater opportunity to generalize across several representations of the phenomenon. Stake (2000) calls the case study method extended to more than one case or example the “collective case study” (p.437). They are chosen because it is believed that understanding them will lead to more comprehensive knowledge and, perhaps, better theorizing about a still larger collection of cases. A cross-case analysis such as this one (a case study of five lab preschools) is strengthened by including vivid, detailed ethnographic evidence from the field, with an
anthropological approach to “understand the other” (Denzin & Lincoln, 2000, p.2). A look at the cultures within five different lab preschools allows this research to determine and compare what unique features comprise the cultures within these settings.

This collective study included exploration of five lab preschools. A list of university laboratory preschools in the state of Ohio was obtained from the National Coalition for Campus Children’s Centers [NCCCC]. Seven directors were initially contacted about the possibility of observing at their schools for research purposes. Then six lab preschools of varying sizes and demographic locations in Ohio were selected – three at larger universities (20,000-50,000 student population), and three at smaller liberal arts colleges of about 2,000-3,000 enrollment. Consent was obtained and plans were made to visit their lab preschools. The population of each lab is described in the case studies. During the data collection period, the decision was made to not visit the sixth site (one of the three larger universities) due to inability on the researcher’s part to obtain further contact with the director and the added realization that too much data can be difficult to manage. Rich data had been obtained to that point, and it was apparent to the researcher that five case studies would offer a sufficient number of sites for description and comparison.

With a sociocultural perspective – examining experiences of two levels of students within the social life of the classroom - to widen the lens of looking into the phenomena of lab preschools and construct a multiple perspective on preschool teacher preparation, this work was inspired by the American/Australian study by Fernie, Davies, Kantor & McMurray (1993) which offered the key to the realization that “a multiple perspective is required to understand the complexities of how a child seeks to become a
person with full membership in a classroom,” and more pertinently that “the appropriation of new identities by children in the preschool often occurs in an integrated and simultaneous fashion” (p.99). With this multiple perspective lens, the reader can see how the interactions of all the participants in a lab preschool culture (pre-service teachers, mentor teachers, directors, college instructors) play key roles in assisting children in their social construction as well as the positioning of the college students of themselves as teachers. Along with the multiple participants (and their behaviors and interactions) in the lab preschool setting come the knowledge factors (what is being learned) and the artifacts (environment, setting, learning tools, parent handbooks, pamphlets, etc).

The approach to viewing the cultures within the lab preschools is also supported by a sociocultural perspective. A sociolinguistic study by Kantor, Elgas, & Fernie (1993) noted that the two primary academic goals of the preschool curriculum should be to teach children how to communicate in groups and how to become students. The 1993 study by Fernie et al. looked at how children “become a person in preschool” (p.95). This includes how children learn what it means to be gendered, to be a peer, and to be a student. Taking a sociocultural perspective, the researchers believed that children become peers and students as they “negotiate with each other and their teachers,” that preschool is a *lifeworld* and has consequences for society’s youngest learners (p.96). A view of the lifeworld in lab preschools requires a look at their cultural settings and enriches our understanding of the integrated circumstances and relationships that occur in these environments.
ROLE OF RESEARCHER

An ethnographic perspective was used to identify the social interactions and understand how these are supported within the context of the preschool lab classrooms. Malinowski (1961; 1922) also calls for the ethnographer to not only “spread his nets in the right place and wait for what falls into them. He must be an active huntsman, and drive his quarry into them and follow it up to its most inaccessible lairs” (p.8). This drive to offer a view into the world of this social constitution led me on an anthropological search into five laboratory preschools to investigate the culture within each; to share the accounts in descriptive detail; and to ultimately extend a voice for this area of education as part of an ethnographic study. The emphasis of my observations was on actions of the college students within the labs and their interactions with their mentor teachers. I approached the research with multiple identities of self as an educator, a researcher, and also a learner. As an ethnographer, I wished to provide a way forward, a way of thinking about a lab preschool as a culture, to use what Wolcott (1995) deemed a more robust way of seeing the contemporary phenomena that affect the intellectual and ideological resources of people in a group.

Spending time in each physical environment helped me to gain an emic view of the setting and a feel for the culture. I learned about the general from studying the specific. Similarly, Gloria Ladson-Billings (1994) conducted an ethnographic study of a group of teachers by immersing herself into a setting and studying a group of teachers by examining their behavior in the context of culture. Her familiarity helped her to clarify her findings, and she used the teachers as facilitators of her interpretation. In similar fashion, I spent time at each lab preschool site as a passive participant, what Spradley
(1980) calls a “spectator” (p.59), observing each environment and its participants in action. The directors would show me around the lab preschools in “grand tour” (Spradley, p.77) style. Then my role of participation increased somewhat as I interviewed participants. The ethnographic perspective did not limit my observations, as I developed new understandings about the situated nature of these settings (Katz & Galbraith, 2006).

DATA COLLECTION PROCEDURES

This research was done in settings of multiple influences and networks due to the elements of various college environments. I used a variety of ethnographic methods and tools. Three data-gathering techniques dominated my qualitative style of inquiry: observation, interviewing, and document collection. I observed the lab preschool setting from observation decks or booths for several hours, usually in multiple sittings at various times of day. During and following these observations, I would take field notes of surroundings, activities and interactions. I conducted interviews with the director, head preschool teacher, and pre-service teachers at each place (see Table 3.1), recording the interviews so as to interact with the participant. Data collection included artifacts in school pamphlets and handbooks. As I observed and while transcribing interviews, I wrote conceptual memos and reflected on data. Finally, I wrote descriptive accounts or case studies of each setting, including thick detail from the observations, interviews, and conceptual notes.

After writing the first draft of the case study descriptions, I e-mailed the description to each lab preschool director for review and comment. Member-checking,
which is highly encouraged by qualitative methodologists (Lincoln & Guba, 1985), supported the accuracy of reported facts and increased validity of the descriptive statements.

Key for Interviewees: D = Director; MT = Mentor Teacher; PT = Pre-service teacher

<table>
<thead>
<tr>
<th>Site</th>
<th>Date</th>
<th>Duration of Visit</th>
<th>Interviewees</th>
<th>Observation Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-28-06</td>
<td>5 hours</td>
<td>D, MT, 1 PT</td>
<td>booth w/in preschool</td>
</tr>
<tr>
<td>2</td>
<td>5-15-06</td>
<td>5 hours</td>
<td>D, 2 MT, 1 PT</td>
<td>inside preschool</td>
</tr>
<tr>
<td>3</td>
<td>4-18-06</td>
<td>6 hours</td>
<td>D, MT, 1 PT</td>
<td>inside preschool</td>
</tr>
<tr>
<td>4</td>
<td>5-19-06</td>
<td>6 hours</td>
<td>D, MT, 2 PT</td>
<td>deck w/in preschool</td>
</tr>
<tr>
<td>5</td>
<td>6-1-06</td>
<td>6 hours</td>
<td>D, MT, 1 PT</td>
<td>deck w/in preschool</td>
</tr>
</tbody>
</table>

Table 3.1 Lab Preschool Visits

Note: I was able to tour inside all the preschool classrooms when children were not present. I also communicated with all directors in follow-up e-mails after these actual visits. The duration of the visit did include the personal interview times.

INFORMANTS

Informants are the persons selected to provide insights into the culture of a setting. In this study, the informants included the director, preschool teacher, and college student(s) at each lab site. At one site, due to their unique administrative design, the faculty administrator was interviewed, and input was sought from the director as well. In all five cases the preschool personnel were very open to participating and responding to questions during my re-contacts for member-checking and triangulation purposes.
INTERVIEWS

Interviewing informants is a major ethnographic tool that can be used to capture information about a culture of study. The initial contact person at each site for this study was the director of the lab preschool. In turn, she contacted the teachers. The directors or teachers chose students who were available and willing to participate in the interviews on the days of observation. All interviewees signed informed consent documents (see Appendices A and B). Similar questions were asked of each of the three levels of informants in order to gain a three-way perspective of the situation (see Appendix C) and to explore each individual’s experience in the lab setting. In one case two college students were interviewed at the same time, which offered more information. The interview was very interactive between the researcher and informant. The researcher approached the interview with a planned set of issues/questions (see Appendix C) in order to explore the setting and culture of each site. The interviews were focused, yet individual perspectives and experiences were allowed to emerge (Patton, 1990). Many spontaneous conversations emerged during these informal conversational interviews (p.199). Interviews were tape-recorded and then transcribed within a few days following the actual interviews. The researcher also took field notes during observations and interviews and wrote conceptual memos following the interviews and while transcribing the interview recordings.
QUESTIONS

The questions during the interviews involved an interactive guide approach. In this type of qualitative interview approach, the topics and issues to be covered are specified in advance in outline format (Johnson & Christensen, 2004). While the sequence and wording of the questions was determined beforehand (set of prepared interview questions), the emergent nature of discussion and interaction allowed the researcher to engage in more of a conversation style with the informant. Each interview lasted from 30 to 60 minutes. Questions were also asked during a tour of each site, usually by the director, and field notes taken. Artifacts such as preschool pamphlets and handbooks were used to gain a better understanding of each lab’s goals, philosophy and community role, thus offering triangulation – a combination of sources and/or multiple methods to study the same phenomena or programs (Patton, 1990). In this approach the researcher entered the settings with an interview guide (same one used for the director of each lab, a different one for the teacher, and so forth – see Interview Guides in Appendix C). Because the interviews were interactive, conversations often prompted emergent questions from the researcher or topics by the informant, thus gaining more perspective on some issues at particular sites. Conditions (like privacy of interview space and time allotment) influenced each interview situation. Thus, not all research questions were answered completely, as the research took on new avenues as unexpected data emerged.

RECORDINGS

Participants signed informed consent papers that acknowledged that they were aware of being recorded. Interviews were recorded on a handheld tape recorder and
stored digitally on a CD-ROM. The recordings were played and replayed several times for transcription purposes. Member checking was used to contact informants via e-mail or telephone with questions if any parts were incomprehensible.

**DATA ANALYSIS STRATEGIES**

This section will describe the sequence of thought that guided the data analysis. That is, how the interview guidelines revealed patterns and relationships, which led to an organizational set of theme categories for reporting the findings. Through descriptive analysis, letting the data speak for itself, the researcher was the “translator of culture” (Glesne, 1999, p.156). The researcher wrote conceptual memos while transcribing interview notes, allowing themes and ideas to emerge from the data. An open coding scheme was formed and used to code the notes and transcriptions. The researcher viewed each aspect of the phenomena as if it were new and unfamiliar and potentially significant. In this fashion, the researcher was open to gathering even more data than had been expected, thus enriching the descriptions.

During the early stages of research planning a list of observation guideline purposes was prepared, based on research and historical data of lab preschools (see Table 3.2). Interview questions were formed with these features in mind to observe at each lab site. This list of components was used to guide each interview, yet allowing for the personal nature of face-to-face interviews to take emergent directions as unique features or ideas were revealed. Thus, not all findings fit neatly into these prepared categories.
<table>
<thead>
<tr>
<th>Pre-service teacher actions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- observation opportunities of teacher demonstrations/modeling</td>
</tr>
<tr>
<td>- hands-on experiences with the children; supervised interactions</td>
</tr>
<tr>
<td>- application of developmental principles</td>
</tr>
<tr>
<td>- connections to coursework</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-service teacher/mentor teacher interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- training</td>
</tr>
<tr>
<td>- acquisition of teaching skills</td>
</tr>
<tr>
<td>- connections to coursework</td>
</tr>
<tr>
<td>- collaboration between mentor teacher and pre-service teacher</td>
</tr>
<tr>
<td>- mutual planning</td>
</tr>
<tr>
<td>- reflection</td>
</tr>
<tr>
<td>- joint review</td>
</tr>
<tr>
<td>- inquiry and experimentation</td>
</tr>
<tr>
<td>- decision-making</td>
</tr>
<tr>
<td>- contributions to lab school functioning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Bridging the gap” between theory to practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>- specific examples of integrating course content in lab preschool</td>
</tr>
<tr>
<td>- connections</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections between education courses and lab school practices</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>School specifics:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- low teacher-to-child ratios</td>
</tr>
<tr>
<td>- accreditation</td>
</tr>
<tr>
<td>- mission – alignment with supporting institution</td>
</tr>
<tr>
<td>- experienced mentor teachers/supervisors</td>
</tr>
<tr>
<td>- enrollment enhancement of university’s education department</td>
</tr>
<tr>
<td>- utilization of other departments on campus</td>
</tr>
<tr>
<td>- 3-fold purpose of child care, training, research</td>
</tr>
<tr>
<td>- “best practice”</td>
</tr>
<tr>
<td>- parental involvement</td>
</tr>
<tr>
<td>- resource to community; liaison between school and early childhood community</td>
</tr>
</tbody>
</table>

Table 3.2 - Observational Guidelines
During the interview process and conceptual memo writing, patterns began to emerge. Spradley (1980) defines a pattern as a statement of the relationship among features within and across social contexts (p.85). One way to handle the emerging patterns is to use or create a cultural domain analysis (Spradley). A cultural domain analysis is a category of cultural meaning that includes other smaller categories (p.88). Thus, Spradley’s cultural domain analysis was the basis for the one constructed for this research. The use of this domain of semantic relationships, where x = lab schools, is based on a number of important investigations into the universality of the cultural relationships. (See Table 3.3 – Cultural Domain Analysis – Spradley, 1979, p.93.)

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict inclusion</td>
<td>X is a kind of Y</td>
</tr>
<tr>
<td>Spatial</td>
<td>X is a place in Y; X is a part of Y</td>
</tr>
<tr>
<td>Cause–effect</td>
<td>X is a result of Y; X is a cause of Y</td>
</tr>
<tr>
<td>Rationale</td>
<td>X is a reason for doing Y</td>
</tr>
<tr>
<td>Location for action</td>
<td>X is a place for doing Y</td>
</tr>
<tr>
<td>Function</td>
<td>X is used for Y</td>
</tr>
<tr>
<td>Means–end</td>
<td>X is a way to do Y</td>
</tr>
<tr>
<td>Sequence</td>
<td>X is a step or stage in Y</td>
</tr>
<tr>
<td>Attribution</td>
<td>X is a characteristic of Y</td>
</tr>
</tbody>
</table>

*From Spradley (1979).*

Table 3.3 – Cultural Domain Analysis

Spradley (1980) calls this sense of viewing the whole cultural scene and identifying different domains in a culture (dividing into categories) the “inventory
approach” (p.140). This research goes beyond the inventory, as Spradley suggests as an ethnography tool, to discover cultural themes. The observed phenomenon was noted and divided into categorized units (*cultural domains*), followed by identification of the properties and attributes (*cultural themes*) that the data units of a particular category shared. Comparative analysis was used to analyze the specifics of common features and patterns. Due to the emergent nature of this research, not all of the components of the observation guidelines from Table 3.2 were found in all of the settings. According to Lather (1993), it is acceptable in qualitative research when some data fail to fit emergent patterns to rework the patterns to better represent the data. Using Spradley’s cultural domains to categorize the data enabled an inventory of themes (as shown in Table 3.4) to emerge during analysis of the cultural settings.
Environment
   Historical context
   Definition
   Comparative Components
   Hallmark features and cultural tools

Relationships
   Layers
   Interaction
   Interdependence
   Mentorship
   Collaboration
   Mediation
   Bridging the Gap
   Constructivism
   Consistency
   Emergent curriculum
   Thought communities
   Teacher Research
   Zone of proximal development
   Immersion
   Observation
   Hands-on experience
   Readiness
   Social Identities
   Diverse relationships
   Children through play
   Identity as a teacher
   Language
   Transformations
   Families
   School Readiness
   College community involvement
   Connections
   Proximity
   Threefold purpose

Future Lab Preschools
   Supporting Institution
   Mission Statement
   Reputation
   Organization

Table 3.4 – Cultural Theme Categories
These theme categories were then used to organize the reporting of findings for chapter 4. Data are displayed in a narrative account with thick description and rich detail. Wolcott’s (1994) three means of data transformation are used: description, analysis, and interpretation. The datum speaks for itself in many places, used verbatim (dialogue from interviews) to strengthen a point or provide an example. Where interview dialogue is used in the findings, the speakers will be cited as in the following example: (LP1, D) where LP = lab preschool (#1-5 from the order of the case study descriptions) and D = director (or MT = mentor teacher; PT = pre-service teacher; as depicted in Table 1).

Comparative details and semantic relationships are displayed in diagrams or taxonomical forms. In using a table or exhibit to display information, the researcher can look for patterns and form hunches about what is happening, as a way to make sense out of the data. Diagrams are used to visually represent some of the major concepts.

MEMBER CHECKING

To ensure credibility and validity of results, the member-checking technique was used. Guba and Lincoln (1989) consider member checks the single most crucial technique for establishing credibility. The researcher shared descriptive information with respective school personnel. They responded with corrections and/or suggestions for additions to the data in the case study descriptions. Prolonged engagement and persistent observation were forms used to increase credibility of findings and trustworthiness, supported by continual attention to possible subjectivity of self as researcher.

As an ethnographer, I was entering the settings, collecting evidence, and building a case for conclusions during data analysis. Throughout the life of the research project I
maintained quality through the decisions I had to make as a researcher while interacting with my settings and participants of study. My interpretations are statements of meaning grounded in evidence and theory. According to a panel that addressed standards of evidence in qualitative research in education, “Data are produced from social interactions and are therefore, constructions or interpretations” (Freeman, deMarrais, Preissle, Roulston, & St. Pierre, 2007, p.27). The statements in my findings chapter are the types of claims made in qualitative research that “connect the world bounded by our data to our interpreted understanding of that data” (Freeman et al., p.27). The data and information are already interpretations made by the participants as they answer interview questions and then by the researcher as I write up my observations. Throughout the findings chapter I demonstrate the relationship of claims to data.
CHAPTER 4: FINDINGS

The first part of this chapter presents the case study descriptions of the five lab preschools researched. Each case study includes information about the geographic location and size of the sponsoring university; location of the lab preschool on the campus; age, origination, history and population of the lab preschool; funding and staffing; and then description of the lab school’s mission/philosophy and curriculum, laboratory experiences, and relationships among the participants. Each laboratory preschool exists in one of three types of geographic settings. According to the U.S. Census Bureau (2005) a metropolitan area contains a core urban area with a population of 50,000 or more people. A micropolitan area has at least 10,000 (but less than 50,000) population. An urban area consists of a territory with 2,500 or more (but less than 10,000) persons.

A robust description of a site of study is dependent upon a thorough examination of its culture and content that will produce a firsthand description of the people and events. The case study method is pertinent here because it is serving a function to address a descriptive question (What are the unique features of a lab preschool?). It provides a firsthand, close-up look at the lab preschool situations, illuminating their existence. Data were collected in natural settings through direct observation.

The second part of the chapter then discusses the data collected, the themes that emerged, and findings. Data are presented through charts, exhibits, diagrams and actual
interview quotations. Through this array of data presentation, the data are presented fairly and accurately, along with the researcher’s analysis of ideas that emerged from the research questions and description. Information gathered from interviews and observations is presented and considered alongside results of data interpretation. The aim is to describe lab preschools as preschool teacher training sites due to their unique features and offer the reader a glimpse into these settings for consideration.

Case Study 1: “The Early Childhood Learning Center”

Location: This center is located at a co-educational liberal arts university with an evangelical Christian foundation with a student population of about 2200 undergraduate and graduate students (from 7 states and 12 countries). The college is centrally located in a micropolitan area in east-central Ohio.

Campus location: This lab has been located in the Family and Consumer Sciences Department for six years, yet it is utilized heavily by the education department for four-year undergraduate early childhood pre-service teacher training degrees (as well as other parts of the college, such as music, psychology, science, ministry classes and other disciplines).

History: This center opened just over six years ago in order for the college’s early childhood students to have a viable field placement for preschool experience. A donor had a vision and raised money to build a new Family and Consumer Sciences building. Both the donor and the Family Consumer Science chair wanted a preschool in the new building and as part of the department.
**Funding:** It is funded by the university, tuition from the preschool parents, and from some private donations. The students who are spending their field placements in the preschool provide a portion of assistant staffing.

**Population:** The lab school has capacity for 60 children, ages three-six years. Classes meet at three separate times and are separated by age: threes, fours, and four/five-year-olds. The classes operate at different times of the day and week in the same large classroom facility. The preschool has about a 98% return rate (students returning successive years until entering kindergarten) and a long waiting list for registration. The preschool population is about 95% white and 5% other ethnic populations. The socioeconomic background is about ten percent lower class, and approximately 80% of the parents have a four-year-degree.

**Staffing:** The teacher/student ratio is about 1:7 which includes a head preschool teacher and 2-4 pre-service teachers per maximum twenty children in a classroom.

**Mission/Philosophy:** The mission of the preschool is to provide children with a safe and healthy environment in which to learn and grow. The mission is two-fold in that it includes preparing college students to become teachers in various types of early child care institutions and to serve as center administrators in the future (Parent Handbook, 2005-2006, p.2). It is certified by the Ohio Department of Job and Family Services.

**Curriculum:** The preschool curriculum philosophy is based on the belief that children learn best through active participation in an emergent curriculum. The program is based on the Project Approach Method (Katz & Chard, 2000) which involves an in-depth study
of a particular topic selected and conducted by the children. The teacher(s) integrate content knowledge into the project. Family participation is encouraged through parent/child activities and interaction with other preschool families.

**College Laboratory Experiences:** The lab preschool services about 30 pre-service early childhood teachers per year but also about 15-20 other students who use the lab for course requirements in physical education, music, science, and other disciplines. The course connected with the field experience in the lab school is called “Curriculum in Early Childhood Education,” meets three hours per week, and is required at the sophomore level. A co-requisite to the course is a one-hour experience in the lab school, culminating in about 3 hours per week for 14 weeks or 35-42 hours per semester.

**Relationships:** The lab school director, preschool teachers, and pre-service teachers who complete a field experience in the lab all gather for a morning meeting once a week. They talk about issues that relate to the preschool, expectations of all the teachers involved at all levels, and co-construct ideas together. They work together as a team in the preschool to provide consistency for the children as well as to integrate college coursework content. The preschool teacher guides the curriculum, as the college students assist and conduct small groups alongside the mentor teacher. These pre-service teachers observed in the lab observation deck for a class requirement during their first year, but this experience requires on-the-spot learning through direct and hands-on involvement. The college students also journal to reflect on their daily experiences and eventually plan and guide three lessons with the children.
Case Study 2: “The Little Learning Lab”

Location: This child development center is centrally located on the campus of a university within a micropolitan area in northwest Ohio. The student population is comprised of over 20,000 graduate and undergraduate students (from 49 states and 75 countries).

Campus location: The laboratory program is situated within the School of Family and Consumer Sciences and under the direction of the College of Education and Human Development.

History: This particular lab preschool (in its present facility) is about 40 years old. It started in the Home Economics Department in the 1920s in order to provide laboratory learning experiences for university students.

Funding: The center is funded by the university, through preschool tuition and college student lab fees.

Population: The enrollment is about 40 students, split between morning and afternoon multiage classes, ages three-five, with a waiting list. Many children’s parents are graduate students, which brings much cultural diversity to the setting. Enrollment includes children from a variety of backgrounds and life styles and with varying abilities. A range of ethnic backgrounds is evident: 11% Asian; 5% biracial; 84% white. The child population is also drawn from the surrounding community, being located in the heart of the city. Twenty-seven percent of the families receive financial aid scholarship. All parents have a high school education, and many have college degrees.

Staffing: The staff/child ratio is typically 1:6 (up to eight) with the participation of the university practicum students in addition to a head teacher.
**Mission/Philosophy:** The goal of the child development center is to provide a high quality early childhood program for young children with integrated educational experiences based on child development and early childhood education theories and on the children’s individual needs and interests. The program is based on developmentally appropriate practices with classroom space organized into learning areas. There is a regular daily schedule with a variety of open-ended planned activities; this flexibility allows for successful experiences for all children in a mixed age setting and the inclusion of children with special needs (Parent Handbook, 2005-2006, p.2). Just as important is the goal to provide a training site for students to learn about typical growth and development and the behavior of young children through observation of and participation with the children and families. Thirdly, a major goal is to serve as a site for faculty and student research education projects with young children and their families. The philosophy of the lab preschool is based on developmentally appropriate practice guidelines as outlined by the National Association for the Education of Young Children. It is licensed by the Ohio Department of Job and Family Services.

**Curriculum:** Influenced particularly by the work of Piaget and Vygotsky, their belief is that children learn primarily through play and exploration of their environment while engaged in relationships with peers and responsive adults. Children generally select their own tasks to pursue and direct their own learning, as they are viewed as active organizers of experience rather than passive recipients of instruction. Teachers plan open-ended activities based on their interactions and observations of the children.

**College Laboratory Experiences:** About 70 college students per semester complete a field experience in the center as juniors in a four-year undergraduate degree and as part of
an early childhood education requirement. Psychology (as well as some other departments) students and faculty also utilize the lab school observation room for research. These college students have likely observed in this lab (or have had experiences in other preschools) for other classes and as juniors for this experience are expected to be fully involved as assistants to the head teacher in the preschool class. Courses on program planning and child development have preceded this experience. They have a four-hour training session at the onset of the semester and then are fully immersed as assistants in the classroom. They observe the children and model after the teacher. They use their observational skills to design projects based on the children’s interests. The implementation of the interest areas is a major part of their role, followed by self-evaluations, and they also lead two circle times. Other key experiences include developing portfolio assessments on children and developmental summaries of classroom experiences.

Relationships: The pre-service teachers converse regularly via e-mail with their mentor teacher. The instructor of the connected college course, the preschool teachers and all pre-service teachers collaborate at a weekly seminar. This time is used for some lecture of theory and how that can be connected to practice in the lab. There is also discussion about what is happening in the preschool, the children’s interests, and team planning to implement emergent curriculum.

Case Study 3: “Child Development Center”

Location: This center is located on the campus of liberal arts college in a micropolitan area in central Ohio. The university (population approximately 1850 students from 44
states and 45 countries) adjoins a vibrant downtown community in one of the fastest
growing counties in the state (US Census Bureau, 2005).

Campus location: This center is unique in that it exists in its own building with multiple
classroom spaces. The early childhood center is run jointly by the Psychology and
Education Departments.

History: This lab preschool is just over 75 years old and began as strictly a playschool
for children. Over time it has evolved into a laboratory school for children and a training
area for undergraduate students. It serves as a lab school in child development and early
childhood education for students from the departments of Education, Psychology,
Physical Education, Fine Arts, Drama, and Biological Sciences.

Funding: The tuition paid by families is the main source of funding for this center.

Population: Admission is open to the greater community and is on a first come, first
served basis. The center has an enrollment of about 150 children with a sizeable waiting
list. Classes are held at ten students, and there are never more than 30 students at the
center at one time. There is little cultural diversity due to the setting of the campus in a
mostly Caucasian middle to upper-middle class neighborhood. Parents typically have
four-year degrees; some have graduate, professional or doctorate degrees. It offers
thirteen part-time preschool or pre-kindergarten classes to children aged three to five.

Staffing: The teacher/student ratio is 1:10 for four/five-year-olds and 1:8 for three-year-
olds, including one head teacher and one or more student assistants. College students
participate throughout the center as student workers, student teachers, dance and drama
specialists, physical education/movement specialists, studio artists, and student
researchers. About 100 college students are involved with the preschool per year.
**Mission/Philosophy:** This early childhood center is an integral part of the university community with a two-fold purpose: to serve as a laboratory for the study of child development and teacher education, and to provide optimal early childhood educational experiences for young children and their parents. This was one of the first centers to become accredited by the National Association for the Education of Young Children. It is also licensed by the Ohio Department of Job and Family Services. (2006-2007 handbook, p.1)

**Curriculum:** The curriculum is integrated and addresses development of the whole child. The staff strives to create a community of learners where children and their ideas are treasured, nurtured, and celebrated in a stimulating child-centered environment. Each day begins with a guided exploration hour, using emergent curriculum to assist and guide children’s learning. During this time children are free to choose activities such as studio art, dramatic play, science experiments, math games, block building and quiet reading all assisted by college students and professional staff. At the end of guided exploration time, the children meet in designated focus groups to work on continuing projects, write in their journals, read and hear stories, have a snack, explore the outside learning environment, sing and dance, and have time in community. Other parts of the preschool session include themed lessons, also based on student interests.

**College Laboratory Experiences:** College students intending to pursue an early childhood education degree observe in the lab school during their first year in an introductory education course or during an educational psychology course. They also learn to use documentation as an observation tool. After being accepted into the early childhood program, all early childhood candidates are placed in the lab during either their
junior methods course (as one of two field experiences) or for part of their split student teaching experience (half in preschool, half in a K-3 classroom). By the time of their junior or senior teaching field experience in the lab, they are familiar with the center from previous observations and/or work, creating a quicker transition from observation to involvement. The observation booth is used mostly by students observing or researching from other disciplines or earlier course experiences. The college students (as classroom assistants) learn through hands-on involvement and eventually teach about eight mathematics, science and/or literacy lessons. They are observed in the field by instructors who teach the content of the corresponding methods course. The methods course is a time for model lessons by the instructor but is also very student-discussion oriented, allowing time for reflection about experiences in the lab and with the children.

**Relationships:** The pre-service teachers respond to weekly questions about what they are teaching, learning, and planning. Interactive journaling with the course instructor is also a requirement of the second part of the two-part methods course. The mentor teachers collaborate and work closely with their student assistant teachers; they are very familiar with the methods course requirements as well. Model teaching and accompanying articulation from the mentor teacher, as well as reflection from the student and open communication times are key components of the teacher training. The mixture of seasoned mentor teachers with the vital, enthusiastic pre-service teachers creates a unique experience of teaching for the children in this early childhood center.
Case Study 4: “Early Learning Laboratory School”

Location: This lab is on the campus of a university within a metropolitan area in south/central Ohio. It is one of the largest universities in the United States with a total student population of over 50,000 (from every state in the nation and over 100 countries around the world).

Campus location: The center is situated in the department of Human Development and Family Sciences (in the College of Human Ecology). As of July 1, 2006, the HDFS merged with the College of Education to run the lab school, with plans to relocate the facility in 2007.

History: This lab preschool is about 82 years old and one of the oldest and continuous operating labs in the country. It was created as a training site for students interested in early childhood development. It had a strong medical component, and was closely aligned with the model of a medical laboratory. Early photos show medical students giving daily exams to children. These artifacts also show university students sitting close to the children taking observational notes.

Funding: Funding is provided by parental fees for children’s tuition and by the College of Education and Human Ecology.

Population: The preschool enrollment of 20 three-to-five-olds are children of university staff and community members. Families are mostly middle to upper middle class. Most parents have at least a bachelors degree, some with graduate (including doctorate) and professional degrees. There are about 200 families on a waiting list, which they term an interest list, because enrollment is based on a balance of age, gender and cultural diversity. Families with siblings in the program get priority enrollment, as many children
stay in the program throughout their preschool years. Many children start in the infant/toddler program (located in the same building in the College of Human Ecology) and continue through the lab preschool program. The importance of diversity is brought to the program via families and staff. Ethnic diversity of the student population includes about 45% Caucasian, 20% African-American, 20% Asian, 10% Latino/Hispanic, and 5% other.

**Staffing:** The teacher-to-student ratio is 1:7-8. The three teachers in the classroom consist of a head preschool teacher and usually two university students as part of a graduate associateship. Auxiliary teachers are available when graduate students cannot be scheduled.

**Mission/Philosophy:** The Social Constructivist philosophy forms the framework in which learning occurs from theory to practice. It offers innovative educational experiences for the university students. Practice is informed by theory and ongoing teacher research. The laboratory preschool is licensed by the Ohio Department of Job and Family Services.

**Curriculum:** Careful observation and research play key roles in learning through hands-on experience and work with young children in the lab school. Curriculum is planned via collaborative efforts between staff and college students. The preschool environment reflects Reggio Emilia (Gandini, 1993) style (in which environment is considered the third teacher) with its carefully prepared and maintained environment. The education of the young children is based on relationships, a respect for the uniqueness of each child, and an emphasis on classroom community building as well as a close relationship with the university community. Pedagogical practice is based on emergent curriculum; guidance
and discipline strategies that emphasize problem-solving and conflict resolution; active
learning; innovative practices; family participation; and staff professional development.

College Laboratory Experiences: The lab school services university students in several
departments, mostly HDFS and education. Students in early childhood education (as well
as others) have the option to take a course in the Human Department of Family Services,
usually as seniors, which requires a preschool practicum experience in the lab school.
They are also involved in curriculum planning and collaboration with the staff. All five-
year masters degree students in early childhood education complete a portion of their
student teaching experience in a preschool, which could be this lab preschool. Many
other courses offer observation opportunities from the observation deck that overlooks
the large preschool classroom area.

The practicum students transition from their earlier years of observation
experience to hands-on involvement and learning during the first few weeks of their
quarter in the preschool. They quickly become involved and eventually do planned
experiences and finally take-over days. Involvement builds as the quarter progresses.

Relationships: Throughout the quarter, pre-service teachers and preschool staff come
together at a weekly seminar to plan curriculum based on the children’s interests, share
pertinent information, and relate as a teaching team. Many different voices and
perspectives come to the table at this staff meeting, where they choose curriculum threads
as part of the emergent curriculum approach. Much correspondence is done via e-mail
journal interaction.
Case Study 5: “The Center for Young Children”

Location: This center is located at a liberal arts college of approximately 1700 undergraduate and over 1400 graduate students (from 26 states and 16 foreign countries). It is located in an urban village in east-central Ohio.

Campus location: The lab is immersed within the Psychology Department, with college and preschool courses coexisting on the same floor, offering a creative use of space and resources. This center is a model of how space can be transformed for laboratory school use. In addition to developmentally appropriate play and educational equipment, the Center for Child Development is equipped with video monitoring capability, one-way observation rooms and individual testing rooms. The preschool children are vital members of the campus community, as they are involved with college students, faculty and staff all over the small campus. The college utilizes the lab for multiple purposes and views it as a resource. Its involvement with the entire small campus community with its many connections is one of this lab school’s hallmarks. A networking of opportunities creates many uses of the preschool as a lab setting.

History: This lab preschool is about 39 years old. It was started in 1967 by wives of psychology faculty as a daycare function, or nursery school. The purpose was to give young children the opportunity to socialize with each other. It transferred to the Department of Psychology in the 1970s. It supports the academic programming as well as providing a community service for early childhood education and care.
**Funding:** The center is financially supported primarily by fees, tuition, and fundraisers. Since it is a department lab, the college supplements it by paying the rent, utilities, and maintenance, just as it does for other labs (e.g. the human subjects wing, animal labs, computer labs).

**Population:** The enrollment is 18 children ages three-five (a mixture of children of faculty and from the surrounding community) with a consistent retention rate. There is also a school age program available each morning and afternoon (and all-day during the summer) for children in grades kindergarten through five. The center’s heritage attracts children of former students to attend. Ethnicity consists of about 79% Caucasian, 10% Arab, 3% African-American, 3% biracial, and 3% Indian (not Native American). This preschool program is designed for children three-five years of age and offers a variety of full or half day programs as well as an after-school program. One of 28 families receives financial assistance.

There is also a school age program available each morning and afternoon (and all-day during the summer) for children in grades kindergarten through five.

**Staffing:** The teacher-to-student ratio is 1:8. A faculty member in the Psychology Department serves as faculty administrator and a link to instructors of courses that require experience in the lab. Due to the physical arrangement, this faculty link is on-hand to deal with matters that arise and to oversee what is going on from all angles. There is a full-time preschool director who is in charge of the daily operation of the lab. The lead preschool teacher plans the preschool curriculum and works with college students to oversee their involvement according to corresponding course requirements. The preschool teacher plays a dual role as she balances working with the young children
and also the college students to assist their learning. She is very open to the college
students’ ideas and so allows emergent curriculum to shape planning of activities. The
lead preschool/mentor teacher assesses student involvement in the lab via checklists of
requirements.

Mission/Philosophy: One of this center’s main goals is to provide a loving and safe
environment for children by using developmentally appropriate practices and materials.
Social interaction is the main focus of the preschool program, supported by activities to
encourage growth of the whole child. It is certified by the Ohio Department of Job and
Family Services.

Curriculum: All activities are based on developmentally appropriate practices and the
Project Approach. The curriculum is also influenced by the High Scopes (Driscoll &
Nagel, 2005) perspective. Curriculum goals promote child learning through creative play
and active exploration and manipulation of the environment. Teachers provide a rich
learning environment with routine as well as extended project activities. Both are
developed through observation of the child and include a goal of meeting the individual
needs of the children. The preschool supports a predominantly child-centered approach
with its focus on social interaction, and the academics are immersed within that
framework. The center also owes responsibility to working with families in the
community and the people of the campus community. The curriculum goals as stated in
the parent handbook (August 2005) include: “Young children learn through creative play
and by actively exploring and manipulating their environment. Teachers provide a rich
learning environment and learning activities including routine activities and extended project activities. Both are developed through observation of the child and include a goal of meeting the individual needs of the children” (p.4).

**College Laboratory Experiences:** The main purpose of the lab preschool experience is to provide high quality educational experiences for the pre-service teachers in the area of child development. Students come from many disciplines (Psychology, Sociology, Science) but the bulk is family study majors and early childhood education majors. They may serve as assistant teachers, interns, practicums, or student teachers working directly with the children under the supervision of the program staff. Seniors and even graduates are hired as student workers or interns. Projects for other college classes exploring the characteristics of young children are conducted periodically by students enrolled in Psychology, Physical Education, or Education in the form of games, observation, or conversations and are supervised by the preschool teachers. The on-site lab school makes the opportunity for research very convenient.

Early Childhood Education majors and Family Study majors (four-year-degrees) have an experience in the lab as sophomores connected with a preschool practicum course. The practicum students’ role is to be involved with learning all the work that is associated with preschool teaching by helping the teacher with various projects. After observation of the routine they ease into participation with the children by reading a book or leading a similar activity. They assist with the children and support what is happening in the preschool as far as plans and activities led by the preschool teachers. The
practicum students are not necessarily implementing curriculum at this stage but are facilitating it through active involvement with the children. They see the day-to-day operation and are assigned projects.

**Relationships:** Pre-service teachers journal with the instructor of the corresponding course and meet with her weekly for a seminar, during which time connections are made between theory and practice. Half the seminar time is spent on theory, and the other half is discussion about their experiences in the preschool. From the student perspective, the theory in the course comes alive during experience with the children in the lab setting.

**CASE STUDY SUMMARY**

These case studies represent the cultural and social contexts of five lab preschools and share their stories. The data are used in the findings to show the similar features, or shared norms, that define them as lab preschools (mentor teacher modeling, pre-service hands-on teaching experience, collaborative relationships, research opportunities, observation areas, college community connections), yet the differences paint a portrayal of each as a special community, unique to its own setting. What is unique about lab preschools? How do they differ from other preschool settings as learning communities? Through unpeeling the layers, the culture of each site will be exposed and along with a portrayal of the unique context that a lab preschool offers.
RESEARCH FOCUS

The study began with a grand tour approach (Spradley, 1980) focused on the broad research question: What makes a lab preschool unique? Three other main questions followed (with subsets to question B):

A. What are the unique components of lab preschools as teacher training sites?

B. What is the relationship between lab preschools and their supporting institutions?

C. Does the lab preschool serve the historical threefold purpose of education, service, and research?

First, a few underlying issues must be addressed to set the stage for understanding why an awareness of a lab preschool culture is needed in a modern context. For prospective college students choosing a learning institution for early childhood teacher training, many are unaware that the lab preschools exist. None of the interviewees in the five case studies were aware of the lab preschool at their chosen university until there was a course requirement to be in the lab for a field experience. This research could be subtitled *Little Secrets at Colleges Make for Big Learning Opportunities* [italics added].

Even the directors and teachers feel that the teaching labs are not widely known upfront, but are discovered as students proceed through the early childhood programs. One student referred to learning about the lab preschool as “a nice surprise” (LP1, PT). These surprises are not necessarily a factor that early childhood major candidates know to look for when choosing a college or university. As a result, though, college students interviewed report that their experiences in the lab preschools have helped them gain a better understanding of how learning begins and to see “the bigger picture” (LP5). They see what young children are capable of doing, and this awareness encourages some
teacher candidates to teach at the preschool level. One interviewee said, “Being in there more makes me actually want to be a preschool teacher… I could actually see myself being a preschool teacher now instead of just like kindergarten or first [grade]” (LP4, PT1). I contend that we need well-trained teachers in the preschool area to improve children’s educational experiences during their formative years and to improve early childhood practice and preparation in general and that lab preschools can offer this opportunity. One must also realize that there exist multiple layers of field experiences in each lab preschool. As one director put it, “We all teach the same stuff because we’re mandated pretty much to include certain things, but we all package it a little differently” (LP1). There are different types of field placements in the labs for a variety of courses and students of varying levels of experience. Colleges are also changing their requirements due to their state’s requirements and expectations for some form of preschool placement during early childhood training as well as the need for a variety of field experience placements in diverse settings.

The learning is embedded within the context of the laboratory preschool setting and the multiple layers of interaction and relationships. The overarching theoretical framework for this work is that of social constructivism, a theory about knowledge and learning that describes knowledge as temporary, developmental, internally constructed, and socially and culturally mediated. Learning is also activity based. According to Wertsch (In Moll, 1990, p.115), three themes underlie a Vygotskian social constructivist theoretical perspective. First, individual internal activity can be understood as it is situated in a broader social, historical and evolutionary context. Second, learning is facilitated through the assistance of more knowledgeable members of the community and
culture. Third, human activity is mediated by signs and tools. To understand the learning context of a lab preschool, it is imperative to take a look at its culture – including its internal activity, social context, members and cultural tools – in order to discover what is special and unique.

Bourdieu (1991) referred to schools as “social fields where identities and possible futures are negotiated and constructed within structured constraints” (in Corsaro, 1997, p.24). The concept of the laboratory preschool on a college or university campus being such a social field can be displayed by looking at its environment and inherent relationships – two of the main categories of cultural domain themes found in all five of the lab preschool settings (see Table 4 in chapter 3). This entire cultural study is focused on environment with a subset on the resulting relationships. While they appear as separate sections, one flows into the next, with environment and relationships lateral and overarching factions in a cultural perspective.

ENVIRONMENT

This first section will address question A: What are the unique components of lab preschools as teacher training sites? Through analyzing the data using cultural themes, it was found that the unique components of lab preschools could best be represented in a description of their environments. Environments play an important role in strengthening children's foundational development, and the quality of classroom environments is critical. Research studies demonstrate that high quality care in early childhood programs is associated with features of the physical and social environment; and that these quality measures are predictive of a range of positive developmental outcomes for children in
their cognitive, language, social-emotional and physical domains (e.g., NICHD Early Child Care Research Network 2000). “Environments are not passive wrappings but, rather, active processes, which are invisible” (Roskos & Neuman, 2001, p.281). Children play an active role in exploring these active processes, their environments. All parts of a child’s environment have an effect on the child’s social construction and identity. As children engage in their environment, they adapt their intellectual tools to meet new situations or challenges, integrating them through interaction. Consequently, the environment plays a central role in learning. Space influences children’s interactions and learning; the complexity of materials enhances children’s involvement; and the influence of teaching is a key environmental factor in learning. Children become familiar with the culture of their learning environment and take ownership in the task of learning through a process of transference (Roskos & Neuman, p.288), mediated by teachers and other adults in the setting. Children need opportunities to take increasing responsibility in learning as they grow older and as the assistance from the adult steadily declines.

Vygotsky (1978) would agree that concepts develop in institutionally situated activity. Furthermore, every setting is governed by motives that provide coherence and direction for human activity. Within a lab preschool setting, these same principles are found to be at work, or in this case, play. Environments must be conducive to learning and a literate classroom environment will instill confidence in the participants at all levels. They must have strong personal relationships, for the relational framework contributes to the social processes and environment of the classroom.

Environments of laboratory preschools have evolved and changed over time, yet they retain their historical components to some degree. The historical contexts of the lab
preschool settings contribute to their environmental influences. Due to economical needs, many centers began as child care units in response to community and social needs. Some began as lab preschools as part of universities for child care for faculty and staff members. Most were part of home economics departments during years when early childhood care was viewed primarily as a function of the home economics units. The meaning of lab preschools in their early stages often meant that it was a child care facility on a college campus for children of faculty and staff. Not all lab preschools supported the following definition that originated from the intentional purpose of the earliest lab preschools, but attention to its details sets the stage for this close look at five lab preschools:

Laboratory preschools = A lab school functions as an observation and practicum site for students training to be early childhood educators or other professionals who work with children and families. It is analogous to a teaching hospital used in the training of medical personnel. Lab schools are designed to implement the training methods found to be most effective with adult learners. These include demonstration, observation, modeling, hands-on practice or application, and feedback (Horm-Wingerd et al., 1999).

Through the years there has been a change in the definition and purpose of lab preschools. Modern-day lab preschools have a mixture of faculty/staff children and/or mainly children from the wider community. One director described their child population as “a healthy mix” (LP5).

Laboratory preschools offer rich environments for two levels of preparation - both teacher preparation and to prepare children for future school experiences. Lab preschools offer accredited programs and up-to-date teacher preparation courses due to their connections with college course instructors and directors of early child education. One director described their practice: “We are up on research, on what’s current…” (LP2).
Environment also includes a look at the cultural tools. The environmental context of lab preschools includes unique components. Each tool plays a part in mediating the development of the child as well as others involved in the environmental setting. Not all tools at each lab are the same, just as not all schools are the same (despite state mandates and requirements). Table 4.1 (“Comparative Components of Lab Preschools”) compares these features by case study setting and will be discussed within greater detail as these tools are addressed within the findings. Many of these components have points in common with other early childhood settings, but the unique aspects and connections in the lab preschools, in particular, will be explained in the descriptive data that follows.
<table>
<thead>
<tr>
<th>Similar Aspects</th>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
<th>Site 4</th>
<th>Site 5</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Campus Location</strong></td>
<td>Family and Consumer Science Center</td>
<td>Family Consumer Science Building</td>
<td>Own building on campus</td>
<td>Human Ecology Building</td>
<td>Psychology Building</td>
</tr>
<tr>
<td><strong>Department Location</strong></td>
<td>Family and Consumer Sciences</td>
<td>College of Education and Human Development</td>
<td>Department of Psychology (jointly with Education)</td>
<td>College of Human Ecology</td>
<td>Psychology Department “Lab”</td>
</tr>
<tr>
<td><strong>Lab Director</strong></td>
<td>Family and Consumer Sciences</td>
<td>School of Family and Consumer Sciences</td>
<td>Psychology/Education; Background and Experience in Education</td>
<td>Human Development and Consumer Sciences</td>
<td>Psychology Department</td>
</tr>
<tr>
<td><strong>Teacher Training Department</strong></td>
<td>Early Childhood Education</td>
<td>Early Childhood Education</td>
<td>Early Childhood Education</td>
<td>College of Human Ecology and Education</td>
<td>Early Childhood Education</td>
</tr>
<tr>
<td><strong>Observation deck/room</strong></td>
<td>Used to observe in early experiences.</td>
<td>Used by many other disciplines.</td>
<td>Used mostly in early experience.</td>
<td>Used mostly in early experiences &amp; other courses.</td>
<td>1 hour at onset of experience; research; parents.</td>
</tr>
<tr>
<td><strong>Hands-on experience</strong></td>
<td>“Assistant” and one-on-one experience.</td>
<td>“Assistant” and “Planned experiences”</td>
<td>Teach 10 methods lessons; guide exploration hour.</td>
<td>Lead planned experiences; later “take-over” days.</td>
<td>Various jobs; help implement curriculum.</td>
</tr>
<tr>
<td><strong>Emergent Curriculum</strong></td>
<td>Interests of children observed and used.</td>
<td>Driven by; used to develop experiences.</td>
<td>Shared planning.</td>
<td>“Curriculum Threads”; plan as a staff.</td>
<td>Students plan experiences for other courses.</td>
</tr>
<tr>
<td><strong>Collaboration</strong></td>
<td>Morning meeting &amp; during class.</td>
<td>Seminar; time before/after lab.</td>
<td>During college class; team effort.</td>
<td>Curriculum class &amp; staff meeting.</td>
<td>Seminar</td>
</tr>
<tr>
<td><strong>Campus Involvement</strong></td>
<td>Music, science, psychology, ministry, other</td>
<td>Psychology, speech, social skills, gym, other</td>
<td>Art, HPE, psychology, dance, other</td>
<td>Math, music, psychology, science, other</td>
<td>Psychology, gym, theater, science; many other uses.</td>
</tr>
<tr>
<td><strong>Threefold Purpose</strong></td>
<td>Child care and training stated in mission.</td>
<td>Other departments do research too.</td>
<td>There for the college students and to offer care.</td>
<td>All three purposes are encouraged.</td>
<td>Research is modeled and done by others.</td>
</tr>
<tr>
<td><strong>Low Teacher - Child Ratios</strong></td>
<td>1:7</td>
<td>1:6-8</td>
<td>1:8-10</td>
<td>1:7 or 8</td>
<td>1:8</td>
</tr>
<tr>
<td><strong>Level of Lab Experience for Teacher Education</strong></td>
<td>Sophomore</td>
<td>Junior</td>
<td>Junior or Senior</td>
<td>Junior or Senior (plus five-year masters program)</td>
<td>Sophomore</td>
</tr>
<tr>
<td><strong>Accreditation and/or state certification</strong></td>
<td>Certified by the Ohio Department of Job and Family Services</td>
<td>NAEYC accredited and licensed by the Ohio Department of Job and Family Services</td>
<td>NAEYC accredited and licensed by the Ohio Department of Job and Family Services</td>
<td>Licensed by the Ohio Department of Job and Family Services</td>
<td>Certified by the Ohio Department of Job and Family Services</td>
</tr>
</tbody>
</table>

Table 4.1: Comparative Components of Lab Preschools
In addition to the similar components of lab preschools, each one’s story reveals some of their hallmark features that make them unique from the other lab preschools. The following are particular features that individualize each lab preschool, using the labels and titles that interviewees of each site used to describe experiences and activities. Part of learning about a culture includes learning the language, signs and tools that they use, which are distinct to each individual setting and environment. According to Smagorinsky (1995): “These cultural tools…are central to human thought and development; they are the means through which children internalize cultural knowledge and exercise their own mentation” (p.107). These tools vary but have in common “the way in which they modify and enrich cognitive activity” (Lee & Smagorinsky, 2000, p.32). They also show that each site has similar components but a unique culture of its own by the very titles given to the activities and tools. These are titles and names (shared during interviews) given to some of their tools that these lab preschools use in their particular lab cultures:

Site 1 – small moments, narrative assessments, three short lessons (or parts), small groups, field trip assistance, interactive journaling with course instructor.

Site 2 – anecdotal notes, running records, portfolio summary and assessment, mock parent interview/conference, design interest areas, lead two circle times, handbook test and scavenger hunt, e-mailing with preschool teacher. As an example of how the handbook serves to learn routine, the director explained: “We use the handbook to talk about what kind of discipline we use and what kind of snack routine we use: (LP2, D).
Site 3 – guided exploration hour, focus groups, hello circle, 8 literacy or math lessons, mentor modeling and articulation, interactive journaling with course instructor.

Site 4 – focused observations, interest inventories and dialogues, building up to a focused observation on one child, interactive e-mail journaling with teacher, handbook, planned experiences that eventually lead to take-over days. The head preschool teacher described the process the students use to learn the culture:

We use e-mail really heavily, and a couple weeks before we begin the experience in the classroom they receive lots of information about the usual routines, about the daily schedules, the curriculum, and they get a little short bio and photograph of every child…We try to acclimate them quickly and early from other ways than just actually being in the classroom. And that helps smooth that process over. We don’t have to be explaining so much to them…They also have a handbook that they use for the course that talks about the expectations for each area in the classroom and common things, like the first thing you do when you come in the classroom is you wash your hands…(LP4, MT).

Site 5 – projects for teacher, room arrangement, documentations, involvement with children, assistance for teacher, interactive journaling with course instructor.

All of these activities served to connect theory to practice and to aid in teacher preparation. A pre-service teacher commented: “Whatever you do is gonna benefit you in the end…” (LP3, PT).

It is the mixture of these comparable components and hallmark features among the various lab preschool social settings that both ties them together with a common thread yet gives each a distinct flavor. These are also the cultural tools that are an important function of any culture and will continue to be examined more closely. This section began the investigation of lab preschools by showing how environment lays the foundation for considering a social context, and that everything else is actually a part of
and intertwined with the environmental setting. An extension of the environment is another key part of culture – the relationships among its members and resulting human activity.

RELATIONSHIPS

Research question B posed the query: What is the relationship between lab preschools and their supporting institutions? As evidence of relationships emerged from the findings, it became apparent that there are multiple types of relationships and interactions involved in a lab preschool setting. The environment and cultural setting of a lab preschool result in several relationships that will be discussed in this section. Thus, question B became a broad question with several layers of relationships within the umbrella of the entire lab preschool/supporting institution setting.

Relationships in general are a key part of any social setting. Vygotsky and Blanck (in Moll, 1990) believed that mental activity is the result of social learning, the interiorization of social signs, and the internalization of culture and social relationships. Furthermore, we learn through social participation and interactions. Scribner (1990) emphasized that human beings interact with their worlds primarily through mediational means – the use of cultural artifacts, tools, symbols, and language. The intellectual and problem-solving skills that children learn are related to how they interact with others. The relational framework in a social setting contributes to the social processes and the environment of the classroom.
Using Spradley’s (1980) Cultural Domain Analysis to represent semantic relationships, Table 4.2 represents the associations found in the lab preschool environment (where x = lab preschool):

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause-effect</td>
<td>X results in multiple layers of relationships</td>
</tr>
<tr>
<td>Means-to-an-end</td>
<td>X is a means of interaction (including interdependence, mentorship and collaboration among participants in the lab preschool)</td>
</tr>
<tr>
<td>Rationale</td>
<td>X is a reason for doing mediation</td>
</tr>
<tr>
<td>Function</td>
<td>X is used for forming social identities</td>
</tr>
<tr>
<td>Location-for-action</td>
<td>X is place for college community involvement</td>
</tr>
<tr>
<td>Strict Inclusion</td>
<td>X is a kind of a threefold purpose</td>
</tr>
</tbody>
</table>

Table 4.2 -Semantic Relationships

Excerpts from field notes help to describe each environmental relationship found in the many layers of relationships in laboratory preschools.

Multiple Layers

Corsaro (1997) referred to “collective communal activity” (p.25), which is how children negotiate, share, and create culture. Students and teachers negotiate the nature of everyday life in classrooms (Floriani, 1993). The Orb Webb Model (see Diagram 1) shows a network of layered, connected influences, from which children weave their webs of interaction and collectively produce their peer worlds and cultures. Cultural information flows to all parts of the web. The spokes of the model represent a range of fields that make up various social institutions (family, economic, cultural, education, political, occupational, community, and religious). The fields illustrate the diverse...
locations in which institutional interaction or behavior occurs (Bourdieu, 1991). At the hub or center is the family of origin, which serves as a nexus of all cultural institutions for children. Children enter the culture through their families at birth and then proceed through a series of peer cultures, created by each generation of children in a given society. The webbing of peer cultures is collectively spun on the framework of the cultural knowledge and institutions. The lab preschool culture is one of these cultures. In a lab preschool all participants are active agents in this network of interwoven webs, shown in Diagram 4.1.

Diagram 4.1: Web of Networks (Corsaro, 1997, p.25)
All of the individuals involved in a lab preschool result in multiple layers of relationships which can include a network of several overlapping parts. Note the participants listed in Diagram 4.2 and that each part touches the other, thus influencing one another.

<table>
<thead>
<tr>
<th>Teachers/Directors (college &amp; preschool)</th>
<th>Pre-Service Teachers (college students)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool Children</td>
<td>Families</td>
</tr>
</tbody>
</table>

Diagram 4.2 - The Layers of Relationships at a Laboratory Preschool

A laboratory preschool has multiple layers involved: the director, the college professors or instructors, the preschool teacher(s), the pre-service teachers, and the children. “There are a lot of layers. There are the little kids, the kids’ parents, the college students, and the university stuff going on…There’s just all these layers of things going on” (LP2, D). In some places one person might serve two of these roles, for example a director who also teaches in the preschool. One director commented that she is in a good position to oversee the multiple layers of learning at her lab:

It puts me in a really great place because I have a hand in the center, and I have a hand in what the college students are doing outside of the center. So I have a really good overview of what’s going on. When you know the people who are there [in lab] and you know what’s going on, you can trust it’s a good placement. Because if you have to constantly go and check as a faculty member where your students are being placed and make sure it’s still up to par, that’s not worth your time. And so you have a place that’s good where you don’t have to go and keep checking. So having a lab school, you’ve got that…so that’s really key, and that really saves faculty time, too. So you can trust what’s going on (LP5, D).
By having these layers in one general location, a college campus, they can all work together in an informal fashion. Plus, there is the unique mix of the seasoned, experienced mentor teachers and the vital pre-service teachers who bring a whole new perspective. One director described the unique reputation of her lab facility: “So we have, really the best of all those worlds. We have the enthusiastic young people, idealistic and wanting to try new things, tempered by lots of years of experience and very good mentoring” (LP3, D). Lab preschools exist with this dual purpose in mind – that of educating two layers of students - college and preschool.

There are benefits to a preschool being a lab (in addition to a child care center), but there are sacrifices as well. For those that follow the college schedule, the school year is usually shorter than other preschools. Primarily, the labs serve as academic programs to train teachers, but this goes hand-in-hand with their service to the community to educate young children. One director distinguished the difference between a lab preschool and a child care facility in this way:

It [the lab preschool] wouldn’t be here if it wasn’t for the college students. We are not child care! We are here for the college students. I mean, we’re also here for the little people, but if the college students didn’t have to come through here, we wouldn’t be here (LP 5).

Means of Interaction

This section addresses research question B.1: What types of interactions occur among the professors, lab school faculty and pre-service teachers? This is one of the multiple layers of relationship issues that are found in a lab preschool setting. Interaction occurs at multiple levels among several individuals, as shown in the cultural domain in Table 4.3, and will be demonstrated through three subsets or kinds of interaction.
Interdependence, a Vygotskian notion central to the construction of humanity and social development (Lee and Smagorinsky, 2000, p.31), is another theme that emerges from the study of the cultural life in a lab preschool. Development occurs in a social world where only other human beings can create the special conditions needed. Special opportunities for learning and relationships are constructed in a lab preschool setting by the teachers and pre-service teachers as they create and facilitate the environment. Again, multiple levels exist when considering the notion of interdependence among the individuals involved. Where D = director, I = (college) instructor, T = teacher (preschool; mentor), PT = pre-service teacher, P = parent, and C = preschool child, many possible interactive, reciprocal relationships were present to some degree at each lab preschool (see Table 4.4).
Not all individuals are present in each situation, but it is possible to have interactions occurring at multiple levels as seen above. The ones that have the most impact on the learning environment tend to be T <-> PT and I <-> T <-> PT, because these relationships in turn have an effect on child learning, care, and well-being. The following field note excerpts give examples of the importance of some of the relationships between individuals involved in a lab school.

T <-> PT: This must be reciprocal relationship, with the preschool teacher mentoring the pre-service teacher as s/he learns from the teacher’s modeling and as they collaborate to co-construct curriculum and activities. The pre-service teacher is learning from the experienced mentor teacher, while at the same time the mentor teacher benefits from the fresh ideas of the pre-service teacher. This particular mentor teacher shared her
perspective for a good mentoring relationship: “It depends on what your expectations are. You really have to go into it...I mean, I really want to help them. When they’re all finished I really want them to be good teachers” (LP3).

It is important that the directors of field experiences consider a good match for this teaching team. This teacher explains how there must be a cohesive program that prepares the pre-service teachers and helps them to ask questions in order to become effective teachers: “Because as a student, I mean it’s their job to ask questions, it’s their job to find their own...to build their own knowledge, but they also need the framework around them that’s not a mismatch” (LP4).

From a pre-service teacher’s perspective, one remarked about how the relationship with the mentor teacher taught her to be a team player: “I think it will help in the future when I’m actually out there. Then I’ll have that experience to where hopefully I can pass it on to other teachers in my school building, and we’ll have a lot better communication with each other” (LP4, PT2).

I <-> T <-> PT: It must be a team effort to have a good working relationship between the instructor, mentor teacher and pre-service teacher. Sometimes the director or preschool teacher is also the instructor who teaches the college course attached to the preschool field experience. One mentor teacher described the need for this team effort: “It’s all about partnership...they talk about it, and then if there’s a concern [the professor] will come and talk to me about it if they’ve brought up something that needs addressed [in class]” (LP5).
T <> C: While a large part of the mentor teacher’s role is to mentor the college students, s/he has a responsibility to nurture the children as well. When asked about the multiple levels of learning going on at one particular site, the teacher (who also instructed the connected college course) responded:

> Oh, yeah. Absolutely. It’s not just about them [college students]; it’s also the relationship with those children because I’ve had most of them since birth…so if there’s something brewing that’s going to need some interjection of an experienced hand, then I’m going to have to go in there and make sure that that happens. But if there’s something that with their depth of relationship with the children or with their knowledge level to this point that they should be able to handle, I’m going to try to let that happen (LP4, MT).

PT <> C: While the college student is watching and learning from the teacher, s/he also develops a relationship with the children in the preschool. This is supported by a one-on-one experience with children that college students typically experience in lab preschools where the mentor teachers are trained to work with them as partners. One pre-service teacher remarked that her favorite part of her preschool field experience in the lab was just getting to know the kids so well: “I got to know them so well, one-on-one with such a small group. I just…I loved it. They were SO neat, and they came up with the most amazing observations that helped me to just see things in a whole new way” (LP1).

D <> I <> T <> PT <> C: Everyone in the lab school situation is affected by the actions of the pre-service teachers (as well as the program design and the mentorship). One director said: “The college students have to be actively involved, which means they have to be good. It’s because they’re modeling appropriate behaviors as well…and so they’re playing a key role” (LP5).
Mentorship, another type of interaction, may be one key to a successful lab school team relationship. Mentor teachers must be experienced and willing to play a dual role—teacher of children and also the pre-service teachers. A lab preschool (mentor) teacher’s role is vastly different from another preschool teacher’s role. There are dual purposes, both of which must have equal priority. The mentor teacher in a lab preschool setting is really balancing the teaching and learning of students on two levels. Lab mentor teachers find it challenging yet rewarding to wear two hats in this dual teaching capacity. They are teaching young children while modeling appropriate strategies and activities to the pre-service teachers. There is also assessment and paperwork involved on both levels. One teacher commented: “I do tell people, ‘I teach preschoolers, but I also work with college students. So I have both ends of the spectrum going on. I have the perfect job!’” (LP3).

One of the main skills of mentoring is scaffolding the pre-service teachers’ learning. According to Bruner’s 1975 theory, knowledge is not simply handed down from one to the other. “Learning often involves mentoring provided by more culturally knowledgeable persons, usually elders, who engage in activity with less experienced individuals…in a process known as scaffolding” (in Lee and Smagorinsky, 2000, p.2). It becomes a balancing act for the mentor to know when to capture a teachable moment and model, or when to let the pre-service teachers step into the role. A typical lab experience for a pre-service teacher involves an initial observation period (which might be in the observation room or direct experience in the classroom), then on-the-spot observation while assisting the mentor teacher with the children, with a gradual transition
toward leading an activity or even teaching a lesson (depending on the level of the field experience). The pre-service teacher is constructing his or her own learning about teaching while observing the experienced mentor teacher as s/he models.

Observation time occurs at all sites as the initial and ongoing part of field experience for the pre-service teachers in the lab preschools, but to varying degrees. Some pre-service teachers observe for an hour, some for a day, and some for several days before interacting with the children. Then the amount of interaction also varies from place to place, usually dependent upon the level of the field experience. It is important how the timing of the transition period is handled. One mentor teacher pointed out that pre-service teachers have the most difficulty, she feels, when transitioning from working with a student one-on-one to managing a group situation. At one site visited, the transition is very brief. Pre-service teachers are thrown into the ring very early on, with their learning scaffolded by the seminar time and frequent interaction with the mentor teacher. The pre-service teachers receive e-mail information about routines, schedules, curriculum, biographies of children, and such. “We try to do as much on the front end so that when they get there they can really get to the meat of the matter…quicker!” (LP4, MT). Above all, it appears that an initial phase of observation of the setting, children and mentor teacher’s modeling is an important first phase of a pre-service teacher’s transition into the lab preschool experience.

One mentor teacher commented that their pre-service teachers observe for a couple of weeks before starting any lessons with the children, but still they are observing during immersion in the lab. “It kind of breaks them in slowly because it gives them a couple weeks to get acclimated into the classroom and learn the routines, and kind of get
to know the children, and to feel a little more comfortable with the whole situation” (LP1). Another mentor teacher shared how they have an “orientation day” prior to the pre-service teachers’ field experience in the lab. During that time they talk about philosophy, go over a handbook, and have a scavenger hunt to learn where supplies are located. The next day they are immersed with the children. One mentor teacher commented that the process of learning over the course of time in the lab changes, especially in regard to the mentors’ involvement: “That’s the early part where they have a different process of learning cause we’re right there. Then as the back half of the quarter comes we’re pulling back more and more” (LP4).

One student shared that she learned a lot about classroom management by watching her mentor teacher in action. Compared with how one learns while sitting in a college class hearing about how to manage children, the lab experience offers a way to actually see the practice and construct knowledge about it. The mentor has to choose times when to let the pre-service teachers work through matters on their own, leading them toward constructing their own learning through direct experience while guiding them with suggestions and comments either on-the-spot, if possible, or via journaling or e-mail interactions (depending on the particular requirements of each experience).

Mentors must be very experienced, flexible and adaptable to provide hands-on constructive learning for the pre-service teachers in training. One mentor teacher commented on how it takes time to develop this skill: “Certainly early on as a mentor teacher I wasn’t as skilled at pulling back and letting them [college students] handle things…It’s hard! These are your kids, this is your classroom. It’s really hard. I’m better at it now!” (LP4).
Another mentor teacher commented that she feels articulation (discussion) is an important hand-in-hand component with modeling. All eyes (and ears) are on the mentor teacher! To add another element to this involved role, the mentor has to individualize to the needs of each pre-service teacher (as a college student) as well as model this individualization to them just as she does with the children in the classroom. One teacher described the necessary dose of individualization with this analogy:

I told the students, “You know, when you’re with a big family and you’re serving up pancakes for Sunday breakfast, not everybody’s going to eat three pancakes. Some people are gonna need one, some people are gonna eat five…it’s different, you know, and it’s okay to not have the same, same, same, same words come out…or interactions.” It shouldn’t be the same; their needs aren’t the same. But the trick is perceiving and finding that balance (LP4, MT).

The trick, in this sense, applies to both levels of students that the mentor is dealing with in the lab preschool situation, the college students (pre-service teachers) and the preschool children. Thus, as Wertsch (1991) would agree, “People, tools, and cultural constructions of tool use are thus inseparable” (in Lee & Smagorinsky, 2000, p.2).

Another kind of interaction and a necessary component of lab preschool relationships is there must be time for collaboration between the mentor teacher and the pre-service teachers. This is part of Vygotsky’s 1978 theory of social constructivism that calls for an approach to learning and teaching that is both exploratory and collaborative. The lab preschool classroom is a collaborative community, which by Vygotskian definition is one “that works together toward shared goals, the achievement of which depends on collaboration” (Lee & Smagorinsky, 2000, p.60). It is also important that the instructor or teacher of the connected class experience, or what is usually called seminar, be a part of the collaboration so that everyone involved in the teaching/learning process is
on the same page, so to speak. The more attention given to preschool experience at colleges of education, the more collaboration that is needed as programs of early childhood continuously must evolve and change. The seminar appears to be the connecting component. It has been described as providing the nuts and bolts of the collaborative situation. One director commented that having a good lab situation requires having several checkpoints – one of which is the seminar component. Seminar provides a time outside of preschool time where the course instructor, preschool teachers (not always involved), and pre-service teachers meet to discuss issues pertaining to the children and the preschool.

Some form of seminar (morning meeting, staff meeting, evening meeting) is used at all sites as a tool to connect theory to practice, for collaboration, to work as a team, and to implement curriculum ideas. The existence of the observation booth at each lab preschool site is a tool that enables observation and research. One site in particular has a field trip early in the semester which helps the pre-service teachers to get to know the children and take on the role of teacher by assisting and experiencing small group work as well as one-on-one involvement. At one site they participate in mock interviews with the parents. Direct involvement gives them hands-on experience: “You have to learn how to talk to the parents and what to say, and attitudes, and a whole lot… and I think this is good experience” (LP2, PT).

Table 4.5 compares the seminar component (collaboration time) of the five lab preschool sites. They vary according to the time required for lab field experience (again according to the level of the pre-service teacher and their particular college course
requirement) as well as the participants involved and the field pre-service teacher activities. Following the description of the collaboration time at each lab site is a quotation that suggests the flavor of the values of this necessary meeting time.
<table>
<thead>
<tr>
<th>Site</th>
<th>Class and Collaboration Time</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-hr. Curriculum Class/Sophomore/“Assistant”</td>
<td>2-1/2 lab hours per week/semester Teach 3 lessons; journaling T previews &amp; gives feedback Midterm &amp; final rubric</td>
</tr>
<tr>
<td></td>
<td>“Morning meeting” – 1/2 hour/week - D-I-T-PT Mini-lesson by professor; discussion time</td>
<td>“It’s really a key component, and I think that those are so productive” (LP1, MT).</td>
</tr>
<tr>
<td>2</td>
<td>“Seminar” – 2 hours one night/week - I-T-PT Theory lecture; direct conversation &amp; discussion ½ hour before and after lab time to prepare Junior – Preschool Practicum Course</td>
<td>4 hours per week in lab/semester planned experiences - previewed and self-evaluated; anecdotal notes; portfolios</td>
</tr>
<tr>
<td></td>
<td>“I have a partner, so it’s nice to go to seminar and connect what our child’s done cause she [partner] comes on a different day. We write stories about what they did and take pictures and compare notes and examples of things. And then also sometimes we have open discussions in seminar about like, ‘Oh, what happened this week?’ or we share something else. When we do our summaries we are taking directly from what we’ve learned about what kids are doing or should be doing and putting it specifically with our child we are focusing on. So it is making a connection…” (LP2, PT).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Methods class – 3 hours/week - I-S; Junior level Theory and discussion; class reflection, discussion Collaborate with T as time allows – “open communication”</td>
<td>55 lab hours/semester Teach 8-10 lessons Assistant teacher</td>
</tr>
<tr>
<td></td>
<td>“First they watch me do it in the morning…then the next time they try something out …and I articulate with them what’s going on, what worked, what didn’t. I find it very, very helpful, and I think that they do, too. I see lots of very positive change in students as they go through. All of the teachers work with their students a little bit differently, as teachers do” (LP3, MT/D).</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Practicum Course; Junior or Senior level Weekly Seminar -“Staff Meeting” - I-T-PT Discussion and emergent curriculum planning Weekly curriculum guide sent; PT responds</td>
<td>40 lab hours/week/quarter Interactive journaling 2 planned experiences 3 take-over days Self-reflection</td>
</tr>
<tr>
<td></td>
<td>“There’s daily, almost ongoing interaction, which is very time-consuming, but I find it irreplaceable” (LP4, MT). “That’s what they say it’s about, is collaboration” (LP4, PT).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Preschool Practicum Course – 2 hours/week Theory and discussion time w/I-PT Sophomore Level</td>
<td>40 lab hours./week/quarter Portfolios; Hands-on; Journaling; jobs Skills checklist</td>
</tr>
<tr>
<td></td>
<td>“What you have is probably the ideal relationship…as far as you have the different layers of teaching going on. You have the classroom teacher who’s modeling for the college students, and then you also have, if you’re [faculty administrator] teaching this practicum course, then they’re getting…you know what’s going on in the preschool…so you have the different layers – the professor, the teacher, the[college] students” (LP5, D).</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5 - Collaboration
The particular courses that are aligned with each lab preschool experience have requirements and activities that function as tools to provide practical experience. These course requirements vary somewhat (mostly in name) from site to site due to the unique dynamics of each cultural setting and design (and also according to the level of student experience, when the lab field is required, and the connected course). One mentor teacher commented: “All of the teachers work with their students a little bit differently, as teachers do” (LP3).

The most collaborative relationships were found to be ones where the team plans curriculum together and ways to implement it with the children. In one such situation, the seminar teacher commented: “A lot of different levels and different voices come to the table” (LP4, MT). A student in that particular lab preschool described it from her perspective: “So we’re pretty much a part of the staff. I mean, you…you get to prove it through your collaboration” (LP4, PT1).

During the seminar time connections are made which are crucial to the team effort needed with all the people involved in a lab preschool. This is the thread that serves to tie the entire experience together, especially the more individuals who are involved during this meeting time. It is a time to bring all teachers (college instructors, preschool teachers, pre-service teachers) together so that the relationship or partnership between them can bond for the ultimate goal of providing the best learning experience possible for the children. During an interview with a student this conversation described the importance of the seminar component:
Researcher: So you really are working together when you’re implementing your curriculum.

Student: Right. And seminar’s the best time to do that because we’re all there at one time. (LP2, MT)

In all of the collaborative situations, mentor teachers and pre-service teachers reported use of e-mail as an additional form of collaboration. Students commented most often about the value of the discussion time to talk over instances concerning children or circumstances that they all have in common from their actual experiences in the preschool. Thus, collaboration is a crucial interaction time (and cultural tool) that can occur in lab training sites due to the nature of the setting.

These tools are all ingredients for Constructive learning to take place. A mentor teacher at a smaller college setting agreed that one of its greatest benefits for lab school training for pre-service teachers is having the hands-on experience and “being right there on campus” (LP3). Some unique features were pointed out at another site that might not be readily observable: “I think it’s easier for the education students to work here [at the lab] because they can come between classes or stop in and ask a question” (LP1, MT).

The mentor teacher also benefits from having the pre-service teachers learning in the lab because she gets a lot of ideas from them as well. She feels that collaboration, a hallmark of lab preschools, might not be as readily available at other preschools due to the proximity issue:
I think the collaboration is a good issue to talk about because when these students from other institutions go and do their lab work at another school, then there may not be that same collaboration that we have with the professors here. I mean, there might possibly be communication gaps. Or it might not be as easy to collaborate [as it is] by having them on campus (LP1, MT).

Meaning is thus constructed through joint activity, with both parties contributing and benefiting from the reciprocal process.

In response to the relationship question about interactions among all members of the preschool lab team, it was found that several means of interacting occur. In addition to interdependence among the members and the crucial mentorship component, the collaboration time is one of the most critical components to connect all parts of the team toward a common goal.

Mediation

This section addresses another branch of relationships and interactions through research question B.2: How do education courses connect with lab preschool practices? This is done through mediation and bridging the gap between theory and practice. As a result of the interactional relationships described above, mediation was found to occur.

According to Vygotskian theory (1978), the individual is a co-constructor of culture. Therefore, this involves more than one individual sharing thoughts and language. The lab school represents a shift from what psychologist Feldman (1994) described as an individual-centered approach to a more social conception of human thinking. Gardner (1993) worked with Feldman as well to recognize the centrality of social interaction and mutual support in a dynamic system rather than a collection of individual traits and abilities. A lab preschool certainly operates on this Vygotskian perspective, that the social construction of development is a fundamental underlying framework. The
The uniqueness of a lab preschool relationship among the participants is that learning is a two (or more)-way street. There needs to be a trust relationship that allows teamwork to occur in planning and implementing curriculum. This also reflects a sense of respect from the mentor teachers to the pre-service teachers as learners and prospective teachers. The result is that everybody learns from everybody, as one teacher stated: “We’re learning all over the place!” (LP2, MT). Therefore, mediation is another positive outcome of the types of interactions possible in lab preschool settings.

The pre-service teachers bring new and fresh ideas from their college courses, and the mentor teachers must be willing to incorporate and use these ideas. This is another result of mediation and a way to bridge the relationship between the college classroom learning and actual practice in the field experience (lab). Because the college instructor is also a part of the team, the bridge can offer a more solid relationship than in other preschool field placements where the college professor or instructor is likely not as involved with the preschool. This bridge effect seals gaps between actual field experience in the lab preschool and early childhood programs and practice.

The environment and relationships work together to create a unique setting in a lab preschool pre-service teaching experience to bridge the gap between theory and practice. This should be an issue of constant consideration in education – how to make the theoretical foundation come alive through practical experience. Laboratory experiences must align with class coursework. It is a continual challenge for teacher educators to supply the experiences to enable teacher candidates to make these critical connections during their training period. Other disciplines are turning toward the lab
experience for undergraduate education as well. For example, in the sciences, a change in preparation being discussed is a move away from traditional lectures and labs to a more exploratory laboratory environment (Jaschik, 2006).

This research of five sites found the major connections of theory-to-practice being made in the following key components:

- **Constructivism – theory, practice and reflection**
- **Collaboration between all members of the team in a lab environment**
- **Consistency between theory and field practices**

These elements are interdependent and help to close the loop or bridge gaps that might exist between theory and practice. This is a bridge that must continually be re-evaluated as education needs shift and increase due to the emergent nature of teaching. The interactive and collaborative community of a lab preschool can support this attention.

All of these parts of mediation are also reflective of the Constructivist philosophy of learning (see Diagram 4.3) which is based on the belief that understanding is constructed in the process of people working together to solve problems in the course of shared activity (Wells, 1999):

![Diagram 4.3 - Constructivist Philosophy](image)

(Adapted from Heidelberg College Education Department, Tiffin, Ohio)
The pre-service teachers build or construct their new knowledge about teaching and learning with several tools - theory, practice, and reflection. These are the building tools that connect the constructivist core of this conceptual framework:

Theory - principles of teaching and learning;
Practice - clinical and field experience; and
Reflection - thinking about, evaluating and revising one's teaching and learning in the lab preschool (often taking place during the seminar meeting time).

Researcher notes repeatedly showed a comment about making connections when the five sites were observed. The collaboration of all key participants (directors, mentor teachers, pre-service teachers) was noted as crucial in making these connections and is convenient in a lab preschool situation. Even though the arrangements of meeting and communication varied somewhat, all persons involved with the lab preschool settings were on the same page concerning the pre-service teachers’ course requirements and expectations for participation in the labs. Because all participants are in the same campus setting, each one can be aware of the details and communicate with one another on a regular basis. This makes for a practical, applicable learning experience for the teacher training process and assists the bridge connection between theory and practice. One director commented: “That’s why it’s practice into transfer. We all teach the same stuff because we’re mandated pretty much to include certain things, but we all package it a little differently” (LP1). Without such close connections, a gap can exist between theory and practice. “I think it’s a frequent problem in the field that there’s not time to make the connections that make sense to the students” (LP4, MT). With my own experience of
setting up preschool field experiences with schools off campus, often there is not ample
time for the pre-service teacher and mentor teacher to collaborate due to scheduling and
traveling constraints. Mentor teachers and college instructors are often left to
communicate via e-mail or telephone. It is important that the mentor teachers know the
expectations of the course instructors and coordinate assignments and projects.

The lab preschool experience (with all the participants involved) provides the
pathway to make necessary connections consistent. Communication can take place
during regular collaboration or seminar times. The more consistent a learning experience
is, the less of a gap that exists between theory and practice. “Then coming here [to lab
preschool] makes it so easy to see connections with what you’re learning [in class]”
(LP5, MT). The experiences in the labs found to be most directly related to this learning
process were journaling and discussion time (reflection) and seminar (collaboration).
Journaling and some form of seminar or meeting time were common elements to all
laboratory preschool experiences researched. One pre-service teacher remarked about
her experience: “I think this as a whole, with this lab and the seminar together…I think
that’s very consistent” (LP2).

The seminar meeting time already discussed directly ties the field experience in
the lab to the connected course. It is a major tool in linking gaps between theory and
practice, providing that connecting thread or bridge. Time is taken to discuss individual
children, share events, and lead pre-service teachers to co-construct ideas and learning.

The arrangement of these necessary components for consistency depends on
factors like campus size, numbers of education students (and others) needing field
experiences in the lab, and availability of placements. The modern e-mail capability is
helpful for one-on-one interaction between pre-service teacher and mentor teacher and/or course instructor. Some of the seminars are informal in format and this situation enables valuable discussion time to occur. Journaling is another tool for connecting with the mentor teacher and instructor, part of the bridge between theory and practice. This pre-service teacher testified to the usefulness of journaling:

Yes, any time we drew connections...we had journals we wrote in about each week, and we turned our journals into the curriculum class. So she’d [instructor] read our journals and see how we were connecting our learning on paper and with our observations in the preschool lab. If she had questions over our reading, like “Oh, wow, that was a really good experience!” she’d bring that and share it with the whole class so we could all benefit from it. I feel like it all meshed really well in class (LP1, PT).

It is also important that it is not a disjointed relationship; that everyone is working together to provide a connected experience for the pre-service teacher. At one site the preschool teacher was also the one who led the corresponding seminar. This connected situation is not always possible to arrange but helps to create a seamless experience:

And that’s why, at least we’ve always felt, it’s been so critical that our teachers here in the classroom are teaching the courses that directly relate to the laboratory school program (LP4, MT).

When field experiences are at schools outside the campus environment, it is not as convenient to make connections with all the people involved and have such a unified team. Teachers at other schools where placements are arranged might not be as familiar with the content of the college courses, theory, and requirements as with the lab preschools where all members are in one vicinity – on the same campus. Several key participants in lab preschool settings attested to the effectiveness of this consistency:
• “So there’s lots of consistency in their pathway” (LP4, MT).

• “It’s like we’re working together to know what their needs are, to help the candidates” (LP1, D).

• “You know, we’re all on the same page…” (LP3, MT).

• “There’s a lot of collaboration among the faculty who work with them so they’re not getting mixed messages. We’re trying to keep a pretty cohesive thread once they get to here [lab]” (LP4, MT).

The result of consistency, or this cohesive thread, is effective learning for the pre-service teacher who, in turn, plans or implements connected learning experiences for the children as well. This is practice in emergent teaching and planning as well as teacher research. One lab director/teacher explained their process of seminar lecture (theory) -> planning -> monitoring (including assessment of self and children):

They will be able to take the information they learn from seminar and make an experience that will be reasonable and meaningful to the children, based on what they’ve heard in seminar…Hopefully during the implementation they can see how it works, and then after they’ve implemented they have an evaluation that they do. Did it meet your objective? Did those things that you felt were going to happen, did they happen? How did individual children respond? How did you adapt for individual needs? (LP2, MT/D).

A pre-service teacher shared some of the questions that were posed to them during seminar, which served to promote consistency of learning:

What did you do this week? What did you learn about students and teaching? What do you want to do next week? We also wrote in journals…and then my professor would read those and bring those to seminar. And she would say, “I noticed that such-and-such happened in your classroom. Tell us about it” (LP3, PT).

This process models for the pre-service teachers how to ask questions, seek meaning, and make the theory-to-practice connections, thus experiencing constructivist learning. As
one mentor teacher pointed out, the pre-service teacher has to make the connections, but modeling scaffolds this: “It’s their job to find their own [connections]…to build their knowledge, but they also need the framework around them that’s not a mismatch” (LP3). This discussion time appears irreplaceable to make the needed connections for knowledge construction.

Pre-service teachers see their education as practical when they can relate what they are learning in class to what they see and experience in the lab, thus making the connection on their own, assisted by mentor guidance. One referred to her mentor’s openness to their questions: “Any time we had questions like, you know, ‘How is this relating to what we’re learning in class?’ our professor or preschool teacher would be willing to help us” (LP1, PT). What they are learning makes sense when they witness it firsthand in the lab. This pre-service teacher shared her revelation of when she began making such connections: “So that’s what they meant in all these classes…about teaching and the developmental stages and everything. So now it’s kind of nice for me cause I’m the one who has to apply it to something for it to make sense” (LP2). Another agreed about the applicability of theory to practice in the lab: “Here [lab field experience] it’s more like putting into practice what we’ve learned” (LP3). This pre-service teacher explained how her college course connected closely with the lab preschool experience:
We were just learning [in class] about the theories of learning and how important play is, and how play really does help kids learn and how it’s important at that age. It’s not just non-useful in their curriculum. At the same time, I was in the preschool [for lab experience]. I actually got the two classes sometimes confused because we were learning so much helpful information that applied to me in the school. (LP1).

It is a continual process of closing the loop (theory-to-practice), and this cycle is recursive. One director commented on bringing the two together:

We became even more on the same page of what we wanted to do in terms of including students in the practical part of education and the kinds of things that we wanted them to have here [in lab] and carry back to their classrooms from their classes here. And it’s just been a continuing process of bringing those two together (LP3, D).

While researching the five laboratory preschoo ls and looking for how they connect the gap between theory and practice, it was found that the more of a team concept they used and the tools mentioned above, fewer gaps were found. All the key people were working as a team and helping to make the connections for the pre-service teachers. They were hearing about theories, curriculum, and other foundational information in class; receiving hands-on experience in the lab; and making connections through seminar, projects, assignments, journaling and discussion; all supported by collaboration among the course instructors and mentor teachers.

One of the bridge supports in lab preschool relationships is emergent curriculum planning, evident to some degree at all of the sites researched. By using emergent curriculum, teachers avoid the use of rote or scripted curriculum (for example, word-for-word teaching scripts published in teaching manuals), which in these settings is not developmentally appropriate due to the young age (3-5 years) of the learners. One teacher described it as “looking at the bigger picture”:
During this time of life is when children develop attitudes about themselves as learners. How precious is that! I mean, if we just want to shove on to them a curriculum that somebody else cooked up in some theme book, how does that person perceive themselves as a learner and a thinker? And I think that’s too precious to squander! (LP4, MT).

Curriculum is emergent when it comes from the interests of the children. At one lab site, this is the process that was followed (as described by the mentor teacher) to design curriculum as a team:

Students observe the routine and flow of the day and jot down interests of the children -> e-mail interest ideas to teacher -> teacher responds -> plan individual learning experiences based on interest ideas -> teacher gives feedback and edits plans-> web and vote as a team on curriculum threads -> plan activities and experiences that tie into these chosen threads (LP4, MT).

A pre-service teacher at this same site commented about the emergent nature of this process: “They’re always talking about letting the curriculum come from the children, and it completely does. You see that from the first day you’re in the [preschool] classroom. Like, you see them…they’ve [children] thought of all these ideas on their own” (LP4).

A mentor teacher commented that she explains emergent planning to pre-service teachers in this way: “We can learn SO MUCH by observing children. Figure out what it is they’re interested in. Let’s see if we can develop an activity around that. Or we could start a project based on what the interests are of the kids. So I try to encourage them to use some of those observational skills” (LP2). The more observational opportunities that are available to pre-service teachers, even early in their college courses, the more they will hone in on this skill and be able to use it as they plan emergent activities for and from the children. With an on-site lab available to college students,
they can visit often and for many courses. The pre-service teachers are getting practical experience in teacher education and feel useful to be involved in the preschool classrooms.

Emergent curriculum serves many functions and is highly valued in early childhood education. By being fully immersed in a lab preschool setting, the pre-service teachers see this developmentally appropriate practice modeled in action. As they observe the children for emergent planning purposes, they must also observe the dynamics of each setting in order to design activities based on the children’s needs and interests. This is a good lesson for these prospective teachers to take with them into future teaching, as their lessons and styles must adapt to changing groups of children. One preschool teacher talked about the need for individualization: “So they have to kind of think about the children…and our dynamic, and then the kind of activity that’s going to meet the needs of these particular children, which might not meet the needs of some other site somewhere else” (LP2, MT).

Pre-service teachers observe the routines and daily activities of the lab preschool settings at the onset of their field experiences in order to learn the culture and dynamics of the environment. Knowledge and use of the cultural tools will help them to become a participant in the unique culture that exists in their particular lab preschool. As they are immersed in the setting, they adopt and use the language, routine, and activities. There are more hands-on activities due to the low teacher-to-student ratios. As one pre-service teacher observed: “The ratio is better, which is good, cause then you kind of get to know
the kids better and you really get a feel for their learning and their skills” (LP4, PT). Another commented: “It’s a good opportunity for the kids to get a lot of one-on-one” (LP2, PT).

When many voices come together as with this style of collaboration and mediation, this is like a Vygotskian “thought community” (first one established in 1924) where they talked and co-constructed their ideas through sustained, intense interaction (Lee & Smagorinsky, 2000, p.39). The pre-service teachers also feel like they’re being treated as teachers. This seals the bonding relationship with the mentor teacher even more.

The following excerpts from field notes attest to the usefulness of mediation through the style of a thought community: “We come up with the ideas together. We’re pretty much a team. It makes me feel like we’re part of the staff. I mean, you are, cause you get to prove it through your collaboration” (LP4, PT).

Another pre-service teacher commented about feeling a part of the curriculum planning team: “I think it’s better that the [college] students are actually planning it. It’s not like we’re just being told what to do. It’s actually coming up with the ideas” (LP4, PT2). She compared this to field placements in off-campus schools where often college students are told: “Alright, here’s the curriculum. Here’s what you’re going to do this week…” (LP4, PT2).

Co-planning is a benefit for the mentor teachers as well, as they learn from the pre-service teachers. “I’ve learned things from them over the years! It’s been great! I’m really enthused when they come up with something that I haven’t been doing for years…I like new and fresh ideas” (LP3, MT). One pre-service teacher was surprised at the
openness of her cooperating teacher to new ideas: “She’ll say, ‘Wow! That’s a great idea! I never thought of that!’ so it kind of makes us feel like – wow – we’re really being useful and not just here taking up space!” (LP4, PT1).

Team planning can also serve to improve practice, as one mentor teacher noted: “It’s rejuvenating! It makes me question my own practice every day!” (LP4). When this teacher is pelted with questions about teaching, she feels it helps her to think about her own practice: “Sometimes the students [pre-service teachers] will say, ‘I’m sorry to ask…’ Don’t be sorry to ask [questions]! Ask the hard questions. That’s how both of us are going to keep going on this journey…” (LP4).

Implementing pre-service teacher ideas can be considered a form of professional development for mentor teachers, which improves and informs practice in early childhood. These teachers-in-training learn early on that teachers participate (often without realizing it) in action research every day during hands-on interaction with the children in the learning environment. Action research grew out of the work of Kurt Lewin (1890-1947). According to Glesne (1999), action research has regained popularity particularly in education, as a way to improve practice. The cycles of research have evolved to observing, reflecting, and acting. Similar to the described actions of lab school teams, information is first gathered; during the reflection phase, the data are interpreted and multiple viewpoints are communicated and discussed among “stakeholders” (p.13) in the process; this is followed by the action phase, which involves planning, implementation, and evaluation. The nature of the relationships required for
the functioning of a lab school education makes this process of action research possible. Thus, the pre-service teachers are observing and participating in (and hopefully will continue to do) action research.

At one site, in addition to the language of respect, conflict resolution and problem-solving skills described, a student commented that all the opportunities for research make for an invaluable asset: “I just think of all the experience that we get from the research that we do with the kids” (LP4, PT2).

Vygotsky’s (1978) principle of the “zone of proximal development (ZPD)” (Lee & Smagorinsky, 2000, p.57) is another construct that can be applied to this cycle of knowledge construction, where the mentor teachers are assisting the pre-service teachers to achieve more than they might possibly manage on their own. Learning is assisted on many levels by other members of the culture – in this case, the lab preschool. Theory from the college classroom is therefore connected to actual practice in the field. Another feature of ZPD is the central role of language, and all modes of shared meaning-making, in the coordination and interpretation of joint activity. According to Wells (1999), language (in this case also reflection and discussion) plays a central mediating role in the coordination and interpretation of joint activity. Language is one of the key tools created by humankind for the organization of thinking (Vygotsky, 1978). It is another tool for the constructivist learning that takes place in a lab preschool at all levels – mentor teacher, pre-service teacher(s), and children alike. Knowledge is created and re-created. It cannot be directly transmitted through talk or text but must be constructed by each
individual. Human activity is inherently mediational in that it is carried out through language and other cultural tools. Language is one of the many cultural tools that pre-service teachers learn about as they are immersed into the lab preschool setting.

In answer to the question about education courses connecting with lab preschool practices, this section showed that this happens through mediation and the Constructivist approach of bridging theory to practice.

Immersion

This section addresses another subset of the relationship issue, research question B.3: “How is the pre-service teacher’s time spent in the lab?” Much is learned by being immersed into the lab setting (with observation and hands-on opportunities) and therefore learning to use the cultural tools.

One of the environmental functions of a lab preschool is the opportunity for immersion into the learning environment, and this is a key to theory-to-practice connections. A lab school setting simulates an environment which Vygotsky (1978) would call an “immersion experience” which is the process of coming to understand, independent of someone else’s thoughts or understanding during a process of “internalization” (Blanck, in Moll, 1990, p.44). This is how and when learning becomes internalized. In a constructive learning environment, learning is transformed through social interactions rather than merely transmitted from the teachers. In a laboratory preschool field experience, all participants are learning together. The students are fully immersed within the preschool setting, learning by doing, and through hands-on interaction with the children. The real-life experience with the children is genuine and supports the foundations of theory and model teaching in the college classroom. Early
childhood concepts such as emergent teaching and developmentally appropriate practice come alive when modeled in practice. The sum of all this activity is in the main component of laboratory practice – connected experiences. One mentor teacher described it this way: “They need experience…I just believe the more experience they have, the better off they are going to be” (LP3).

The experience foundation of immersion in lab schools includes key component experiences of observation and hands-on experience, which lead to the ultimate goal of Constructivist learning. One teacher describes the immersion experience as “being involved and observing and learning” (LP4, MT). The mixture of these key experiences provides practical teaching preparation. Each lab preschool’s pathway includes a varied amount of each key experience, but the sum of the total parts is what leads to the beneficial teacher preparation. Along with the differing amounts of each experience is the transition period between observing and doing. A continuum of experience exists (see Diagram 4.4), but the length of the transition period is what varies among training sites:

Observation ----------→Hands-on Experience----------→Constructivism--→

Diagram 4.4 - Experience Transition Continuum

As indicated by the arrows, the observation is the first step in all lab preschool experiences, and it also occurs in many early courses in the pre-service teacher’s college experience as part of their knowledge base about early childhood education and development. Observation is an ongoing activity, as it continues throughout the transition period into more immersion and hands-on experience. While Constructivist learning is the desired outcome of the experience, it occurs throughout and continues on
as pre-service teachers are continuously observing, assisting and learning – a process, or
cycle, that hopefully continues into their teaching profession. The Constructivist Cycle
of Learning is also at play at the same time (refer back to Diagram 4). The end arrow
points onward, designating that this continuum cycles on into future teaching.

Despite the amount of time used for observation, the important lesson for the pre-
service teachers to learn is how to use their observational skills. Observation is not only
for watching the modeling of the mentor teacher and learning routine, but it also leads to
learning the skill of emergent planning/teaching. Pre-service teachers at all labs are
encouraged to use their observational skills to determine what activities interest the
children, which leads to emergent curriculum planning and implementation. As one
mentor teacher described the pre-service teachers’ roles, “We are a team here, where
everyone works as a team…It’s not just an observation. You’re part of the team” (LP1).

Observation leads to emergent teaching and using the interests of the children.
One mentor teacher advises: “Figure out what it is they’re interested in. Let’s see if we
can develop an activity around that. Or we could start a project based on what the
interests are of the kids. So…I try to encourage them to use some of those observational
skills” (LP3). The pre-service teachers jot down interests during observation time, take
the ideas to seminar, and plan experiences with the teaching team. This mentor teacher
referred to this process as “collective thinking”: “Usually their [pre-service teachers]
experiences are real common to each other, so that…it works out that we can have a
collective discussion about that” (LP2). This collective discussion and planning time
shows the teacher candidates how curriculum should be emergent and individualized.
One teacher requires this of the students: “Use those observation skills – What do you
know about these children, either developmentally or interest-wise that makes you think that this is going to be an appropriate experience for the kids?” (LP2, PT). The meaning of emergent is evident here, as the ideas come from the children. One teacher added: “Also from other things. It could be an event, it could be from a parent, it could be something that happens on our campus…there are lots of sources” (LP4, PT1).

As the pre-service teachers are implementing curriculum, they become more directive (again, varying among levels of experience). Yet by using their observations of the children’s interests to plan and implement curriculum, this demonstrates how child-centered (as opposed to teacher-directed) classrooms are appropriate in early childhood. Even if students are not involved with planning at all levels, they are at least facilitating emergent curriculum as they work with the children and incorporate their interests into play activities. One pre-service teacher described her level of involvement with the children as follows:

There’s nothing like direct instruction here. Everything’s just open. We have different areas or learning centers set up, and they choose which ones to go to. And we try to have at least one person at every station. It’s not the same person the whole time. You just kind of float around and see where supervision is needed, and you kind of jump in and talk to them and try to get them involved (LP2, PT).

At any level of involvement with the children in a lab preschool, the pre-service teachers are learning how to be emergent in teaching by actually being involved or at least seeing examples modeled. There are more opportunities for hands-on involvement since the team can coordinate the pre-service teachers’ schedules with what is needed in
the lab and for the college courses. The hands-on approach promotes learning by doing. One mentor teacher commented: “It gives them [pre-service teachers] a lot of hands-on, real-life…it’s not just going in and playing with the kids” (LP5).

The hands-on involvement step is important to the rest of the experience continuum (refer back to Diagram 5). It sets the stage for on-the-spot constructivist learning. Pre-service teachers have opportunities to safely try on the teacher role with a guide (mentor) coaching them alongside, encouraging them to experiment (hence, the term “laboratory”). As one mentor teacher testified:

It’s hands-on. They’re in here, they’re doing it, and they’re trying new things. I really try to encourage students, you know, better to try something than to stand back and not try anything. You know, really kids are quite resilient, and there’s no way you’re going to damage anybody so they cannot climb out of it. So just TRY things. Don’t stand back and become part of the wall. Get in there and get your hands wet (LP2, MT).

This interactive, immersed experience paves the way for constructivist learning, the hopeful and continued outcome of this connected experience. Just like the children, the pre-service teachers are learning in an informal manner. They observe, and they learn it own their own, with the help of some scaffolding and coaching from the mentor teacher. They see theory come alive. One pre-service teacher witnessed this:

So it kind of helped me to step back and learn in a different way than I ever had before. And so I was able to connect the different theories of learning and just the certain things we’d had in class came back and I was like, “Yeah, I HAVE seen that here in this lab” (LP5, PT).

The availability for the immersion experience in lab preschools with direct hands-on experience paves the way for teacher readiness. One pre-service teacher interviewed (during her last semester of training) shared that she felt that one of the best parts about her preparation as a teacher was all the field experiences, starting from the very first

118
introductory course, to get them a lot of experience and to assure them this is the right profession. “I feel like they’ve definitely prepared us very well” (LP3, PT). The pre-service teachers report varying levels of experience in their lab fields, depending on their course level and relationship with the mentor teachers. One shared her experience in her final semester: “I have the class almost the entire period. So she [mentor teacher] is good about letting me…and I get a lot of experience” (LP3, PT). Another attributed her success with testing to her lab school experience: “When I took the [state test] – a lot of the questions I knew from doing my training here [in lab]…” (LP5, PT). Another effect of the immersion experience is for the pre-service teachers to get to know the children as well as a realization of selves as teachers. Social identities are more examples of cultural tools for the learning process that a lab preschool situation provides.

Identities

Another part of the answer to research question B.3 about the pre-service teacher’s experiences in the lab preschool is the resulting acquirement of professional identities and the acquirement of cultural tools. Roles and relationships among members are constructed in and through the social interactions of members, including what it means to be teacher and students in a particular classroom (Fernie et al., 1993); in this case, the lab preschool. As members of the group learn the routine and rules for behavior and social interaction, professional identities are constantly being negotiated.

The most important cultural mediating creation in the child’s development is the child’s personality that is inseparable from the social and cultural context (Moll, 1990).
If the child’s social context includes a laboratory preschool, there is a unique and dynamic culture and its network of relationships that will play a role in the child’s development.

Many preschools offer various elements of diversity in their child population (family settings, socioeconomic status, gender, etc.), but a lab preschool is culturally diverse due to the many cultures of the university setting. This was found to be more of a factor at the larger university settings. This can include in the children and families of university students and faculty, teachers and pre-service teachers who assist in the lab, or children from the wider community in general. Parental involvement can heighten the diversity shared with the students. Universities attempt to draw from diverse populations of people for enrollment, and especially attract them from the graduate student population. One of the large universities in this study has parents come into the lab preschool to read to the children; in this manner they share many cultures and languages with the children. Pre-service teachers did documentation panels exhibiting activities of the children, and one year they represented thirteen different languages on the panels. There are also many resources (including human) available on a college campus, offering ways of interacting with diverse people and disciplines.

Diversity also includes providing options in facilities and resources that other preschools might not have. One is for the lab preschool to be a liaison between the college and the community:

Because we have parents and grandparents, and aunts and uncles in on a daily basis bringing the children, we are kind of a liaison between the college and the community. And I think because we offer at our preschool best in practice, we offer options in preschool that they didn’t have before [elsewhere] (LP1, D).
A connection with all the resources on campus and with the wider community can offer quite a variety of activities and connections for emergent teaching activities. “They have a lot of resources. There’s a closet full of different things that we’re allowed to use… for our [teaching] experiences, too” (LP2, PT).

Just as the children are learning to “become a person in the preschool” (Fernie et al., 1993, p.95), so are the college students learning to become teachers. Each appropriate their professional identities through the communal processes of sharing and creating culture. Participants are not merely internalizing society but are actively “contributing to cultural production and change” (Corsaro, 1997, p.18). They are affected by the cultures of which they are members, and as they learn about and from all the participants in a lab preschool setting. It is also important that everyone understands each other’s role as well as their own individual roles. Fernie, Davies, Kantor and McMurray’s study (1993) affirmed that these social processes are complex and “are infused, integrated, and occur simultaneously within the daily life of the preschool” (p.95). Through collaborative interactions between the pre-service teachers and the children, both are constructing identity and social competence.

Through observation of the children, the pre-service teachers observe (with support from their theoretical and child development foundations) that children learn and develop social identities through their interactions with others, but ideally through play. Often pre-service teachers come into preschool classrooms with the preconceived notion that preschoolers are not capable of doing or learning much but learn differently through observation, as this pre-service teacher in a lab preschool observation situation did:
Before you get into an experience like this you have some conception that they [children] don’t learn anything in preschool. But they really learn so much! Playing is the way that they learn. They learn from each other, so the more they play the more they’re going to learn! Once you get in here [lab] you really see it. The preschool experience is an important step for whatever grade you teach in early childhood (LP4, PT1).

As the pre-service teachers observe that preschoolers are indeed learners, they might even change their minds toward teaching at this level and alter their own professional identities. As one pre-service teacher commented:

“Several of my peers were like, ‘Why do we need to learn about preschool? We don’t want to teach preschool.’ Then they got in there [lab] and they were like…”These kids are a lot more…you can do more with them than we ever thought!” (LP1, PT).

Pre-service teachers begin to identify themselves as teachers as they are allowed to participate in planning and implementation of curriculum. If they are treated as part of the staff and involved in the daily planning, it makes a difference in their perception of themselves as teachers, and as a result, what they gain from the field experience. The seminar component serves to help the students and teachers bond and get to know each other better. The mentor teachers feel that the lab preschools are offering preparation in early childhood training that cannot be obtained in other situations. One director commented:

I think that one thing I feel has really helped that’s talked about in the [preschool] classroom is seen in our own [lab] school. It’s not like it’s seen some place else. It’s here so they know this is really what we believe, with best practice. This is what we’re doing here. And because the teachers are a part of what’s going on, they can make the comments, too. It’s like we’re working together to know what their needs are, to help the candidates (LP1, D).

Mentor teachers in lab preschools can provide a cohesive experience for the pre-service teachers because they are connected with the college and likely knowledgeable
about the college education program. With this partnership, they are willing to relinquish some control of their classrooms and share teaching with the pre-service teachers because they have agreed to the situation. One mentor teacher who has taught in a lab preschool for 30 years feels that mentors must be open to the students practicing teaching under their supervision, that this is the best way to learn: “I know it’s different from being even in the elementary schools. First of all, we know that’s why they’re here [in lab]. And they’re not an intrusion into our program like they can be sometimes [perceived] in the elementary school, depending on the teacher they get” (LP3, MT). In turn, the pre-service teachers feel welcome to try new things and really practice teaching: “I do know that just working [with my teachers] that they’re open for [us] to come in and do stuff with the children, which I think is really neat” (LP5).

A benefit for the children is to see the pre-service teachers as learners as well as teachers, and an opportunity to adjust to working with a variety of people. “That sort of gives them a little bit of an in, and it helps the children to see them more as a teacher…more reliable as a source of interesting things to try at school” (LP4, MT).

In some lab preschools there are many college students (some as pre-service teachers; some as workers; others from course requirements from various disciplines such as music, science, health, and so forth) who come and go daily. In these situations the pre-service teachers sometimes feel disconnected with the preschool children. The mentor teachers feel that if the children see the pre-service teachers doing the same jobs that they do, and if the mentors treat them as teachers, then they are more likely perceived by the children as teachers. Due to varying expectations and levels of responsibility
among lab preschool programs, this perception can vary from case to case. The pre-service teachers are generally anxious to play the role of the teacher and to connect with the students on a personal level. In many cases close relationships develop between the two levels. The factors that vary from lab to lab in addition to requirements and expectations are the amount of time spent in the lab (so many hours per week as opposed to an entire morning or afternoon, for example) and how the children are expected to address the pre-service teachers. Table 4.6 shows the variety of titles that the children use to refer to the pre-service teachers, which affects the professional identities they are forming during their lab preschool experience.

<table>
<thead>
<tr>
<th>Title</th>
<th>Pre-Service Teacher Feels like a teacher</th>
<th>Mentor Teacher Views Pre-Service Teacher as a Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - “Miss/Mr. [First Name]”</td>
<td>1 of 2</td>
<td>1 of 2</td>
</tr>
<tr>
<td>2 – “Miss/Mr.[Last Name]”</td>
<td>2 of 2</td>
<td>2 of 2</td>
</tr>
<tr>
<td>1 – “Teacher” (or first name if known)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4.6 - Frequency Distribution of Titles and Perceived Attitudes Toward Students as “Teachers”

In the case where the pre-service teacher did not feel perceived as a teacher when called by “Miss or Mr. [First Name],” s/he was at a lower level of involvement (fewer hours of teacher training experience) and labeled as an “assistant.” In the case where the students were called “teacher” the situation was that there are often so many pre-service teachers in the lab at any given time that it is almost impossible for the young children to learn all
their names. The pre-service teachers here, however, felt that if they had been personally introduced at the onset of their lab experience to the children that that would have helped the situation as well. Obviously, the amount of pre-service teachers in a lab preschool classroom at a given time (as well as their required time to be in the classroom) is a factor in their own professional identification. Too many pre-service teachers in a classroom can also create a management conflict for the mentor teacher. It also affects the amount of hands-on experience that can be experienced. The pre-service teachers who felt like teachers were treated as such by their mentor teachers and addressed by name by the children.

One very unique aspect that grew out of a particular laboratory preschool culture and had an effect on pre-service teacher identity was when many years ago a child began to distinguish between “some-day teachers” and “everyday teachers.” According to the preschool teacher who has been there for many years, “It’s one of those urban-legend kind of things that’s developed. That terminology has been in place for probably twenty years. They [children] make that distinction on their own” (LP4, MT). This is an example that children construct their own knowledge and perceived notions about theirs and others’ identity and roles within their cultural surroundings.

Other uses of language classify it as another cultural tool in the learning processes that occur in lab preschools, another reminder that learning is inherently social. In the words of Luria (Cole, 1996, p.108), speech is the “tool of tools.” Again, the tool of language is unique to each particular site (and other preschools as well). In lab preschools the teachers and directors are modeling best practice for the pre-service teachers and for developmentally appropriate practice with the children. Lab preschools
attract generations of families, especially since most of them originated as child care for college faculty and staff members. As part of their family-style culture, they take care of and respect their families. One site gives priority enrollment (via an interest list) to families with siblings enrolled. The director shared her feelings about this and how they have changed over time as she learned the unique ways of the lab preschool’s culture and language:

I used to think, that didn’t seem very fair to me, given the size of the interest list and the number of spaces that we typically have available. But after I understood the way we do guidance and discipline, the way we talk to children, some of those things are kind of unique, and so as a family you would want your children - if you liked what happened here - you would want it to be consistent for all your children. So we do give priority and we do have a good return rate” (LP4, D).

The pre-service teachers report picking up on cultural themes and issues like language during observation. At one site their “language of respect” (LP4, MT) is considered one of their hallmarks, yet it takes time for the pre-service teachers to learn and use the language. The mentor teacher remarked:

The language. It’s interesting. It’s probably the most difficult nugget – is understanding the culture and language that are hand-in-hand, called “the language of respect.” We don’t speak the same to every child or to every situation and shouldn’t. So at least we’re planting the seed of at least there’s ways to speak with children that’s respectful, that honors what they bring to the table, that allows them the freedom to construct their knowledge, that’s not intrusive, or punitive or demeaning (LP4, MT).

Thus, the pre-service teachers must use their observational skills early in their lab experiences to pick up on the language and the culture in order to assimilate to the environment as they are immersed into the setting. It is helpful in teacher preparation if
they use these learned skills and tools later in teaching. However, it is sometimes difficult for the children to transfer to other cultural settings. The director at the site with the language of respect commented on this transition:

They [children] learn in very natural, very authentic kinds of ways. But we do get this feedback consistently from parents, that the only thing that was hard for their child when they transitioned into kindergarten was that their peers didn’t have the same kind of conflict resolution and negotiating skills that they had at preschool (LP4, D).

Despite the transition needed to other cultural settings, they feel at this lab preschool that the respect for children is “what gives life to their school…and then everything else comes out of that” (LP4, D).

A part of the larger picture of professional identity is the need to increase the professionalism of the role of the preschool teacher in the public arena. It is important to bridge an invisible but publicly identified gap between preschool and elementary grade teachers. Certification of teachers for P-3 (preschool through grade three) in the state of Ohio (for example) provides specialization in the early childhood area and bridges a gap in role perception. Another way this can be handled is through the missions of teacher training institutes. One director commented, “I feel like part of the mission of the college should be…is to bring together the gap between preschool people and elementary teachers” (LP1).

Another whole layer of involvement and social identity in lab preschools is the families of the children. Lab preschools typically do not use parents or other volunteers in the classrooms as assistants or aides due to the number of college students who need placements as pre-service teachers. However, they are revered as important members of the school community and are welcome to be involved in many ways. These usually
include helping with special outings or parties, coming in to read or have lunch, and other such volunteer activities. In this case family involvement is not critical to the functioning of the preschool, but all labs visited have an open-door policy to welcome them. Directors find it important to remember to find avenues to keep families involved and feeling welcome. “I think the parents really want to be involved, and I think that they should be because I think that we’re all a family. I mean, we’re all in this together to help the children” (LP1, MT).

Labs also have the unique feature of the observation deck or booth as tools available for parents to observe their children and/or the teacher(s). One director even mentioned a unique opportunity for parent research: “And there are also opportunities if anyone’s interested in parents/parenting, which I think people forget about because we always think of the kids. There’s data to be had on parents, so that’s another whole angle for research” (LP5, D). Parents who choose to send their children to a lab preschool have a unique offering with all the levels of interdependence and social interaction and learning. As one student commented: “The parents bring their kids here knowing the college students are here, and it’s a good experience for them and a good opportunity for their kids. They know it’s a good opportunity for us. And they’re very understanding, too, and kind of at ease” (LP2, PT).

One of the five lab preschools has a unique feature for parental involvement. They send out a weekly curriculum guide to all layers of involvement – teachers, students, and parents. In this way all parts of the learning environment are involved and connected. Overall, with this unique mixture of layers, it provides a community feeling for each participant. The children see the pre-service teachers as college students on
campus, and they develop meaningful relationships. The children know the teachers and professors as well. They are like one big family. Most importantly for the early childhood education practice, the pre-service teachers feel like a part of the network:

It’s kind of nice because you get involved with like even the staff, and you’ll see them walking around campus or something, and it just makes for a more friendly atmosphere…and you don’t feel like a number. You actually feel like you’re included in the program, and not just a number on a tally sheet (LP4, PT).

The reputation of lab preschools for preparation of children for formal schooling is another connection with families and the formation of identities. As for school readiness for the children, this term is defined differently with each circumstance. The mission and focus of each school varies, but the public schools typically report that children who have attended lab preschools have received good school preparation. As an example, one director responded to a question about community feedback concerning kindergarten preparation:

Readiness is an issue for us…and I always tell people this when they call: We don’t necessarily guarantee that your kid will know the alphabet and numbers when they leave here. But we do guarantee that they will have a good school experience. They’ll think they’re good at school, they will like school, and they will think that school is a fun place to be…THAT’s what we call school readiness. That’s what we’re pulling for here. We look at the whole child being ready for school (LP2, D).

Another lab preschool director reported that they work with a nearby public school and take the preschoolers there on a field trip in May:

All of them go even though only some of them are actually going to kindergarten. And not all of them are necessarily going to this kindergarten. But it gives them that experience. There’s also communication with the public schools in terms of readiness (LP5).

One lab preschool director explained that the public schools in their area buy spots from them [lab] for students whom they feel are not quite ready for kindergarten and need a
preschool placement. This director commented: “I don’t think they’d be doing that if they didn’t think we [lab school] were doing a good job preparing them for school” (LP1).

The lab preschools visited have waiting lists for enrollment because they are filled to maximum occupancy. Parents find that these lab preschools serve more than one purpose and are a good choice for their children, especially when it comes to school preparation. One director replied about community feedback on school readiness:

Oh, yeah, we’re very renown for that, and kindergarten teachers know they [students] came here. It has a very good reputation…and parents see that, I mean they see that their children are not learning in a traditional way…and it’s the place to be for a great education (LP3, D).

One site has a special kindergarten preparation program that they offer in the summer to prepare the children for their classroom and classmates. The director referred to this program as one of the “hallmarks” (LP3) of their program, especially with preparation for academics in elementary school being an important issue among preschool programs. A student shared her feelings about this experience: “I think that’s a great idea…This gets them ready, and I think that’s the best program to have” (LP4, PT).

The answer to the question about time spent in the lab for the pre-service teacher includes the immersion experience and formation of social identities (including use of the language and other hallmark features that make each lab unique). This leads to another relationship issue - the opportunity for interaction with the wider campus community.
College Community Involvement

After looking at many other relationships found in the study of lab preschools as a result of the emergent nature of ethnography, this section returns to the broader research question B with the original intent to look at the specific relationship between the labs and their supporting institutions. The location of the preschool on a college campus and the ensuing relationships create a unique opportunity for college community involvement. This is one of the most unique features that a lab preschool has to offer, where other preschools might not have the same availability, connections and opportunities in their environments. The lab is part of the college community and therefore has access to many resources. Not only do the teachers tap into nearby resources, but the lab also attracts college students from various disciplines to come and work with the children or even just observe children in a natural setting. They come from many different capacities. The college students see the children on campus and build relationships with them, which adds a unique layer of people and serves to build community. Instead of a preschool having its own little community, the campus is its community, like the hub of a wheel with spokes in many directions. Diagram 4.5 provides the many campus connections suggested by the directors during the interview questions.
All of the lab preschools visited cited five or more of these examples when asked to name some of their campus connections. These links open doors to many different interests and uses. One director pointed out this unique component of a lab school: “We just have a lot of resources. We have a lot more to offer than, you know, an area preschool, due to our location [on a college campus]” (LP5).

A connection with all the resources on campus and with the wider community can offer quite a variety of activities and connections for emergent teaching activities. “They have a lot of resources. There’s a closet full of different things that we’re allowed to use… for our [teaching] experiences, too” (LP2, PT).

A college campus has a lot of opportunities to offer. Having all these resources available empowers the teachers to be emergent in their planning. If they are studying math patterns, for example, they can walk to the math building and check out the math...
designs on the floor. Many education majors are required to take a course about teaching physical education to children. At a lab preschool, physical education students can also gain practical experience with young children due to their availability nearby. They can make arrangements to use the gym and put theory into practice. Parents who might be involved with the college (on faculty or staff) can share their jobs with the children as well as other parents doing so. When families are informed of curriculum (via a weekly newsletter or curriculum guide) they can make these connections. One director shared such an instance: “One of the dads worked in the math department and said, ‘Hey, if you are interested in this…’ because you know the parents get the curriculum every week, so I think he said, ‘Hey, you guys should come over and check this out!’” (LP4, D).

Disciplines like psychology and sociology often require students to do observations of children, and the labs on campus with their observation decks make this possible and convenient. These are all ways of connecting theory to practice, through applying what is learned in theory to actual practice in the lab preschool.

There is an endless amount of opportunities for creative uses of the lab preschool, and it can work both ways – to advertise the lab preschool’s existence to the campus community and to provide practical experience with children through various disciplines. There’s something for everybody. While sharing some of their unique uses of their large campus environment, one teacher commented that the campus community connection with its resources is one of a lab preschool’s hallmarks:
One of the great parts about being on a campus is that there’s SO MUCH. There isn’t anything…whatever idea you’re entertaining, somebody here at the university is studying that idea. I’ll guarantee you. I don’t care what it is, somebody else also thinks about that [subject]. So, it’s all about looking up those resources and hooking up. And it’s kind of a crime NOT to capitalize on that. There’s just so much (LP4, MT).

Some of the lab preschools have to work harder than others to build these relationships with the wider campus community. As one director commented,

“We’ve been knocking on those doors. But it’s a process…it’s taken [years] to become as student-centered as it is” (LP3, D). In very large university settings, lab directors have resorted to advertising to make themselves more widely known on campus. This connection theme can also be used to promote the idea of having a lab preschool on a campus by showing that it is a vital part of the campus community. One director used a two-fold argument: “It supports the academic programming, and secondly, it supports the community. Now my understanding is that the sort of ‘culture of higher ed’ is to do more support within the community and to reach out more, and so you can also work that…and that’s important” (LP5, D). Admissions departments can also be called on to advertise lab preschools as a unique campus component and a way to provide state-of-the-art early childhood education training that connects theory to practice.

One of the most outstanding and prominent components of a laboratory preschool is its natural proximity feature, which enables immersion to occur. That is, the pre-service teachers are close to the field practice environment when a laboratory preschool is situated within a college campus setting. Likewise, the mentor teachers, instructors, and directors are close by as well. If a mentor teacher needs to discuss a concern with a faculty member of the team, everyone is close by and connected to the experience.
Instead of institutions having to use area schools for placements, the preschool lab is available and convenient. The very existence of a lab preschool on a campus provides a viable option for preschool field experience without having to impose on area preschools or struggling to find ones with up-to-date early childhood practices. With the lab preschool being a part of the campus setting, pre-service teachers can more readily spend extra time at the center, too. They can feel more a part of the team and not like an outsider visiting the preschool once or twice a week. One student shared that not only is the lab preschool convenient to access but that she can attend special events: “I could leave my dorm in five or ten minutes and be here. It’s so easy. And that makes it really easy to, you know, come back to things. Like when we did our open house, our picnic, and so forth” (LP3, PT). Pre-service teachers can also return as desired to work on projects or to squeeze in extra hours, see another class, or communicate one-on-one with staff. One suggested this extra time feature: “That’s one of the things I really like about being at this site, like being able to watch in the morning and coming back to teach in the afternoon” (LP3, PT). A mentor teacher also observed: “I think it’s easier for the education students to work here because they can come between classes or stop in and ask a question” (LP1, MT).
The lab preschool is an available resource to other disciplines for student observation or faculty research. From the child care perspective, faculty and staff members have the option to send their children to the lab for child care and have them close by at all times.

Some of the students’ comments, as collected from interviews, about the proximity feature of the lab preschool were:

- “It’s so easy to get here” (LP3).
- “I think its’ more beneficial being on campus than to be off campus” (LP2).
- “It’s so much easier to come here” (LP 3).
- “It makes it very convenient” (LP5).
- “It’s just easy because of the connection” (LP3).
- “It’s not out-of-the-way for anybody. I commute, but again, it’s pretty central to basically anywhere I had to park my car. So it was good” (LP1).

This insightful comment from a mentor teacher on her perspective about the unique features demonstrated what the location of the lab on campus can offer to students:

I think it’s very nice because some of them, like, they live here on campus. And they may not be able to go to schools or go out, so they can come in here, and I think it’s easier for them to get the hours done that they need done because it’s not as far. We’re open early and late. It’s not regular school time. And then they can stop in whenever (LP5, MT).

Compared to other field experiences needed for early childhood training, having a preschool experience on campus is not only attractive to students but saves the institution when it comes to some cost, time, and travel for supervision. As this director described, “It is wonderful. I mean, we’re supporting these [college] kids. If you think about how much it would cost to have them go some place else, suddenly we’re breaking even”
Thus, the proximity of the lab to students makes field time accessible and beneficial to the ever-important theory-to-practice connection. It also benefits teachers, instructors, supervisors, and directors to have the lab as part of the learning institution culture and allows the use of the lab preschools as originally intended with a historical threefold purpose. Thus, the relationship between lab preschools and their supporting institutions is a critical factor in their functioning.

THREEFOLD PURPOSE

The final part of the research looks at an aspect of both environment and relationships that is a defining feature of a lab preschool. This is the threefold purpose (Barbour, 2003) that lab preschools have historically and traditionally offered and as a result of the layers of people involved. This addresses research question C: Does the lab preschool serve the historical threefold purpose of education, service, and research? Diagram 4.6 shows the historical relationship that was intended since the inception of the idea about lab preschools back to the time of John Dewey in the late 1800s.

Diagram 4.6 - Threefold Purpose of Lab Schools
Lab preschools do not typically start out as such; they have varied histories. Sometimes it takes time to evolve into true lab preschools where the focus is tri-fold: child education, teacher training, and research. The lab preschools visited were found to all be doing each of these three parts but not at balanced levels. Most lab preschool directors will comment on their purpose as being dual, including the first two, not mentioning the research component. Or, research is not specifically stated in the lab preschool’s mission. One director, when asked to state the center’s purpose, replied:

Primarily I consider us a lab school. We’re here – and I articulate this with parents - we’re here for our [college] students so they can learn about child development, teaching early childhood education, themselves as teachers, and so forth. However, that doesn’t mean that it isn’t a child-centered place. It is. We try to be on the cutting edge of good teaching and theory. (LP3, D)

It appears that in some cases research has either lost its place in a lab preschool or has become third in the priority list. This is somewhat understandable due to the increasing demands on early childhood education and teacher preparation guidelines that occupy teachers’ time, energy, and focus. “We certainly think research is important. But I think more of our emphasis has been on demonstration and teaching, and I think it is going to shift to more formalized kinds of research” (LP4, MT). This same director commented that research is not there in the “formal sense” but it’s more in the form of teacher research, which is action research: “What we’ve done here in a formalized kind of way has been very cool research, but then if you don’t have it set up in that formal structure, I think it can get lost or overlooked” (LP4, D). Her goal is to help the students
realize that research is a natural part of teaching. She would like the term researcher to be in teachers’ job descriptions. This is bringing a focus back on the role of research in classrooms – teaching as action research.

The term research can also be interpreted in various ways. Some consider it the presence of the means or tools for research, whereas others consider it to be involvement of both college students and faculty through observation and study. With further investigation and discussion, the research element was found to be present at all five lab preschools to some degree. In some settings actual research (by students and/or faculty) is promoted more than in others. Sometimes after conversation about the history of lab preschools the directors would realize that they do, in fact, do research but that it is not considered their focus when they advertise, or they inadvertently omit it in their mission statements of their purpose/goals. One director included research in her description of the lab preschool’s purpose, but she admitted that it is the weakest of the three purposes: “I would say research is the weakest. It happens, but it’s not number one” (LP2, D). Yet another director readily included research in her description of the center’s purpose: “We talk about that with our students and our parents, and not that we don’t love the practice [of research], but we do balance it equally with those other purposes. They’re three hats, and they’re equal. And they need to stay that way” (LP4, MT).

Research is an obvious hallmark at one of the visited sites, where the lab preschool is physically located within the psychology department and, thus, totally immersed in the college setting. The lab is situated in the hub of activity on campus, and they make thorough use of available resources and connections. This site has been very creative with their use of transformed space as well as of funding. The institution views
the lab preschool similar to other labs (psych labs, computer labs, and others), a perspective which helps with maintenance and some funding needs. It has a unique staffing arrangement with a faculty administrator separate from the preschool director and head preschool teacher. This site also offers a school-age program year-around (with different times in the summer). These students see college students in action, literally next door to their classrooms. The young children here gain an early perception of what college is and looks like, another feature unique to laboratory preschools. At one of the large universities where the lab was part of this research, the director or “head teacher” commented that one of its benefits is that it is hands-on for both levels of learning – the children and the college students: “It’s [the lab] like the preschool. It’s hands-on. They’re in here, they’re doing it, and they’re trying things” (LP2, D).

The observation decks or booths are key tools for a lab preschool to have. The presence of these areas makes observation an available opportunity. At most sites these are used to introduce education students (or others preparing to have a field for another type of course) to the lab. This tool provides research opportunities to others on campus – students and faculty alike – as well as to families of the preschool children. One director realized that there is more research going on at their lab than she had realized until we discussed it: “As a staff we do not engage in formal research. I myself have not done that in years, because it’s not my interest. Other people do all kinds of research here. And our students do as well” (LP3, D). Another director commented that she feels that a lab preschool can serve the traditional threefold historical purpose:
When I first started here I did some research, I had some students doing some research in there. Every year there are a couple [of students] who do research on child development. So it serves that academic component. As far as faculty, it all depends on how much time you have. But I know I’ve got it there. But more importantly for me, given the teaching institution, I know my students have it (LP5, D).

Overall, the means for doing research were found to be present at lab preschools, but the push to do research is not a main focus of their purpose or missions. The tools are there and need to be used and realized for their potential. Teachers are learning, and it needs to be pointed out, that teaching involves research. Teaching is action research.

One student commented: “I really had no idea until this class how much research is not just reading an article and summarizing it or doing a research paper. I’m out there [in the lab] doing it” (LP4, PT1).

One director emphasized how to place these three parts – child care, teacher training and research:

The bigger picture is lifting up this profession – the advocacy piece – empowering these students to move this profession where it needs to be. All of those things, I mean, is that not a huge responsibility? It’s an enormous responsibility! It really has to be right up there with that quality care and education of young children…And the voice of research needs to be hand-in-hand with all of this. I mean, we’re not going to make a presence politically or academically if we don’t have the voice of research right there (LP4, MT).

The more committed that lab preschool directors and involved faculty are with doing research, the more emphasis this part of the triangle receives. Doing more research could also bring more money to a lab preschool since research grants can be used for funding. To say that the three-fold purpose is evenly balanced would be a falsehood. Just having the tools and some utilization does not make research an equal part to teaching and child care. In reality, research is more of a subset of teaching/education in the labs.
To summarize the network of multiple relationships that exist in a lab preschool and the benefits for everyone involved, one director eloquently stated: “I think lab schools are a win, win, win, win…all the way around. A win for the community, a win for the college, a win for the candidates, a win for the children. It’s something where everyone wins” (LP1, D). Meaning is constructed in several layers with multiple identities and critical networks, connections, and interactions.

LAB PRESCHOOLS OF THE FUTURE

Part of sharing the story of lab preschools is to look at what role they can play in the future of early childhood education and teacher training. Some lab preschools have survived through years of changes by experimenting where they would fit in best with the university focus, as its support would be vital for its continuation. Originally the focus for many became that of continuation/survival through meeting community needs, and not necessarily focused on teacher training. One site’s director commented about a time during its history when the focus changed: “At that [one] time the focus was not really so much on having this as a lab school. We’ve kind of built that up since I’ve been here, having that focus – at that time it was just, keep the building open, keep the program going, keep it funded somehow” (LP3, D). It had started over seventy-five years ago as part of the home economics department; when that department changed, the umbrella changed to community services; when that department expired, the program umbrella again changed to psychology and education “…only to keep the program alive. They
were going to do away with it all together. But there was enough community support, both from the larger community and on campus, to say, ‘No, no, no, you can’t do that!’” (LP3, D). Thus, the focus and continuation of lab preschools is a challenge.

Many have gone through transformations that have changed their umbrella of administration to where it best fits the supporting institution’s purpose and funding. Again, that is a key, to have support from the mother (supporting) institution. Each partnership must find the best fit for the lab and the college. As one director noted, “The institution has been extremely supportive of this program…” (LP3). Another comment to laud this backbone came out of this discussion:

Director: This college really supports [the lab] and recognizes that we still have a lab school, and it’s not closing! I find THAT to definitely be the key to this partnership. You have to have the support of your institution (LP5).

Lab preschools should consider the mission of their supporting institutions or at least have a philosophy that is directly tied to the overall college mission. Some labs state a mission-like statement or philosophy and call it a conceptual stance or statement of purpose. Mission statements must be examined to see if they closely align with that of the supporting institutions. Past research has shown that this is another key element to the functioning of a lab preschool as an early childhood teacher center. The sites studied had various mission statements, most of them connected to teaching and practice of the supporting institution. If the lab school’s social identity can be linked to that of the mother (or supporting) institution, the program has a better chance of fitting into the overall college community and surviving the many changes in educational practice. The crucial point is that there should be a connection with the overall college mission statement. This provides necessary two-way support for both ends of the spectrum and
provides the connecting thread vital to foundation and support. One lab preschool director shared the mission of the lab preschool and then the overall college mission statement, demonstrating a clear connection between them:

Our [preschool] mission is two-fold:
1. To provide appropriate care and education for young children.
2. To provide a learning environment for college students.

[College mission:]

To seek to learn is to seek to serve. So I think it truly fits into our mission because if they’re learning, they can seek to serve. Whether it will be the children and families that they will have later on in life...And the training, the research, even though that’s not in our mission, it’s a huge part of what we do (LP1, MT).

Most lab preschool directors’ responses to questions about their missions included a direct reference to the lab preschool’s philosophy for the children. Thus, not all were aware of the college’s mission and how it related to the lab’s mission.

Reputation is found to be another key to survival for lab schools. This commodity is another critical factor in lab school history and continuation, as this discussion reveals:

Teacher: I think it [reputation] sort of depends on the university community. If it’s really revered on campus, like a part of the education department, then you know, we could be highly revered…

Researcher: It seems there has to be a line between where the supporting institution has to be a central part of it and visible.
Teacher: …and give it meaning. There’s some value there (LP2).

Reputation is closely tied to focus, and it is critical that each lab school have a focus and keep it clearly identified. One director spoke about their focus: “I think, back in the early 80s and 90s when the program wasn’t on solid ground, they really didn’t have a focus. They were trying to stay afloat. But since then, it’s really, you know, become again the place to be for a great education” (LP3, D). Many lab schools are tied to
tradition and must keep that part of their reputation visible for survival. As one lab school teacher put it, “We’re steeped in tradition around here!” (LP4, MT). Lab preschools that have a long history of existence must be open to changes in teacher training requirements and willing to step outside tradition.

The focus of modern-day lab preschools appears to be returning to the need for quality teacher training as well as child care and research endeavors, as more inter-departmental ties are forming. One department might be the operating or management center of the lab, but several departments can benefit from use of the lab and by working jointly for the three purposes of child care, teacher training and research opportunities. See Table 4.7 for the frequency distribution of department heads of the sites visited.

<table>
<thead>
<tr>
<th>Number of labs</th>
<th>Department Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Family/Consumer Sciences</td>
</tr>
<tr>
<td>2</td>
<td>Psychology</td>
</tr>
<tr>
<td>1</td>
<td>Education (jointly with Psychology)</td>
</tr>
</tbody>
</table>

Table 4.7 – Frequency Distribution of Department Heads of Lab Schools:

Most labs run by Consumer Science Departments started years ago during a time when preschool existed due to mostly an economic need in society. These needs are changing as the work force needs change, and there are also more options for parents when choosing early childhood care. Also, the older labs started out as child care centers for children of university faculty or personnel. That has changed, as lab preschools are one of many options for child care in the areas where they exist. Psychology departments have also been able to view lab schools as part of human study, thus financing them as actual research laboratories. As education departments have a growing need for training sites for teachers, they find ways to team with existing supervision arrangements. Each
lab preschool visited serves students from a mixture of departments, mainly education, psychology, and life sciences. Each supporting institution must find the relationship that would most benefit its community’s needs and the most suitable source for funding.

One of these labs (currently under Human Ecology) is in a transformation process to be run jointly with the department/college of education. One of the sites listed under psychology is run jointly with education. This research shows that lab schools are not solely education department ventures, but a good connection or joint partnership with other departments is useful for administrative organization and financing. This alignment also supports theory and practice connections. At one site where the lab preschool experience is optional for undergraduate education students, it has been found to be very beneficial in teacher training. “They [education personnel] feel that the students who come through the laboratory school practicum have a stronger understanding about early childhood pre-K education, so they’d like to see them ALL [early childhood education majors] come through” (LP4, D). This would also suggest that new lab preschools should consider how to best pool their resources in order to exist both economically and educationally for the benefit of the entire learning community.

Money and space are also big issues for new lab preschools as well as continuation, reviving, or transforming of existing labs. Shifting and shrinking college budgets can create financial burdens for lab preschools. Most subsist mainly from tuition fees, yet often the college pays for utilities, maintenance, and similar costs. One director mentioned how they are always looking for ideas for fundraisers or possible donors (LP4). Like other early childhood care centers, funding always looms as a large concern and key to survival. It is important to remember that these are not for-profit centers.
Most of them just break even and exist for the benefit of improving early childhood offerings (both for preschool children and college students). From the supporting college’s perspective, though, the existence of a lab preschool can attract students to choose that college if it is advertised as a vital part of the college and used as a recruiting tool.

Lab preschools that exist and are functioning hand-in-hand with the supporting institution are models for early childhood teacher training sites. All directors interviewed agreed on the following assets of their lab preschools:

- Admissions draw and recruitment for early childhood education (as well as other disciplines)
- Vital part of a campus community
- Resource for other departments for child research and observation
- Improved practice for field of early childhood teacher training
- Good reputations (from field notes)
- Waiting lists for enrollment (All labs, regardless of size, reported a waiting list.)

The biggest need that all directors mentioned is that lab preschools do need to be advertised and promoted. One director replied to a question about the lab’s most pressing issue is the “need to share your story” (LP1, D), to promote it, and to share its viability. She commented: “I would say story –sharing your story so that people on campus see you as viable and worth the funding that it takes. Sharing your story is very hard, and it takes a lot of time to share your story” (LP1, D). As this research has shown, students often find lab preschools as nice benefits at their colleges after choosing them for other reasons. Since all of the interviewed college students (pre-service teachers) referred to
the discovery of the lab preschools as something similar to “a nice surprise” (LP1, PT), one could conclude that they should be advertised and used in admissions promotions. One director commented, “Many people think we’re here for professors’ children. Well, quite frankly, we would have five children because most of our professors are older. But it’s just those kinds of things [comments] that have to be shared in the community” (LP4, D).

One pre-service teacher shared that her institution is now bringing prospective education majors to the lab preschool on tours, which can also help to be a drawing point. New college students might also be unaware of the benefits of having an on-site lab preschool, as one director acknowledged: “And maybe these young students coming in don’t know the benefits of having a lab school yet. Maybe they’re not familiar enough with the field” (LP1, PT).

Part of the organizational challenge with lab preschools is that preschool has been a portion of teacher training that has not been given significant attention until recently. Early childhood training has focused on kindergarten through grade three. Many enter the field with little or no preschool experience. One director commented on this:

It’s not considered [a priority] because even in the education department[s] students can and do get experience in the public schools, which is where most of them go. The great advantage of having experience here [lab preschool] is that because it’s such a rich environment, because there’s actual state-of-the-art teaching that they can do, rather than just, you know, managing numbers, kids, and paperwork, and that sort of thing. Students don’t really appreciate that until they get out, because they really can’t see the difference. But as you know, there’s an enormous difference. So that really is an advantage. And actually I have students ten years down the road tell me about that when they realize it later...after they’ve had some experience (LP3, D).
Fully immersed lab preschool experiences can encourage some early childhood majors to consider teaching preschool and it is beneficial for them to see how all young students start their first schooling experiences. The existence of lab preschools certainly gives them firsthand experience at the preschool level. One director testified to an increased understanding of preschoolers through lab experiences: “The students who come through the laboratory school practicum have a stronger understanding about early childhood pre-K education, and so we’d like to see them ALL come through” (LP4, D).

One pre-service teacher felt that the required time in their lab preschool was not even enough: “I mean, 40 hours – I know that’s a lot of work – but once you get into it, it’s not… I think it’s prepared me a lot, and when I went into student teaching I knew a lot” (LP5, PT). A graduate student commented on this strength of a lab preschool experience, that it helps to prepare for the final student teaching experience within the same institution: “I think it’s prepared me a lot, and when I went into student teaching I knew a lot. I knew different situations with kids…” (LP5, PT).

Now that requirements are growing at training institutions for preschool teaching preparation, so will the need for placement sites. Another gap to bridge is one between preschool and elementary teaching preparation. When the proportion of field time for each is compared, some training sites have no preschool field experience or very little. Other issues also affect the growth or need for lab preschools, like community requests for full-day programs, kindergarten readiness programs, and other school preparation. One director commented: “I think to support our education department we really need to expand this [lab] to have a full-day program and also to have a kindergarten!” (LP3).
Another need for preschool is created when states change kindergarten entry
dates. If it is moved later in the year, more children will be in preschool for longer
periods of time. The historical uses of lab preschools combined with present and
growing community early education needs support the existence and perhaps creation of
laboratory preschools.

The historical lab preschool marker of the threefold purpose must also be
supported in old, new, or transformed situations. The child care and teacher training
parts come almost naturally with the intended purpose, but not all support the research
aspect equally. Just because the lab preschool exists with observation opportunities does
not make this purpose naturally occur. It must be promoted in college courses as part of
that inter-departmental functioning and working together to make use of the lab preschool
children as a resource.

Collaboration among all members of a lab preschool team, shown to be a key to a
connected experience, must also be supported. To make this function effective, all team
members – pre-service teachers, mentor teachers, and directors should attend regular
meetings (seminars) to collaborate, plan, and share knowledge. At one lab the mentor
preschool teacher was also the instructor of the course, ensuring even more continuity.
This promotes the theory to practice connection and provides the elements for the pre-
service teachers to constructively learn in such a setting. Collaboration with the larger
university is also needed in order to promote unity.

In looking at the main goal of early childhood preschool teacher preparation, each
lab preschool provides this to varying degrees since some of the lab pre-service teachers
have their experiences at different levels (years of schooling) and for various number of
hours. It is important that all early childhood teacher training provide some preschool hands-on experience at some level. A lab preschool situation provides this experience for teacher candidates.

**SUMMARY**

As a result of these findings, laboratory preschools offer a viable educational possibility for training teachers at the preschool level. Lab preschools offer a critical link in facilitating and enhancing early childhood teacher education efforts. They are unique settings for early childhood preschool teacher training. The environment offers the components and cultural tools found to be most effective with adult learners (and especially in teacher training) as they are immersed into the lab context: demonstration, observation, modeling, hands-on application, and feedback and scaffolding from mentor teachers. Collaboration in the form of a seminar or meeting is the connecting component, and learning is mediated among participants. The multiple layers of relationships offer systematic and connected learning experiences, which in turn help bridge theory to practice. Identity is negotiated through the various social interactions (including the wider college community) and the web of cultural influences and interdependence. The interactive, immersed experience results in constructivist learning, where the pre-service teachers learn through experience, guided by the mentor teachers. Lab preschools have a historical tradition of providing three purposes – child care, teacher training, and research. Each part is an important component of this setting and must be utilized for the fullest potential of learning and training to take place. All of these combined features create a challenge to maintain the entity, but at the same time offer a unique and needed
site for training in the preschool sector of early childhood education. Continued and new
lab preschools in the future face several challenges (space, funding, planning, focus,
visibility) to maintain or create these valuable learning and teaching sites.
CHAPTER 5: DISCUSSION

IMPLICATIONS

The goal of this research was to uncover the components at a lab preschool that make it a unique setting for preschool teacher training. Although the five researched sites vary in many ways, the opportunities for working with preschoolers and seeing modeling of teaching are present. Direct opportunities for team planning and collaborating are present due to the connection of the lab with the institution as well as the physical proximity to the campus setting. Opportunities for campus involvement abound. Compared to my experience with teaching at an institution of higher education in the early childhood department where we must make connections with area schools for teacher training, I feel that such a connected experience as these labs offer is incomparable. As much as possible, institutions should strive to provide a laboratory preschool setting for the ultimate preschool teacher training experience.

This is not to say that all lab preschools in existence are ideal. From the data cited, it suggests that they generally do not have the chronic problems that other settings for preschool training might have – such as a lack of connection between the theory and practice realm, college instructors unfamiliar with the preschool functions, no mentor training, under-qualified teachers, and other gaps in creating a bridged or connected experience. However, (as Fernie and Kantor agreed from their studies), laboratory
preschools “are in a unique position to take a lead in exploring educational possibilities” (Goffin & Day, 1994, p.164) and especially, I would add, for the present-day importance of preschool teacher preparation.

Lab preschools are not money-makers or for-profit ventures. However, by attracting more students through admissions for a college, indirectly they can be viewed as for-profit. Labs can also bring more research dollars to colleges. Also, the benefits of the demonstration teaching and experience for teacher training are irreplaceable components that lab schools offer within the college or university community. The university is the lab school’s community! Having a research lab puts a college or university on the map by offering a service to families in the community as well as being accessible to many styles and forms of research. Funding means must come from creative resources and be dependent on the perspective of the use and function of a lab preschool. Support of the connected institution is also vital to the strength and endurance of a lab preschool.

GATHERING INFORMATION

The multiple layers of learning occurring in a laboratory preschool setting create a community of learners. Through sharing their stories, these unique training settings serve as models for other institutions which might be searching for a way to better connect their theory-to-practice endeavors and serve the field of early childhood education. Each lab is unique due to its own culture and design, yet the three-fold purpose of child care, teacher training and research is evident and foundational. There was no one definite prescription,
but with examination of the data of the five labs, all bridged the gap between theory and practice through their multiple layers of relationships, the common seminar component, and similar cultural tools.

As I looked for evidence of best practice, I stopped to consider what this term really means. I found that it was being used in different ways to describe the most state-of-the-art, ideal educational activities. It is difficult to pinpoint a definition, but after looking at several sites, I propose there are many important elements to best practice. These include the activities and teamwork that it takes to prepare teachers for modern situations with diverse children and settings while meeting state mandates and requirements for learning. I had devised a checklist of components that I felt early childhood training centers should include and then I looked for the existence of these components. I found that there was much more than a checklist of attributes to observe at each site. What makes each lab preschool unique is much more than these exemplary characteristics; each one is nestled within its own historical, cultural and traditional setting that sets the stage for its style. No two lab preschools are alike, but that is the part that hallmarks each place and creates the lab’s own story. Some features (for example, research) are stronger at some sites than others, but each one has its special particular characteristics. While this makes it difficult to compare lab to lab or even other preschools, this was not the main intention of this work.

As I interviewed, I found myself inserting more questions in order to know more about the lab preschools. I learned about myself and my role as a researcher, that I work best as a participant observer. Another term that was difficult to process was teacher readiness. When I asked pre-service teachers about this, they talked more about their
training in terms of what I discerned was teacher preparation. I realized that they (the college students) really don’t know if they’re ready, yet they have a sense of adequate preparation for teaching.

I found, as suspected, that all the sites were different due to their cultural settings. The pertinent tools – collaboration, language, relationships – were all there but were found to naturally vary because of the uniqueness of different people involved. Each place used their tools to different measures, as well. For example, at one lab preschool the language was an obvious part of the relational issues between teachers and children. Another variation was the three-fold purpose of child care, teacher training, and research. While all components were present at each site, the balance varied between the three levels. The weakest link was research. It was present but not as prominent or promoted the same at each lab preschool. All directors reported that their school offered research, but the amount and even definition of what constitutes research was found to be different.

LIMITATIONS OF STUDY

The limitations to this study were mostly associated with the small number of sites visited. Therefore, generalizing the findings to a broader population is not feasible. Perhaps more comparative findings could have been reported with more sites included, but I found it more worthwhile to get to know a fewer number of sites well than to visit many and collect limited data. Each lab preschool had so much to see and I was amazed
at the offerings at each one. These were rich findings, and the interviews offered thick
descriptions from many perspectives, thus enriching the details presented in the case
studies.

Methodological limitations such as the following should be kept in mind when
considering that the selected study sites varied in the following ways:

• At two of the sites university enrollment was over 20,000. One site is ranked as
  one of the top ten largest universities in the country.

• At one site there was an infant/toddler program where many preschool students
  began as infants and continued into the preschool program, thus enhancing
  retention and affecting social identity. Another site had an after-school program
  for school-aged children.

• The age of the laboratory preschools varied, from six to over eighty years.

• The tuition for preschool attendance varied and was not reported in this study due
to the varying configurations. Some fees were set at hourly rates, some at weekly
  rates, or varied by age of the child and/or days of attendance.

• The populations at the sites varied as far as ethnic and racial diversity.

• At one site the lab was totally immersed within a college department (on the same
  floor of a building), where preschool children encountered college students on a
daily basis. Two of the labs were located in buildings that existed only for the
  preschool yet were centrally located on campus.

• Not all of the labs were in identical settings with regard to space, enrollment,
  structure, location on campus, and funding sources.
• There was variation across sites due to administrative, structural, and financial differences.

• The sample size might seem small to some and all labs were located in Ohio. (I chose to remain in Ohio because I am familiar with the state academic content standards and licensure requirements).

• The amount of experience and involvement of the interviewed pre-service teachers varied from site to site. They were sophomores in college at two sites, juniors at two sites, and seniors at another. Some had had multiple experiences in the lab preschools throughout their college experience.

• At each site only one or two college students were interviewed. These were often selected by the director or teacher. Insight from more pre-service teachers would offer more opinions and examples.

• My own researcher bias is that I am an early childhood educator who believes in the worth of lab preschools and viewed them from my professional and educational lens.

• As I entered my research, I had an assumption that most lab preschools were managed by departments of education. I approached the research from this lens.
CHALLENGES FOR LAB SCHOOLS OF THE FUTURE

There are multiple perspectives of learning occurring in these laboratory preschool settings. While lab preschools provide model settings for early childhood teacher training due to the components identified in the findings, they do have limitations and concerns linked mostly to their supporting institutions. Due to varying degrees of support from their institutions, not all lab preschools live up to these expectations.

Lab preschools face both external and internal challenges. The external challenges include shrinking university budgets, retrenching staff members, shifting child care needs of families, competition for space in the university environment, and society’s low regard and salaries for professionals in preschool education. Today’s changing family demographics with more single-parent families and more parents in the work force create a greater need for child care and early learning facilities. These internal factors have implications such as limitations in funding, space, and staffing. Neglect of any one has potentially adverse affects on another (McBride, 1996).

Many lab schools have been experiencing decreasing financial support for their programs because of the shrinking resource base available at most supported colleges and universities (McBride, 1996). While child development lab schools are vulnerable for many reasons beyond financial issues, funding dilemmas loom as one of the most serious threats to these programs (McConnaha, 1999). “How can it be that campus laboratory programs, the spawning grounds for basic research and educational innovations, face
harder-than-ever battles for survival?” (Brown and Freedman, in McBride and Barbour, 2003, p.39). The struggles of today’s child development laboratory programs in the areas of funding, collaboration, research, training, and service are not unique to our times and have plagued lab programs in the past as well (Barbour, 2003).

A 1999 report on recommendations for strengthening campus early childhood laboratory schools included this objective: “Campus early childhood laboratory schools must continue to strive to be exemplary early childhood programs” (Lindauer & Austin., 1999, p.60). University lab preschools can be exemplary by offering the best in practice and updated knowledge from the college education departments’ state requirements, therefore increasing the likelihood of quality preschool education for children. “They should be exemplary programs in the field of education, with the flexibility to be innovators and experiment with the newest curriculum” (Gilbert, 1999, p.71).

Recommendations for strengthening campus early childhood laboratory schools have been offered to keep them as partners in teacher education programs: (Gilbert, p.71-73)

- The curricula of campus lab schools should reflect the various theoretical foundations and frameworks present in early child care and education.
- The faculty at campus lab schools must serve as mentors, allowing for student questioning, probing, evaluating, demonstrating, supervising, and making mistakes.
- Lab faculty should translate text content into real action and aid in solidifying understanding of university course objectives and translation from theory to practice.
The mode of inquiry and reflective decision-making must be practiced at the lab schools and embedded within the early childhood teacher education programs.

Campus early childhood laboratory schools must continue to strive to be exemplary early childhood programs.

Campus early childhood lab schools must continue to be a liaison between the university and the early childhood community.

The lab schools of tomorrow, especially in the wake of the importance of quality preschool education, have a huge role to play. Toward the end of the past decade, a reform was needed, as laboratory, demonstration, and clinical schools were perceived as having failed to prepare tomorrow’s teachers. Needed was a new kind of laboratory school founded on a collaborative relationship between schools and universities (Holmes Group, 1990). Such a reform would lead to “better schools and better teachers through better education” (McBride & Barbour, 2003, p.115). Studies by Horm & Warford (2003) show that the benefits of collaboration are far-reaching. It is important for a lab preschool staff to recognize and capitalize on the benefits of collaboration to the broader university. They add that it is also important to build a strong lab school internally. “We believe that collaboration is the key to building the internal strength” (McBride & Barbour, p.159). Consistency between early childhood education courses and the lab preschool practices is necessary to fully achieve the potential and purpose of the lab training (Horm-Wingerd et al., 1999). The most important strategy to employ to financially protect child development laboratory schools is to align the program to the mission of the supporting institution. It should be an integral part of an academic
program (McBride & Lee, 1995). Lab school administrators and staff need to be knowledgeable of the mission of their institution and make sure that their program meets all the criteria (Lindauer & Austin, 1999).

High quality and dynamic laboratory schools can adapt to changing needs and resources and represent important links between departments, colleges, and the community. They can also meet the research, teaching and service needs of their sponsoring institutions (Wright, in McBride and Barbour, 2003). Lab schools should continue to play an important role in bridging theory, research, and practice in the field of early childhood education.

FUTURE RESEARCH DIRECTIONS

In further steps to this research, I would like to include another perspective, that of the parents. This layer of lab preschools could be included for a more in-depth understanding about the parents’ role. I asked the lab school personnel about parent involvement, but I think their personal perspective about the learning and their choice of a lab preschool would add to my findings. Another line of inquiry to pursue would be that of encouraging the teams at these innovative training sites to play more active roles as a liaison to their larger early childhood communities. I feel that there is so much to offer in the way of teaching and role modeling at lab preschools. While there are multiple layers of learning and teaching occurring, so much could be gained from the modeling done at these sites. Another area to research would be to interview graduates from the early childhood sector to ask them about their sense of teacher preparation after being on their own on the job a couple of years. Another possibility would be to explore
the relationship between pre-service teachers’ lab preschool experiences and their resulting performance on state-mandated tests after enough of such information could be gathered.

While I made the point clear that lab preschools must have good relationships with their supporting institutions, I did not delve into this topic in great detail. The nuts and bolts are not the details readily shared with a researcher and my questions were geared more toward describing the training process for teachers. For specific suggestions about funding a new lab school initiative, I would talk more specifically with directors and institutional administrators about such details.

A hopeful result of this research is to provide models for more colleges and universities to engage in such collaborative, connected efforts for teaching training. I had an assumption as I entered my research that most lab preschools were managed by departments of education, and I quickly learned that there is a variety of approaches to design. My hope was to show that the existence of a lab preschool could increase education enrollment. While this information was difficult to obtain, I believe that admissions departments (where lab preschools exist) should be sharing these little secrets (as I found most of them to be) and using them as a tool for an admissions draw. At this point it is difficult to show a quantified connection between education student enrollment and lab preschool existence mainly because students have not been aware of the labs until after getting involved in their training.

Furthermore, I encourage colleges and universities that do not currently have lab preschools to consider how such an addition could benefit the entire campus community for admissions, interdepartmental ties, community building, and expansion of human
resources. The biggest challenges are money restraints (budgeting), space and support from the universities. A close look at the advantages of existing lab preschools is an encouraging impetus for consideration of how such additions or arrangements for early childhood training could become realities. In the face of accountability and high expectations of future teachers, we must strive to prepare them in the best ways possible. There are other ways of providing these connected field experiences by partnering with area preschools and providing professional development to prepare the mentor teachers. Having a liaison between the college and the preschool is one way to start and perhaps pave the way for the growth of a lab preschool. As two of my mentors (Fernie and Kantor, 1994) have also mentioned, I envision other similar educational possibilities in which an academic faculty would share a close relationship with a community-based early childhood program and provide a comparable connected preschool experience for prospective teachers like lab preschools offer.

CONCLUSION

Lab preschools are settings for pre-service teacher training that offer connected experiences for the needed purpose of connecting theory and practice. Lab preschools offer such experiences due to their child-centered approaches and developmentally appropriate practices. They offer enriching environments within the wider university campus setting. Although they share a common history and commitment to the threefold mission of child care, teacher training and research, they vary in the ways their programs are structured. Each lab preschool must delicately balance these three historical elements to retain or revive their original intention. Starting a new lab preschool would be a
monumental task with many challenges to overcome, but it would offer an effective resource for training early childhood teachers in the preschool field and provide opportunities for research to the entire college community.

Most importantly, this research shows that a lab preschool is an effective site for training teachers with demonstration, observation, modeling, and hands-on application opportunities within the setting. This is a critical link for theory and practice in the field of early childhood education and teacher training because of the partnership between the college training of teachers and the practical application of working with the children all in one connected setting. Lab preschools provide a framework for integrating course content with lab or field experiences, thereby increasing horizontal expertise between these two important parts of teacher training and bridging theory to practice. The preparation of teachers of the very youngest learners is foundational to their future learning and lifelong success, and lab preschools can offer a viable solution to this monumental task of the early childhood field. Lab preschools can play a leading role in preschool teacher preparation and inform the field of early childhood education.
APPENDIX A

INQUIRY LETTER AND PERMISSION FORM
Letter of Inquiry to Lab Preschools

Dear Educational Institution,

I am writing to inquire if your college or university has a laboratory preschool that I might visit for purposes of my doctoral research. First, let me share my working definition of a lab school. By laboratory preschool I am referring to a child care center that is affiliated with the university/college. I am looking for the elements that a laboratory preschool by definition includes: A lab school provides early childhood education and a site for students training to be early childhood educators. These students have an apprenticeship with a mentor teacher in the preschool. Training methods used include demonstration, observation, modeling, hands-on practice/application and feedback from mentor teachers. The school is affiliated with the educational training institution (college or university).

Please respond IF your institution has such a site and if you are willing to have me visit and observe. I am looking at the three-fold function of lab schools: to facilitate and support teaching, research and outreach activities. I hope to show through my research endeavors that lab preschools offer a unique and effective approach to training early childhood educators. Since other research has shown that young children’s learning and development clearly depends on the educational qualifications of their teachers, the training of early childhood teachers is clearly crucial.

Please include in your response whether or not your school is a state accredited training site, as well as its size and mission. If I choose to visit your school, I will ask you to sign a consent form granting me permission to observe. I will be particularly observing the pre-service teachers and mentor teachers. However, since the young
children are present in the room, please let me know if there are any additional agreements that I must acquire and sign in order to be in the classrooms. I will not be using the names of any children, and the information will be used solely for my dissertation case study.

Thank you for your time and advocacy for the training of teachers and the pursuit of research. You may return the information to this e-mail address: lgrine@heidelberg.edu or by responding to me at the following address:

Mrs. Lori Grine
6939 S. St. Rt. 231
Tiffin, Ohio 44883

Sincerely,

Lori E. Grine
Doctoral Candidate at The Ohio State University
Permission Statement:

I hereby grant Lori Grine, OSU Doctoral Candidate, permission to visit _______________________________ on ____________________ for the purpose of observing in the lab preschool.

She will be observing the preschool teachers, pre-service teachers (college students), as well as their interactions with the preschool children. It is understood that she will be taking field notes and hopefully interviewing an administrator, teacher and pre-service teacher. The information collected will be used for the sole purpose of describing (in the form of a case study) a quality lab school as a teacher training site. The case study will be used for a dissertation. No names, photos or written work of children will be collected or used. The observation and writing will be about the adults – teachers and pre-service teachers, and their interactions for early childhood teacher training.

Signed, ___________________________ date___________

Thank you for your time and cooperation for my research efforts.

Lori Grine

Doctoral Candidate
The Ohio State University
Revised 2-10-06
APPENDIX B

CONSENT FORM
The Ohio State University Consent to Participate in Research

Study Title: Laboratory Schools: A Critical Link in Enhancing and Facilitating Preschool Teacher Education

Researcher: Dr. Mary Jo Fresch (PI)

Sponsor: The Ohio State University

This is a consent form for research participation. It contains important information about this study and what to expect if you decide to participate.

Your participation is voluntary.

Please consider the information carefully. Feel free to ask questions before making your decision whether or not to participate. If you decide to participate, you will be asked to sign this form and will receive a copy of the form.

Purpose:
You are being asked to participate in this study of the pre-service teacher training process at laboratory preschools in order to help the researcher more accurately describe what happens as part of this partnership.

Procedures/Tasks:
The researcher will visit the lab preschool. She will observe the interactions between pre-service teachers, mentor teachers and professors, and take field notes. An observational checklist (devised by researcher) will be used to look for common features or components. The researcher will also interview the director, a pre-service teacher and a mentor teacher. Interviews will be audio-taped in order to aid the researcher in recording data. Documents such as preschool pamphlets, brochures and parent handbooks will be obtained. Then the data will be coded and analyzed. The research will be written up in the form of descriptive case studies. Member checking could involve return visits to sites for participants to verify data.

Duration:
The researcher will be at the study site for 1-2 days. Most of the data will be secured via researcher observation. The participants’ time involvement above and beyond normal classroom time would involve a half-hour to one-hour interview. The researcher may need to return for member checking of data.
You may leave the study at any time. If you decide to stop participating in the study, there will be no penalty to you, and you will not lose any benefits to which you are otherwise entitled. Your decision will not affect your future relationship with The Ohio State University.

**Risks and Benefits:**
No risks. Benefits include helping to further research in your field to inform and improve theory and practice in the field of early childhood education. You will not benefit directly from participating in this study.

**Confidentiality:**
The focus of the study is on the adults in the lab schools and their interaction for teacher training purposes. No names, work or pictures of children will be used, as they are not the focus of the study. Efforts will be made to keep your study-related information confidential. Data will be stored in files (separate for each research site) at the researcher’s home and eventually on a computer. However, there may be circumstances where this information must be released. For example, personal information regarding your participation in this study may be disclosed if required by state law. Also, your records may be reviewed by the following groups (as applicable to the research):
- Office for Human Research Protections or other federal, state, or international regulatory agencies;
- The Ohio State University Institutional Review Board or Office of Responsible Research Practices;
- The sponsor, if any, or agency (including the Food and Drug Administration for FDA-regulated research) supporting the study.

Upon conclusion of the study the records will remain in confidential storage for use in potential future writings and use of the research data.

**Incentives:**
Participants will not be paid to participate in the study.

**Participant Rights:**

You may refuse to participate in this study without penalty or loss of benefits to which you are otherwise entitled. If you are a student or employee at Ohio State, your decision will not affect your grades or employment status.

If you choose to participate in the study, you may discontinue participation at any time without penalty or loss of benefits. By signing this form, you do not give up any personal legal rights you may have as a participant in this study.
An Institutional Review Board responsible for human subjects research at The Ohio State University reviewed this research project and found it to be acceptable, according to applicable state and federal regulations and University policies designed to protect the rights and welfare of participants in research.

Contacts and Questions:
For questions, concerns, or complaints about the study you may contact Lori Grine at 419-447-1673 or 419-939-3811.

For questions about your rights as a participant in this study or to discuss other study-related concerns or complaints with someone who is not part of the research team, you may contact Ms. Sandra Meadows in the Office of Responsible Research Practices at 1-800-678-6251.

If you are injured as a result of participating in this study or for questions about a study-related injury, you may contact the person named above.

Signing the consent form:
I have read (or someone has read to me) this form and I am aware that I am being asked to participate in a research study. I have had the opportunity to ask questions and have had them answered to my satisfaction. I voluntarily agree to participate in this study.

I am not giving up any legal rights by signing this form. I will be given a copy of this form.

Printed name of subject

Signature of subject

AM/PM

Date and time

Printed name of person authorized to consent for subject (when applicable)

Signature of person authorized to consent for subject (when applicable)

AM/PM

Relationship to the subject

Date and time
**Investigator/Research Staff**

I have explained the research to the participant or his/her representative before requesting the signature(s) above. There are no blanks in this document. A copy of this form has been given to the participant or his/her representative.

Lori E. Grine

Printed name of person obtaining consent

Signature of person obtaining consent

_________________________ AM/PM

Date and time
APPENDIX C

INTERVIEW GUIDES
**Interview Questions for Lab Preschool Director**

1. What is your preschool enrollment? What is the teacher/student ratio?

2. Do you have a waiting list? What is your retention rate?

3. How many pre-service teachers are involved with the preschool? How dependent are you on them for staffing? Are they included in your teacher-child ratio?

4. Describe your mentoring program (between teachers and college students). How do you prepare/train the pre-service teachers? …the cooperating teachers?

5. What are the roles of the pre-service teachers (college students)?

6. What are the pre-service teachers taught in their coursework and how does this carry over to the lab school practices?

7. What is the mission of this early childhood care center? Does it align with the supporting institution?

8. From what you know from community feedback, how do the area kindergarten teachers feel about the school readiness and kindergarten preparation that preschoolers receive here?

9. Does this lab school serve the traditional role of education, service and research?

10. What do you feel are the school’s benefits to teacher training? What components make you different from others? Do you provide “best practice?” (for example, hands-on experience, proximity, collaboration, parental roles, etc.)

11. How is the school funded?

12. Do you utilize other departments on campus? Community involvement?

13. What are the most pressing issues with the lab school at this time?

14. Does the lab preschool offering for teacher training enhance the institution’s education department enrollment?

15. Is there anything else you would like to share with me about the lab preschool that would assist me in describing the center (in addition to the above information)?
Interview Questions for Collaborating or Mentor Teacher

1. How much and what kind of training do you provide the student teachers?

2. What is the level of pre-service teacher involvement in the preschool?

3. How do you transition pre-service teachers from observation to practice teaching?

4. How do you bridge the gap between theory and practice?

5. Do you integrate student course content into your teaching in the preschool?

6. How do you collaborate with pre-service teachers? (reflection, journaling, etc.)

7. What do you feel are the benefits of lab school training for pre-service teachers?

8. What benefits does the lab school provide to you as the teacher?

9. Do you implement students’ observations in your planning and implementing of curriculum?

10. Do you feel that this lab school enhances early childhood educational enrollment for the institution?

11. What components make you different from other teacher training institutions? (for example, hands-on experience, proximity, collaboration, parental roles, etc.)

12. Is there anything else that you would like to share with me about your program?
Interview Questions for Pre-Service Teachers

1. Why did you choose this particular institution for teacher training? (Was the laboratory preschool part of your decision?)

2. Describe your amount and level of involvement with the preschool children.

3. Do you (or did you) gradually transition from observing to teaching?

4. Do you feel you are making connections between theory (coursework) and practice? If so, what enables you to do so? (Please give specific examples.)

5. How much, when and how do you collaborate with your mentor or cooperating teachers?

6. What components do you feel are unique about the laboratory preschool?

7. Please comment on the following components of this lab school:
   a. proximity (availability, connection to campus, etc.)
   b. observation opportunities (both of children and modeling teachers)
   c. hands-on experience with the children
   d. teaching readiness

8. Is there consistency between education courses and lab school practices, allowing you to integrate course content?

9. Is there anything that you feel would improve your teacher training opportunities?

10. Is there anything else that you would like to add to help me gain an accurate picture of the opportunity that this lab preschool offers to you as a teacher-in-training?
BIBLIOGRAPHY


