PREFERENCE FOR TRAIT VERSUS BEHAVIORAL PREDICTORS: THE ROLE OF SITUATIONAL SIMILARITY AND ABSOLUTE VERSUS COMPARATIVE BEHAVIOR DESCRIPTIONS

A Thesis
Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts

by
Cynthia A. Burnhoff, B.A.

The Ohio State University
1978

Approved by
[Signature]
Advisor
Department of Psychology
ACKNOWLEDGEMENTS

The author would like to express her gratitude to Dr. Herbert L. Mirals, who served as thesis advisor, for his insightful direction and his generously given time, thoughts and concern.

The author would also like to thank Dr. J. Dennis Nolan and Dr. Curtis A. Sandman for their time and interest.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER I: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II: Method</td>
<td>7</td>
</tr>
<tr>
<td>Subjects</td>
<td>7</td>
</tr>
<tr>
<td>Design</td>
<td>7</td>
</tr>
<tr>
<td>Procedure</td>
<td>7</td>
</tr>
<tr>
<td>The booklets</td>
<td>8</td>
</tr>
<tr>
<td>Additional Study</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER III: Results</td>
<td>14</td>
</tr>
<tr>
<td>Additional Study</td>
<td>16</td>
</tr>
<tr>
<td>CHAPTER IV: Discussion</td>
<td>20</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX I</td>
<td>25</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>47</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Graphic portrayal of the cell means for the three-way analysis of variance</td>
</tr>
<tr>
<td>2</td>
<td>Graphic portrayal of the simple Sex X Similarity interaction tests for males and females under different wording conditions</td>
</tr>
<tr>
<td>3</td>
<td>Graphic portrayal of the cell means for the three-way analysis of variance- Additional Study</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

The role of person and situation factors and of person by situation interactions in the determination of behavior is not a new issue in psychological theory. Recently, however, a controversy of significant proportions has emerged within this area due, in large part, to the various conclusions drawn with respect to empirical studies of personality consistency. This research (see Bowers, 1973; Endler, 1973; Mischel, 1968, 1973) has examined the cross-situational consistency of behavior and the questions most of these investigators have attempted to answer involve the issue of the relative contributions of dispositional and environmental factors in the determination of behavior (e.g. Alker, 1972; Bem, 1972; Bem & Allen, 1974; Block, 1968, 1977; Bowers, 1973; Ekehammar, 1974; Endler, 1973; Mischel, 1968, 1973; Wallach & Leggett, 1972; Takala, 1975).

Traditionally, trait theories have attempted to account for behavior in terms of broad, stable personality dispositions (e.g. hostility, creativity, nurturance) which presumably influence an individual's behavior across a wide range of situations. According to this view, an individual's score on a test designed to assess a particular disposition is an index of the person's standing on a latent continuum for that disposition. Further, the position on the continuum is presumed to be predictive of the individual's behavior in all situations.
which engage the disposition in question. The broad influence of these generalized traits is seen by these theories to be the major source of personality consistency.

In sharp contrast to the foregoing view, social learning and behavioral orientations argue that there is little evidence to support the explanatory value of the highly generalized trait concepts and thus emphasize the importance of situational influences on behavior.

Concerning their implications for the prediction of behavior, these two divergent positions are cogently summarized by Mischel, Jeffery and Patterson (1974):

"The trait model implies that behavior can be predicted best from inferences about an individual's basic dispositions. Thus when making predictions, trait theorists have relied on a host of personality tests (and/or clinical judges) to infer underlying global personality traits. Advocates of the behavioral model, on the other hand, question the usefulness of inferences regarding generalized dispositions for predicting behavior, arguing that behavior tends to be highly discriminative and situation-specific. Therefore they search for a sample of behavior relevant to the criterion in order to make predictions (p. 232)."

Given these contrasting views of professional psychologists, Mischel et al. undertook an investigation of the layperson's preference for the two types of information (trait and behavioral) as predictors of behavior. Assuming that the layman would perhaps be more flexible in his information preferences than advocates of either the trait or behavioral approaches, the authors suggested that an understanding of factors influencing the layman's informational preferences may provide clues as
to the conditions under which trait and behavioral approaches are more appropriate. Subjects in their study were given information about a person (e.g., Paul is a junior biology major who is a member of his college track team,) and about a situation in which the person is involved (e.g., Paul's track team has weekly meets with teams from other schools.). Subjects were then asked to consider a predictive question concerning the person's future behavior (e.g., How many hours will Paul spend training for next week's track meet?) and to indicate whether in making this prediction they would prefer to have either behavioral information (e.g., The number of hours that Paul spent training for last week's track meet, according to an observer,) or trait information (e.g., an estimate of how hardworking Paul is, according to his best friend.). The study was primarily addressed to the question of how preference for behavior versus trait information is affected by the similarity between the situation for which the behavior was to be predicted and the one for which past behavioral data were available.

The following two items exemplify information preference problems in which the predictive and past behavioral information are highly similar (Problem A) and highly dissimilar (Problem B).

Problem A

Person: Paul is a junior biology major who is a member of his college track team.
Situation: Paul's track team has weekly meets with teams from other schools.
Prediction: How many hours will Paul spend
training for next week's track meet? (Your answer should be in numerical form.)
Information that you may choose amongst (Check one choice)

the number of hours that Paul spent training for last week's track meet, according to an observer.

an estimate of how hardworking Paul is, according to his best friend.

Problem B

Person: Paul is a junior biology major who is a member of his college track team.
Situation: Paul's track team has weekly meets with teams from other schools.
Prediction: How many hours will Paul spend training for next week's track meet? (Your answer should be in numerical form.)
Information that you may choose amongst (Check one choice)

the number of hours that Paul spent studying for last week's biology quiz, according to an observer.

an estimate of how hardworking Paul is, according to his best friend.

The major findings of this study were that subjects showed a definite preference for behavioral information when the conditions were similar (Problem A) and a definite preference for trait information when conditions were dissimilar (Problem B).

In an additional study reported in their paper, the authors investigated the effects of the phrasing of both the predictions to be made and the information about past behavioral situations for which data was available. For half of these subjects predictions were stated in absolute form (as in the above examples) and half were stated in comparative form (e.g. "How much time will Paul spend training for the next weekly track meet, compared to others on the team?"). Similarly, for half of the
subjects information about the past behavior was printed in absolute form (as in the above examples) and half were presented in comparative form (e.g., "How much time Paul spent training for last week's track meet, compared to others on the team.").

From the description of the methodology it is not possible to ascertain whether variation in the phrasing of the predictions and variation in the phrasing of the past situations were independent as in a factorial design. In any event, no significant effects were found for the absolute-comparative variable.

In spite of these negative findings, there is sufficient reason to warrant further investigation of the effects of this phrasing variation on preference for behavioral versus trait information. Consider sample Problem B on page 4. Here, not only are the prediction and past situations highly dissimilar, but it is difficult to understand how information about the number of hours Paul spent studying for biology could be utilized for a prediction about the amount of time he will spend training for his track meet. More specifically, the absence of normative data with respect to time spent in

1 There is ambiguity concerning this aspect of the study because the only information which is given is that which is stated above and this is contained in a footnote. Thus, it is unclear whether subjects in this earlier study were independently placed into either an absolute or a comparative wording condition or if a subject received both absolute and comparative wording in the same questionnaire. In the present study, subjects received only absolute or comparative wording depending upon the condition to which they were randomly assigned.
preparing for a biology quiz and a track meet makes it
difficult to know whether any given amount of time (e.g.
4 hours) is a great deal of time or very little time. Not
having this normative data precludes an easy placement
of Paul on the relevant trait dimension of lazy-hardwork-
ing. The provision of this type of information would
facilitate dimensional placement which might then be seen
as relevant to the prediction of other behaviors indica-
tive of the trait. Thus, comparative phrasing of both
the past and the prediction situations should increase
subject’s preference for behavioral as opposed to trait
information, particularly when the two situations, al-
though dissimilar, are relevant to and engage the same
trait dimension. Preference for behavioral information
when the past and predictive situations are highly similar
(or identical) will be naturally high and should show
relatively little increase with comparative wording.

The present study is in essence a replication of the
Mischel, Jeffery & Patterson (1974) investigation with the
important difference that the absolute versus comparative
variable is made more salient to subjects. As just noted,
the major hypothesis is that the introduction of compara-
tive wording in the statements of both prediction and
past behavioral situations should increase preference for
behavioral statements when the two situations are topo-
graphically dissimilar but relevant to the same under-
lying personality disposition.
CHAPTER II

METHOD

The following description of the methodology borrows heavily from the Mischel, Jefferies & Patterson (1974) article which provided the basic procedure for this study.

Subjects

Subjects were 55 male and 103 female undergraduates at Ohio State University who participated in order to partially fulfill an introductory psychology course requirement. Up to twenty-five participants were seen in a given experimental session.

Design

Within a 2 x 2 x 2 factorial design, male and female subjects were assigned to four experimental conditions defined by the independent manipulation of similarity between task and prediction situations (high vs. low) and phrasing of the situations (comparative vs. absolute). The major dependent variable was the frequency of subjects' preference for behavioral as opposed to trait information as an aid in making predictions.

Procedure

By pre-arranged sequencing of booklets, male and female subjects were assigned to the four conditions generated by the factorial combination of the similarity and phrasing variables (similar-absolute phrasing; dissimilar-absolute phrasing; similar-comparative phrasing; dissimilar-comparative phrasing).

After all subjects for a given session arrived, the
experimenter distributed the booklets and described the study as an investigation of "the kinds of information people find valuable when making predictions about another person's behavior." Subjects were then told that each page in the booklet described a person about whom they would be asked to make a prediction. It was further explained that subjects would be choosing which of two types of information they would prefer for making each of the predictions. On the cover sheet of the booklet the instructions were summarized as follows:

"This study is designed to investigate the kinds of information people find valuable when making predictions about another person's behavior. Each of the following pages in this booklet presents a situation about which you will later be asked to make a prediction. As an aid in making this prediction you will have a choice of receiving one of two pieces of information. For the time being do not make the prediction. Simply read about each situation and then place a check next to the one piece of information which you prefer to receive as an aid for making your predictions."

After completing the information preference items, subjects were asked to fill out a questionnaire not directly concerned with the present report.

As the subjects finished, the experimenter collected the booklets, thanked the subjects, and made arrangements for informing subjects about the results of the study at the end of the academic quarter.

The Booklets

Four different types of test booklets, each corresponding to one of the conditions generated by the fact-
orial combination of the similarity and phrasing variables, were employed. Each of the four items in the booklet represented the same factorial combination.

As noted, the major manipulations were (a) the degree of similarity between the predictive situation and the past behavioral information which was to be made available (similar vs. dissimilar) and (b) the nature of the phrasing of the situations (absolute vs. comparative). Following are sample pages, one from each type of booklet.

Similar situation - Absolute phrasing

Person: Dave is a junior biology major who is a member of his college track team.
Situation: Dave has weekly quizzes in his biology course. Later on you will be asked to make the following prediction about Dave:

Prediction: How many hours will Dave spend studying for next week's biology quiz? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check next to A or B below.

A. The number of hours Dave spent studying for the last three biology quizzes, according to an observer.

or

B. An estimate of how hardworking Dave is, according to his best friend.

Dissimilar situation - Absolute phrasing

Person: Dave is a junior biology major who is a member of his college track team.
Situation: Dave has weekly quizzes in his biology course.
Later on you will be asked to make the following prediction about Dave:

Prediction: How many hours will Dave spend studying for next week's biology quiz? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check next to A or B below.

A. The number of hours Dave spent training for the last three track meets, according to an observer.

or

B. An estimate of how hardworking Dave is, according to his best friend.

Similar situation - Comparative phrasing

Person: Dave is a junior biology major who is a member of his college track team.

Situation: Dave has weekly quizzes in his biology course. Later on you will be asked to make the following prediction about Dave:

Prediction: Relative to the others in his class, how many hours will Dave spend studying for next week's biology quiz? (To be answered later)

Far fewer Somewhat About the Somewhat Many more
hours than average num- more hours than most others
most others ber of hours hours than

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check next to A or B below.

A. Relative to the others in his class, the number of hours Dave spent studying for the last three biology quizzes, according to an observer (e.g. far fewer hours than most of the others, some-
what fewer hours, etc.).

or

B. An estimate of how hardworking Dave is, accord-
ing to his best friend.

Dissimilar situation - Comparative phrasing

Person: Dave is a junior biology major who is a member of his college track team.

Situation: Dave has weekly quizzes in his biology course. Later on you will be asked to make the following prediction about Dave:

Prediction: Relative to the others in his class, how many hours will Dave spend studying for next week's biology quiz? (To be answered later)

<table>
<thead>
<tr>
<th>Far fewer hours than</th>
<th>Somewhat fewer hours</th>
<th>About the average number of hours</th>
<th>Somewhat more hours than</th>
<th>Many more hours than most others</th>
</tr>
</thead>
</table>

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check next to A or B below.

A. Relative to the others on the team, the number of hours Dave spent training for the last three track meets, according to an observer (e.g. far fewer hours than most of the others, somewhat fewer hours, etc.).

or

B. An estimate of how hardworking Dave is, according to his best friend.

In addition to the examples above, all of which deal with the attribute "hardworking", each booklet contained three other items having to do with the attributes "prompt", "perfectionistic", and "talkative". For each of these
attributes, information was presented from one of the two past situations. Closely following Mischel et al., these behavior combinations were: prompt (arriving for a Chemistry class, arriving for a tennis class); perfectionistic (typing a term paper, typing a personal letter); talkative (attending a dorm party, attending a wedding reception). The complete booklets for each of the four conditions are given in Appendix I.

As in the Mischel et al. study, the trait information was always described as having been supplied by the stimulus person's "best friend", and the behavioral information was always described as having been supplied by an "observer". 2

Additional Study

Again following Mischel et al., an additional study was conducted in which another group of subjects (16 males and 16 females) were asked to respond to all 16 information preference items. Thus, in this within-subjects design all subjects were exposed to each of the four conditions presented in random sequence for each subject. These items

2 The reasons for this are given by Mischel et al.: "In pretesting, no source of either trait or behavioral information was specified. It seemed, however, that subjects had ready but idiosyncratic speculations about the reliability of possible sources. As an attempt to control for this sort of variation in the present study, sources were specified for both trait and behavioral information. We sought to attribute each sort of information to a source which would be regarded as reliable by most, if not all, of our subjects. Accordingly, descriptions of trait information to be supplied were always attributed to the stimulus person's "best friend" (who, presumably, would be in a good position to supply such information). Like-
differed only in the names which were substituted in order to avoid repetition. Thus, in the within-subjects booklet, each of the sixteen stories was concerned with a different hypothetical person (see Appendix II).

wise, the descriptions of past behavioral information to be supplied were always attributed to an "observer" (who, presumably would not have been as readily distracted from observing the stimulus person's behavior as if he were a participant, e.g., a friend). In this way, we sought to establish high credibility for both trait and behavioral information (p.236)."
CHAPTER III
RESULTS

A three-way analysis of variance (Similarity: high vs. low X Wording: absolute vs. comparative X Sex) was computed on the number of behavioral choices made by each subject across the four stories. Cell means are shown in Figure 1.

A significant main effect was obtained for similarity, \(F(1,150) = 14.68, p < .001 \), with subjects preferring behavioral information when similarity was high and trait ratings when similarity was low.\(^2\) None of the two-way interactions was significant, however there was a significant three way Similarity X Wording X Sex interaction, \(F(1,150) = 5.10, p < .025 \), which reflected major sex differences in the obtained preferences for either trait or behavioral information.

Considering first the findings shown on the left of Figure 1, it can be seen that with absolute wording males showed a much stronger preference for behavioral information when the prediction and post situations were similar or identical than when these situations were dissimilar, \(F(1,150) = 8.20, p < .01 \). However, introduction of comparative wording severely attenuated this differential preference (\(F(1,150) = .544, p > .1 \)). The difference in the

\(^2\) Given that there were four forced-choice information preference items, a subject's behavioral preference "score" could range from 0 to 4. Thus, for a given condition, means higher than 2.0 indicate a relative preference for behavioral as opposed to trait information; means less than 2.0 indicate the converse preference.
Figure 1. Graphic portrayal of the cell means for the three-way analysis of variance:
Main Study

* number of subjects in each cell
pattern of information preference under absolute and comparative wording is reflected in the simple Similarity X Wording interaction for males, $F(1,150) = 5.43$, $p < .05$.

Unlike males, female respondents did not show a significant Similarity X Wording interaction, nor were any of the within contrasts significant with the exception of a main effect for the Similarity variable, $F(1,150) = 4.94$, $p < .05$.

The divergence in these patterns of preference generated by male and female respondents is evidenced in a comparison of the simple interaction tests for males and females under different wording conditions. As Figure 2 shows, there is a significant Sex X Similarity interaction under absolute wording conditions, $F(1,150) = 7.46$, $p < .01$, but not under comparative wording conditions, $F(1,150) = .254$, $p > 1$. Thus, under conditions where wording was absolute males and females differed significantly in their informational preferences. Males significantly more often preferred behavioral information when similarity was high and trait ratings when similarity was low. Females, however, did not show these specific preferences, preferring behavioral information relatively more often under both high and low similarity.

Additional Study (Within Analysis)

Cell means for the three-way analysis of variance with all subjects receiving all combinations of conditions are shown in Figure 3. Again, subjects showed a greater preference for behavioral information when similarity was
Figure 2. Graphic portrayal of the simple Sex X Similarity interaction tests for males and females under different wording conditions.
Figure 3. Graphic portrayal of the cell means for the three-way analysis of variance
Additional Study N= 30

Mean Number of Behavioral Choices

Males (16)
3.4
3.3
3.0
2.5
2.0
1.5
1.0

��

Comparative
Absolute

low

Females (16)
3.1
2.9
2.4
1.9

高

Comparative
Absolute

SIMILARITY

low
high than when similarity was low, F(1,30) = 27.87, p < .001, but there were no other main effects or interactions which reached significance. As in the main study, males tended to prefer behavioral information when similarity was high and trait information when similarity was low. However, wording variations did not result in the significant effect which they did in the between-subjects study, although the trend was in the same direction.

As in the between-subjects study, female respondents did not show the large preferential differences that males exhibited when similarity was varied between high and low and wording was absolute. Again, as in the main study, there was no indication that wording differences had an effect on female informational preferences, although comparative wording did result in higher means under both high and low similarity for females in this study.
CHAPTER IV
DISCUSSION

There are two important results of this study. One is the effect of wording variations on the choice of trait or behavioral information for males. The other is the markedly contrasting preferential patterns generated by male and female respondents.

In the case of males, the introduction of comparative wording resulted in a reversal of their preference for trait information when the relation between the predictive end past situations was dissimilar. In other words, although the behaviorally stated information was topographically dissimilar to the situation to be predicted, it was more valuable to males than the more general trait information when it was worded in comparative form. This substantial difference was predicted by the major hypothesis of this paper, however the significant sex differences were not anticipated.

Thus, it appears from these results that, at least for males, wording differences were made more salient (as indicated by the significant Similarity X Wording interaction) in the present study than they were in the earlier Mischel et al. (1974) study. Therefore, it appears that this normative data 1) facilitated male respondents' placement of the person (to whom they were introduced) on a dimension relevant to the particular trait in question (i.e., hardworking), and 2) as a result was more valuable to them for purposes of prediction.
Unlike males, female respondents were not influenced to the same degree by the Similarity distinctions of high vs. low (as indicated by only a .7 difference between their highest and lowest means as opposed to a 1.7 difference between the highest and lowest means for males), nor were they influenced by the wording variations of absolute vs. comparative (as evidenced by their non-significant simple Similarity X Wording interaction). Female means clustered more closely around the mean of 2.0 which would have resulted had each subject chosen two trait preferences and two behavioral preferences for each of the four stories they were presented with.

These sex differences were not obtained in the Mischel et al. study and it is possible that these differences were not found due to the almost three times as many males as females in the earlier study. This disproportionate number of males may also account for the fact that the male results in the present study are similar (under absolute wording conditions) with the earlier Mischel et al. study.

The reason for the present findings of marked sex differences in preferences for trait and behavioral information under different wording conditions is obscure. It appears females preferred more trait like ratings evidenced by their consistently lower behavioral choice means. In three out of the four conditions female means were lower than those for males.

Shapiro and Tagiuri (1959) and Warr and Knapper (1968)
report findings which revealed that females are more prone to extreme trait inferential judgements than are males. The present results are consistent with these findings in so far as females preferred trait ratings consistently more often than did males.

It is not clear why the mean for females, when similarity was low and wording was absolute, was as high as it was. Here the information was topographically dissimilar and no normative data was given, but the mean in this cell was higher than when normative data was given and almost as high (2.3 vs. 2.6) as when the information to be made available was identical. It is possible that this large discrepancy was due to sampling error.

It is also unclear why the additional study did not result in the wording effects which were obtained in the main study. Since subjects received all conditions, it was anticipated that the distinctions between wording variations would be made more salient to subjects. It is possible that all conditions given to a subject (16 in all) resulted in a confusion of material and that it is for this reason wording distinctions were not clear to subjects.
REFERENCES

High Similarity - Absolute Wording
Instructions

This study is designed to investigate the kinds of information people find valuable when making predictions about another person's behavior.

Each of the following pages in this booklet presents a situation about which you will later be asked to make a prediction.

As an aid in making this prediction you will have a choice of receiving one of two pieces of information.

For the time being do not make the prediction. Simply read about each situation and then place a check next to the one piece of information which you prefer to receive as an aid for making your predictions.
Person: Dave is a junior biology major who is a member of his college track team.

Situation: Dave has weekly quizzes in his biology course.

Later on you will be asked to make the following prediction about Dave:

Prediction: How many hours will Dave spend studying for next week’s biology quiz? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. The number of hours Dave spent studying for the last three biology quizzes, according to an observer.

OR

B. An estimate of how hardworking Dave is, according to his best friend.
Person: Glenda is a freshman who types both her term papers and her personal letters.

Situation: Glenda has a term paper due next week.

Later on you will be asked to make the following prediction about Glenda:

Prediction: How many typing errors will there be in the term paper when Glenda turns it in next week? (To be answered later)

In order to give you a basis for making this prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. The number of typing errors in Glenda's last three term papers, according to an observer.

OR

B. An estimate of how much of a perfectionist Glenda is, according to her best friend.
Person: Jeff is a senior who attends parties both in his dorm, and on the occasions of friends' weddings.

Situation: Jeff will attend a wedding reception next weekend.

Later on you will be asked to make the following prediction about Jeff:

Prediction: How many different people will Jeff talk to at the wedding reception next weekend? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. The number of people Jeff talked to at the last three wedding receptions he attended, according to an observer.

OR

B. An estimate of how talkative Jeff is, according to his best friend.
Person: Janet is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Janet’s chemistry class starts at 1:00 p.m. on Wednesday.

Later on you will be asked to make the following prediction about Janet:

Prediction: When will Janet arrive for her chemistry class on Wednesday? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

- A. The times Janet arrived for her chemistry class on the last three Wednesdays, according to an observer.

 OR

- B. An estimate of how prompt Janet is, according to her best friend.
Low Similarity - Absolute Wording
Person: Dave is a junior biology major who is a member of his college track team.

Situation: Dave has weekly quizzes in his biology course.

Later on you will be asked to make the following prediction about Dave:

Prediction: How many hours will Dave spend studying for next week's biology quiz? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. The number of hours Dave spent training for the last three track meets, according to an observer.

OR

B. An estimate of how hardworking Dave is, according to his best friend.
Person: Glenda is a freshman who types both her term papers and her personal letters.

Situation: Glenda has a term paper due next week.

Later on you will be asked to make the following prediction about Glenda:

Prediction: How many typing errors will there be in the term paper when Glenda turns it in next week? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The number of typing errors in Glenda's last three personal letters, according to an observer.

OR

B. An estimate of how much of a perfectionist Glenda is, according to her best friend.
Person: Jeff is a senior who attends parties both in his dorm, and on the occasions of friends' weddings.

Situation: Jeff will attend a wedding reception next weekend.

Later on you will be asked to make the following prediction about Jeff:

Prediction: How many different people will Jeff talk to at the wedding reception next weekend? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The number of people Jeff talked to at the last three dorm parties he attended, according to an observer.

OR

B. An estimate of how talkative Jeff is, according to his best friend.
Person: Janet is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Janet's chemistry class starts at 1:00 p.m. on Wednesday.

Later on you will be asked to make the following prediction about Janet:

Prediction: When will Janet arrive for her chemistry class on Wednesday? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

___ A. The times Janet arrived for her tennis class on the last three Tuesdays, according to an observer.

OR

___ B. An estimate of how prompt Janet is, according to her best friend.
High Similarity - Comparative Wording
Person: Dave is a junior biology major who is a member of his college track team.

Situation: Dave has weekly quizzes in his biology course.

<table>
<thead>
<tr>
<th>Later on you will be asked to make the following prediction about Dave:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction: Relative to the others in his class, how many hours will Dave spend studying for next week's biology quiz? (To be circled later)</td>
</tr>
<tr>
<td>Far fewer hours than most others</td>
</tr>
</tbody>
</table>

In order to give you a basis for making the prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (/) next to A or B below.

- **A.** Relative to the others in his class, the number of hours Dave spent studying for the last three biology quizzes, according to an observer (e.g., far fewer hours than most of the others, somewhat fewer hours, etc.).

 OR

- **B.** An estimate of how hardworking Dave is, according to his best friend.
Person: Glenda is a freshman who types both her term papers and her personal letters.

Situation: Glenda has a term paper due next week.

Later on you will be asked to make the following prediction about Glenda:

<table>
<thead>
<tr>
<th>Prediction: Relative to other freshmen, how many typing errors will there be in the term paper when Glenda turns it in next week? (To be circled later.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far fewer errors than most others will make</td>
</tr>
</tbody>
</table>

In order to give you a basis for making the prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

- **A.** Relative to other freshmen, the number of typing errors in Glenda's last three term papers according to an observer (e.g., far fewer errors than made by most others, somewhat fewer errors, etc.).

OR

- **B.** An estimate of how much of a perfectionist Glenda is, according to her best friend.
Person: Jeff is a senior who attends parties both in his dorm, and on the occasion of friends' weddings.

Situation: Jeff will attend a **wedding reception** next weekend.

Later on you will be asked to make the following prediction about Jeff:

Prediction: Relative to the others present, how many different people will Jeff talk to at the wedding reception next weekend? (To be circled later)

| Far fewer people than most others talk to | Somewhat fewer average number of people | Somewhat more people than most others talk to |

In order to give you a basis for making the prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. Relative to others in attendance, the number of people Jeff talked to at the last three wedding receptions he attended, according to an observer (e.g., far fewer people than most others talked to, somewhat fewer people, etc.).

OR

B. An estimate of how talkative Jeff is, according to his best friend.
Person: Janet is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Janet's chemistry class starts at 1:00 p.m. on Wednesday.

Later on you will be asked to make the following prediction about Janet:

Prediction: Relative to her chemistry classmates, when will Janet arrive for her chemistry class on Wednesday? (To be circled later)

<table>
<thead>
<tr>
<th>Much later than most of the others</th>
<th>Somewhat later than the others</th>
<th>At about the same time as the others</th>
<th>Somewhat earlier than the others</th>
<th>Much earlier than most of the others</th>
</tr>
</thead>
</table>

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

- **A.** Relative to her chemistry classmates, the times Janet arrived for her chemistry class on the last three Wednesdays, according to an observer (e.g., much later than most others, somewhat later than the others, etc.).

 OR

- **B.** An estimate of how prompt Janet is, according to her best friend.
Low Similarity - Comparative Wording
Person: Dave is a junior biology major who is a member of his college track team.

Situation: Dave has weekly quizzes in his biology course.

Later on you will be asked to make the following prediction about Dave:

<table>
<thead>
<tr>
<th>Prediction: Relative to the others in his class, how many hours will Dave spend studying for next week's biology quiz? (To be circled later):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far fewer hours than</td>
</tr>
<tr>
<td>Most others hours</td>
</tr>
</tbody>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. Relative to the others on the team, the number of hours Dave spent training for the last three track meets, according to an observer (e.g., far fewer hours than most of the others, somewhat fewer hours, etc.).

OR

B. An estimate of how hardworking Dave is, according to his best friend.
Person: Glenda is a freshman who types both her term papers and her personal letters.

Situation: Glenda has a *term paper* due next week.

Later on you will be asked to make the following prediction about Glenda:

Prediction: Relative to other freshmen, how many typing errors will there be in the term paper when Glenda turns it in next week? (To be circled later):

<table>
<thead>
<tr>
<th>Far fewer errors than most others will make</th>
<th>Somewhat fewer errors</th>
<th>About the average number of errors</th>
<th>Somewhat more errors</th>
<th>Far more errors than most others will make</th>
</tr>
</thead>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. Relative to other freshmen, the number of typing errors in Glenda's last three personal letters, according to an observer (e.g., far fewer errors than made by most others, somewhat fewer errors, etc.).

OR

B. An estimate of how much of a perfectionist Glenda is, according to her best friend.
Person: Jeff is a senior who attends parties both in his dorm and on the occasions of friends' weddings.

Situation: Jeff will attend a wedding reception next weekend.

Later on you will be asked to make the following prediction about Jeff:

<table>
<thead>
<tr>
<th>Prediction: Relative to the others present, how many different people will Jeff talk to at the wedding reception next weekend? (To be circled later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far fewer people than most others talk to</td>
</tr>
<tr>
<td>Somewhat fewer average number of people</td>
</tr>
<tr>
<td>About the average number of people</td>
</tr>
<tr>
<td>Somewhat more people than most others talk to</td>
</tr>
<tr>
<td>Far more people than most others talk to</td>
</tr>
</tbody>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. Relative to others in attendance, the number of people Jeff talked to at the last three dorm parties he attended, according to an observer (e.g., far fewer people than most others talked to, somewhat fewer people, etc.).

OR

B. An estimate of how talkative Jeff is, according to his best friend.
Person: Janet is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Janet's chemistry class starts at 1:00 p.m. on Wednesday.

<table>
<thead>
<tr>
<th>Later on you will be asked to make the following prediction about Janet:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction: Relative to her chemistry classmates, when will Janet arrive for her chemistry class on Wednesday? (To be circled later)</td>
<td></td>
</tr>
<tr>
<td>Much later than most of the others</td>
<td>Somewhat later than the others</td>
</tr>
</tbody>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. Relative to her tennis classmates, the times Janet arrived for her tennis class on the last three Tuesdays, according to an observer. (e.g., much later than most others, somewhat later than the others, etc.)

OR

B. An estimate of how prompt Janet is, according to her best friend.
Instructions

This study is designed to investigate the kinds of information people find valuable when making predictions about another person's behavior.

Each of the following pages in this booklet presents a situation about which you will later be asked to make a prediction.

As an aid in making this prediction you will have a choice of receiving one of two pieces of information.

For the time being do not make the prediction. Simply read about each situation and then place a check next to the one piece of information which you prefer to receive as an aid for making your predictions.
Person: Dave is a junior biology major who is a member of his college track team.

Situation: Dave has weekly quizzes in his biology course.

Later on you will be asked to make the following prediction about Dave:

Prediction: How many hours will Dave spend studying for next week's biology quiz? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The number of hours Dave spent studying for the last three biology quizzes, according to an observer.

OR

B. An estimate of how hardworking Dave is, according to his best friend.
Person: Paul is a junior biology major who is a member of his college track team.

Situation: Paul has weekly quizzes in his biology course.

Later on you will be asked to make the following prediction about Paul:

Prediction: How many hours will Paul spend studying for next week's biology quiz? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

____ A. The number of hours Paul spent training for the last three track meets, according to an observer.

OR

____ B. An estimate of how hardworking Paul is, according to his best friend.
Person: Bill is a junior biology major who is a member of his college track team.

Situation: Bill has weekly quizzes in his biology course.

Later on you will be asked to make the following prediction about Bill:

Prediction: Relative to the others in his class, how many hours will Bill spend studying for next week's biology quiz? (To be circled later)

<table>
<thead>
<tr>
<th>Far fewer hours than most others</th>
<th>Somewhat fewer hours</th>
<th>About the average number of hours</th>
<th>Somewhat more hours than most others</th>
</tr>
</thead>
</table>

In order to give you a basis for making the prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (/) next to A or B below.

A. Relative to the others in his class, the number of hours Bill spent studying for the last three biology quizzes, according to an observer (e.g., far fewer hours than most of the others, somewhat fewer hours, etc.).

OR

B. An estimate of how hardworking Bill is, according to his best friend.
Person: Glenda is a freshman who types both her term papers and her personal letters.

Situation: Glenda has a term paper due next week.

Later on you will be asked to make the following prediction about Glenda:

Prediction: How many typing errors will there be in the term paper when Glenda turns it in next week? (To be answered later)

In order to give you a basis for making this prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (X) next to A or B below.

A. The number of typing errors in Glenda's last three term papers, according to an observer.

OR

B. An estimate of how much of a perfectionist Glenda is, according to her best friend.
Person: Stan is a junior biology major who is a member of his college track team.

Situation: Stan has weekly quizzes in his biology course.

Later on you will be asked to make the following prediction about Stan:

Prediction: Relative to the others in his class, how many hours will Stan spend studying for next week's biology quiz? (To be circled later):

<table>
<thead>
<tr>
<th>Far fewer hours than most others</th>
<th>Fewer hours</th>
<th>About the average number of hours</th>
<th>More hours</th>
<th>Many more hours than most others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somewhat fewer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat more</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. Relative to the others on the team, the number of hours Stan spent training for the last three track meets, according to an observer (e.g., far fewer hours than most of the others, somewhat fewer hours, etc.).

OR

B. An estimate of how hardworking Stan is, according to his best friend.
Person: Brenda is a freshman who types both her term papers and her personal letters.

Situation: Brenda has a term paper due next week.

Later on you will be asked to make the following prediction about Brenda:

Prediction: How many typing errors will there be in the term paper when Brenda turns it in next week? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The number of typing errors in Brenda's last three personal letters, according to an observer.

OR

B. An estimate of how much of a perfectionist Brenda is, according to her best friend.
Person: Sandra is a freshman who types both her term papers and her personal letters.

Situation: Sandra has a term paper due next week.

Later on you will be asked to make the following prediction about Sandra:

Prediction: Relative to other freshmen, how many typing errors will there be in the term paper when Sandra turns it in next week? (To be circled later.)

<table>
<thead>
<tr>
<th>Far fewer errors than most others will make</th>
<th>Somewhat fewer errors than most others will make</th>
<th>About the average number of errors</th>
<th>Somewhat more errors than most others will make</th>
<th>Far more errors than most others will make</th>
</tr>
</thead>
</table>

In order to give you a basis for making the prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. Relative to other freshmen, the number of typing errors in Sandra's last three term papers according to an observer (e.g., far fewer errors than made by most others, somewhat fewer errors, etc.).

OR

B. An estimate of how much of a perfectionist Sandra is, according to her best friend.
Person: Freida is a freshman who types both her term papers and her personal letters.

Situation: Freida has a term paper due next week.

<table>
<thead>
<tr>
<th>Later on you will be asked to make the following prediction about Freida:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction: Relative to other freshmen, how many typing errors will there be in the term paper when Freida turns it in next week? (To be circled later):</td>
</tr>
<tr>
<td>Far fewer errors than most others will make</td>
</tr>
</tbody>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. Relative to other freshmen, the number of typing errors in Freida's last three personal letters, according to an observer (e.g., far fewer errors than made by most others, somewhat fewer errors, etc.).

OR

B. An estimate of how much of a perfectionist Freida is, according to her best friend.
Person: Jeff is a senior who attends parties both in his dorm, and on the occasions of friends' weddings.

Situation: Jeff will attend a wedding reception next weekend.

Later on you will be asked to make the following prediction about Jeff:

Prediction: How many different people will Jeff talk to at the wedding reception next weekend? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The number of people Jeff talked to at the last three wedding receptions he attended, according to an observer.

OR

B. An estimate of how talkative Jeff is, according to his best friend.
Person: Alex is a senior who attends parties both in his dorm, and on the occasions of friends' weddings.

Situation: Alex will attend a wedding reception next weekend.

Later on you will be asked to make the following prediction about Alex:

Prediction: How many different people will Alex talk to at the wedding reception next weekend? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The number of people Alex talked to at the last three dorm parties he attended, according to an observer.

OR

B. An estimate of how talkative Alex is, according to his best friend.
Person: Carl is a senior who attends parties both in his dorm, and on the occasion of friends' weddings.

Situation: Carl will attend a wedding reception next weekend.

Later on you will be asked to make the following predictions about Carl:

Prediction: Relative to the others present, how many different people will Carl talk to at the wedding reception next weekend? (To be circled later)

<table>
<thead>
<tr>
<th>Far fewer people than most others talk to</th>
<th>Somewhat fewer people</th>
<th>About the average number of people</th>
<th>Somewhat more people</th>
<th>Far more people than most others talk to</th>
</tr>
</thead>
</table>

In order to give you a basis for making the prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (/) next to A or B below.

A. Relative to others in attendance, the number of people Carl talked to at the last three wedding receptions he attended, according to an observer (e.g., far fewer people than most others talked to, somewhat fewer people, etc.).

OR

B. An estimate of how talkative Carl is, according to his best friend.
Person: Eric is a senior who attends parties both in his dorm and on the occasions of friends' weddings.

Situation: Eric will attend a wedding reception next weekend.

Later on you will be asked to make the following prediction about Eric:

<table>
<thead>
<tr>
<th>Prediction: Relative to the others present, how many different people will Eric talk to at the wedding reception next weekend? (To be circled later)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far fewer people than most others talk to</td>
</tr>
</tbody>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. Relative to others in attendance, the number of people Eric talked to at the last three dorm parties he attended, according to an observer (e.g., far fewer people than most others talked to, somewhat fewer people, etc.).

OR

B. An estimate of how talkative Eric is, according to his best friend.
Person: Janet is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Janet's chemistry class starts at 1:00 p.m. on Wednesday.

Later on you will be asked to make the following prediction about Janet:

Prediction: When will Janet arrive for her chemistry class on Wednesday? (To be answered later)

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The times Janet arrived for her chemistry class on the last three Wednesdays, according to an observer.

OR

B. An estimate of how prompt Janet is, according to her best friend.
Person: Carol is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Carol's chemistry class starts at 1:00 p.m. on Wednesday.

Later on you will be asked to make the following prediction about Carol:

Prediction: When will Carol arrive for her chemistry class on Wednesday? (To be answered later)

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. The times Carol arrived for her tennis class on the last three Tuesdays, according to an observer.

OR

B. An estimate of how prompt Carol is, according to her best friend.
Person: Susan is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Susan's chemistry class starts at 1:00 p.m. on Wednesday.

Later on you will be asked to make the following prediction about Susan:

Prediction: Relative to her chemistry classmates, when will Susan arrive for her chemistry class on Wednesday? (To be circled later)

<table>
<thead>
<tr>
<th>Much later than most of the others</th>
<th>Somewhat later than the others</th>
<th>At about the same time as the others</th>
<th>Somewhat earlier than the others</th>
<th>Much earlier than most of the others</th>
</tr>
</thead>
</table>

In order to give you a basis for making the prediction you will be provided with one piece of information. You can select the information you will receive by placing a check (✓) next to A or B below.

A. Relative to her chemistry classmates, the times Susan arrived for her chemistry class on the last three Wednesdays, according to an observer (e.g., much later than most others, somewhat later than the others, etc.).

OR

B. An estimate of how prompt Susan is, according to her best friend.
Person: Diane is a sophomore liberal arts major who is taking chemistry and tennis classes this term.

Situation: Diane's chemistry class starts at 1:00 p.m. on Wednesday.

Later on you will be asked to make the following prediction about Diane:

Prediction: Relative to her chemistry classmates, when will Diane arrive for her chemistry class on Wednesday? (To be circled later)

<table>
<thead>
<tr>
<th>Much later</th>
<th>Somewhat later than the others</th>
<th>At about the same time as the others</th>
<th>Somewhat earlier than the others</th>
<th>Much earlier than most of the others</th>
</tr>
</thead>
<tbody>
<tr>
<td>of the others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In order to give you a basis for making this prediction, you will be provided with one piece of information. You can select the information you will receive by placing a check (√) next to A or B below.

A. Relative to her tennis classmates, the times Diane arrived for her tennis class on the last three Tuesdays, according to an observer. (E.g., much later than most others, somewhat later than the others, etc.)

OR

B. An estimate of how prompt Diane is, according to her best friend.