ADVANCED SERVO CONTROL OF A PNEUMATIC ACTUATOR

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy in the Graduate
School of The Ohio State University

By

Michael Brian Thomas, M.S.

* * * * *

The Ohio State University

2003

Dissertation Committee:
Dr. Gary P. Maul, Adviser
Dr. David F. Farson
Dr. Blaine Lilly

Approved by

Adviser
Industrial, Welding, and Systems Engineering
ABSTRACT

Pneumatic actuators offer a low-cost alternative to conventional servo technologies. Like electromagnetic actuators, pneumatics offer clean and reliable operation. Like hydraulic actuators, pneumatics can be coupled directly to a payload, without the need for power or motion conversion. Unlike electromagnetics and hydraulics, a pneumatic actuator exhibits significant nonlinear behavior. These nonlinear characteristics prevent linear control systems, such as PID, from providing acceptable servo control of the pneumatic actuator. Relatively recent developments in control strategies, though, allow for improved control of servopneumatics, making them competitive with traditional servo technologies.

The objective of this research is to explore advanced control strategies for proportionally-controlled pneumatic actuators. A significant constraint applied to this study is that the strategies developed must work within the architecture of an industrial programmable logic controller (PLC). Two control systems were developed, and their performance compared to that of a PI controller. A simulation allows for investigation of phenomena not directly measurable with the experimental apparatus. This research demonstrates the capabilities and limitations of advanced control strategies with a PLC.
DEDICATION

“Now to him who is able to immeasurably more than all we ask or imagine, according to his power that is at work within us, to him be glory in the church and in Christ Jesus throughout all generations, for ever and ever! Amen.”

— Ephesians 3:20 (NIV)
ACKNOWLEDGMENTS

I thank my wife Paula for her love, support, and understanding. I would also thank my father, whose counsel has been greatly appreciated. I also extend my thanks to my extended family, who have helped both Paula and myself in many ways.

I thank my adviser, Dr. Gary Maul, for his ongoing encouragement in my professional and academic endeavors. His friendship and guidance has made this work possible.

I am grateful to Mary Hartzler for her help and patience.

I thank Dr. John Merrill, Dr. Frank Croft, Dr. John Demel, Dr. David Dickinson, Dr. Blaine Lilly, and Dr. Allen Miller for the timely advice they have given me.

My appreciation goes to my fellow graduate students: Darrell, Zhaoli, Reza, Enrico, “Boz”, and Eric. Their friendship has been one of the highlights of graduate school.

This research was funded, in part, by the Nestlé R&D Center, Inc. of Marysville, Ohio. My thanks go to Kent Kleinholz for the time he spent with me to start this project.
VITA

July 17, 1968 …… Born, Huntsville, Alabama.

1992 …………… B.S., Mechanical Engineering, The Ohio State University.

2001 …………… Graduate Teaching Assistant, The Ohio State University.

2001 – present …… Thomas E. French Fellow, The Ohio State University.
PUBLICATIONS

FIELDS OF STUDY

Major Field: Industrial, Welding, and Systems Engineering.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Review of Previous Works</td>
<td>3</td>
</tr>
<tr>
<td>2.1.</td>
<td>System Models</td>
<td>6</td>
</tr>
<tr>
<td>2.2.</td>
<td>Friction</td>
<td>11</td>
</tr>
<tr>
<td>2.3.</td>
<td>Control Strategies</td>
<td>15</td>
</tr>
<tr>
<td>2.4.</td>
<td>Applications</td>
<td>28</td>
</tr>
<tr>
<td>3.</td>
<td>Problem Statement</td>
<td>30</td>
</tr>
<tr>
<td>4.</td>
<td>Experimental Equipment</td>
<td>32</td>
</tr>
<tr>
<td>4.1.</td>
<td>Proportional Valve</td>
<td>32</td>
</tr>
<tr>
<td>4.2.</td>
<td>Pneumatic Cylinder</td>
<td>54</td>
</tr>
</tbody>
</table>
4.3. Position Encoder ... 67
4.4. Programmable Logic Controller 69
4.5. Plumbing ... 73
4.6. Data Acquisition .. 77

5. System Model .. 79
 5.1. Conventional State Representation 79
 5.2. Mass-Based System Representation 84
 5.3. Controllability and Observability 91
 5.4. Further Considerations on the Linear Model 103

6. Model Verification .. 107
 6.1. PI Tuning .. 108
 6.2. Servo Trajectories .. 109
 6.3. Simulation and Discussion 114

7. Advanced Control Strategies 133
 7.1. Variable Structure Control 134
 7.2. Hybrid Fuzzy-Modified PI Control 149
 7.3. Controller Comparisons 158

8. Summary and Future Work ... 168

Appendices:

Appendix A: MATLAB Simulation Codes 171
 A.1. Sim8 Program Code ... 172
 A.2. ValveFlowInch Subroutine Code 183
 A.3. FlowIteration Subroutine Code 185
 A.4. ShortRamp Subroutine Code 187
 A.5. ShortProfile Subroutine Code 189
 A.6. QuadSineShort Subroutine Code 191
Appendix B: PLC Configuration and Ladder Logic 192
B.1. Programmable Logic Controller Configuration 193
B.2. Programmable Logic Controller Input Wiring 194
B.3. Main Program, PI Control .. 195
B.4. Main Program, Variable Structure Control 196
B.5. Main Program, Hybrid Fuzzy-Modified PI Control 197
B.6. ctrl_PID Subroutine .. 198
B.7. ctrl_VSC7_1 Subroutine 199
B.8. ctrl_fuzzy2_1 Subroutine 204
B.9. motion Subroutine ... 208

References .. 215
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Servopneumatic Component Selection</td>
</tr>
<tr>
<td>2</td>
<td>Proportional Valve Properties</td>
</tr>
<tr>
<td>3</td>
<td>Calculated Flow Coefficients</td>
</tr>
<tr>
<td>4</td>
<td>Flow Coefficient Models</td>
</tr>
<tr>
<td>5</td>
<td>Pneumatic Cylinder Properties</td>
</tr>
<tr>
<td>6</td>
<td>Execution Times for Ladder Objects</td>
</tr>
<tr>
<td>7</td>
<td>Logic to Determine P_{HI} and P_{LO} for the Cylinder Blind End</td>
</tr>
<tr>
<td>8</td>
<td>Logic to Determine P_{HI} and P_{LO} for the Cylinder Rod End</td>
</tr>
<tr>
<td>9</td>
<td>Servopneumatic System Pole Locations</td>
</tr>
<tr>
<td>10</td>
<td>PI Control Loop Gains</td>
</tr>
<tr>
<td>11</td>
<td>Cam Profile Trajectory Data</td>
</tr>
<tr>
<td>12</td>
<td>Quadratic Sine Trajectory Data</td>
</tr>
<tr>
<td>13</td>
<td>Output Offset Equations for Variable Structure Controller</td>
</tr>
<tr>
<td>14</td>
<td>Fuzzy Control Gains</td>
</tr>
<tr>
<td>15</td>
<td>Scan Time Statistical Data</td>
</tr>
<tr>
<td>16</td>
<td>Programmable Logic Controller Configuration</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Servopneumatic System Components</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Common Friction Models</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Estimated Disturbances along a Sinusoidal Trajectory</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Allen-Bradley Logix5550 PLC</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Festo Valve Schematic</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Flow Rate through Festo Valve</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Flow Rate through Two Orifices</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>Models for Flow through a Valve</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>Flow Measurement Apparatus</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>Volumetric Flow Rate (1 → 4) as a Function of Pressure Ratio</td>
<td>43</td>
</tr>
<tr>
<td>11</td>
<td>Uncorrected Flow Rate to Supply Pressure Ratio, as a Function of Pressure</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Predicted Flow Rate Using the ISA Model</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>Flow Coefficient as a Function of Command Voltage (1 → 4)</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>Volumetric Flow Rate (1 → 2) as a Function of Pressure Ratio</td>
<td>48</td>
</tr>
<tr>
<td>15</td>
<td>Volumetric Flow Rate (4 → 5) as a Function of Pressure Ratio</td>
<td>49</td>
</tr>
<tr>
<td>16</td>
<td>Volumetric Flow Rate (2 → 3) as a Function of Pressure Ratio</td>
<td>50</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>18 in/s Ramp Trajectory .. 115</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Pole-Zero Map of Closed-Loop System 119</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Open-Loop Travel Velocities 121</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>10 in/s Ramp Trajectory ... 123</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1.0 in/s Ramp Trajectory .. 124</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Cam Profile, 0.5-second Step Period 125</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Quadratic Sine Trajectory, 1.0-s Half Period 126</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Detail of Open-Loop Travel Velocities 128</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.2 in/s Ramp Trajectory, Showing Stick-Slip 129</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Simulated Volumetric Flow Rates, 10 in/s Ramp Trajectory ... 130</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Simulated Volumetric Flow Rates, 0.2-second Half Period Quadratic Sine Trajectory .. 132</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>VSC Command Space .. 135</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>VSC Command Voltages ... 135</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>10 in/s Ramp Trajectory, VSC 137</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>10 in/s Ramp Trajectory Velocity 138</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Cam Profile Trajectory, 0.5-second Step Period, VSC 139</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Cam Profile Trajectory Velocity, 0.5-second Step Period 140</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1.0 in/s Ramp Trajectory, VSC 141</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Cam Profile Trajectory, 2.0-second Step Period 142</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Quadratic Sine Trajectory, 3.0-s Half Period 143</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Command Signal for 1.8 in/s Ramp Trajectory 145</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>1.8 in/s Ramp Trajectory, VSC 146</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>1.8 in/s Ramp Trajectory Velocity, VSC 147</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>1.0 in/s Ramp Trajectory Velocity Showing Stick-Slip, VSC 147</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>3.2 in/s Ramp Trajectory, Showing PLC-Reported Position, VSC .. 149</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Hybrid Fuzzy Nominal Command Voltage 150</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Fuzzy Weight Functions .. 151</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>10 in/s Ramp Trajectory, Hybrid Fuzzy Control 152</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Cam Profile Trajectory, 0.5-second Step Period, Hybrid Fuzzy Control .. 153</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Cam Profile Trajectory, 2.0-second Step Period, Hybrid Fuzzy Control .. 154</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Quadratic Sine Trajectory, 3.0-second Half Period, Hybrid Fuzzy Control .. 155</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>1.0 in/s Ramp Trajectory, Hybrid Fuzzy Control 156</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1.0 in/s Ramp Trajectory Velocity, Hybrid Fuzzy Control 157</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>RMS Position Tracking Errors, Ramp Trajectory 159</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>RMS Position Tracking Errors, Cam Profile Trajectory 160</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>RMS Position Tracking Errors, Quadratic Sine Trajectory 161</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>RMS Velocity Tracking Errors, Ramp Trajectory 162</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Scan Time Distribution .. 164</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Consecutive Scan Times of PI Controller 165</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Programmable Logic Controller Input Wiring 194</td>
<td></td>
</tr>
</tbody>
</table>
80 Main Program Ladder, PI Control 195
81 Main Program Ladder, Variable Structure Control 196
82 Main Program Ladder, Hybrid Fuzzy-Modified PI Control 197
83 ctrl_PID Subroutine Ladder .. 198
84 ctrl_VSC7_1 Subroutine Ladder 199
85 ctrl_fuzzy2_1 Subroutine Ladder 204
86 motion Subroutine ladder ... 208
LIST OF SYMBOLS

Symbols.

\begin{itemize}
 \item \textbf{A} \hspace{1cm} \text{Area.}
 \item \textbf{A} \hspace{1cm} \text{Constant.}
 \item \textbf{b} \hspace{1cm} \text{Coefficient of viscous friction.}
 \item \textbf{C_D} \hspace{1cm} \text{Discharge coefficient.}
 \item \textbf{C_v} \hspace{1cm} \text{Flow coefficient.}
 \item \textbf{c_p} \hspace{1cm} \text{Specific heat of a gas at constant pressure.}
 \item \textbf{c_v} \hspace{1cm} \text{Specific heat of a gas at constant volume.}
 \item \textbf{D} \hspace{1cm} \text{Diameter.}
 \item \textbf{E} \hspace{1cm} \text{Energy.}
 \item \textbf{F} \hspace{1cm} \text{Force.}
 \item \textbf{f} \hspace{1cm} \text{Friction factor.}
 \item \textbf{g} \hspace{1cm} \text{Acceleration of gravity (386.09 in/s^2).}
 \item \textbf{h_L} \hspace{1cm} \text{Head loss.}
 \item \textbf{i} \hspace{1cm} \sqrt{-1}. \text{ (Complex number)}
 \item \textbf{k} \hspace{1cm} \text{Ratio of specific heats.}
 \item \textbf{k} \hspace{1cm} \text{Gain.}
 \item \textbf{k} \hspace{1cm} \text{Spring stiffness.}
 \item \textbf{L} \hspace{1cm} \text{Length.}
 \item \textbf{M} \hspace{1cm} \text{Payload mass.}
 \item \textbf{m} \hspace{1cm} \text{Mass of air.}
 \item \textbf{P} \hspace{1cm} \text{Pressure.}
\end{itemize}
Q Volumetric flow rate.

R Universal gas constant ($247 \cdot 10^3 \text{ in}^2/\text{s}^2/\text{R}$).

Re Reynold’s number.

s LaPlace operator.

T Temperature.

t Time.

U_{OFF} Output offset.

V Volume.

V Voltage.

\bar{V} Mean flow velocity.

W Weight.

X Pressure drop ratio.

X_T Critical pressure drop ratio.

x Position.

A State feedback matrix.

B Input effects matrix.

C State output matrix.

U Controllability matrix.

V Observability matrix.

X State vector.

Y Output vector.

χ Characteristic equation.

Δ Delta.

μ Coefficient of friction.

μ Viscosity.

ρ Density.

τ Time constant.
Embellishments.

\(\dot{x} \) First derivative of \(x \).
\(\ddot{x} \) Second derivative of \(x \).
\(\bar{x} \) Constant value of \(x \).
\(\tilde{x} \) Varying value of \(x \).

Subscripts.

1 Chamber 1, blind end of cylinder.
1\(\rightarrow \)2 Between station 1 to station 2.
2 Chamber 2, rod end of cylinder.
3\(\rightarrow \)4 Between station 3 to station 4.
AIR Air.
ATM Atmospheric.
COM Command.
CORR Corrected.
CRIT Critical.
CYL Cylinder.
DN Downstream.
EQ Equilibrium.
FRIC Friction.
HI High.
I Integral.
LO Low.
MAX Maximum.
MEAS Measured.
NOFLOW No flow conditions.
P Proportional.
REF Reference.
ROD Rod.
S Scaling.
S Supply.
SCFM Standard cubic feet per minute.
SPOOL Spool.
SPRING Spring.
T Total.
T1 Tubing attached to chamber 1.
T2 Tubing attached to chamber 2.
UP Upstream.
VALVE Valve.
VF Velocity feedforward.
X1 Excess of chamber 1.
X2 Excess of chamber 2.
CHAPTER 1

INTRODUCTION

Traditionally, servo control in industry – the capability of a mechanism to follow an arbitrary trajectory – has been limited to two technologies: electromagnetic motors or hydraulic actuators. Electric servo motors are typically clean and reliable in operation. However, electric motors are usually high-speed, low-torque actuators, and need transmission elements to convert power to a more useful form. Mechanical elements are also required to convert the rotary motion of a motor to linear motion.

Hydraulic actuators have favorable force/speed characteristics, and can be directly connected to their payload. On the other hand, a hydraulic system often creates workplace hazards. Personnel working around a hydraulic pump require hearing protection, and hydraulic systems are well-known for their leakage. One positive aspect shared by electromagnetic and hydraulic actuators is ease of control. Linear models provide a good approximation for both systems, and PID-based controllers are often adequate for control purposes.
Pneumatic actuators have properties that can make them favorable for servo applications. The actuators themselves are of simple construction, widely sourced, and easily maintained, making them low in cost. They have a high power-to-weight ratio, are fast acting, and, unlike electric motors, can apply a force at a fixed position over a prolonged period of time with no ill effects. Compressed air is readily available in most industrial environments. Like electric motors, pneumatic actuators operate cleanly; like hydraulic actuators, they may act directly on a payload.

Traditionally, though, pneumatics are not used in servo applications, but rather to move a payload between two fixed hard stops. Air is highly compressible, which makes the actuator compliant rather than stiff, and introduces lag in the response. The actual stiffness of a linear air cylinder is position-dependent. Air cylinders can have relatively high friction that prevents smooth motion under many circumstances. These nonlinear behaviors of an air cylinder preclude good control performance through PID or linear control methods.

The recent availability of low-cost, high-performance computer processors is allowing servopneumatic actuators to take advantage of advanced control algorithms in industrial applications. Several manufacturers already offer industrial servopneumatic controllers, and the technology is finding new applications. Still, there is room for further research into design and control methodologies for servopneumatic systems.
CHAPTER 2

REVIEW OF PREVIOUS WORKS

Servopneumatics present an alternative to electric motors or hydraulics for industrial servo motion control. Like electric motors, servopneumatics are generally clean and reliable in operation. Like hydraulic systems, a servopneumatic actuator may be directly coupled to the payload it is moving. Additionally, servopneumatics offer a high power-to-weight ratio, and can offer cost benefits as high as 10:1 over traditional technologies [1] [2]. However, the need for an advanced control system has prevented widespread application of servopneumatics. Moore and Pu present an overview of the development of servopneumatic technology in [3], much of which has been summarized in chapter 1.

Many variations of servopneumatic systems have been introduced in the literature. Figure 1 shows a typical arrangement of hardware, similar to what is used in this study. The major components are the pneumatic actuator, the valve or valves, the controller, and the feedback sensors. Table 1 presents common options available for each component. Analysis of the permutations of actuator-valve-controller combinations shows a possible 175 different studies: the actual number is much higher as varieties exist within each of these options, especially in the category of control.
Traditionally, the term *servovalve* has referred to valves that have a closed-loop controller for the spool position, while *proportional valve* refers to those valves that operate in the open-loop mode. More recently, this distinction has been blurred as the spool-controlling electronics have moved onto the valve, making a valve appear proportional to the control system [4]. The valve used in this work will be referred to as a proportional valve, because the on-valve feedback control causes the valve behave in a linear fashion.

The remainder of this chapter is organized as follows: section 2.1 discusses efforts at creating models of servopneumatic systems; section 2.2 presents works dealing with friction, a significant nonlinearity in servopneumatics; section 2.3 details control strategies for servopneumatics, and; section 2.4 describes applications for servopneumatic actuators.
FIGURE 1. Servopneumatic System Components.

TABLE 1. Servopneumatic Component Selection

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Valve</th>
<th>Controller</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-rod</td>
<td>Proportional</td>
<td>PID/linear</td>
<td>Linear potentiometer</td>
</tr>
<tr>
<td>Double-rod</td>
<td>Servovalve</td>
<td>PID with autotuning</td>
<td>Rotary potentiometer</td>
</tr>
<tr>
<td>Rodless</td>
<td>Dual servo</td>
<td>PID with nonlinear</td>
<td>LVDT</td>
</tr>
<tr>
<td>Rubber air</td>
<td>PWM-driven solenoid</td>
<td>modifications</td>
<td>Quadrature encoder</td>
</tr>
<tr>
<td>muscle</td>
<td>Flapper-nozzle</td>
<td>Nonlinear</td>
<td>Tachometer</td>
</tr>
<tr>
<td>Rotary</td>
<td></td>
<td>Adaptive</td>
<td>Accelerometer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuzzy</td>
<td>Pressure transducer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variable structure/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sliding mode</td>
<td></td>
</tr>
</tbody>
</table>
2.1. System Models. The works generally recognized as the first significant presentation on servopneumatics are a pair of papers authored by J. L. Shearer of MIT in 1956 [5] [6]. In these papers, Shearer develops a linear mathematic model of a double-rod cylinder for small motions about its mid-stroke position. He also presents a theoretical model of the mass flow rate through a sliding-plate proportional valve, verifying the model experimentally. While the availability of modern computers has rendered his linear model obsolete, subsequent researchers in the field have copied his methodology towards the development of a model.

A paper by Liu and Bobrow expands on Shearer’s work by developing a linear model based on an arbitrary operating point [7]. A PD controller, applied to the linear model, may be used to position system poles advantageously. While the actual system behaves similarly to the model-based simulation, the model is significantly slower than the actual system tested.

In [8], Kunt and Singh develop a linear time-varying (LTV) model for the open-loop behavior of a pneumatic cylinder being controlled by a rotary-spool valve, comparing it to a linear time-invariant (LTI) model. Because the valve rotates at a steady, known velocity, it is possible to derive exact solutions for the differential equations describing the LTI model. The LTV models, however, generally require numerical simulation. The accuracy of their model may be improved by incorporating the effects of friction, which were ignored. Linear models of a pneumatic actuator are also used in conjunction with an auto-tuning PI controller [9], and an adaptive controller [1].
While linear models are preferable from the standpoint of controller design, pneumatic cylinders are highly nonlinear due to the effects of air compression, varying air volumes in the actuator, and friction. Wang and Singh investigate these nonlinearities in a study of a closed pneumatic piston chamber [10]. They find the nonlinear effects of friction and compressibility not only shift the resonant frequency of the mechanical system, but also induce asymmetric oscillatory behavior in the system. A subsequent paper by the authors expands this analysis to a chamber connected to a substantially large reservoir via an orifice [11]. Nonlinear models are presented in a number of other papers, notably Richer and Hurmuzlu in [12]. Their model includes the effects of propagation delay and friction losses in air hoses, which can be significant over long distances. Kawakami, et al. compare the performance of linear models, developed using methods described in [5] and [7], with those of exact nonlinear models [13]. They find that linear models are poor predictors of the actual performance of a pneumatic system.

Many cylinders contain design features such as integral shock absorbers or air cushions to prevent mechanical damage from impact at the end of the stroke. Wang, et al. use a four-control-volume nonlinear model in simulating the motion of a pneumatic cylinder with end-of-stroke flow restrictions [14]. While the model is qualitatively correct in predicting motion, many of the coefficients used in the model were engineering estimates of the actual values. This precludes a proper quantitative comparison of the simulation results with the experimental data.
One issue in the modeling of pneumatic processes is applying an isothermal model or an adiabatic model towards the expansion of air. The fundamental equations are similar, with the adiabatic expression being a factor of $1/k$ different than the isothermal expression. The term k refers to the ratio of specific heats ($k = 1.4$ for air). While some researchers have applied the isothermal model, most assume the mechanical processes are significantly faster than the thermal processes, and thus use an adiabatic process. An exception worth mentioning is the study conducted by Pu and Weston in [15], in which the steady-state velocity of a pneumatic actuator may be predicted.

In [12], Richer and Hurzumlu replace k with an intermediate term, α, in a hybrid model. The α term is bounded by 1 and k, and represents a compromise position between isothermal and adiabatic processes, though they find the isothermal model better fits their experimental data. Backé and Ohligschläger investigate heat transfer in an air cylinder in detail [16]. They find a cylinder in motion initially behaves adiabatically, but heat flow works to restore isothermal conditions. The authors identify three experimentally-determined parameters to describe the heat-transfer behavior: an air friction factor, a forced convention factor, and a natural convention factor. These factors may be determined by comparing simulated pressure- and temperature-time curves with measured data. Kawakami, et al. also investigate the differences between isothermal and adiabatic processes in a pneumatic cylinder in [13]. Their research indicates the practical differences between the two models is small enough as to be insignificant.
The mathematical modeling of flow through a valve is another concern in servopneumatics. At least four flow models have been presented in the literature: a model based on the theoretical flow through an orifice; the NFPA approximation of orifice flow [17]; a similar approximation presented by Esposito [18], and; a model proposed by the ISA [19]. While different in their formulation, these models share a number of characteristics. In each, flow is proportional to the supply pressure and a flow coefficient, $$C_v$$. Each model also contains two regimes for valve flow. In the subsonic flow regime, the flow rate increases as the ratio of downstream pressure to upstream pressure decreases. In the choked flow regime, the flow through the valve is sonic and does not increase as the downstream pressure drops. In the ISA model, this critical pressure ratio is determined by a valve design factor, $$X_r$$; in the other models, the critical pressure ratio is calculated from the ratio of specific heats, and is found to be 0.528 for air. Significantly, experimental data suggests that the assumption of constant flow in the choked flow regime is not valid. In [20], Bobrow and McDonell tried a least-squares fit of experimental data with the theoretical flow through an orifice, trying to identify the flow coefficient. The authors ended up using an empirically-derived function to describe the valve flow. A more detailed discussion of flow dynamics is conducted in chapter 4.

While most studies of servopneumatics focus on linear actuators, Pu, Moore, and Weston perform a study on rotary air motors [21]. In terms of developing a mathematical model of the actuator, the air motor has an advantage over reciprocating cylinders in that its control volume is relatively constant, removing a large nonlinearity from the actuator model. This permits the application of a conventional PID controller, with acceleration
feedback and velocity feedforward terms added, to the air motor. Another study of rotary actuators is performed by Wang, Pu, Moore, and Zhang in [22]. In it, the authors use Fourier series expansion to approximate discontinuous functions as continuous functions of the actuator’s rotation.

Generally, researchers assume the dynamics of the valves controlling a servopneumatic axis are significantly faster than the dynamics of the actuator and mass under control, so that the valve may be treated as a nonlinear gain function. Vaughan and Gamble create a detailed nonlinear model of the dynamics of a proportional valve in [23], accurately predicting the open-loop behavior of the valve. This study was conducted in order to apply a sliding mode controller to the valve in [24]. An investigation of a jet-pipe servovalve was conducted by Henri and Hollerbach in [25].

A recent approach to the modeling of pneumatic systems comes in the form of computer-based simulators in which the engineer designs a virtual system. Hong and Tessman present a commercially available software package that models both pneumatic and hydraulic circuits [17]. Anglani, et al. present a similar package that works in a CAD environment, and allows the pneumatic system to interact with external mechanical elements [26]. Both systems are designed more for the practicing engineer as a tool for selecting components for a particular application, rather than for fundamental research into pneumatic systems.
2.2. Friction. While the nonlinear dynamics of a pneumatic cylinder have been discussed in the previous section, the effects of friction warrant particular attention. Friction has been identified as the most significant nonlinearity in a servopneumatic actuator [27]. Stick-slip motion caused by friction can prevent certain motions from being realized. Any number of methods have been developed to model, analyze, and counteract the effects of friction. The works cited here are representative of the research being conducted in friction and tribology.

Armstrong-Hélouvry, et al., perform an exhaustive survey of tribology and friction in a 1994 paper [28] that covers models, analysis tools, and compensation techniques for machines with friction. Their summary of friction models concludes with an integrated friction model having seven parameters for sliding contact between hard metal parts, lubricated by oil or grease. In many cases, this model may be extended to dry contact between surfaces. While there have been successful examples of servo controllers compensating for friction in both research and industry, the control and compensation tools are often more advanced than the techniques available to analyze the friction.

An earlier paper by Armstrong-Hélouvry presents a less complicated model for friction [29]. In addition to Coulomb friction, stiction, and viscous friction, the author includes Strubeck friction, rising static friction, frictional memory, and presliding displacement for a more complete model (figure 2). Dimensional analysis permits a study of the effects of friction using five terms instead of ten. It also permits for an approximate, calculus-based analysis of control schemes, as opposed to numerical simulation of a specific system.
An empirical model of friction in an optical targeting mechanism is presented by Kang and Kim [30]. They develop frequency response functions for the mechanism, finding them to be amplitude-dependent. While their approach is rigorous and thorough, it is not cost-effective for many industrial applications in which friction is a concern.

Despite the effort to develop an accurate model for friction in mechanisms, in many applications friction may be an unknown, yet bounded, disturbance to the system. In their study of pneumatic system nonlinearities, Wang, et al. find that the static friction of an air cylinder varies as a function of both the cylinder position and direction of applied force [31]. This variation in friction appears to be a random variable, without an identifiable trend along the stroke.
FIGURE 2. Common Friction Models: (a) Coulomb friction + stiction;
(b) Coulomb friction + stiction + viscous friction; (c) Stribeck friction;
(d) frictional memory (adapted from [D79]).
Johnson and Lorenz map friction as a function of velocity, then perform a regression analysis to identify coefficients for static friction, Coulomb friction, viscous friction, and exponential friction [32]. Canudas de Wit, et al. discuss adaptive compensation for friction in [33]. A thorough model for friction includes five empirically-derived terms, but the authors present a three-term exponential approximation that is generally valid over the range of speeds considered. For adaptive controllers at low speed, such a model provides superior results to those of controllers using a Coulomb friction model.

Wang and Longman study stick-slip friction in systems with learning controllers [34]. In sampled-data systems with significant friction, they find a minimum movement size is necessary to avoid limit cycling about the reference position. In [35], Dunbar, et al. present a methodology for identifying dry friction faults in a pneumatic actuator, though the method can be applied to other systems. An empirical fourth-order model for a servopneumatic system is derived. Residuals calculated from the acceleration are proportional to the friction. When these residuals exceed their nominal levels, it indicates the presence of excess friction in the system.

Changes in the conceptual design of the actuator can significantly reduce friction. The pneumatic muscle actuators of [36] are single-piece devices that mimic biological muscle, and have no sliding contacts within the actuator. A similar concept is employed in the bellows actuator of [37]. In the latter, the actuator controls the fine motion of a gripper, where stick-slip friction cannot be tolerated.
Shen, et al. develop a generalized control structure for positioning linear systems with friction [38]. The controller accepts a degree of uncertainty in the exact values of the characteristic equation of the linear system and of the friction. The controller is deactivated in a small band about the command position to prevent chattering.

2.3. Control Strategies. Control has been the single largest hurdle to the application of servopneumatic systems. Traditional servo actuators – electric motors and hydraulic cylinders – may be modeled as linear mechanisms without significant error. Linear control methods, such as proportional-integral-derivative (PID) control, may therefore be applied to these devices. Pneumatic actuators, on the other hand, have considerable nonlinearities in their mathematical models. PID control performs poorly in controlling servopneumatics.

The design objectives for the system are important in selecting a controller. Positioning control, or point-to-point control, deals with applications in which the exact trajectory is not as important as the static positioning error of the system. Servo control is defined as an actuator’s ability to follow an arbitrary trajectory, and is considered more demanding of the controller.

PID Control

PID control – and, by extension, P, PI, and PD control – is not typically used for servo control of pneumatic cylinders. Very often, it is used as a baseline of comparison against
some other control scheme. A 1995 paper by Pu, Weston, and Moore [39] is an exception to this rule, and the only found in this literature review. In this paper, the authors discuss the effectiveness of a PID controller in following specific trajectories, such as a trapezoidal velocity profile. Their work suggests that the proper selection of a velocity profile can improve the performance of the servopneumatic axis for a specific application.

More often, PID control is used in pneumatic positioning systems. Kawamura, et al. demonstrate the stability of a PI controller in a positioning application [40]. PI control is also used applied by Noritsugu and Takaiwa in [41]. Here, the controller works in conjunction with two observers, which provide compensation for the nonlinearities in the air dynamics, friction, and changes in the system parameters. A dual-loop controller for a PWM-driven servo actuator is developed by Lai, et al. [42]. An inner loop applies PI control to the pressure feedback signal, while the outer loop applies PD control to the cylinder’s position. By varying the pressure on just one chamber of the air cylinder they are able to reduce the significance of nonlinearities in the control system.

In designing a pneumatic wrist platform, Pfreundschuh, et al. use PD controllers for positioning each of three pneumatic cylinders [27]. The authors avoided integral control because its interaction with the friction in the cylinder would have led to limit cycling behavior. Fok and Ong measure the positioning accuracy of a servopneumatic axis with a PD controller [43]. Without any consideration of trajectory following capability, they
find the positioning error is reduced as the proportional gain increases. With the proper
gain, the positioning error is found to be within ±0.3 mm over a range of payloads.

Often, a PID controller is modified to enhance its performance in certain circumstances.
Using a proportional controller as a reference, Moore, et al. discuss the effects of
modifications to this control scheme on a point-to-point pneumatic controller [44]. The
specific modifications include: output saturation at the initiation of a motion command;
setpoint modification, in which the command position is shifted during a portion of the
axis motion; adding derivative control and increasing its gain at low velocities, and; a
simple learning algorithm applied to the set point modifier. Output saturation is also
applied to the PID controller of Wang, et al. [45]. In this work, acceleration feedback is
substituted for pressure feedback, which is often used to provide full state feedback to the
controller.

PID is applied to a pneumatic positioning axis, regulated by two pulse-width-modulated
solenoid valves, in [46]. In this paper, a compensating constant is added to the output
signal to oppose friction, here modeled as Coulomb friction. The integrator gain is only
active within a pre-defined error band about the set point. A position look-ahead gain,
similar to a velocity feedforward, is also added. The result is a fast, accurate, inexpensive
positioning system. A subsequent paper from the same authors presents an auto-tuning
algorithm for this controller, which is able to set controller gains within a small number
of cycles [47].
Autotuning of a PI controller is also discussed by Hamiti, et al., in [9]. The control scheme is based on a linearization about an arbitrary operating point along the pneumatic cylinder’s stroke. An inner, analog proportional loop reduced the effects of nonlinearities in the system, while an outer loop contains a digital PI controller. Autotuning applied on the integral gain suppresses the limit cycle behavior of the system. This scheme can be adapted to various PID-based control schemes. Richardson, et al. apply a self-tuning algorithm to a proportional controller for a low-friction pneumatic cylinder [2]. The algorithm runs on-line, and can adapt to changes in the plant parameters. The authors used low-friction cylinders to minimize unknown disturbances from friction.

Feedback linearization can permit conventional PID controllers to achieve adequate performance with servopneumatics. While third-order and higher-order nonlinear systems are generally not feedback linearizable, Kimura, at al. demonstrate that a pneumatic cylinder with an inertia load can be linearized [89]. With feedback linearization and disturbance rejection, a PID controller can provide adequate point-to-point control. In [48], inverse function provide exact linearization for the inputs and outputs of a controller for a rotary vane actuator. These functions eliminate most of the oscillatory behavior seen in similar controllers that do not have the linearization functions.
Adaptive controllers provide a mechanism for dealing with unknown and/or time-varying parameters in the system being controlled. In addition to processing inputs to determine a set of output signals, an adaptive controller has an internal model of the system being controlled. By comparing the state of the model with the measured state of the system, the values of the system parameters may be estimated. Controller gains are then recalculated to maintain the controller’s effectiveness.

General works in adaptive control include a paper on stability by Whitcomb, et al. [49], in which the authors apply adaptive control to a serial-link robot arm. Adaptive controllers consistently outperform conventional controllers, but only when an accurate reference model is available. A paper by Sadegh and Horowitz also considers adaptive control for robot arms [50]. The controller developed is shown to be globally asymptotically stable, and avoids the need for matrix inversion as had previous adaptive controllers. Adaptive control is also applied to a robot with non-rigid joints in [51].

Two papers apply adaptive controllers to servopneumatic applications. In [1], Bobrow and Jabbari use adaptive control for force and position control of a pneumatic axis. The authors found that a pole-placement model, as opposed to a parameter-reference model, provides superior performance. They also found that a lower-order model provides better results than a higher-order model, due to the destabilizing effects of uncertainties in the higher-order models. McDonnell and Bobrow develop an adaptive controller for a
pneumatic cylinder controlling the elbow joint of a serial-link robot in [52]. Their controller incorporates a forgetting factor to allow for rapid adaptation to changes in the system parameters. This controller is remarkable in that it can not only adapt to changes in the payload, but also demonstrated an ability to compensate for a loss of data from one of the two pressure sensors.

Unlike adaptive controllers which have an internal model of a system, learning controllers contain an internal model of disturbances found along specific trajectories. A specific example is the control of a linear motor, discussed by Hu, et al. in [53]. While the system is nominally linear, the effects of friction, cogging, and torque ripple preclude precision control of position by linear control methods. Their controller has a neural network that learns the effects of these disturbances. In implementation, the tracking error in following a ±50mm sinusoidal motion is reduced from $\pm150\mu$m in the first cycle to $\pm20\mu$m in the 1000th cycle. Figure 3 shows the estimated disturbances along this trajectory, learned after 1000 cycles. Otten, et al. apply a trajectory-learning compensator to a PID controller for a linear motor [54]. The learning algorithm operates in a feedforward manner, avoiding instability that might occur in a feedback learner.
In applications such as paint spraying and welding, ensuring a constant velocity is critical to the process. Gross and Rattan develop two learning controllers – multilayer neural networks (MNN) – for velocity control of a sevopneumatic actuator [55]. The first is an offline controller designed for the commissioning of an MNN, and for re-training after significant system changes. Training requires 1400 cycles, which took about an hour with the hardware being used. The second controller tracks the performance of the MNN, and will recalculate control weights only if the tracking error is deemed excessive. The online controller requires two processors: one for the actual control, and a second for the process monitor and gain recalculation.
Fuzzy Control

Fuzzy control of servopneumatics has not been extensively studied in the literature, with just two papers exploring the subject. In [56], Shih and Ma use fuzzy control for position control of a pneumatic cylinder. With a properly tuned controller, positioning accuracy is within 0.1mm. In [57], to be discussed further in this section, a fuzzy controller and a neuro-fuzzy controller are two of six control schemes evaluated on a servopneumatic axis.

Variable Structure Control and Sliding Mode Control

Vadim Utkin introduced the concept of sliding mode control (SMC) in his 1977 paper [58]. Sliding mode control is based on the theory of variable structure control (VSC), in which a controller is composed of distinct subcontrollers with an appropriate switching logic scheme. Sliding mode control is a variable structure control in which adjacent subcontrollers drive the system towards the boundary between the subcontrollers, called the *sliding plane* or *sliding surface*. In this manner, the system tends to follow the sliding plane to equilibrium. Thus, the gross dynamics of the system will be determined by the existence and position of the sliding planes, and not by the subcontroller dynamics. Sliding mode control enhances the advantages of variable structure control, mainly an insensitivity to plant variance and the ability to achieve state trajectories not available through conventional control methods. The disadvantages of both variable structure control and sliding mode control is that they both require a controller capable of high-
frequency switching, which is characterized by chattering of the output device. This, in turn, may excite unmodeled high-frequency behavior in the system. Utkin reviews more recent developments in VSC in a 1993 paper [59], in which he discusses mathematical analysis methods, controller designs, and practical applications researchers have developed. The application of VSC has produced quantifiable economic benefits in several industries.

VSC and SMC have received a lot of attention from researchers working with DC motors and robotics. Benjiamin and Kauffmann apply a sliding mode controller to the position control of a DC motor in [60]. In both analog and digital implementation of the SMC, the controller was found to be robust with respect to changes in the friction resisting the motion of the load. A later paper by Benjiaman and Magnuson [61] discusses the same application. Like a PID controller, SMC has three control gains, but unlike PID these gains are decoupled, simplifying the tuning procedure. The authors demonstrate that the trajectory-following capability of the SMC is markedly improved over that of a PID controller.

A variable-structure controller is applied by Xu, et al. in the control of a two-link robot [62]. To avoid chattering in the output, the authors employ a linear smoothing function in a small band about the switching plane. The smoothing function was observed to greatly reduce the fluctuations in the control torque at each joint. Leung, et al. demonstrate a sliding mode controller on a two-degree-of-freedom robot arm, with angular tracking errors of ±1.7° over a 30° move [63].

23
Harashima, et al. present a sliding mode controller for a serial robot arm with direct-drive actuators [64]. Without the reduction gears in the arm, the actuator dynamics are more susceptible to outside disturbances and interactions, such as the position-dependent torque developed by the weight of the arm itself. The variable-structure controller is able to provide superior performance in spite of these interactions. To avoid chattering about the sliding plane, the discontinuous control function is replaced with a continuous function in a small region encompassing the switching plane, in a manner similar to that described in [62]. Integral control in this region also serves to suppress chattering. A following paper by Slotine and Hashimoto discusses the details of implementing the controller in greater detail [65].

More recently, sliding mode control has gained the attention of researchers studying servopneumatics. Paul, et al. select SMC for control of a servopneumatic axis in [66]. Due to the insensitivity to variations in the plant, the authors are able to use an approximate model for the airflow. A reduced-order controller eliminates the need for pressure sensors in the feedback system. Pandian, et al. also apply a reduced-order controller to a servopneumatic system [67]. In developing a model, the authors ignore friction and use a simple linear flow model for the proportional valves. Still, the reduction of order in the controller does not significantly degrade its performance. However, the results developed by Tang and Walker demonstrate that the model used in developing the SMC needs to be selected with care, as their results show a need for model refinement, especially with regards to the pneumatic cylinder dynamics [68].
Richer and Harmuzlu also compare a full-order controller with a reduced-order controller in [69]. The full-order controller provides excellent performance, but at a premium of computational cost. A reduced-order controller is found to be adequate when propagation delays are minimized – that is, when the length of plumbing between the valve and the actuator is as short as possible.

Drakunov, et al. use full state feedback with SMC in [70], demonstrating an excellent command-following ability. In [71], Acarman, et al. incorporate an input-output linearization scheme, similar to that of [48]. This permits the use of linear design tools for developing the sliding mode controller. An observer is also included to provide the controller with knowledge of system states not directly measured.

Sliding mode control can find application in other fields. Gamble and Vaughan use SMC for position control of the spool in a proportional hydraulic valve [24]. A nonlinear switching surface in position error-velocity-acceleration space separates the solenoid applying full forward and full reverse voltage to the spool. The resulting controller provides superior performance to an analog PID controller, with virtually no steady-state positioning error and an insensitivity to flow forces through the valve. A hybrid sliding mode-adaptive controller for aircraft attitude is developed and simulated by Young in [72]. Linear model-based adaptive control, by itself, has problems in quantifying design objectives and accounting for changes in the plant parameters. SMC allows for better performance and less sensitivity to disturbances in the system.
Other Control Schemes

De Almeida, et al. discuss the system architecture for a five degree-of-freedom pneumatic robot designed to pick plastic parts from an injection molding machine [73]. Variable structure controller was to be used for short-distance movements of the gripper, while PID would control larger motions.

Pu and Weston present a hybrid point-to-point controller for servopneumatic actuators [74]. To minimize positioning time, the controller has a variable structure that starts a move with a saturated output, inserts a negative input for a period of deceleration, and applies PID control for final positioning. A learning controller is applied to the scheduling of the control laws.

Gorce and Guihard develop a hybrid force-position controller for robotic arms in [75]. Impedance control uses external loads on the structure to modify the apparent inertia of the system inside the controller. Simulated results of the controller are presented.

Takamura, et al. deliver a report on chaotic behavior in digitally-controlled servopneumatic actuator systems [76]. They observe chaotic behavior in marginally stable systems, as verified by three different indices. An OGY controller is applied to minimize the chaos in the system.
Controller Comparisons

Brun, et al. compare a linear controller to that of a nonlinear controller for a pneumatic cylinder [77]. The control signal used controls jerk, the time derivative of acceleration, to ensure smooth motion starts and stops. In comparing the controllers, the authors find the nonlinear controller avoids stick-slip behavior in the system, but is much more complex to establish and requires three sensors to the linear system’s one.

Chillari, et al. perform a comparative study between six control methods for servopneumatic actuators, applying them to representative, common trajectories [57]. The methods evaluated are PID control, fuzzy control, sliding mode control, and neuro-fuzzy control. The PID and fuzzy controllers were evaluated both with and without pressure feedback. In terms of the RMS position tracking error, the fuzzy controller with pressure feedback generally performed best, though the fuzzy controller with a neural network did work better on certain trajectories. The neuro-fuzzy controller estimates the pressure in the cylinder, eliminating the need for pressure sensors.

2.4. Applications. Practically, servopneumatic actuators may be used to replace electromagnetic or hydraulic actuators in just about any particular application. In certain applications, though, servopneumatics may prove to be the best option.

Harrison, et al. [78] surveyed industry to evaluate present and future applications for pneumatic robots. While robots had already been applied to welding and paint-spraying
applications, the companies surveyed indicated an interest in robotics for part handling, assembly, and quality control. The authors evaluated modular pneumatic robots as a means of providing flexible automation at a low cost, using two part unload-and-assemble systems as examples.

Caldwell, et al. discuss the use of pneumatics in the construction of a humanoid robot [36]. The properties of the pneumatic muscle actuators make them excellent for this application: high power-to-weight ratio, flexibility, and mechanical behavior similar to that of human muscle. A light-weight internal combustion engine can provide enough power for the entire robot, allowing it to explore freely without a power umbilical or heavy banks of batteries.

Ben-Dov and Salcudean develop a novel pneumatic actuator for fine motion control [79]. Two low-friction air cylinders, each with its own voice-coil flapper valve, form a gripper for force-controlled manipulation. In a recent work by Bobrow and McDonell, torque control of pneumatic actuators gives a robot force control at the end effector [20]. Other applications for servopneumatics include: a number of robot arm designs [7] [52] [64]; a wrist platform with compliance [27]; a robotic leg [80], and; humanoid robots [36] [81].
CHAPTER 3

PROBLEM STATEMENT

Chapter 2 presented a number of schemes for the control of a servopneumatic actuator. Generally, these control systems have been realized with laboratory data acquisition and process control hardware, using software custom-designed for the particular controller. A typical example of such a system is the sliding-mode controller for a servopneumatic actuator presented in [67], which uses a computer with a 100 MHz Pentium processor for control.

Industrial control systems, on the other hand, typically use programmable logic controllers (PLC’s) for equipment control. Initially designed to replace relay logic control, PLC capabilities have been expanded over the past two decades. A modern, configurable PLC consists of a chassis with a power supply, processor, and a set of modules selected for the particular application. Modules are available to handle digital inputs and outputs, analog inputs and outputs, thermocouple inputs, and communications using DeviceNet and EtherNet protocols. Furthermore, stand-alone servo controllers, once required for DC servomotor control tasks, may now be replaced with servo motion
control modules that plug into the PLC chassis. Figure 4 depicts one such modern PLC, an Allen-Bradley Logix5550 PLC1, with a selection of different modules.

![Allen-Bradley Logix5550 PLC](image)

FIGURE 4. Allen-Bradley Logix5550 PLC.

The goal of this research is to investigate the performance of various control strategies for a servopneumatic system consisting of a linear actuator and a single proportional valve. The control algorithms will be realized within the architecture of a programmable logic controller similar to that of figure 4, with control tasks being shared between the PLC controller and a motion control module on the PLC. The limitations imposed on the system performance by the PLC control architecture will be discussed. A nonlinear

1 DeviceNet is a trademark of the Open DeviceNet Vendor Association. EtherNet is a registered trademark of Intel Corporation, Xerox Corporation, and Digital Equipment Corporation. Logix5550 is a trademark of Rockwell International Corporation.
simulation of the servopneumatic system will be developed in order to evaluate phenomena that cannot be directly observed in the physical system.
CHAPTER 4

EXPERIMENTAL EQUIPMENT

This chapter discusses the properties of the major components of the servopneumatic control system used in this study (figure 1). Knowledge of these properties is essential in creating an accurate system model and designing a control algorithm.

4.1. Proportional Valve. A Festo proportional valve controls the pneumatic cylinder used in this study. The valve comes packaged with electronics to provide closed-loop control of the spool position. This particular valve is a prototype that accepts a ±10 volt control signal instead of the 0-10 volt control signal accepted by a standard Festo valve. Table 2 lists the significant characteristics of the valve. Figure 5 is a schematic of the Festo valve, showing the ports and their connections. Figure 6 shows the published flow rate through the valve as a function of the command voltage, for the standard 0-10 volt valve. Note that figure 6 is separated into two regions: one for flow from port 1 to port 2; and a second for flow from port 1 to port 4.
FIGURE 5. Festo Valve Schematic.

FIGURE 6. Flow Rate through Festo Valve (from [82]).
Table 2 lists the response time and limit frequency for the Festo valve. Assuming the closed-loop spool position response approximates a first-order system, and that the published response time is five time constants, the time constant of the valve may be calculated to be 0.96 ms. At 115 Hz, the attenuation of the command signal is -1.7 dB, or 18%.

For simulation purposes, it is desirable to have an accurate mathematical model of flow through the proportional valve. The flow rate is a complex function of multiple variables: supply pressure, downstream pressure, and temperature all influence the flow rate. Section 2.1 discusses four mathematical models that have been presented in the literature.
One mathematical model for the flow of air through a valve is derived from compressible flow through a fixed orifice. The equation is divided into two regions based on the ratio of the downstream pressure to upstream pressure, $\frac{P_{DN}}{P_{UP}}$. The critical pressure is calculated using the ratio of specific heats for air, k.

$$
\left(\frac{P_{DN}}{P_{UP}}\right)_{CRIT} = \left(\frac{2}{k + 1}\right)^{k-1}
$$

(1).

For air ($k = 1.4$), the critical pressure ratio is found to be 0.528. When the pressure ratio is higher than the critical pressure ratio, flow through the orifice is subsonic, and increases as the pressure ratio decreases. At the critical pressure ratio, flow through the orifice is sonic. At this point the orifice is said to be choked, and further decreases in the pressure ratio will not increase flow through the orifice. From Drakunov, et al. [70] and Andersen [83], the mass flow rate through an orifice is given as,

$$
\dot{m} = \begin{cases}
C_D A \frac{P_{UP}}{\sqrt{R T_1}} \sqrt{\frac{2k}{k-1}} \left[\left(\frac{P_{DN}}{P_{UP}}\right)^{2/k} - \left(\frac{P_{DN}}{P_{UP}}\right)^{(k+1)/k} \right] : \left(\frac{P_{DN}}{P_{UP}}\right) > \left(\frac{P_{DN}}{P_{UP}}\right)_{CRIT} \\
C_D A \frac{P_{UP}}{\sqrt{R T_1}} \times 0.6847 : \left(\frac{P_{DN}}{P_{UP}}\right) \leq \left(\frac{P_{DN}}{P_{UP}}\right)_{CRIT}
\end{cases}
$$

(2),
where C_D is the discharge coefficient and A is the orifice area. The upstream and downstream pressures are absolute pressures, rather than gauge pressures. The discharge coefficient reflects a contraction of the flow path downstream of the orifice, reducing the effective flow area. This equation does not include the flow coefficient C_V, which is the most often used parameter describing the flow capacity of a given valve.

A less complicated equation for flow through a valve is presented by the National Fluid Power Association (NFPA). The NFPA equation incorporates the flow coefficient. Like the orifice equation, flow is divided into regions of sonic (choked) and subsonic (unchoked) flow. The NFPA equation calculates the volumetric flow rate, measured in standard cubic feet per minute. The mass flow rate may be derived from the volumetric flow rate through multiplication by air density at standard conditions.

\[
Q_{SCFM} = \begin{cases}
22.48 \times C_V \sqrt{\frac{(P_{UP} - P_{DN})P_{DN}}{T}} & : \frac{P_{DN}}{P_{UP}} > \frac{P_{DN}}{P_{UP}}_{CRIT} \\
11.22 \times C_V \frac{P_{UP}}{\sqrt{T}} & : \frac{P_{DN}}{P_{UP}} \leq \frac{P_{DN}}{P_{UP}}_{CRIT}
\end{cases}
\]

(3),

where the pressure is measured in psia and the temperature in °R. Esposito presents a similar equation in [18],
Not as well-known as the previous models, the ISA model for flow through a valve incorporates not only the flow coefficient C_v, but also includes an experimentally-determined critical pressure drop ratio factor X_T. This model was developed to account for the observation that two valves with identical flow coefficients can exhibit different flow rates under identical pressure conditions. In any valve, the complexity in the geometry of the flow path corresponds to X_T, with more complex geometries yielding higher values. For example, [84] presents two valves having identical flow coefficients. For a ball valve with a straight flow path, $X_T = 0.14$; for a needle valve with a Z-shaped flow path, $X_T = 0.84$.

For air, the ISA flow equation is,

$$Q_{SCFM} = \begin{cases}
22.67 \times C_v P_{UP} \left(1 - \frac{X}{3X_T} \right) \sqrt{\frac{X}{T}} & : X < X_T \\
15.11 \times C_v P_{UP} \frac{X_T}{T} & : X \geq X_T
\end{cases}$$

(5),

where,
\[X = \frac{P_{UP} - P_{DN}}{P_{UP}} = 1 - \left(\frac{P_{DN}}{P_{UP}} \right) \]

(6).

In the orifice flow and NFPA equations, choked flow occurs when the ratio of downstream to upstream pressures drops below the critical ratio predicted by equation 1. The critical ratio for ISA equation, on the other hand, varies according to the valve design. This behavior may be accounted for by considering flow through a series of orifices in line with each other. Under steady flow conditions, it is evident from the principle of the conservation of mass that the flow rate through each orifice is identical. Contrary to intuition, the pressure drop across each orifice is not necessarily identical. It is possible for flow through one orifice to be choked, while simultaneously subsonic in another.

Consider the case of flow through two identical orifices. For a given pressure drop across the pair, the flow rate may be calculated by finding the intermediate pressure that equalizes flow through either orifice. Figure 7 shows this flow rate function, and compares it to flow through a single orifice (using equation 3). The ratio at which the two-orifice combination becomes choked is approximately 0.43 – smaller than the 0.528 predicted by the single-orifice ratio (equation 1).
Figure 7. Flow Rate through Two Orifices.

From a practical standpoint, if a valve is considered not as a single orifice, but as a set of orifice-like obstructions to flow, then it is logical to argue that the choked-flow pressure ratio of the valve, as a whole, is not necessarily 0.528.
Figure 8 compares the three models for flow through a valve: the orifice flow model (equation 2), the NFPA flow model (equation 3), and the ISA flow equation (5), using three different values for X_T. The supply pressure is 120 psia, and the ambient temperature is 68°F (528°R). For the NFPA and ISA equations, the flow coefficient C_r is 1.4. The orifice flow equation, which does not include a flow coefficient, has its value
of \(C_{D}A \) adjusted so that its choked-flow value is identical to that predicted by the NFPA equation. Figure 8 demonstrates that the NFPA model closely approximates the orifice flow model. Figure 8 also shows the significant effect of \(X_T \) on the flow rate as predicted by the ISA model.

Measurements of the flow rate through the Festo valve demonstrate the orifice-flow and NFPA equations are not accurate for this valve. Figure 9 shows the schematic of the equipment used to determine the flow rates. All plumbing is polyethylene tubing with a 10mm outside diameter and a 1.5mm wall thickness. Two electronic pressure sensors are placed in proximity to the valve as to obtain the most accurate measurement of the pressure drop across the valve. The rotameter exhausts to atmosphere, eliminating the need for conversions on the measured flow rate. Three rotameters were used for taking measurements: an Omega FL7314 with a capacity of 2 to 20 SCFM; a Dwyer with a capacity of 120 to 1200 SCFH, and; a Dwyer with a capacity of 50 to 400 SCFH.

A constant voltage command was sent to the valve. For positive voltage commands, the air lines were arranged as in figure 9. For negative command voltages, the rotameter was attached to port 2 instead of port 4. At any given voltage setting, the flow control valve was adjusted as to vary the pressure drop across the valve. The steady-state flow rate was measured using the appropriate rotameter.
Figure 10 shows the volumetric flow rate, from port 1 to port 4, as a function of the command voltage to the Festo proportional valve, at a supply pressure of 80 psig. The flow rate in figure 10 has been corrected for pressure. It was observed that as the flow rate increased, the pressure at the regulator dropped. This is attributed to head losses in the length of tubing connecting the regulator to the compressed air manifold. Since all flow rate models (equations 2 through 5) are proportional to the supply pressure, the corrected flow rate may be determined through multiplication of the ratio of the pressure at no flow rate to the measured supply pressure under flow.

\[
Q_{\text{CORR}} = Q_{\text{MEAS}} \frac{P_{\text{NOFLOW}}}{P_{\text{MEAS}}} \quad (7)
\]
FIGURE 10. Volumetric Flow Rate (1 → 4) as a Function of Pressure Ratio.
Figure 11 shows the uncorrected ratio of flow rate to supply pressure as a function of the pressure ratio. Both the command voltage and the supply pressure were varied to produce the data. This superimposition of the data at each command voltage supports the claim that flow rate is proportional to the supply pressure.

FIGURE 11. Uncorrected Flow Rate to Supply Pressure Ratio, as a Function of Pressure Ratio.
A visual comparison of figure 8 with figure 10 shows that neither the orifice flow, NFPA, nor Esposito equations can accurately predict flow through the Festo proportional valve. The experimental data lacks the choked-flow region predicted by each of these models. Examination of the ISA equation, though, shows that values of the flow coefficient C_r and the critical pressure drop ratio X_r may be selected so that the ISA model can predict the flow rate.

Figure 12 shows the ISA model of flow, assuming a supply pressure of 80 psig and a temperature of 528°F, superimposed over the corrected data set for a 10V command signal. By minimizing the RMS error between the data and the model, the values of C_r and X_r are estimated to be 0.451 and 1.00, respectively.

In a similar fashion, values of the flow coefficient C_r and the critical ratio X_r may be estimated for the other command voltages. At each command voltage tested, the best-fit value for the critical ratio X_r was found to be 1.0. Figure 13 shows the flow coefficient as a function of the command voltage. A quadratic model is fit to the data. The coefficients of the quadratic model are found in table 4.
FIGURE 12. Predicted Flow Rate Using ISA Model, $C_v=0.44$, $X_f=1.00$.

![Graph showing predicted flow rate using ISA model, with $C_v=0.44$, $X_f=1.00$.](image)
The procedure of measuring flow rates and fitting data to the ISA model was conducted for flow from the supply to the cylinder rod end (ports 1 to 2), from the blind end to exhaust (ports 4 to 5), and from the rod end to its exhaust (ports 2 to 3). Figures 14, 15, and 16 show the corrected flow rates for the different flow paths, with a supply pressure of 80 psig. Figures 17, 18, and 19 show the flow coefficient as a function of the command voltage. Table 3 lists the flow coefficients extracted from the experimental data. Table 4 gives the flow coefficient models for all four flow paths.
FIGURE 14. Volumetric Flow Rate (1 → 2) as a Function of Pressure Ratio.
FIGURE 15. Volumetric Flow Rate (4 → 5) as a Function of Pressure Ratio.
FIGURE 16. Volumetric Flow Rate (2 → 3) as a Function of Pressure Ratio.
FIGURE 17. Flow Coefficient as a Function of Command Voltage (1 → 2).

FIGURE 18. Flow Coefficient as a Function of Command Voltage (4 → 5).
FIGURE 19. Flow Coefficient as a Function of Command Voltage (2 → 3).
<table>
<thead>
<tr>
<th>Flow Path</th>
<th>Command Voltage</th>
<th>Flow Coefficient</th>
<th>Command Voltage</th>
<th>Flow Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 → 4</td>
<td>10.0</td>
<td>0.451</td>
<td>5.0</td>
<td>0.221</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>0.411</td>
<td>4.0</td>
<td>0.166</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>0.369</td>
<td>3.0</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>0.323</td>
<td>2.0</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 → 2</td>
<td>-10.0</td>
<td>0.480</td>
<td>-4.0</td>
<td>0.184</td>
</tr>
<tr>
<td></td>
<td>-8.0</td>
<td>0.396</td>
<td>-2.0</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>-6.0</td>
<td>0.293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 → 5</td>
<td>-10.0</td>
<td>0.519</td>
<td>-5.0</td>
<td>0.259</td>
</tr>
<tr>
<td></td>
<td>-9.0</td>
<td>0.469</td>
<td>-4.0</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>-8.0</td>
<td>0.422</td>
<td>-3.0</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>-7.0</td>
<td>0.376</td>
<td>-2.0</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>-6.0</td>
<td>0.313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 → 3</td>
<td>10.0</td>
<td>0.493</td>
<td>5.0</td>
<td>0.245</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>0.445</td>
<td>4.0</td>
<td>0.177</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>0.402</td>
<td>3.0</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>0.354</td>
<td>2.5</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3. Calculated Flow Coefficients.

The ISA equation may be used to calculate the maximum theoretical flow rate through the valve. At the limits of the valve’s capacity – 150 psig to vacuum – a full-scale voltage command should allow a flow rate of 2780 SCFH (1310 L/min), which is close to the 1400 L/min capacity stated in the product literature.

4.2. Pneumatic Cylinder. The air cylinder used in this study was manufactured by the Festo corporation. A pivot mount on the blind end of the cylinder allows the cylinder to hang freely, with the payload suspended underneath. Certain modifications to the cylinder’s design were made at the time of manufacture. The diameter of the cylinder rod is larger, as the rod itself is hollow to accommodate the position sensor. The position sensor is mounted in a threaded hole at the blind end of the cylinder. A magnet is
attached to the back face of the piston, and reduces the stroke of the cylinder by approximately 25mm. Table 5 lists the cylinder’s properties. Figure 20 shows a cut-away diagram of the cylinder.

Knowledge of the friction in the cylinder is important in modeling its dynamic motion. Section 2.2 presents various models for friction between sliding parts. Armstrong-Hélouvry had presented five- and seven-parameter models for friction in separate papers [28], [29]. In this work, the friction model will include stiction, Coulomb friction, and viscous friction (figure 2(b)) as their coefficients may be readily obtained.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>DNG-50-200-P-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Single-rod, double-acting</td>
</tr>
<tr>
<td>Piston Diameter</td>
<td>50mm</td>
</tr>
<tr>
<td>Rod Diameter</td>
<td>25mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>200mm (175mm effective)</td>
</tr>
<tr>
<td>Cushioning Length</td>
<td>32mm (7mm effective on blind end)</td>
</tr>
</tbody>
</table>

Table 5. Pneumatic Cylinder Properties.
Stiction is usually defined in terms of a coefficient, μ_s, multiplied by the normal force acting between two surfaces. In this application, however, it is more appropriate to measure the force directly, as the compressive forces in the seals and bushings of the cylinder are difficult to measure. Because the cylinder acts vertically with the load suspended below, it is safe to assume that these forces, and therefore the friction forces, are constant regardless of any external load applied to the cylinder.

Measurement of the stiction force was accomplished by hanging a bucket from the cylinder. The bucket was slowly filling it with water until the combined weight of the water and the bucket became sufficient to break stiction. The inertial force of the
dripping water was calculated to be no more than 0.0085 lb, which is negligible when compared to the stiction. Two experiments were run: the first measuring stiction as a function of the starting position; the second measuring stiction as a function of time-at-position. The justification of the first experiment comes from the findings of Wang, et al., in which friction varied significantly over the stroke of the cylinder [31]. The second experiment is warranted by Armstrong-Hélouvry’s discussion on the increase of static friction over time [29].

Figure 21 shows stiction as a function of stroke position. The general trend of the data is a slight increase in stiction as the rod is extended. The non-conforming datum at 6.2” occurred when the experiment was interrupted for a period of time. Ignoring this datum, the average stiction force is 4.9 lb. Figure 22 shows stiction at the zero position (fully retracted) as a function of time-at-position. Above ten minutes, stiction clearly increases as a function of time. In practice, a pneumatic cylinder in a manufacturing environment is cycled frequently, with pauses over ten minutes being uncommon. Figures 21 and 22 apply to extension only. It is assumed that, for retraction, the stiction force is identical.
To determine the values of Coulomb and viscous friction, the cylinder was allowed to free-fall with a 22.25-pound load attached to the rod. The weight of the piston and rod is assumed to be 2.0 lb. Further, it is assumed that the effects of air compression in the rod end of the cylinder are negligible in this analysis, as the cylinder vents directly to atmosphere.

FIGURE 22. Stiction as a Function of Time-at-Position.
The differential equation of motion for this system is,

\[\ddot{x} = g - \frac{g}{W} F_{\text{FRIC}} - \frac{g}{W} b \dot{x} \] \hspace{1cm} (8).

Assuming initial conditions of \(x = 0 \) and \(\dot{x} = 0 \), the general solution to this differential equation is,

\[x = A \left(t + \tau \cdot \exp \left(-t/\tau \right) - \tau \right) \] \hspace{1cm} (9),

where \(\tau \) is the time constant, and \(A \) is a constant.

Applying the derivatives of equations 9 to 8,

\[\frac{A}{\tau} \exp \left(-t/\tau \right) = g - \frac{g}{W} F_{\text{FRIC}} - \frac{g}{W} b A \left(1 - \exp \left(-t/\tau \right) \right) \] \hspace{1cm} (10),

which may be rearranged to find,

\[A \exp \left(-t/\tau \right) \left(\frac{1}{\tau} - \frac{g}{W} b \right) = g - \frac{g}{W} F_{\text{FRIC}} - \frac{g}{W} b A \] \hspace{1cm} (11).
By applying boundary conditions to equation 11, the unknown terms for Coulomb friction F_{FRIC} and viscous friction b may be expressed in terms of A and τ. For $t = 0$, equation 11 simplifies to,

$$A \left(\frac{1}{\tau} - \frac{g}{W} b \right) = g - \frac{g}{W} F_{\text{FRIC}} - \frac{g}{W} b A \quad (12).$$

Rearranging,

$$F_{\text{FRIC}} = W \left(1 - \frac{A}{g\tau} \right) \quad (13).$$

At infinite time ($t = \infty$), equation 11 becomes,

$$0 = g - \frac{g}{W} F_{\text{FRIC}} - \frac{g}{W} b A \quad (14),$$

which allows a quantity for viscous damping to be calculated,

$$b = \frac{W - F_{\text{FRIC}}}{A} \quad (15).$$
FIGURE 23. Trajectory of Free-Falling Cylinder Payload.
Values for A and τ are determined by minimizing the RMS error between the experimental data and the model-predicted position of equation 9 (figure 23). The Coulomb friction is found to be 1.55 pounds, and the coefficient for viscous damping is 0.125 lb-sec/in.

The pressure dynamics of the air contained in the air cylinder are derived from principles of thermodynamics. In this analysis, air is assumed to behave as an ideal gas undergoing an adiabatic process. Air behaves as an ideal gas at room temperature for pressures less than 30 atmospheres [5].

Derivation of the equation governing the time rate of change of the pressure inside the air cylinder requires a brief review of thermodynamics and ideal gasses. The ideal gas law is commonly expressed as,

$$PV = mRT$$ \hfill (16).

Alternately, the ideal gas law may be expressed in terms of density.

$$\frac{P}{R} = \frac{m}{V} T = \rho T$$ \hfill (17).

The universal gas constant R is related to the specific heats of a gas, which themselves are related to each other.
\[R = c_p - c_v \]

(18).

\[k \equiv \frac{c_p}{c_v} \]

(19).

For air, \(k = 1.4 \). The relationships of equations 16 through 19 will be exploited in the following analysis.

Each chamber of the air cylinder is treated as a control volume. The air in a chamber has an internal energy that is a function of the temperature.

\[E = c_v \rho VT \]

(20).

In an adiabatic process, the time rate of change in the internal energy is equal to the rate of energy added to the control volume by the incoming air flow, less the rate of work the control volume performs on the cylinder piston.

\[\frac{d}{dt}(c_v \rho VT) = \dot{m}c_p T - P \dot{V} \]

(21).

Applying equation 17 to 21 yields,
\[
\frac{d}{dt}\left(\frac{c_v}{R}PV\right) + P\dot{V} = \dot{m}c_pT
\]
(22).

Rearranging terms,

\[
\frac{c_v}{c_pRT} \frac{d}{dt}(PV) + \frac{P\dot{V}}{c_pT} = \dot{m}
\]
(23).

The derivative of \((PV)\) is expanded, with equation 19 being applied,

\[
\left(\frac{1}{kRT}\right)(\dot{PV}) + \left(\frac{1}{kRT} + \frac{1}{c_pT}\right)(P\dot{V}) = \dot{m}
\]
(24).

Manipulation of 18 and 19 shows,

\[
\frac{1}{kR} + \frac{1}{c_p} = \frac{1}{R}
\]
(25).

Substitution of 25 into 24 yields,

\[
\left(\frac{1}{kRT}\right)(\dot{PV}) + \left(\frac{1}{RT}\right)(P\dot{V}) = \dot{m}
\]
(26).

Expressing equation 26 in terms of \(\dot{P}\),
\[\dot{P} = \frac{kRT}{V} \dot{m} - \frac{kP}{V} \dot{\dot{V}} \]

Equation 27 is the general form for the time rate of change of pressure in one chamber of an air cylinder. The mass flow rate \(\dot{m} \) is a nonlinear function of the supply and chamber pressures. This relationship was discussed in section 4.1. The volume in each chamber of an air cylinder may be related to the displacement by \(V_1 = A_1 x + V_{x1} \) and \(V_2 = A_2 (L - x) + V_{x2} \), where \(V_{x1} \) and \(V_{x2} \) are the volumes of air in the cylinder and air hoses which the piston cannot displace. Now,

\[\dot{P}_1 = \frac{kRT}{A_1 x + V_{x1}} \dot{m}_1 - \frac{kP_1 A_1}{A_1 x + V_{x1}} \ddot{x} \]

(28).

\[\dot{P}_2 = \frac{kRT}{A_2 (L - x) + V_{x2}} \dot{m}_2 + \frac{kP_2 A_2}{A_2 (L - x) + V_{x2}} \ddot{x} \]

(29).

The mechanical dynamics of the air cylinder may be modeled as a second-order differential equation. Because the pressures considered here are absolute pressures rather than gauge pressures, the force developed by pressure over the rod area must be included.

\[\ddot{x} = \left(Mg + P_1 A_1 - P_2 A_2 - P_{ATM} A_{rod} - b \dot{x} - F_{fric} \right) / M \]

(30);
4.3. **Position Encoder.** A Gemco Blue Ox 952QD provides position feedback for the control system (figure 24). It detects the position of the magnet inside the cylinder, and sends a quadrature-encoded signal to the control system, in this case the PLC.

Position sensing is accomplished through a rod containing a magnetostrictive material, which is located within a cavity in the piston rod (figure 20). Conceptually similar to a piezoelectric material, magnetostrictive materials produce a strain in response to a magnetic field. Every millisecond, a voltage pulse is applied to a conductor located coaxially with the sensor. The interaction between the electromagnetic fields of the voltage pulse and the sensing magnet creates a pulse strain in the magnetostrictive material. A shock wave is created, traveling in both directions along the rod. The time period between the sending of the voltage pulse to the detection of the shock wave at the
base of the rod is converted to distance by multiplication of time by the material’s sonic velocity.

The Blue Ox output is a quadrature-encoded dual pulse train (figure 25). Counting of the pulses from channels A and B permit the controller to calculate position and, through differentiation, velocity. Channels A and B are 90° out of phase from each other to allow for the determination of the direction of motion. A third channel, Z, flags a zero position tracked inside the position encoder. Because the output is a pulse train, the encoder cannot simply instantaneously update a position signal. Instead, the sensor output signal is linearly interpolated over the next millisecond from the previously scanned position to the most current position. In this manner the position encoder has a 2 ms total delay in its output signal – one millisecond to sense, one millisecond to update.

![Quadrature Encoded Signal](image)

FIGURE 25. Quadrature Encoded Signal.
4.4. Programmable Logic Controller. The Allen-Bradley ControlLogix platform requires two components for motion control. The Logix5550 controller is the main processor for the ControlLogix PLC. In addition to handling the I/O functions required for a particular application, it generates a coarse command position for motion control. The M02AE motion control module actually performs the closed-loop control on the servo axis.

The Logix5550 controller serves as the main processor for the PLC, running the ladder logic program for machine control. Inputs and outputs referenced by the Logix5550 may be identified by their formal address (i.e., Local:2:1.Data.0), or may be assigned to an alias tag (i.e., HomeLimitSwitch). Unlike older processors, internal objects such as timers and counters do not have fixed addresses inside the Logix5550 memory, but are assigned with arbitrary tag names (i.e., FaultResetTimer). Tags may be arranged in arrays with up to three indices (i.e., GainSelect[3,2,2]).

Ladder logic was originally designed to represent hard-wired relay logic. In relay logic, each relay “executes” its portion of the control logic simultaneously, limiting the speed of the controller to the response speed of the individual relays. In PLC-based ladder logic, the execution of the program is considerably different. First, the processor reads the inputs and stores their values in a look-up table. Next, the processor executes the ladder logic sequentially, instead of simultaneously. After going through the ladder once, the updated output table is sent to the outputs, and the process repeats. In addition to these
tasks, the Logix5550 processor performs communication tasks. The scheduling of these tasks depends on their priority.

The scan time for a processor is a function of overhead from the modules assigned to a processor, the length of ladder logic to execute, and the number and frequency of communication tasks. Large scan times can be problematic, as the processor might miss intermittent signals and not perform as desired. Table 6 lists representative ladder objects and their associated execution times for the Logix5550.

The M02AE motion control module works with the Logix5550 controller in providing closed-loop position control of a servo axis. The Logix5550 generates a coarse position command which is sent to the M02AE. The M02AE then interpolates the coarse position command to determine the fine position command. The M02AE closes the control loop at a rate of 5 kHz, which is generally faster than the Logix5550 processor.

Figure 26 shows the control architecture for the M02AE. The structure employs PI control with a velocity feedforward gain. The command voltage from the M02AE is given by,

\[
V_{COM} = \left(4 \cdot k_p (x_{COM} - x) + 4 \cdot k_i \int (x_{COM} - x) + \frac{k_{vp}}{250} (\dot{x}_{COM}) \right) \cdot k_s + U_{OFF}
\]

(31),
<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
<th>TIME IF TRUE (µs)</th>
<th>TIME IF FALSE (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIC</td>
<td>Normally Open contact, $\lnot I\lnot$</td>
<td>0.11</td>
<td>0.05</td>
</tr>
<tr>
<td>OTE</td>
<td>Boolean output, $\lnot O\lnot$</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>GRT</td>
<td>Greater than comparison, $A>B$</td>
<td>0.59</td>
<td>0.11</td>
</tr>
<tr>
<td>ADD</td>
<td>Add two real numbers, $A+B$</td>
<td>10.7</td>
<td>0.11</td>
</tr>
<tr>
<td>MUL</td>
<td>Multiply two real numbers, $A\times B$</td>
<td>17.7</td>
<td>0.11</td>
</tr>
<tr>
<td>GSV</td>
<td>Get system value from controller or other module</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>ActualPosition</td>
<td>160.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PositionError</td>
<td>110.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AverageVelocity</td>
<td>250.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ServoOutputLevel</td>
<td>108.2</td>
<td></td>
</tr>
<tr>
<td>SSV</td>
<td>Set system value of controller or other module</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>PositionProportionalGain</td>
<td>153.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VelocityFeedforwardGain</td>
<td>106.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PositionIntegralGain</td>
<td>218.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OutputOffset</td>
<td>140.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Execution Times for Ladder Objects.
where k_p, k_i, k_{vf}, and k_s are the controller proportional, integral, velocity feedforward, and output scaling gains, and U_{OFF} is the output offset. The velocity feedforward gain k_{vf} is expressed as a percentage in the Logix5550 controller, with a gain of 100% being considered as 1.0 in equation 31. The command output is passed through a 16-bit digital-to-analog converter. The quadrature pulse train data from the encoder is run though a 16-bit converter/integrator to determine actual position.

FIGURE 26. M02AE Control Architecture (adapted from [85]).
4.5. Plumbing. Friction losses in the plumbing can be significant at high flow rates. Experimental data can provide the information needed to develop a mathematical model of the friction loss in the air lines. Figure 27 shows the experimental apparatus used to measure the pressure drop in the air lines. The length of line between each tee joint is shown.

Pressure measurements were performed at settings of 80 psig and 60 psig on the regulator, using the manual flow restriction to vary the flow. Figure 28 shows the pressure loss from station 1 to station 2 and from station 3 to station 4, as a function of the standard flow rate.

FIGURE 27. Experimental Apparatus for Measuring Flow Friction.
In figure 28, the difference in the pressure loss from 80 psi to 60 psi is not deemed to be significant, allowing for a single mathematical model to be developed. The pressure loss will be modeled as a second-order function of the flow rate. To justify this assumption, consider friction in incompressible flow in a pipe. In this case, the pipe is air hose having a 7mm inside diameter. Reynold’s number is given as,
The maximum air flow through the system is about 17 SCFM, as seen in figure 28. The mean velocity of the air through the air line is given by,

\[\bar{V} = \frac{Q}{A} \]

(33).

For air at standard conditions flowing at 17 SCFM through a 7mm-diameter tube, the mean velocity is 8200 in/s, or 208 m/s. Note that for air at a constant temperature, Reynolds’s number is independent of density. As density increases, the actual velocity of the gas decreases by an identical factor, leaving Reynolds’s number unchanged. Using equation 32, the maximum Reynolds’s number is approximately \(10^5\), well into the turbulent regime.

In [87], the calculation for head loss in internal flow is given by,

\[h_L = f \frac{L \bar{V}^2}{D} \]

(34),
where \(f \) is an experimentally-derived friction factor. L. F. Moody published a chart detailing the friction factor as a function of Reynolds number and the surface roughness relative to the pipe diameter [86, as cited in 87].

While the friction factor is a function of Reynolds’s number, it will be assumed to be constant for the purposes of this study. This allows the friction loss in equation 34 to be a function of the mean fluid velocity, which is proportional to the flow rate. Returning to figure 28, a best-fit parabola may be assigned to the pressure loss from stations 1 to 2 and from stations 3 to 4. The equations are,

\[
\Delta P_{1\rightarrow2} = 0.0125 \cdot Q^2 \quad \text{(35)},
\]

\[
\Delta P_{3\rightarrow4} = 0.0037 \cdot Q^2 \quad \text{(36)}.
\]

Equation 35 has a \(R^2 \) value of 0.92, while equation 36 has an \(R^2 \) of only 0.71. The smaller confidence in the second equation is due to the range of data being less than one order of magnitude larger than the resolution of the data.

Equation 35 expresses a coefficient corresponding to the pressure loss over only 1500 mm of tubing. In the experimental system (figure 30), air passes through tubing of different lengths, in addition to straight and elbowed fittings. Fox and McDonald assign equivalent lengths to standard fittings. Knowing the equivalent length of a section of plumbing, one can scale the coefficient of equation 35 to find the appropriate friction loss equation. For the air line supplying the valve, the coefficient is calculated to be 0.0555.
For each air line going from the valve to either chamber of the cylinder, the coefficient is determined to be 0.0400. For flow exhausting to atmosphere, the coefficient is effectively zero.

4.6. Data Acquisition. While the PLC has the capability to collect and export process data, a separate data acquisition (DAQ) system was used to obtain an independent measurement of the cylinder’s position. The DAQ hardware sampled three channels: the command position, the PLC-reported position, and a separate position signal generated by a linear potentiometer. A 1756-OF8 analog output module on the PLC passed along the first two signals, with a 1:1 scaling of volts to inches. The signal from the linear potentiometer required calibration to convert its 0-5V signal to a position. The linear potentiometer has a travel of 5 inches, while the cylinder has a 7-inch effective stroke. A hard stop limited the stroke to approximately 4.6 inches, and prevented the stroke of the cylinder from exceeding that of the potentiometer.

Analog-to-digital conversion was accomplished with a National Instruments SC-2345 signal-conditioning unit with SCC-AI03 input modules. LabView software handled the data acquisition and data calibration. Figure 29 shows the flow of information through the PLC and DAQ systems.
FIGURE 29. Data Acquisition Hardware.
CHAPTER 5

SYSTEM MODEL

The conventional method for describing the state of a linear pneumatic actuator uses four parameters that may be measured directly: position x, velocity \dot{x}, and pressures P_1 and P_2. An alternate representation substitutes mass for pressure in each chamber of the cylinder. The mass-based representation allows for an analysis of the observability and controllability of the pneumatic actuator system. For simulation purposes, the conventional representation is used.

5.1. Conventional State Representation. Figure 30 shows a typical servopneumatic system. Note the vertical arrangement of the pneumatic cylinder. The nonlinear differential equations to describe the dynamics of the conventional state variables – x, \dot{x}, P_1, and P_2 – are derived in chapter 4, and restated here.

$$\dot{P}_1 = \frac{kRT}{A_1x + V_{x1}} \dot{m}_1 - \frac{kP_1A_1}{A_1x + V_{x1}} \dot{x}$$ \hspace{1cm} (28).
Figure 30. Servopneumatic System.
\[\dot{P}_2 = \frac{kRT}{A_2(L-x)+V_{x2}} \dot{m}_2 + \frac{kP_2A_2}{A_2(L-x)+V_{x2}} \dot{x} \]

Equation 29.

\[\dot{x} = \left(Mg + P_1A_1 - P_2A_2 - P_{ATM}A_{ROD} - b\dot{x} - F_{FRIC} \right)/M \]

Equation 30;

The mass flow rate into the blind end of the cylinder, \(\dot{m}_1 \), may be calculated from knowledge of the valve spool position and the system pressures. The ISA model is used to predict flow rates. Equation 5 presents the ISA model in terms of volumetric flow. It may be expressed as a mass flow rate through multiplying by the density of air at standard conditions. For the Festo MPYE-5 valve used in this study (\(X_r = 1.0 \)), equation 37 expresses mass flow into chamber 1. Mass flow rate is measured in lb-s\(^2\)/in-s, pressure in psia, and temperature in °R.

\[\dot{m}_1 = \left(\frac{1}{302.9 \times 10^5} \right) \left(22.67 \times C_V P_{HI} \left(1 - \frac{X}{3} \right) \sqrt{\frac{X}{T}} \right) \]

Equation 37, where,

\[X = \frac{P_{HI} - P_{LO}}{P_{HI}} = 1 - \left(\frac{P_{LO}}{P_{HI}} \right) \]

Equation 38.

The flow coefficient \(C_V \) is a function of the spool position \(x_{SPOOL} \), which is assumed to be a first-order function of the voltage command \(V_{COM} \) sent to the valve. The actual
displacement of the spool is unknown; it is assigned an arbitrary unit of measure so that a one-volt command signal to the valve produces a one-unit steady-state displacement in the spool. This allows the differential equation for the spool motion to be expressed as,

$$\dot{x}_{SPOOL} = \frac{(V_{COM} - x_{SPOOL})}{\tau_{SPOOL}}$$ \hspace{1cm} (39).$$

In equation 38, it is necessary to determine the proper values of P_{HI} and P_{LO}. These pressures are selected from P_1, P_S, and P_{ATM} based on the spool position and the instantaneous value of P_1. Table 7 shows the switching logic used to determine P_{HI} and P_{LO} for the blind end of the cylinder.

Equations 37 and 38 may also be applied to determine the mass flow rate into the rod end of the cylinder, \dot{m}_2. Table 8 presents the logic to determine P_{HI} and P_{LO} for the rod end.
<table>
<thead>
<tr>
<th>X_{SPOOL}</th>
<th>Chamber 1 Connection</th>
<th>Pressure relationship</th>
<th>P_{HI}</th>
<th>P_{LO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Supply</td>
<td>$P_1 > P_S$</td>
<td>P_1</td>
<td>P_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_1 < P_S$</td>
<td>P_S</td>
<td>P_1</td>
</tr>
<tr>
<td>Negative</td>
<td>Atmosphere</td>
<td>$P_1 > P_{ATM}$</td>
<td>P_1</td>
<td>P_{ATM}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_1 < P_{ATM}$</td>
<td>P_{ATM}</td>
<td>P_1</td>
</tr>
</tbody>
</table>

TABLE 7. Logic to Determine P_{HI} and P_{LO} for the Cylinder Blind End.

<table>
<thead>
<tr>
<th>X_{SPOOL}</th>
<th>Chamber 2 Connection</th>
<th>Pressure relationship</th>
<th>P_{HI}</th>
<th>P_{LO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Atmosphere</td>
<td>$P_2 > P_{ATM}$</td>
<td>P_2</td>
<td>P_{ATM}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_2 < P_{ATM}$</td>
<td>P_{ATM}</td>
<td>P_2</td>
</tr>
<tr>
<td>Negative</td>
<td>Supply</td>
<td>$P_2 > P_S$</td>
<td>P_2</td>
<td>P_S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$P_2 < P_S$</td>
<td>P_S</td>
<td>P_2</td>
</tr>
</tbody>
</table>

TABLE 8. Logic to Determine P_{HI} and P_{LO} for the Cylinder Rod End.
5.2. Mass-Based System Representation. Equations 28, 29 and 30 describe the conventional state representation of a pneumatic cylinder. This representation requires knowledge of the mass flow rates in equations 28 and 29. However, it is possible to replace pressure with mass in the state representation of the system by integrating the mass flow rate of equation 37.

\[
m_1 = \int \dot{m}_1 \, dt = \int \left(\frac{1}{302.9 \times 10^3} \right) \left(22.67 \times C_v P_{Hi,1} \left(1 - \frac{X_1}{3} \right) \sqrt{\frac{X_1}{T}} \right) dt
\]

(40).

\[
m_2 = \int \dot{m}_2 \, dt = \int \left(\frac{1}{302.9 \times 10^3} \right) \left(22.67 \times C_v P_{Hi,2} \left(1 - \frac{X_2}{3} \right) \sqrt{\frac{X_2}{T}} \right) dt
\]

(41).

The mechanical dynamics of equation 30 must be related to mass instead of pressure. Recall the ideal gas law,

\[PV = mRT\]

(16).

The ideal gas law may be restated to express pressure in terms of mass for each chamber of the cylinder. It is assumed here that, while the process is adiabatic, the actual temperature change in the system is negligible.
\[P_1 = \frac{m_1 RT}{A_1 x + V_{X1}} \quad (42). \]

\[P_2 = \frac{m_2 RT}{A_2 (L - x) + V_{X2}} \quad (43). \]

The terms \(x_{T1} \) and \(x_{T2} \) are introduced to express the excess volumes \(V_{X1} \) and \(V_{X2} \) as added length at either end of the cylinder.

\[x_{T1} = \frac{V_{X1}}{A_1} \quad (44). \]

\[x_{T2} = \frac{V_{X2}}{A_2} \quad (45). \]

Now, equation 30 becomes,

\[
\dot{x} = \frac{1}{M} \left(Mg + \frac{m_1 RT}{x + x_{T1}} - \frac{m_2 RT}{(L - x) + x_{T2}} - P_{ATM} A_{ROD} - b\dot{x} - F_{FRIC} \right)
\]

\[(46). \]

A mass-based representation of a pneumatic system allows for the calculation of the system’s equilibrium position, \(x_{EQ} \), using \(m_1 \) and \(m_2 \). For a closed pneumatic cylinder with no leakage, Coulomb friction, nor stiction, equilibrium is established at,
\[P_1 A_1 = P_2 A_2 \] (47).

Application of equations 42, 43, 44, and 45 to 47 yields,

\[\frac{m_1}{x_{EQ} + x_T} = \frac{m_2}{(L - x_{EQ}) + x_T} \] (48).

Solving for \(x_{EQ} \),

\[x_{EQ} = \frac{m_1 (L + x_T) - m_2 x_T}{m_1 + m_2} \] (49).

In the real system, there is a region about \(x_{EQ} \) in which stiction is sufficient to resist the restoring force in the cylinder.

Knowing the equilibrium position, one can express the mechanical dynamics of the system (equation 46) as a function of displacement away from equilibrium. The desired form of the equation is,

\[\ddot{x} = \frac{1}{M} \left(M g - \tilde{k}_{CYL} (\Delta x) - b \dot{x} - P_{ATM} A_{ROD} - F_{FRIC} \right) \] (50),

where,
\[
\Delta x = x - x_{EQ} \quad (51).
\]

In 50, \(\tilde{k}_{CIL} \) is the equivalent, nonlinear spring stiffness of the air entrained in the cylinder, which may be derived from an energy analysis. Assuming the compression and expansion of the air in the cylinder is performed adiabatically, the initial (equilibrium) energy is equal to the displaced energy state of the air plus the potential energy stored in the compressed air.

\[
E_{EQ} = E_{AIR} + E_{SPRING} \quad (52).
\]

The initial energy of the gas is given by equation 20,

\[
E = c_r \rho VT \quad (20).
\]

Since mass is equal to density multiplied by volume, equation 20 applied to chamber 1 of the cylinder may be expressed as,

\[
E_{EQ,1} = c_r m_1 T \quad (53).
\]

Substituting the expression of the ideal gas law as presented in equation 42,
\[E_{EQ,1} = c_v \frac{P_1(A_t x_{EQ} + V_{x1})}{R} \] (54).

Applying equations 18 and 19,

\[E_{EQ,1} = \frac{P_1(A_t x_{EQ} + V_{x1})}{k - 1} \] (55).

When the cylinder is displaced from equilibrium, the energy state of the air changes. Equation 55 becomes,

\[E_{AIR,1} = \frac{(P_1 + \Delta P_1)(A_t(x_{EQ} + \Delta x) + V_{x1})}{k - 1} \] (56).

The potential energy stored by the gas in chamber 1, acting as a spring, is given by,

\[E_{SPRING,1} = \frac{1}{2} \tilde{k}_1 \Delta x^2 \] (57),

where \(\tilde{k}_1 \) is the effective nonlinear spring rate for chamber 1, and is defined as the change in force per unit displacement.

\[\tilde{k}_1 = \frac{-\Delta F}{\Delta x} = -\frac{\Delta P_1 A_t}{\Delta x} \] (58).
Substituting equations 55, 56, and 57 into 52 yields,

\[
P_1 A_1 x_{EQ} + P_1 V_{x1} = P_1 A_1 x_{EQ} + \Delta P_1 A_1 x_{EQ} + P_1 A_1 \Delta x + \Delta P_1 A_1 \Delta x + (P_1 + \Delta P_1) V_{x1} + \frac{k-1}{2} \tilde{k}_1 \Delta x^2
\]

(59).

Terms appearing on both sides of equation 55 are eliminated through subtraction, and a division by \(\Delta x \) is performed.

\[
0 = \left(\frac{\Delta P_1 A_1}{\Delta x} \right) x_{EQ} + P_1 A_1 + \left(\frac{\Delta P_1 A_1}{\Delta x} \right) \Delta x + \left(\frac{\Delta P_1 A_1}{\Delta x} \right) \frac{V_{x1}}{A_1} + \frac{k-1}{2} \tilde{k}_1 \Delta x
\]

(60).

Substitution of equations 58 and 44 into 60 yields,

\[
P_1 A_1 = \tilde{k}_1 \left(x_{EQ} + x_{T1} - \Delta x \left(\frac{k-3}{2} \right) \right)
\]

(61).

Equations 42 and 44 are applied to eliminate pressure.

\[
\frac{m_1 RT}{A_1 x_{EQ} + V_{x1}} = \tilde{k}_1 \left(x_{EQ} + x_{T1} - \Delta x \left(\frac{k-3}{2} \right) \right)
\]

(62).

Rearranging, one finds the spring stiffness of chamber 1 to be,
\[
\tilde{k}_1 = \frac{m_i RT}{\left(x_{EQ} + x_{T1} \right) \left(x_{EQ} + x_{T1} + \frac{k - 3}{2} \Delta x \right)}
\]
(63).

A similar analysis may be performed on the rod end of the cylinder (chamber 2). Note that, for the rod end of the cylinder, the mathematical definition of stiffness is the negative of that in equation 58. A positive \(\Delta x \) acts in the opposite direction on chamber 2 than on chamber 1, creating the need for a sign change.

\[
\tilde{k}_2 = \frac{-\Delta F}{-\Delta x} = \frac{\Delta P_2 A_2}{\Delta x}
\]
(64).

Now, the energy analysis yields,

\[
\tilde{k}_2 = \frac{m_2 RT}{\left((L - x_{EQ}) + x_{T2} \right) \left((L - x_{EQ}) + x_{T2} + \frac{k - 3}{2} \Delta x \right)}
\]
(65).

The net stiffness of the air cylinder is the sum of the individual stiffness of each chamber of the cylinder.
\[\tilde{k}_{\text{CYL}} = \tilde{k}_1 + \tilde{k}_2 \]

\[= RT \left(m_1 \left(x_{\text{EQ}} + x_{T1} + \frac{k - 3}{2} \Delta x \right) + m_2 \left((L - x_{\text{EQ}}) + x_{T2} + \frac{k - 3}{2} \Delta x \right) \right) \]

(66).

Equation 66 shows the stiffness of the cylinder is an inverse function of the positions \(x \) and \((L - x) \). The stiffness is also dependent on the magnitude of the displacement. When the equilibrium position lies near either extreme of motion, the effects of displacement on the effective stiffness should not be neglected. Around the middle of the stroke, the displacement from equilibrium has a smaller effect. If displacement were to be ignored, equation 66 is expressed as,

\[\tilde{k}_{\text{CYL}} \approx RT \left(\frac{m_1}{(x_{\text{EQ}} + x_{T1})^2} + \frac{m_2}{((L - x_{\text{EQ}}) + x_{T2})^2} \right) \]

(67).

5.3. Controllability and Observability

While the dynamics of a servopneumatic actuator are highly nonlinear, analysis of a linearized model allows for discussion of the controllability and observability of the servopneumatic system. To develop the controllability and observability matrices, physical processes will be modeled with gains assumed to be constant, \(\tilde{k}_{\text{CYL}} \) and \(\tilde{k}_{\text{EQ}} \). A discussion of the effects of the state-dependent, varying gains \(\tilde{k}_{\text{CYL}} \) and \(\tilde{k}_{\text{EQ}} \) follows the derivation of the linear model.
Equation 50 describes the dynamics of the system about equilibrium. For this analysis, Coulomb friction is neglected, as is the atmospheric pressure acting over the area of the cylinder rod. Practically, these two forces are significantly lower than the full pressure developed by the cylinder’s blind end. Static friction develops 5 lb of force; atmospheric pressure over the rod area develops 11 lb; while the piston develops nearly 300 lb at 95 psia. Additionally, the effect of gravity on the payload is ignored. With these assumptions in place, equation 50 may now be expressed as,

\[\dot{x} = -\frac{k_{C Y L}}{M}(x - x_{E Q}) - \frac{b}{M} \dot{x} \]

(68),

The rate of change of the equilibrium position \(x_{E Q} \) is also needed to analyze observability and controllability. Recall the equilibrium position given in equation 49,

\[x_{E Q} = \frac{m_1(L + x_{T 2}) - m_2x_{T 1}}{m_1 + m_2} \]

(49).

Differentiating yields,

\[\dot{x}_{E Q} = (L + x_{T 1} + x_{T 2}) \left(\frac{\dot{m}_1m_2 - \dot{m}_2m_1}{(m_1 + m_2)^2} \right) \]

(69).

Equation 69 may be simplified by assuming that the mass of air within the cylinder is constant. This implies the mass flow rate going into one chamber is equal to the mass
flow rate going out the other, or $\dot{m}_1 = -\dot{m}_2$. This assumption is validated through consideration of the derivative of the ideal gas law (equation 16), assuming velocity, pressure, and temperature are constant. Applied to both chambers, the derivative of equation 16 may be stated as,

$$P_1 A_1 \dot{x} = \dot{m}_1 RT$$ \hspace{1cm} (70).

$$-P_2 A_2 \dot{x} = \dot{m}_2 RT$$ \hspace{1cm} (71).

At a constant velocity, the pressure forces on either face of the piston are balanced (equation 47). Applying equations 70 and 71 to equation 47,

$$\frac{\dot{m}_1 RT}{\dot{x}} = -\frac{\dot{m}_2 RT}{\dot{x}}$$ \hspace{1cm} (72).

It is clear from equation 72 that, under certain conditions, the assumption of constant mass in the cylinder is valid when the cylinder is moving at a constant velocity. If the cylinder reaches either hard limit of its stroke, though, this assumption of constant mass in the cylinder will not be valid.

Applying the constant air mass assumption, equation 69 becomes,
\[\dot{x}_{EQ} = \frac{L_x}{m} \dot{m}_1 \] (73).

where,

\[L_T = L + x_{T1} + x_{T2} \] (74),

and,

\[m = m_1 + m_2 \] (75),

The relationship between the command voltage to the valve, the valve spool position, and the mass flow rate is discussed in detail in section 4.1. For the sake of argument, the response time of the valve (equation 39) will be assumed to be small enough to be neglected, and the nonlinear flow function will be assumed to be a linear function of the command voltage only, so that,

\[\dot{m}_1 = \bar{k}_{VALVE} V_{COM} \] (76).

Equations 73 and 76 may be combined to relate the equilibrium position to the command voltage sent to the valve.
\[\dot{x}_{EQ} = \frac{L}{m} \bar{k}_{VALVE} V_{COM} = \bar{k}_{EQ} V_{COM} \quad (77). \]

Figure 31 shows the block diagram of the linear model of the pneumatic system. Examination shows the linear transfer function for the pneumatic actuator to be,

\[\frac{x}{V_{COM}} = \frac{\bar{k}_{EQ} \bar{k}_{CYL}}{s(Ms^2 + bs + \bar{k}_{CYL})} \quad (78). \]

FIGURE 31. Block Diagram of the Pneumatic System.
Equation 78 may also be expressed as a linear state-space matrix, with the state vector being defined as $X = [x \ x \ x_{EQ}]^T$.

$$\dot{X} = \begin{bmatrix} \dot{x} \\ \dot{x} \\ \dot{x}_{EQ} \end{bmatrix} = \begin{bmatrix} -\frac{k_{Cyl}}{M} & -1 & \frac{b}{M} \\ 0 & \frac{k_{Cyl}}{M} & 0 \\ 0 & 0 & \frac{k_{Cyl}}{x_{EQ}} \end{bmatrix} \begin{bmatrix} x \\ \dot{x} \\ x_{EQ} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ V_{COM} \end{bmatrix}$$

(79).

Position is available for feedback control.

$$Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} X = [x]$$

(80).

Equations 79 and 80 permit testing of controllability and observability. The pair (A, B) is controllable when the controllability matrix U is non-singular. Likewise, the pair (A, C) is observable when the observability matrix V is non-singular.

$$U = \begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 0 & \frac{k_{Cyl} k_{EQ}}{M} \\ \frac{k_{Cyl}}{M} & 0 & -b k_{Cyl} \frac{k_{EQ}}{M^2} \\ \frac{k_{EQ}}{M} & 0 & 0 \end{bmatrix}$$

(81).
\[
\mathbf{V} = \begin{bmatrix}
\mathbf{C} & \mathbf{CA} & \mathbf{CA}^2
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\tilde{k}_{\text{cyl}}/M & -b/\bar{M} & \tilde{k}_{\text{cyl}}/\bar{M}
\end{bmatrix}
\] (82).

Matrices \(\mathbf{U} \) and \(\mathbf{V} \) are singular only when their determinants are zero. From equations 81 and 82, the determinants are found to be,

\[
|\mathbf{U}| = -\tilde{k}_{\text{eq}}^3 \tilde{k}_{\text{cyl}}^2 \frac{M^2}{M^2}
\] (83),

\[
|\mathbf{V}| = \frac{\tilde{k}_{\text{cyl}}}{M}
\] (84).

From equations 83 and 84, it may be said that the ideal servopneumatic axis with position feedback is always controllable and always observable, as the determinants of both matrices are strictly nonzero.

Constant, positive gains \(\tilde{k}_{\text{cyl}} \) and \(\tilde{k}_{\text{eq}} \) were applied to determine the controllability and observability of the servopneumatic system. In the real system, these gains are not constant but vary according to the state of the system. Variable gains \(\tilde{k}_{\text{cyl}} \) and \(\tilde{k}_{\text{eq}} \) may be substituted into equations 83 and 84 to evaluate the effects of nonlinearities on the controllability and observability.
Figure 32 shows the true stiffness, \tilde{k}_{cyl}, as a function of stroke, assuming $\Delta x = 0$, for the cylinder used in this study (equation 67). While the stiffness varies by almost two orders of magnitude, it is always positive. In applying this to the observability of the system as given in equation 84, one finds the observability to be strictly positive.

$$|V| = \frac{\tilde{k}_{cyl}}{M} > 0$$ \hspace{1cm} (85).
The effect of the varying stiffness on the controllability, given in equation 83, is more dramatic. The term \tilde{k}_{CYL}^2 is again strictly positive, but varies by four orders of magnitude over the stroke. This implies the cylinder is much less controllable in the mid-stroke region, as opposed to near the extremes of motion.

The other contributing factor to controllability is the gain \tilde{k}_{EQ}, relating the equilibrium position x_{EQ} to the command voltage V_{COM}. Equation 77 defined the linear gain \tilde{k}_{EQ} as a product two gains – one for the cylinder dynamics (equation 73), and the other for the valve dynamics (equation 76).

\[
\dot{x}_{EQ} = \frac{L_r}{m} \tilde{k}_{VALVE} V_{COM}
\]

(77).

The consistency of the cylinder dynamics term, L_r/m, is dependent on the assumption of a constant mass of air in the air cylinder. As discussed earlier, this assumption is not strictly true, but is not seriously violated as long as the cylinder does not reach either physical limit of travel. Of greater concern to the issue of controllability are the valve dynamics, \tilde{k}_{VALVE}, relating the mass flow rate to the command voltage.

The flow relationship is derived in chapter 4, according to the ISA model of flow through a valve. For chamber 1, this relationship is expressed as,
\[
\dot{m}_1 = \left(\frac{1}{302.9 \times 10^3} \right) \left(22.67 \times C_r P_{UP,1} \left(1 - \frac{X_1}{3} \right) \sqrt[3]{\frac{X_1}{T}} \right)
\]

(86),

where \(X_1 \) is the ratio of the pressure drop across the valve to the valve supply pressure, and \(C_r \) is the flow coefficient which is a function of the command voltage \(V_{COM} \). For \(\tilde{k}_{VALVE} \) to be constant, it is necessary for the flow through the valve to be independent of the pressure in the cylinder. Some previous researchers have assumed all flow through a valve is choked flow, and therefore constant. However, such works typically apply the orifice flow equation (equation 2). The ISA model used in this work has no constant-flow region. Equation 86 demonstrates that flow is changed significantly by changes in the pressure. Figure 33 plots the normalized flow rate for a given flow coefficient. Note that, for low pressure drops across the valve \((P_{DN}/P_{UP} \approx 1) \), the flow rate is extremely sensitive to changes in pressure.
In addition to nonlinear pressure dynamics in flow, the relationship between the flow coefficient and the command voltage is nonlinear. Section 4.1 derives models for four flow paths through the valve. Figure 34(a) shows the flow coefficient model for flow from port 1 to port 4, with the ideal linear relationship superimposed. Figure 34(b) shows the equivalent gain for both the real and ideal models. The significant conclusion to be drawn from figure 34 is that the dead band about a null voltage command creates a region in which the gain describing the valve dynamics, \tilde{k}_{VALUE}, is zero. Graphs similar to figure 34 may be developed for the other flow paths.
Controllability may now be summarized as follows. The linear model presents the determinant for the controllability matrix, \(|U| = \frac{\tilde{k}_{E_0}^3 \tilde{k}_{CVL}^2}{M}\), as being a nonzero positive number, implying controllability always exists. However, the nonlinear controllability determinant, \(|U| = \frac{\tilde{k}_{E_0}^3 \tilde{k}_{CVL}^2}{M}\), is not guaranteed to be nonzero, and can vary by orders of magnitude. Generally speaking, controllability is lower in the middle of the stroke, and at low command speeds where the proportional valve operates near its dead band.

FIGURE 34. Flow Coefficient Function for (1 → 4). (a) \(C_v\). (b) \(C_v/V_{COM}\).
5.4. **Further Considerations on the Linear Model.** The linear model developed for examination of controllability and observability may be used to characterize the fundamental dynamics of the servopneumatic hardware, and to study closed-loop behavior of the system with a PI controller.

Equation 79 allows for a brief discussion of the internal dynamics of a servopneumatic system. The characteristic equation of the system is given as,

\[
\chi = s^3 + \frac{b}{M} s^2 + \frac{k_{Cyl}}{M} s
\]

The roots of equation 87 may be found to be,

\[
s = 0, \quad s = \frac{-b}{2M} \pm \sqrt{\frac{k_{Cyl}}{M} - \frac{b^2}{4M^2}} \cdot i
\]

For the experimental hardware used in this study, the mass, \(M \), is 0.0628 lb-sec\(^2\)/in, and the coefficient of viscous damping, \(b \), is 0.125 lb-sec/in. The stiffness \(k_{Cyl} \) is not constant, but varies depending of the position of the cylinder (equation 66). For air at 80 psig, the stiffness varies between 11.9 and 1410 lb/in (figure 32). Using these values, the servopneumatic system is found to have a pole at the origin, and a complex pole pair which is highly oscillatory over the entire stroke of the cylinder (table 9).
<table>
<thead>
<tr>
<th>x (in)</th>
<th>k_{CYL} (lb/in)</th>
<th>System Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>142.22</td>
<td>$s = 0$ $s = -0.995 \pm 47.6 \cdot i$</td>
</tr>
<tr>
<td>2.0</td>
<td>18.38</td>
<td>$s = 0$ $s = -0.995 \pm 17.1 \cdot i$</td>
</tr>
<tr>
<td>3.5</td>
<td>11.09</td>
<td>$s = 0$ $s = -0.995 \pm 13.3 \cdot i$</td>
</tr>
<tr>
<td>5.0</td>
<td>20.53</td>
<td>$s = 0$ $s = -0.995 \pm 18.1 \cdot i$</td>
</tr>
<tr>
<td>6.5</td>
<td>147.18</td>
<td>$s = 0$ $s = -0.995 \pm 48.4 \cdot i$</td>
</tr>
</tbody>
</table>

TABLE 9. Servopneumatic System Pole Locations.

FIGURE 35. Block Diagram of the M02AE Servo Controller (from [85]).
The servo axis controller used in this study is the Allen-Bradley M02AE. This module is designed to interface two DC servomotor axes to a programmable logic controller (PLC). Figure 35 shows the control structure for one channel of the M02AE. With the linear model of the pneumatic cylinder (equation 78), the transfer function relating the command signal x_{REF} to x may be derived.

$$
\frac{x}{x_{\text{REF}}} = \frac{k_s \overline{k}_{\text{CYL}} \overline{k}_{\text{EQ}} \left(k_{\text{VF}} s^2 + k_p s + k_1 \right)}{M s^4 + b s^3 + \overline{k}_{\text{CYL}} s^2 + \left(k_s \overline{k}_{\text{CYL}} \overline{k}_{\text{EQ}} k_p \right) s + \left(k_s \overline{k}_{\text{CYL}} \overline{k}_{\text{EQ}} k_1 \right)}
$$

(89).

By setting certain controller gains to zero, the number of system poles and zeroes changes, altering the dynamics of the closed-loop system.

Proportional gain only.

$$
\frac{x}{x_{\text{REF}}} = \frac{k_s \overline{k}_{\text{CYL}} \overline{k}_{\text{EQ}} \left(k_p \right)}{M s^3 + b s^2 + \overline{k}_{\text{CYL}} s + \left(k_s \overline{k}_{\text{CYL}} \overline{k}_{\text{EQ}} k_p \right)}
$$

(90).

Proportional gain plus velocity feedforward.

$$
\frac{x}{x_{\text{REF}}} = \frac{k_s \overline{k}_{\text{CYL}} \overline{k}_{\text{EQ}} \left(k_{\text{VF}} s + k_p \right)}{M s^3 + b s^2 + \overline{k}_{\text{CYL}} s + \left(k_s \overline{k}_{\text{CYL}} \overline{k}_{\text{EQ}} k_p \right)}
$$

(91).
Velocity feedforward only.

\[\frac{x}{x_{REF}} = \frac{(k_s\bar{k}_{Cyl}\bar{k}_{EQ})(k_{VF})}{Ms^2 + bs + \bar{k}_{Cyl}} \]

(92).

Of these three control schemes, the velocity feedforward-only control structure will not pursue zero tracking error. Examination of figure 35 shows a feedforward-only structure eliminates the position feedback from the control loop. While the equation \(k_s\bar{k}_{EQ}k_{VF} = 1 \) would mathematically guarantee zero tracking error, the variation in \(\bar{k}_{eq} \) precludes such a solution from being realized in practice.
Chapter 5 presented a systems model for the pneumatic cylinder and proportional valve used in this study. Four state variables, having nonlinear differential equations of motion, describe the pneumatic cylinder. A fifth variable is assigned to the spool position of the proportional valve, with a first-order linear differential equation describing its dynamics. In addition, there exists signal lag in the position sensor and the M02AE servo motion control module. A computer simulation, incorporating these characteristics of the experimental apparatus, is developed to verify the model of the system.

This chapter is organized as follows. Section 6.1 discusses the tuning of the PI controller gains on the M02AE module. Section 6.2 describes the servo trajectories studied in this work. Section 6.3 presents the development and result of the simulation, comparing its performance with that of the experimental equipment. A discussion of the results appears in section 6.4.
6.1. **PI Tuning.** The M02AE module is capable of auto-tuning a servo axis. The user must define the travel limit, travel direction, and maximum velocity for the tuning motion. In addition, the desired damping factor of the closed-loop system is required. Allen-Bradley suggests a damping factor of 0.8 as a compromise between fast response and stability. Using a pneumatic cylinder, the tuning procedure was initiated with the cylinder near its mid-stroke position.

The auto-tuning procedure determines the values for the closed-loop gains, and other controller properties. Adjustment of these properties after auto-tuning was done to improve the performance of the PI loop over the entire stroke of the cylinder. Table 10 lists the relevant properties and their assigned values.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional gain</td>
<td>0.00086</td>
</tr>
<tr>
<td>Integral gain</td>
<td>0.0006</td>
</tr>
<tr>
<td>Velocity feedforward gain</td>
<td>4%</td>
</tr>
<tr>
<td>Output scaling gain</td>
<td>1000.0</td>
</tr>
<tr>
<td>Friction compensation</td>
<td>0.0 V</td>
</tr>
<tr>
<td>Output offset</td>
<td>0.0 V</td>
</tr>
<tr>
<td>Output filter bandwidth</td>
<td>1000 Hz</td>
</tr>
</tbody>
</table>

TABLE 10. PI Control Loop Gains.
6.2. **Servo Trajectories.** A family of reference trajectories are used to evaluate control strategies. The reference trajectories fall into one of three categories: a ramp, a cam profile, or a quadratic sine trajectory. Each category emphasizes different performance characteristics of the servopneumatic axis. Recall the positive x-direction of the servo axis (extension) points down.

The ramp trajectory follows a trapezoidal velocity profile in moving from a 0.5-inch command position to a 4.0-inch command position and back, with a 0.5-second pause between each motion (figure 36). Acceleration and deceleration are both set to 50 in/s2. This trajectory allows for analysis of the controller’s ability to follow a constant velocity command. Experimental data was collected at maximum command velocities of 0.24, 0.32, 0.42, 0.56, 1.0, 1.8, 3.2, 5.6, and 10 inches per second. Additional data was collected at a command velocity of 18 inches per second, but the acceleration does not allow the velocity to reach its maximum value in the length of the stroke.
The cam profile was designed to mimic a command trajectory developed by the sponsors of this research. Their reference trajectory, shown in figure 37, needed modification as it was designed for a cylinder with a longer stroke. The cam profile developed for experimentation uses three triangular velocity steps (figure 38). The time period T to realize each step of the profile is identical. This trajectory forces the controller to follow a continuously-varying profile, including an instantaneous stop. Table 11 lists the step times used in experimentation, with the corresponding accelerations and peak velocities for each leg.

FIGURE 36. Ramp Trajectory. (a) velocity, (b) position.
FIGURE 37. Reference Cam Profile Trajectory.

FIGURE 38. Cam Profile Trajectory. (a) velocity, (b) position.
A quadratic sine profile (figure 39) mimics a true sine wave pattern using parabolic curve segments, and was selected to allow for testing of a repeating profile. Its velocity profile is a triangle wave. The defining time period T for the quadratic sine wave is equal to the waveform’s half-period. Table 12 lists the peak velocities and accelerations used in this work.

<table>
<thead>
<tr>
<th>Step period T (s)</th>
<th>Peak velocity (in/s)</th>
<th>Accel. (in/s²)</th>
<th>Peak velocity (in/s)</th>
<th>Accel. (in/s²)</th>
<th>Peak velocity (in/s)</th>
<th>Accel. (in/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>35</td>
<td>350</td>
<td>20</td>
<td>200</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>0.5</td>
<td>14</td>
<td>56</td>
<td>8.0</td>
<td>32</td>
<td>6.0</td>
<td>24</td>
</tr>
<tr>
<td>1.0</td>
<td>7.0</td>
<td>14</td>
<td>4.0</td>
<td>8.0</td>
<td>3.0</td>
<td>6.0</td>
</tr>
<tr>
<td>2.0</td>
<td>3.5</td>
<td>3.5</td>
<td>2.0</td>
<td>2.0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>3.0</td>
<td>2.33</td>
<td>1.56</td>
<td>1.33</td>
<td>0.89</td>
<td>1.00</td>
<td>0.67</td>
</tr>
</tbody>
</table>

TABLE 11. Cam Profile Trajectory Data.
FIGURE 39. Quadratic Sine Trajectory. (a) velocity, (b) position.

<table>
<thead>
<tr>
<th>Step period T (s)</th>
<th>Peak velocity (in/s)</th>
<th>Acceleration (in/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>30</td>
<td>300</td>
</tr>
<tr>
<td>0.5</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>1.0</td>
<td>6.0</td>
<td>12</td>
</tr>
<tr>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3.0</td>
<td>2.0</td>
<td>1.33</td>
</tr>
</tbody>
</table>

TABLE 12. Quadratic Sine Trajectory Data.
6.3. Simulation and Discussion. A numerical simulation of the servopneumatic axis and controller is developed to verify the mathematical model of the system discussed in Chapter 5. The simulation also allows for examination of processes the experimental apparatus cannot observe. Two corrective factors were implemented in the model to allow the simulated dynamics to better match those of the real system. Representative comparisons between the simulated and actual runs are presented.

The simulation was realized in MATLAB using x, \dot{x}, P_1, and P_2 as the state variables. Their derivatives are given by equations 28, 29, and 30. An additional state is added to incorporate the dynamics of the valve spool position (equation 39). A simultaneous solution for the mass flow rates (equations 37 and 38) and the pressure losses in the air lines (figure 28) is needed. An algebraic solution to this system of equations is not apparent, so an iterative bisection process is used. In development, it was found that any expected combination of valve spool position and system pressures converges to a 0.1% error band in 20 iterations or less. The effects of propagation delays in the air lines are ignored.

Euler integration is used to update the state variables, using a time step of 50 μs. This time step was selected as to allow for 4 updates of the state variables in each update period of the M02AE servo motion controller (200 μs). The PLC control loop is updated every 3000 μs, which is a typical PLC scan time for the programs used in this research. Data from the simulation is collected in 1.0 ms intervals.
Figure 40. 18 in/s Ramp Trajectory. (a) Simulation, (b) Data.
Figure 40(a) shows the simulated servopneumatic axis following the 18.0 in/s ramp trajectory. Comparing this to the experimental data of figure 40(b), it is observed that the simulation is much less damped than the real system. Examination of the closed-loop system pole locations verifies the oscillatory nature of the simulation. In chapter 5, the linear transfer function of the closed-loop system was determined to be,

\[
\frac{x}{x_{\text{ref}}} = \frac{\left(k_s \bar{k}_{\text{Cyl}} \bar{k}_{\text{EQ}} \right) \left(k_{\text{VP}} s^2 + k_p s + k_i \right)}{M s^4 + b s^3 + \bar{k}_{\text{Cyl}} s^2 + \left(k_s \bar{k}_{\text{Cyl}} \bar{k}_{\text{EQ}} k_p \right) s + \left(k_s \bar{k}_{\text{Cyl}} \bar{k}_{\text{EQ}} k_i \right)}
\]

(89).

Chapter 4 discussed the determination of the payload mass \(M \) (0.0628 lb-s\(^2\)/in) and the coefficient of viscous damping \(b \) (0.125 lb-s/in). The controller gains were presented earlier in this chapter. Recall that their usage in equation 89 must be modified in light of the discussion in chapter 4 regarding the actual voltage output from the controller.

\[
V_{\text{COM}} = \left(4 \cdot k_p (x_{\text{COM}} - x) + 4 \cdot k_i \int (x_{\text{COM}} - x) + \frac{k_{\text{VP}}}{250} \left(\dot{x}_{\text{COM}}\right)\right) \cdot k_s + U_{\text{OFF}}
\]

(31).

Equation 89 assumes constant values for the spring stiffness of the air in the cylinder, \(\bar{k}_{\text{Cyl}} \), and the voltage-to-velocity gain \(\bar{k}_{\text{EQ}} \). In reality, these gains vary significantly. To find the instantaneous pole locations of the servopneumatic system, the non-constant gains \(\bar{k}_{\text{Cyl}} \) and \(\bar{k}_{\text{EQ}} \) will be substituted into equation 89. Chapter 5 discussed the actual
cylinder stiffness \tilde{k}_{Cyl} as a function of position, finding it to vary between 11.9 and 1410 lb/in (figure 32).

The voltage-to-velocity gain \tilde{k}_{EQ} was defined implicitly in equation 77 as the product of the valve flow gain and the conversion of mass flow rate to cylinder velocity.

$$\dot{x}_{\text{EQ}} = \frac{L}{m} \tilde{k}_{\text{VALVE}} V_{\text{COM}} = \tilde{k}_{\text{EQ}} V_{\text{COM}}$$

(77).

The valve flow gain \tilde{k}_{VALVE} is not a true constant, but varies between zero and an upper limit that is estimated here. Consider flow through the proportional valve from port 1 to port 4, with a constant 10-volt command signal being applied to the valve. The flow coefficient, using the appropriate equation from table 4 (equation 93), is calculated to be 0.46.

$$C_v = 0.0633(x_{\text{SPOOL}} - 1.38) - 0.0012(x_{\text{SPOOL}} - 1.38)^2$$

(93).

For the purposes of calculating a flow rate, assume a supply pressure of 95 psia, pure vacuum in the cylinder, and no flow losses. With these assumptions, the ISA model (equations 5 and 6) shows the flow rate into the cylinder to be 28.7 SCFM, or $94.9 \cdot 10^{-6}$ lb-s2/in-s. The upper bound of the valve flow gain \tilde{k}_{VALVE} may be calculated to be $9.5 \cdot 10^{-6}$ lb-s2/in-s using equation 76.
Ignoring for now any volume in the air lines, the equivalent length of the air cylinder L_T is equal to its stroke L, 7.0 in. The mass of the air in the cylinder may be found using the ideal gas equation,

$$PV = mRT$$ \hspace{1cm} (16).

Being conservative, the volume will be assumed to be that of the rod end of the cylinder when the cylinder is fully retracted (16.0 in3), and that atmospheric pressure exists in the cylinder (14.7 psia). At standard temperature (528 °R), the mass of air inside the cylinder is calculated to be $1.8 \cdot 10^{-6}$ lb-s2/in.

Knowing the upper bound of \tilde{k}_{VALVE}, the equivalent length L_T, and a conservative estimate of the air mass m, the upper bound of the voltage-to-velocity gain \tilde{k}_{EQ} may be calculated using equation 94, derived from equation 77. It is found to be 36.9 in/s-V.

$$\tilde{k}_{EQ,MAX} = \frac{L_T}{m} \tilde{k}_{VALVE,MAX}$$ \hspace{1cm} (94).
Returning to the linear transfer function of equation 89, the constant value or the limits of each variable is now known and a range of pole locations of the closed-loop system may be determined (figure 41). Generally speaking, any combination of \tilde{k}_{EQ} and \tilde{k}_{CYL} produces a real pole near $s = -0.7$, another real, negative pole to its left, and a complex pole pair. In addition, the system has two zeroes that do not change with changes in \tilde{k}_{EQ} or \tilde{k}_{CYL}. One zero, located at $s = -0.72$, cancels out the pole near that location. As a result, the complex pole pair is the dominant pole pair in the system. Its location makes it highly oscillatory and, in many instances, unstable.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{pole_zero_map.png}
\caption{Pole-Zero Map of Closed-Loop System.}
\end{figure
Increases in the voltage-to-velocity gain \tilde{k}_{EQ} move the dominant poles to the right in the S-plane. Increases in the cylinder stiffness k_{Cyl}, found at the ends of the stroke, move the dominant poles away from the real axis and increase their natural frequency of vibration.

The behavior predicted by the pole locations agrees with the behavior of the simulation, where ringing was observed (figure 40(a)). Some discrepancy is expected, as the linear model of equation 89 neglects the damping effects of Coulomb friction. However, the simulation exhibits much more vibration than the actual experimental hardware.

Two correction factors were applied to the simulation. First, the values of the Coulomb friction and the stiction were increased by the ratio of supply pressure to atmospheric pressure. It is thought that the friction characteristics of the cylinder change when the cylinder is pressurized. The pressure differential, particularly at the rod seal, can deform the seals and increase frictional forces. The second correction factor reduces the calculated flow rates by a factor of 0.75. This was forces a better fit between the simulated and experimental open-loop velocity of the cylinder. The open-loop velocity was calculated by giving the valve a step-input constant command voltage. Average velocity of the cylinder is measured between the 1.0-inch and 6.0-inch positions. Figure 42 shows the experimental and simulated open-loop velocities.
With these modifications, the simulation was better able to describe the motion of the cylinder. The figures on the following pages give representative examples of the simulation’s performance compared to that of the real cylinder. Figure 43 shows the responses to a 10.0 in/s ramp trajectory. At lower speeds, such as the 1.0 in/s ramp trajectory of figure 44, stick-slip motion of the cylinder is observed in both the hardware and the simulation. Figure 45 shows a cam profile with a step period of 0.5 seconds, and figure 46 displays the quadratic sine wave with a half-period of 1.0 second. The
simulation is able to qualitatively describe the characteristics of the cylinder, under PI control, to each command trajectory.

The mathematical representation of the dynamics of a pneumatic axis, as presented in chapter 4, generally works well in predicting the motion of the actuator. Unknown or unmodelled factors prevent a completely accurate representation of the system. However, the simulation is able to characterize the performance of the system with PI control.

In the simulation, initial conditions of the cylinder are always identical, starting from a zero-error position with zero velocity and a perfect pressure balance in the cylinder. In the physical system, the cylinder never starts from a state of perfect, zero-error equilibrium. When holding at a steady command position, the lower chamber of the air cylinder – the rod end – supports the weight of the payload, and has a pressure higher than that of the blind end. This pressure differential induces leaking in the valve, lowering the rod end pressure. Eventually, the cylinder moves, and the controller exerts a restoring command signal to the valve. As a result, there is always a degree of uncertainty as to the exact position and pressures in the system at the time a motion command is initiated.
Figure 43. 10 in/s Ramp Trajectory.

(a) Simulation, (b) Data.
Figure 44. 1.0 in/s Ramp Trajectory.

(a) Simulation, (b) Data.
Figure 45. Cam Profile, 0.5-second Step Period.

(a) Simulation, (b) Data.
Figure 46. Quadratic Sine Trajectory, 1.0-s Half-Period.

(a) Simulation, (b) Data.
Another area of model uncertainty is friction. Coulomb friction and stiction were measured with the cylinder being vented directly to atmosphere, as to eliminate air flow restrictions. However, it was suggested that the pressure in the cylinder changes its friction characteristics. The improved performance of the simulation reinforces this concept, though its exact mechanism is unknown.

There is also a degree of uncertainty in the valve flow model, especially at lower command voltages. Table 4 presents four models for determining the value of the flow coefficient C_r based on the command voltage and the flow path. The models are similar, suggesting the differences are the result of variations in the valve manufacturing process. Each flow coefficient model assumes $C_r = 0$ in the null band around $x_{spool} = 0$. However, a detailed inspection of the data figure 42 suggests a smoother transition in the true flow coefficients (figure 47) than the model in table 4 predicts.
The simulation worked well in predicting the onset of stick-slip friction in the cylinder, which occurs when the flow rate into the cylinder is not sufficient to sustain motion after breaking stiction. In stick-slip, the cylinder moves a short distance before stopping again and re-initiating stiction. The experimental data shows stick-slip behavior appearing in the ramp trajectory at command speeds of 3.2 in/s and lower. The simulation shows partial stick-slip behavior at 3.2 in/s (figure 48), and full stick-slip at lower velocities.

Figure 47. Detail of Open-Loop Travel Velocities.
Figure 48. 3.2 in/s Ramp Trajectory, Showing Stick-Slip.

(a) Simulation, (b) Data.
Chapter 5 discusses the controllability of a servopneumatic actuator-single proportional valve system. A key argument made in the discussion was that, at a constant travel velocity, the mass flow rate going into one chamber of the cylinder is equal to the mass flow rate going out of the other. While the experimental apparatus did not allow for flow rate measurement, the simulation calculates these flow rates.

Figure 49. Simulated Volumetric Flow Rates, 10 in/s Ramp Trajectory.

(a) Q vs. time, (b) Q_2 vs. Q_1.

130
The simulation supports the claim of opposing mass flow rates in the cylinder. Figure 49(a) presents the mass flow rate into each chamber of the cylinder as a function of time for the 10 in/s ramp trajectory. Positive values indicate flow into the cylinder. A visual inspection shows that the simulated flow rate into one chamber is nearly the opposite of the flow rate into the other chamber. This is better observed in figure 49(b), which plots the flow rate Q_2 as a function of Q_1. The opposing flow assumption states the slope of this line should be exactly -1. A regression analysis shows the best-fit line has a slope of -1.103, with an R^2 value of 0.987.

Figure 49(b) is typical of all simulations in which the cylinder did not reach the hard limits of travel, including simulations applying the advanced control strategies discussed in the following chapter. The largest visual divergence from the ideal flow relationship occurred in the 0.2-second half-period quadratic sine trajectory under PI control, having a slope of -1.056 with an R^2 value of 0.957 (figure 50). Deviations from the ideal slope are attributed to acceleration, which violates the restriction of constant velocity, and asymmetry in the flow coefficient functions (table 4).
Figure 50. Simulated Volumetric Flow Rates,
0.2-second Half Period Quadratic Sine Trajectory.
CHAPTER 7

ADVANCED CONTROL STRATEGIES

PI control is a poor choice for the servo control of a pneumatic actuator via a proportional valve. The compressibility of air contributes to the dominant pole pair of the closed-loop system being underdamped, leading to oscillatory behavior in the system at high speeds. At lower speeds this effect is not as strong, but here friction induces stick-slip motion in the cylinder. Advanced control strategies can improve the performance of the servopneumatic system; however, the control strategies developed in this study must be realized within the framework of a programmable logic controller (PLC).

Two strategies are developed, implemented, and evaluated: a variable structure controller (VSC), and a hybrid fuzzy-modified PI controller. Both schemes function through the M02AE servo motion control module by assigning to it closed-loop gains. The performance characteristics of the control schemes are compared to each other, and to the baseline PI controller. Additionally, the performance of the PLC in processing these control schemes is discussed.
7.1. **Variable Structure Control.** Chapter 2.3 reviewed previous research into control strategies for servo actuators. Variable structure control is commonly offered as an alternative to PID control, and is selected for implementation on the PLC.

The graph of the open-loop cylinder velocity as a function of a constant command voltage (figure 42) is the basis of the concept for the VSC used in this study. During the experimentation to develop figure 42, it was observed that stick-slip occurred at slower speeds when the command voltage was constant. A control scheme can take advantage of this by applying the exact voltage needed to develop any given velocity. This relationship, though, is difficult to define mathematically and is affected by changes in the load, temperature, and supply pressure.

Rather than finding an exact formula, the VSC control scheme switches between two control laws that form an envelope for open-loop voltage-velocity relationship. The control space is divided into two main regions (figure 51). In region 1, the feedback signal leads the control signal, and a controller output is calculated to slow the motion of the cylinder. Conversely, in region 2 of figure 51 the cylinder lags the command signal. Here, the output accelerates the load. A third region is created for command speeds less than 0.30 in/s. At low speeds, the VSC output becomes less effective, and PI control is implemented.
FIGURE 51. VSC Command Space.

FIGURE 52. VSC Command Voltages.
Implementation of the VSC in a PLC architecture is not complicated. A limit test determines if the command velocity is within the bounds for PI control. At low speeds, the controller assigns PI gains to the M02AE module. At high speeds, the position, integral, and velocity feedforward gains are set to zero. The ladder logic calculates the appropriate control voltage, and assigns it to the M02AE module’s output offset. Table 13 lists the equations used in calculating the output offset. Figure 52 shows the control equations plotted with the open-loop speed data of figure 42.

<table>
<thead>
<tr>
<th>Command Velocity</th>
<th>Error ((x_{COM} - x))</th>
<th>Condition (axis to command)</th>
<th>Command Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>Lagging</td>
<td>(V_{COM} = 0.229 \cdot \dot{x}_{COM} + 1.2)</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
<td>Leading</td>
<td>(V_{COM} = 0.206 \cdot \dot{x}_{COM} + 0.75)</td>
</tr>
<tr>
<td>Negative</td>
<td>Positive</td>
<td>Leading</td>
<td>(V_{COM} = 0.258 \cdot \dot{x}_{COM} - 0.75)</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Lagging</td>
<td>(V_{COM} = 0.333 \cdot \dot{x}_{COM} - 1.0)</td>
</tr>
</tbody>
</table>

TABLE 13. Output Offset Equations for Variable Structure Controller.
Evaluation of the VSC control scheme applies the same trajectories used to validate the mathematical model and simulation (section 6.2). Representative examples are discussed in this chapter. Figure 53 shows the VSC response to a 10 in/s ramp command. In comparing this to the PI response of figure 43(b), it is noted that the variable structure controller reduces oscillation in the actuator. The graph of velocity shows the VSC control eliminates velocity reversal in this trajectory (figure 54). Overall trajectories in which stick-slip does not occur, the variable structure controller eliminates the oscillation seen in the PI controller. A similar example is seen in the 0.5-second cam profile under PI control and VSC control (figures 45(b) and 55). Their corresponding velocities appear in figure 56.

![Figure 53. 10 in/s Ramp Trajectory, VSC.](image-url)
Figure 54. 10 in/s Ramp Trajectory Velocity. (a) PI Control, (b) VSC.
Figure 55. Cam Profile Trajectory, 0.5-second Step Period, VSC.
Figure 56. Cam Profile Trajectory Velocity, 0.5-second Step Period.

(a) PI Control, (b) VSC.
The variable structure controller improves low-speed position tracking over that of the PI controller. This is seen in the 1.0 in/s ramp trajectory, where VSC control (figure 57) does not exhibit the lag observed in the PI controller (figure 44). The 2.0-second step cam profile (figure 58) and the 3.0-second half-period quadratic sine trajectories (figure F59) provide similar examples.

Figure 57. 1.0 in/s Ramp Trajectory, VSC.
Figure 58. Cam Profile Trajectory, 2.0-second Step Period.

(a) PI Control, (b) VSC.
Figure 59. Quadratic Sine Trajectory, 3.0-s Half-Period.

(a) PI Control, (b) VSC.
The switching scheme of the variable structure controller allows it to better track position at low speeds. Considering a positive 1.8 in/s command velocity, the VSC controller sends either a 1.61-volt or 1.12-volt command to the proportional valve, depending on the tracking error. A constant 1.12-volt command signal is just enough to move the cylinder (figure 47), while the 1.61-volt command should provide a velocity of about 2.5 in/s. It is expected, then, that the cylinder under VSC control should always be in motion.

Conversely, the proportional gain contributes the most to the command voltage in a PI controller with velocity feedforward. Using table 10 and equation 31, the contribution of the velocity feedforward gain, at 1.8 in/s, may be calculated to be 0.29 volts. Assuming a zero integral error, the proportional error must reach 0.207 inches to generate a 1-volt command signal from the controller. This suggests a significant error is needed before the controller can overcome stiction.

Figure 60 compares the command signal from a PI controller with that of a VSC controller for a 1.8 in/s velocity command. While variations in the command voltage are similar, switching in the VSC scheme is much faster than the principle frequency seen in the PI control. In effect, the VSC acts in a manner similar to that of a pulse-width modulated controller.
Figure 60. Command Signal for 1.8 in/s Ramp Trajectory.

(a) PI Control, (b) VSC.
The rapid switching in the command signal allows the variable structure controller to operate at slower speeds than the PI controller without stick-slip motion. The PI controller exhibits full stick-slip behavior at speeds of 3.2 in/s and lower (figure 48). The VSC controller just avoids stick-slip at 1.8 in/s, and exhibits full stick-slip behavior at 1.0 in/s, while at 1.8 in/s it just avoids stick-slip. Figure 62 shows the variation in velocity at 1.8 in/s, at the threshold of stick-slip. Full stick-slip behavior generates a velocity graph similar to that of figure 63.

![Graph showing velocity variation](image)

Figure 61. 1.8 in/s Ramp Trajectory, VSC.
Figure 62. 1.8 in/s Ramp Trajectory Velocity, VSC.

Figure 63. 1.0 in/s Ramp Trajectory Velocity Showing Stick-Slip, VSC.
The success of a variable structure controller requires rapid switching between the subcontrollers. Figure 60(b) shows high-frequency switching of the VSC controller at 1.8 in/s. Similar switching was observed in the controller at all velocities at which stick-slip did not occur.

At higher speeds, the cylinder’s position under VSC leads the command signal. This is seen in the 10 in/s ramp trajectory (figure 53), where the payload hits the hard stops on both extension and retraction. The lead in the position is attributed to delay in the position reporting from the M02AE module to the PLC processor. Figure 64 shows the command position as reported by the PLC processor to the data acquisition computer; the actual position reported by the PLC, and; the position as indicated by the external linear potentiometer. This data shows a lag of approximately 100 milliseconds between the position recorded by the potentiometer and the position reported to the PLC by the M02AE. The data available to the PLC tells it the VSC control is performing as expected.
7.2. Hybrid Fuzzy-Modified PI Controller. A second advanced control scheme was developed to explore improvements over the variable structure controller, and evaluate the performance of a fuzzy controller at low command speeds. Like VSC scheme, the high-speed control structure uses the open-loop voltage-velocity data of figure 42. Instead of bounding the voltage-velocity relationship, though, a nominal function is determined, with a proportional gain is added to account for errors in the model. Figure 65 shows the nominal command voltage as a function of the command velocity.
A fuzzy control scheme determines the gains at positive and negative speeds. To improve performance, this scheme increases the proportional and integral gains at command velocities between –0.40 and 0.40 in/s. Figure 66 shows the weight functions for negative speed, zero speed, and positive speed regions of the fuzzy controller. Table 14 lists the gains assigned in each region of the fuzzy controller. Implementation in the PLC ladder logic is accomplished by calculating the weights of figure 66 in every program scan. Each region’s gains are multiplied by the fuzzy weights, and summed to determine the value of the gain sent to the M02AE module.

Figure 65. Hybrid Fuzzy Nominal Command Voltage.
Figure 66. Fuzzy Weight Functions.

<table>
<thead>
<tr>
<th></th>
<th>Negative Speed Region</th>
<th>Zero Speed Region</th>
<th>Positive Speed Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportional Gain, k_p</td>
<td>0.00022</td>
<td>0.00100</td>
<td>0.00022</td>
</tr>
<tr>
<td>Integral Gain, k_I</td>
<td>0.0000</td>
<td>0.0003</td>
<td>0.0000</td>
</tr>
<tr>
<td>Velocity Feedforward Gain, k_{VF}</td>
<td>7.50%</td>
<td>6.56%</td>
<td>5.62%</td>
</tr>
<tr>
<td>Output Offset, U_{OFF}</td>
<td>-1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Scaling Gain, k_S</td>
<td>1000.0</td>
<td>1000.0</td>
<td>1000.0</td>
</tr>
</tbody>
</table>

Table 14. Fuzzy Control Gains.
At high speed, the performance of the hybrid fuzzy controller is similar to that of the VSC controller. The 10 in/s ramp trajectory (figures 67 and 53) and the 0.5-second cam profile (figures 68 and 55) exemplify this likeness. The hybrid fuzzy controller does not exhibit the oscillations in velocity seen with the PI controller. At lower speeds, the hybrid fuzzy controller again performs in a manner similar to the variable structure controller. This is seen in comparing the low-speed cam profile trajectory (figures 68 and 58(b)) and quadratic sine trajectory (figures 69 and 59(b)).

Figure 67. 10 in/s Ramp Trajectory, Hybrid Fuzzy Control.
Figure 68. Cam Profile Trajectory, 0.5-second Step Period, Hybrid Fuzzy Control.
Figure 69. Cam Profile Trajectory, 2.0-second Step Period, Hybrid Fuzzy Control.
Like the variable structure controller, the hybrid fuzzy-modified PI controller lowers the speed at which stick-slip behavior is observed for the same reasons discussed in the previous section. In the baseline PI controller, fully developed stick-slip was observed in the 3.2 in/s ramp trajectory (figure 48). In the variable structure controller, the stick-slip speed is inferred to be slightly less than 1.8 in/s (figures 61 and 62). The hybrid fuzzy controller exhibits stick-slip behavior on retraction at 1.0 in/s, and full stick-slip behavior at 0.75 in/s. Figures 71 and 72 show position and velocity for the hybrid fuzzy-modified PI controller at 1.0 in/s.
Figure 71. 1.0 in/s Ramp Trajectory, Hybrid Fuzzy Control.
Figure 72. 1.0 in/s Ramp Trajectory Velocity, Hybrid Fuzzy Control.

The fuzzy portion of the hybrid fuzzy-modified PI controller acts in the ±0.40 in/s region of command velocities. The effect of the fuzzy control is to reduce the tracking error at these low velocities. The increase in the proportional and integral gains serves to make the controller more responsive near zero velocity, improving its ability to track position.
7.3. Controller Comparisons. The RMS position tracking error may be used as a measure of each controller’s ability to follow a command signal. Figure 73 shows the position tracking error of all three control schemes for the ramp trajectory. The baseline PI controller has an RMS tracking error of about 0.3 inches at any given velocity. The variable structure controller and the hybrid fuzzy-modified PI controller exhibit comparable errors at all speeds. The advanced controllers offer significant error reduction at low speeds, but the errors at higher speeds are larger than those of the PI controller. The higher high-speed errors are attributed to the position-reporting lag in the PLC control loop, which adds lead to the actual position. The RMS position tracking error for the cam profile and quadratic sine trajectories are shown in figures 74 and 75.

RMS error may also be calculated for velocity tracking. The variable structure controller and the hybrid fuzzy controller both reduce the errors in velocity through the elimination of the oscillatory behavior seen with the PI controller. Figure 76 shows the RMS velocity-tracking errors in the ramp trajectory for those speeds at which stick-stick motion is not observed.
Figure 73. RMS Position Tracking Errors, Ramp Trajectory.
Figure 74. RMS Position Tracking Errors, Cam Profile Trajectory.
Figure 75. RMS Position Tracking Errors, Quadratic Sine Trajectory.
Figure 76. RMS Velocity Tracking Errors, Ramp Trajectory.

Program scan time is not a concern in most industrial PLC applications. A typical mechanical process under PLC control requires between 100ms and 10s to accomplish, while the typical PLC program scan time is less than 10ms. Specialized hardware exists for applications in which a fast control action is required – for example, precise revolution counting of a rapidly spinning tool. The Allen-Bradley 1756-HSC high-speed counter is one such device which is compatible with the Logix5550 PLC platform.

The success of the hybrid fuzzy-modified PI controller and, to a greater extent, the variable structure controller, depends on the rapid detection of and response to the state
of the system. The capability of the Logix5550 PLC to measure and report its scan time is used to evaluate the control schemes. For each scheme, a record of 1000 consecutive scan times were recorded. Figure 77 shows the distribution of scan times for the baseline PI controller, the VSC controller, and the hybrid fuzzy controller. Table 15 lists the average and standard deviation for each data record. The PI controller has the fastest scan times, with the VSC and hybrid fuzzy controllers being significantly slower.

Figure 78 shows the first 50 samples for the PI controller. The lack of a regular pattern in the scan time demonstrates that scan time is, in effect, a random variable. An FFT transformation on the first 256 samples shows no periodic patterns exist, verifying the random nature of the data. Scan times of the VSC and hybrid fuzzy controllers exhibit similar behavior.
Figure 77. Scan Time Distribution.
Figure 78. Consecutive Scan Times of PI Controller.

<table>
<thead>
<tr>
<th>Controller</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>1948</td>
<td>71</td>
<td>1765</td>
<td>2261</td>
</tr>
<tr>
<td>VSC</td>
<td>2755</td>
<td>90</td>
<td>2413</td>
<td>3038</td>
</tr>
<tr>
<td>Hybrid Fuzzy-Modified PI</td>
<td>2940</td>
<td>88</td>
<td>2681</td>
<td>3306</td>
</tr>
</tbody>
</table>

Table 15. Scan Time Statistical Data (times in µs).
Much of the processing time in the PI controller is given to collecting data for this study. The program contains seven GSV (get system value) commands, which execute in every program scan. Table 6 showed the GSV command to be time-consuming, requiring approximately 150 µs to process. Using [88] as a reference, the total overhead for collection of the experimental data is calculated to be 969.9 µs, or half of the average scan time.

The VSC program, as implemented on the PLC, requires additional time to examine the instantaneous state of the actuator and determine gains based on the state. Most of the increase in the average scan time is attributed to the four SSV (set system value) commands, which add 617.4 µs to every program scan. The mathematical and comparative operations account for the rest of the increase. The hybrid fuzzy controller uses the same set of SSV values, but the mathematics required by the fuzzy algorithm increases the overall scan time.

The scan time in the controller affects the performance of the control algorithm. Consider the quadratic sine trajectory with a 0.5-second half period. Its acceleration is always ±48 in/s² (table 12). With the variable structure controller, the velocity profile passes through the PI-control band (±0.30 in/s) in 12.5 ms, or 4.5 average PLC program scans. VSC is a switching algorithm, so the delay only affects switching between control modes. In a similar examination of the hybrid fuzzy-modified PI controller, the velocity passes through the fuzzy region (±0.40 in/s) in 16.7 ms, or 5.7 average scans. The processing delay here is more significant with respect to the control system, as the gains
within the fuzzy region are a function of the command velocity. In the mechanical system, however, the effect of lag in the changing of gains over 16.7 ms is not significant.

The program scan time for all control schemes may be reduced significantly. The 969.9 µs needed for collecting the data for this study may be eliminated completely from the PI control, reducing its mean scan time to just 978 µs. Data collection for the advanced control schemes requires 274.9 µs, providing a net reduction of 695.0 µs. The VSC program writes gains to the M02AE controller via the SSV commands on every program scan. It is possible to rewrite the program so that the SSV commands only execute as needed. Doing so would require use of three OSR (one-shot rising) bit commands, each having an execution time of 3.7 µs. The estimated mean scan time would be reduced from 2755 µs to 2071 µs.

Similarly, significant reductions may be realized in the scan time of the hybrid fuzzy controller. Because fuzzy calculations are required for just a handful of scans in many of the trajectories tested, a practical approach to reducing scan times is to calculate the fuzzy gains only at the initiation of a motion command, using the peak velocity as the basis for the fuzzy logic. This strategy would allow the hybrid fuzzy controller to have an average scan time similar to that of the PI controller. On program scans in which a motion command is initiated, a longer scan would be required.
CHAPTER 8

SUMMARY AND FUTURE WORK

Pneumatic actuators offer a low-cost alternative to conventional servo technologies. Their acceptance in industry, though, requires use of advanced control system to account for the nonlinear behavior of the pneumatic system. This study explores the application of servo control schemes for a pneumatic cylinder, acting vertically, with a single proportional valve metering flow, and an encoder providing position feedback. The control schemes were implemented within the architecture of a programmable logic controller having a servo motor motion control module.

Two controllers were designed: one using a variable structure control algorithm; the other a hybrid of a fuzzy and a modified PI controller. The performances of the control schemes were compared against each other, and against a baseline PI control algorithm available through the servo motion module. A digital simulation of the servopneumatic system permitted observation of processes not measurable through the experimental apparatus. In addition, a linear mathematical analysis allowed for the theoretical discussion of the behavior of the system.
The variable structure and hybrid fuzzy controllers both offer similar gains in performance over the PI controller. At high speeds, the advanced control schemes exhibit less oscillatory behavior than the PI controller. At low speeds, they reduce the RMS position tracking error. Both experimental controllers lower the speed at which stick-slip behavior manifests itself.

A linear analysis using position x, velocity \dot{x}, and equilibrium position x_{EQ} as the state variables suggests the servopneumatic system is always observable and controllable. When nonlinear effects are considered in this analysis, it is found that controllability is significantly lower near mid-stroke positions, and may be lost at low command speeds. A key assumption to this analysis is that the instantaneous mass flow rate into one chamber of the pneumatic cylinder is equal to the mass flow rate leaving the other. The simulation demonstrates this assumption is a valid approximation of the actual process, as long as the actuator does not reach a hard stop. Future research can provide an experimental verification of this assumption, and explore in depth effects of acceleration, friction, and valve geometry.

This research purposefully did not address the position-holding capability of a pneumatic actuator. The cylinder used in this study could not hold an arbitrary position indefinitely. The vertical orientation of the cylinder, the single-end cylinder design, and leakage in the proportional valve all contribute to the lack of system equilibrium at a zero command velocity. One area for future research is to determine economical hardware and sensor designs that will let a pneumatic actuator hold an arbitrary command position.
Another area for future research is in the conceptual design model for a proportional valve. The valve used in this study has on-board electronics that provide closed-loop feedback control for spool position, independent of any external control system. The apparent design paradigm for this valve states that the spool position should be a linear function of the command voltage. This and previous studies show this paradigm leads to highly nonlinear flow dynamics through the valve, and complicates the design of a control system built around it.

From a customer’s standpoint, the better conceptual model is for the mass flow rates through the valve to be proportional to the command signal. Advances in mechatronics and microelectromechanical systems (MEMS) make the practical construction of such a valve possible. A well-designed valve control system can enforce proportionality between the command signal and the flow rate, and compensate for variations in the valve manufacturing process.
APPENDIX A

MATLAB SIMULATION CODES
A.1. SIM8 Program Code.

```matlab
% ******************************
% ** SIM8                   **
% ** Last modified 10-21-03 **
% ******************************

% ***** ***** ***** ***** ***** ***** ***** ***** ***** *****
% ** KEY SIMULATION PARAMETERS **
% ***** ***** ***** ***** ***** ***** ***** ***** ***** *****

ctrl = 'PID';
%
CONTROL METHOD
- PID
- VSC
- Fuzzy
- Volt (open-loop, requires Volt_com, t_max)

traj = 'Short';
%
TRAJECTORY
- Shortramp (requires dx_ramp)
- Short (requires t_short)
- ShortQS (requires t_short)

Volt_com = 3;  % Volt control command voltage, -10V to +10V
t_max = 0.8;   % Volt control simulation time, s
dx_ramp = 1.8; % Ramp trajectory command speed, in/s
t_short = 3.0; % Short trajectory leg duration, s

% ***** ***** ***** ***** ***** ***** ***** ***** ***** *****
% ** PHYSICAL PROPERTIES **
% ***** ***** ***** ***** ***** ***** ***** ***** ***** *****

% ** Environment
Pa = 14.7;    % atmospheric pressure, psi
Ps = 80 + Pa; % supply pressure, psi
Ta = 68 + 460; % ambient temperature, R
g = 386.09;   % gravity, in/sec^2

% ** Air
k = 1.4;     % ratio of specific heats
R = 247000;  % gas constant for air, in^2/s^2-R

% ** Cylinder
L = 7.00;    % stroke, in
L_stop = L;  % default stop position, in
```
dia = 1.969; % piston diameter, in
d_rod = 0.984; % rod diameter, m
F_stat = 4.9; % static friction, lb
F_dyn = 1.55; % dynamic friction, lb
b = 0.125; % viscous friction, lb-s/in
Vx1 = 0.7; % excess volume 1, in^3
Vx2 = 0.7; % excess volume 2, in^3
W = 22.25 + 2.0; % payload weight, lb
A1 = pi/4 * dia^2; % blind end area, in^2
A2 = pi/4 * (dia^2 - d_rod^2); % rod end area, in^2
A_rod = A1 - A2; % rod area, in^2
M = W/g; % payload mass, lb-s^2/in

% ** Valve
\[t_{spool} = 0.00096; \] % valve spool time constant, s

% ** Friction correction
\[F_{stat} = F_{stat} \times \frac{P_s}{P_a}; \]
\[F_{dyn} = F_{dyn} \times \frac{P_s}{P_a}; \]

% ************************
% ** INITIAL CONDITIONS **
% ************************

x = 0.5; % position, in
dx = 0.0; % velocity, in/s
d2x = 0.0; % acceleration, in/s^2

% ** pressures set for equilibrium
\[P_2 = P_s \times 0.8; \] % rod end pressure
\[P_1 = \frac{(P_2 \times A_2 + P_a \times A_rod - W)}{A_1}; \]
\[x_{spool} = 0; \] % valve spool position
\[dm1 = 0; \] % mass flow rate, lb-s^2/in-s
\[dm2 = 0; \] % mass flow rate, lb-s^2/in-s
\[t = 0; \] % elapsed time, s

if isequal(lower(traj),'shortqs')
 x = 1;
end

if isequal(lower(ctrl),'volt')
 if Volt_com >= 0
 x = 0;
 else
 x = 7;
 end
end

x_com = x; % command position, in
dx_com = 0.0; % command velocity, in/s
x_PLC = x; % stored position in PLC
x_com_PLC = x; % command position in PLC, in
dx_com_PLC = 0.0; % command velocity in PLC, in/sec
V_com = 0.0; % command voltage from M02AE to spool, V
V_com_noU = 0.0; % command voltage without offset, V

% **
% ** SIMULATION PARAMETERS **
% **

% ** Convert ctrl, traj to lower-case
ctrl = lower(ctrl);
traj = lower(traj);

if isequal(ctrl,'volt')
 traj = 'volt';
end

% ** Simulation times
% elapsed simulation time, s
% simulation time step, s
% M02AE update period, s
% PLC scan time, s
% Blue Ox encoder update period, s
% Data sample period, s

if isequal(traj,'short')
 t_max = 3 * t_short + 0.5;
elseif isequal(traj,'shortramp')
 t_max = 7/dx_ramp + 1.8;
elseif isequal(traj,'shortqs')
 t_max = t_short * 12;
end

% ** Counts and counters
% Simulation period
% M02AE update period
% PLC scan time
% Blue Ox encoder update period
% Data sample period

if strcmp(traj,'short')
 L_stop = 4.60;
end
% ************************
% ** CONTROL PARAMETERS **
% ************************

err_int = 0.0; % error integrator
mode = 0; % default mode (used to track VSC, Fuzzy)

if isequal(ctrl,'volt')
% ** Volt control
Kp = 0.0; % proportional gain
Ki = 0.0; % integral gain
Kvf = 0.0; % velocity feedforward gain
Ks = 1000; % command scaling gain
cutoff = 1000 * 2 * pi; % filter cutoff frequency, rad/s
U_off = Volt_com; % output offset, V

if Volt_com < 0
 x = L_stop - 0.5;
 x_com = x;
 x_PLC = x;
 BLUEOX = x * ones(n_blueox,1);
 x_blueox = x;
 x_blueox_next = x;
end

elseif isequal (ctrl,'pid')
% ** PID control
Kp = 0.00086; % proportional gain
Ki = 0.0006; % integral gain
Kvf = 0.04; % velocity feedforward gain
Ks = 1000; % command scaling gain
cutoff = 1000 * 2 * pi; % filter cutoff frequency, rad/s
U_off = 0.0; % output offset, V

elseif isequal (ctrl,'vsc')
% ** VSC control
Kp_vsc = [0.0 0.0 0.001]; % proportional gains
Ki_vsc = [0.0 0.0 0.0007]; %
Kvf_vsc = [0.0 0.0 0.12]; %
Ks = 860.3; % command scaling gain
cutoff = 20.2 * 2 * pi; % filter cutoff frequency, rad/s

m_pos = [0.229 0.206 0.0]; % slope for U, dx_com > 0
b_pos = [1.2 0.75 0.0]; % offset for U, dx_com > 0
m_neg = [0.333 0.258 0.0]; % slope for U, dx_com < 0
b_neg = [-1.0 -0.75 0.0]; % offset for U, dx_com < 0

VSC_lim = 0.3; % limiting velocity for low speed region, in/s

mode = 3; % mode tracking
% 1 = lagging
% 2 = leading
% 3 = low velocity

Kp = Kp_vsc(mode); % initial proportional gain
Ki = Ki_vsc(mode); % initial integral gain
Kvf = Kvf_vsc(mode); % initial velocity feedforward gain
U_off = dx_com * m_pos(mode) + b_pos(mode);
% % initial output offset

elseif isequal (ctrl,'fuzzy')
% ** Fuzzy control
Kp_f = [0.00022 0.00100 0.00022]; % proportional gains
Ki_f = [0.0 0.003 0.0]; % integral gains
Kvf_f = [0.0750 0.0656 0.0562]; % velocity feedforward gains
U_off_f = [-1.0 0.0 1.0]; % output offsets

fuzzy_wt = [0 1 0]; % fuzzy weights
fuzzy_lim_pos = 0.4; % positive fuzzy limit
fuzzy_lim_neg = -0.4; % negative fuzzy limit

Ks = 1000; % command scaling gain
cutoff = 1000 * 2 * pi; % filter cutoff frequency, rad/s

Kp = sum(Kp_f .* fuzzy_wt); % initial Kp gain
Ki = sum(Ki_f .* fuzzy_wt); % initial Ki gain
Kvf = sum(Kvf_f .* fuzzy_wt); % initial Kvf gain
U_off = sum(U_off_f .* fuzzy_wt); % initial U_off

end

% *****************
% ** DATA RECORD **
% *****************
DATA = [x dx x_com dx_com P1 P2 dm1 dm2 V_com x_PLC mode d2x];
% % data storage matrix
T = [t]; % data timestamp array

% *****************
% ** SIM HEADER **
% *****************
disp('SIM8');
disp('****');
if isequal(ctrl,'volt')
 disp([ctrl,' ',num2str(Volt_com),' V']);
elseif or(isequal(traj,'ramp'),isequal(traj,'shortramp'))
 disp([ctrl,'-',traj, ', vel = ',num2str(dx_ramp),' ips']);
else
 disp([ctrl,'-',traj]);
end
disp(['Time = ', num2str(t_max),' sec']);

% ***** ***** ***** ***** ***** ***** ***** ***** ***** ****
% ***** ***** ***** ***** ***** ***** ***** ***** ***** *****
% ***** ***** ***** ***** ***** ***** ***** ***** ***** *****

176
```matlab
% ****************
% ** SIMULATION **
% ****************

% Start Simulation Loop

for i=1:n
    t = dt * i;
    
    % Update State Variables
    
    % Calculate derivatives
    [dm1, dm2] = ValveFlowInch(Ps, Pa, P1, P2, Ta, x_spool);
    dx_spool = (V_com - x_spool)/t_spool;
    dm1 = dm1 * 0.750;  % Correction factor
    dm2 = dm2 * 0.750;  % Correction factor
    dP1 = k * (R*Ta*dm1 - P1*A1*dx) / (A1*x + Vx1);
    dP2 = k * (R*Ta*dm2 + P2*A2*dx) / (A2*(L-x) + Vx2);
    
    % Handle friction to find acceleration
    dx_abs = abs(dx);
    F_sum = P1*A1 - P2*A2 - Pa*A_rod - b*dx + M*g;
    if dx_abs <= 0.001
        % No motion, stiction
        if F_sum <= -F_stat
            d2x = (F_sum + F_stat)/M; % Break stiction (-)
        elseif F_sum >= F_stat
            d2x = (F_sum - F_stat)/M; % Break stiction (+)
        else
            d2x = 0.0; % Stiction, no acceleration
        end
    else
        % Motion, dynamic friction
        d2x = (F_sum - F_dyn * sign(dx))/M;
        % Check for velocity reversal
        dx_next = dx + d2x * dt;
        if sign(dx) ~= sign(dx_next)
            if F_sum >= -F_stat % and
                if F_sum <= F_stat
                    % Stiction
                    d2x = -dx/dt;
                end
            end
        end
    end
    
    % Integrate
    x_spool = x_spool + dx_spool * dt;
    P1 = P1 + dP1 * dt;
    P2 = P2 + dP2 * dt;
    x = x + (dx * dt) + (0.5 * d2x * dt^2);
end
```
dx = dx + d2x * dt;

% ** Apply limits
if P1 < 0
 P1 = 0;
end

if P2 < 0
 P2 = 0;
end

if x < 0;
 x = 0;
 %dx = -dx; % assumes restitution
 dx = 0; % assumes no restitution
end

if x > L_stop
 x = L_stop;
 %dx = -dx; % assumes restitution
 dx = 0; % assumes no restitution
end

% ***
% ** M02AE Control Actions **
% ***

i_M02 = i_M02 + 1;
if i_M02 == n_M02
 i_M02 = 0;

 % ** Get command position, velocity from profile
 if isequal(ctrl,'volt')
 x_com = 0;
 dx_com = 0;
 elseif isequal(traj,'short')
 [x_com, dx_com] = ShortProfile(t, t_short);
 elseif isequal(traj,'shortramp')
 [x_com, dx_com] = ShortRamp(t, dx_ramp);
 elseif isequal(traj,'shortqs')
 [x_com, dx_com] = QuadSineShort(t, t_short);
 else
 disp('*** INVALID TRAJECTORY, SIM CANCELLED ***');
 disp(traj);
 end

 % ** Calculate command voltage
 V_comNF = (4 * Kp * (x_com - x_blueox) + ...
 4 * Ki * err_int + Kvf * dx_com/250) * Ks;
 dV_com = cutoff * (V_comNF - V_com_noU);
 V_com_noU = V_com_noU + dV_com * t_M02;
 V_com = V_com_noU + U_off;

 % ** Apply limits
 if V_com < -10
\[
V_{\text{com}} = -10;
\]

\[
\text{if } V_{\text{com}} > 10 \\
V_{\text{com}} = 10;
\]

\[
\text{err}_{\text{int}} = \text{err}_{\text{int}} + (x_{\text{com}} - x_{\text{blueox}}) \times t_{M02};
\]

\[
\%
\]

\[
\%
\text{**********}
\%
\text{** Blue Ox Encoder Actions **}
\%
\text{**********}
\%
\]

\[
i_{\text{blueox}} = i_{\text{blueox}} + 1;
\]

\[
x_{\text{blueox}} = \text{BLUEOX}(i_{\text{blueox}});
\]

\[
\text{if } i_{\text{blueox}} == n_{\text{blueox}} \text{ then}
\]

\[
i_{\text{blueox}} = 0;
\]

\[
\text{for } j = 1:n_{\text{blueox}} \text{ do}
\]

\[
\text{BLUEOX}(j) = \text{round}(1000\times(x_{\text{blueox}} + \ldots)
\]

\[
(x_{\text{blueox}}_{\text{next}} - x_{\text{blueox}}) \times j/n_{\text{blueox}}))/1000;
\]

\[
\text{end}
\]

\[
x_{\text{blueox}}_{\text{next}} = x;
\]

\[
\%
\]

\[
\%
\text{**********}
\%
\text{** PLC Actions **}
\%
\text{**********}
\%
\]

\[
i_{\text{PLC}} = i_{\text{PLC}} + 1;
\]

\[
i_{\text{PLC}} == n_{\text{PLC}} \text{ then}
\]

\[
i_{\text{PLC}} = 0;
\]

\[
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
mode = 2;
end

U_off = m_pos(mode) * dx_com_PLC + b_pos(mode);

else
 % ** Low velocity command
 mode = 3;
 U_off = m_pos(mode) * dx_com_PLC + b_pos(mode);
end

Kp = Kp_vsc(mode);
Ki = Ki_vsc(mode);
Kvf = Kvf_vsc(mode);

elseif isequal (ctrl,'fuzzy')
 % ** Fuzzy
 if dx_com_PLC <= fuzzy_lim_neg
 fuzzy_wt = [1 0 0];
 mode = -1;
 elseif dx_com_PLC <= 0
 fuzzy_wt = [(dx_com_PLC/fuzzy_lim_neg) ...
 (1-dx_com_PLC/fuzzy_lim_neg) 0];
 mode = -dx_com_PLC/fuzzy_lim_neg;
 elseif dx_com_PLC <= fuzzy_lim_pos
 fuzzy_wt = [0 (1-dx_com_PLC/fuzzy_lim_pos) ...
 (dx_com_PLC/fuzzy_lim_pos)];
 mode = dx_com_PLC/fuzzy_lim_pos;
 else
 fuzzy_wt = [0 0 1];
 mode = 1;
 end

 Kp = sum (Kp_f .* fuzzy_wt);
 Ki = sum (Ki_f .* fuzzy_wt);
 Kvf = sum (Kvf_f .* fuzzy_wt);
 U_off = sum (U_off_f .* fuzzy_wt);
end

% ** Update PLC variables
x_PLC = x_blueox; % next x in M02AE from transducer
x_com_PLC = x_com;
dx_com_PLC = dx_com;
end
% *************************
% ** Sample Data Actions **
% *************************

i_sample = i_sample + 1;
if i_sample == n_sample
 i_sample = 0;
 DATA = [DATA; x dx x_com dx_com P1 P2 dm1 dm2 V_com x_PLC mode d2x];
end

% *************************
% ** End Simulation Loop **
% *************************

end

% ***** ***** ***** ***** ***** ***** ***** ***** ***** *****

% ***************
% ** PLOT DATA **
% ***************

% ** DATA variable structure
% DATA (:,1) - actual position, in
% DATA (:,2) - actual velocity, in/s
% DATA (:,3) - command position, in
% DATA (:,4) - command velocity, in/s
% DATA (:,5) - blind end pressure, psia
% DATA (:,6) - rod end pressure, psia
% DATA (:,7) - mass flow rate to blind end, SCFM
% DATA (:,8) - mass flow rate to rod end, SCFM
% DATA (:,9) - Command voltage from M02AE, V
% DATA (:,10) - position as seen by PLC, in
% DATA (:,11) - VSC control mode / Fuzzy scale
% DATA (:,12) - acceleration, in/s^2

DATA(:,7:8) = DATA(:,7:8) * 302900; % Convert flow rate to SCFM
Q_limit = [min(DATA(:,7)) max(DATA(:,7))]; % Limits of flow rate

subplot (2,3,1), plot(T,DATA(:,3), T,DATA(:,1));
grid on;
xlabel('Time (s)');
ylabel('Position (in)');
legend('Xc', 'X');

subplot (2,3,4), plot(T,DATA(:,4), T,DATA(:,2));
grid on;
xlabel('Time (s)');
ylabel('Velocity (in/s)');
legend('Vc', 'V');

subplot (2,3,2), plot(T,DATA(:,5), T,DATA(:,6));
grid on;
xlabel('Time (s)');
ylabel('Pressure (psia)');
legend('P1','P2');

subplot (2,3,5), plot(T,DATA(:,7), T,DATA(:,8));
grid on;
xlabel('Time (s)');
ylabel('Flow rate (SCFM)');
legend('Q1','Q2');

subplot (2,3,3), plot(T,DATA(:,9), T,DATA(:,11));
grid on;
xlabel('Time (s)');
ylabel('Voltage (V)');
legend('Vcom','mode');

subplot (2,3,6), plot(DATA(:,7),DATA(:,8),'k.', -Q_limit,Q_limit,'b-');
grid on;
xlabel('Q1 (SCFM)');
ylabel('Q2 (SCFM)');

% **

```matlab
function [dm1,dm2] = ValveFlowInch(Ps,Pa,P1,P2,T,Xspool)
% ValveFlowInch
% [dm1,dm2] = ValveFlowInch(Ps,Pa,P1,P2,T,Xspool)
% Calculates mass flow rates for Festo MPYE-1/4
% proportional control valve. Positive flow rates
% indicate flow from valve to cylinder. Pressures
% are absolute. Iteration used to account for drop
% in supply pressure as flow increases.
% dm1, dm2 - flow (lb-s/in)
% Ps, Pa   - supply, atmospheric pressure (psia)
% P1, P2   - downstream pressures in chambers 1, 2 (psia)
% T        - temperature (R)
% Xspool   - spool position, -10 <= Xspool <= 10

% ** Minimum Cv
Cv_min = 0.01;

% ** Xspool limits enforced
if Xspool < -10
  Xspool = -10;
end
if Xspool > 10
  Xspool = 10;
end

% ** Calculate Cv, a, for both flow paths
if Xspool < 0
  % ports 4-5
  Cv1 = -0.0712 * (Xspool+1.21) - 0.0013 * (Xspool+1.21)^2;
  a_up1 = .0010;
  a_dn1 = .0400;
  % ports 2-1
  Cv2 = -0.0700 * (Xspool+1.22) - 0.0017 * (Xspool+1.22)^2;
  a_up2 = .0555;
  a_dn2 = .0400;
else
  % ports 4-1
  Cv1 = 0.0636 * (Xspool-1.38) - 0.0012 * (Xspool-1.38)^2;
  a_up1 = .0555;
  a_dn1 = .0400;
  % ports 2-3
  Cv2 = 0.0651 * (Xspool-1.21) - 0.0009 * (Xspool-1.22)^2;
  a_up2 = .0010;
  a_dn2 = .0400;
end
```
% ** Enforce minimum Cv
if Cv1 < Cv_min
 Cv1 = Cv_min;
end

if Cv2 < Cv_min
 Cv2 = Cv_min;
end

% ** Determine pressure connections
if Xspool <= -1.21
 P1c = Pa; % chamber 1 connected to atmosphere
elseif Xspool >= 1.38
 P1c = Ps; % chamber 1 connected to supply
else
 % interpolate
 P1c = Pa + (Ps-Pa) * (Xspool+1.21)/2.59;
end

if Xspool <= -1.22
 P2c = Ps; % chamber 2 connected to supply
elseif Xspool >= 1.22
 P2c = Pa; % chamber 2 connected to atmosphere
else
 % interpolate
 P2c = Ps - (Ps-Pa) * (Xspool+1.22)/2.44;
end

% ** Calculate flow rates in SCFM
if P1c > P1
 Q1 = FlowIteration(P1c,P1,Cv1,T,a_up1,a_dn1);
else
 Q1 = FlowIteration(P1,P1c,Cv1,T,a_up1,a_dn1);
 Q1 = -Q1;
end

if P2c > P2
 Q2 = FlowIteration(P2c,P2,Cv2,T,a_up2,a_dn2);
else
 Q2 = FlowIteration(P2,P2c,Cv2,T,a_up2,a_dn2);
 Q2 = -Q2;
end

% ** Convert from SCFM to lb-s^2/in-s
dm1 = Q1/302900;
dm2 = Q2/302900;

% **

function [Q] = FlowIteration(P_up,P_dn,Cv,T,a_up,a_dn)
% FlowIteration
% [Q] = FlowIteration(P_up,P_dn,Cv,T,a_up,a_dn)
% Calculates volumetric flow rates for Festo MPYE-1/4 proportional control valve, including loss factors for the plumbing.
% Q - flow rate (SCFM)
% P_up - upstream pressure (psia)
% P_dn - downstream pressure (psia)
% Cv - flow coefficient
% T - air temperature (deg R)
% a_up - loss coefficient for upstream tubing
% a_dn - loss coefficient for downstream tubing
% **
% NOTES
% * Pressure loss in tubing
% dP = P_in - a * Q^2
% * Flow through valve
% X = 1 - P_dn/P_up
% Q = 22.67 * Cv * P_up * (1-X/3) * sqrt(X/T)
% **
% Find initial flow rate based on no pressure drop across valve
Q = sqrt((P_up-P_dn)/(a_up+a_dn));
dQ = Q/2;
for i = 1:20
% Calculate valve inlet, outlet pressures based on flow rate
Pv_up = P_up - a_up * Q^2;
Pv_dn = P_dn + a_dn * Q^2;
% Find flow rate based on inlet, outlet pressures
X = 1 - Pv_dn/Pv_up;
Q_test = 22.67 * Cv * Pv_up * (1 - X/3) * sqrt(X/T);
% Determine next flow rate iteration
if Q >= Q_test
 Q = Q - dQ;
else
 Q = Q + dQ;
end
end
% Smaller iteration step
dQ = dQ/2;
end

% **

```matlab
function [x,v] = ShortRamp(t,vcom)
% Short Ramp Profile
% [xcom,vcom] = ShortRamp(time, command_velocity)
% Generates a command position and velocity based
% on a ramp profile from 0.5" to 4.0" and back, with
% a 0.5 second pause at extension. For times calculated
% to be outside the profile time, [0.5 0.0] will be the
% function's output. 50 ips acceleration.

vmax = 50 * sqrt(3.5/50);
if vcom < vmax

% ** Trapezoidal profile

t1 = vcom/50;  % accel
t2 = 3.5/vcom;  % steady velocity
t3 = t1 + t2;  % decel
t4 = t3 + 0.5;  % hold
t5 = t4 + t1;  % accel
t6 = t4 + t2;  % steady velocity
t7 = t6 + t1;  % decel

if t <= 0
    x = 0.5;
    v = 0.0;
elseif t <= t1  % accel
    x = 0.5 + 25 * t^2;
    v = 50 * t;
elseif t <= t2  % steady velocity
    x = 0.5 + (vcom^2)/100 + vcom * (t-t1);
    v = vcom;
elseif t <= t3  % decel
    x = 4.0 - 25 * (t-t3)^2;
    v = vcom - 50 * (t-t2);
elseif t <= t4  % hold
    x = 4.0;
    v = 0.0;
elseif t <= t5  % accel
    x = 4.0 - 25 * (t-t4)^2;
    v = -50 * (t-t4);
elseif t <= t6  % steady velocity
    x = 4.0 - (vcom^2)/100 - vcom * (t-t5);
    v = -vcom;
elseif t <= t7  % decel
    x = 0.5 + 25 * (t-t7)^2;
    v = -vcom + 50 * (t-t6);
else
```

187
x = 0.5;
v = 0.0;
end

else

% ** Triangular profile

t1 = sqrt(3.5/50); % accel
t2 = t1 + t1; % decel
t3 = t2 + 0.5; % hold
t4 = t3 + t1; % accel

t5 = t4 + t1; % decel

if t <= 0
 x = 0.5;
 v = 0.0;
elseif t <= t1 % accel
 x = 0.5 + 25 * t^2;
 v = 50 * t;
elseif t <= t2 % decel
 x = 4.0 - 25 * (t-t2)^2;
 v = vmax - 50 * (t-t1);
elseif t <= t3 % hold
 x = 4.0;
 v = 0.0;
elseif t <= t4 % accel
 x = 4.0 - 25 * (t-t3)^2;
 v = -50 * (t-t3);
elseif t <= t5 % decel
 x = 0.5 + 25 * (t-t5)^2;
 v = -vmax + 50 * (t-t4);
else
 x = 0.5;
 v = 0.0;
end
end

% **
function [x,v] = ShortProfile(t, T)
% Ramp Profile
% [xcom,vcom] = ShortProfile(time, period)
% Generates a command position and velocity based
% on a triangular velocity profile with three legs,
% each with a constant period. For times outside
% the three-period window, [0.5 0.0] will be this
% function's output.
% Per Start Finish
% --- ----- ------
% 1 0.5" 4.0"
% 2 4.0" 2.0"
% 3 2.0" 0.5"

if T <= 0
 T = 1;
end

if t <= 0
 x = 0.5;
 v = 0.0;
elseif t <= 0.5*T
 a = 4 * 3.5 / T^2;
 x = 0.5 + 0.5 * a * t^2;
 v = a * t;
elseif t <= T
 a = 4 * 3.5 / T^2;
 x = 4.0 - 0.5 * a * (T - t)^2;
 v = a * (T - t);
elseif t <= 1.5*T
 a = 4 * 2.0 / T^2;
 x = 4.0 - 0.5 * a * (T - t)^2;
 v = a * (T - t);
elseif t <= 2.0*T
 a = 4 * 2.0 / T^2;
 x = 2.0 + 0.5 * a * (2*T - t)^2;
 v = -a * (2*T - t);
elseif t <= 2.5*T
 a = 4 * 1.5 / T^2;
 x = 2.0 - 0.5 * a * (2*T - t)^2;
 v = a * (2*T - t);
elseif t <= 3.0*T
 a = 4 * 1.5 / T^2;
 x = 0.5 + 0.5 * a * (3*T - t)^2;
 v = -a * (3*T - t);
else
 x = 0.5;
 v = 0.0;
end

% **

```matlab
function [xcom,vcom] = QuadSineShort(time,T)
% QuadSineShort
% % [xcom,vcom] = QuadSineShort(time,Per)
% % Generates a repeating quadratic "sine" wave.
% % T is the half-wave period.

per = 2 * T; % actual period
acc = 12/T^2; % acceleration

% calculate time into period
ft = time/per - floor(time/per); % fraction of period
tp = ft * per; % time into period

% piece-wise equations
if ft <= 0.25
    xcom = 1 + 0.5 * acc * tp^2;
    vcom = acc * tp;
elseif ft <= 0.75
    xcom = 4 - 0.5 * acc * (per/2 - tp)^2;
    vcom = acc * (per/2 - tp);
else
    xcom = 1 + 0.5 * acc * (per - tp)^2;
    vcom = -acc * (per - tp);
end
```

% **
APPENDIX B

PLC CONFIGURATION AND LADDER LOGIC
B.1. Programmable Logic Controller Configuration.

<table>
<thead>
<tr>
<th>Slot</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1756-L1 ControlLogix 5550 Controller</td>
</tr>
<tr>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>1756-IB16D 16 Point 10V-30V DC Diagnostic Input</td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>1756-OF8 8 Channel Non-Isolated Voltage/Current Analog Output</td>
</tr>
<tr>
<td>7</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>1756-ENET Ethernet</td>
</tr>
<tr>
<td>9</td>
<td>1756-M02AE 2 Axis Analog/Encoder Servo</td>
</tr>
</tbody>
</table>

Table 16. Programmable Logic Controller Configuration.
B.2. Programmable Logic Controller Input Wiring.

Figure 79. Programmable Logic Controller Input Wiring.
B.3. Main Program, PI Control.

Figure 80. Main Program Ladder, PI Control.

Figure 81. Main Program Ladder, Variable Structure Control.
B.5. Main Program, Hybrid Fuzzy-Modified PI Control.

Figure 82. Main Program Ladder, Hybrid Fuzzy-Modified PI Control.
B.6. ctrl_PID Subroutine.

Figure 83. ctrl_PID Subroutine Ladder.
B.7.ctrl_VSC7_1 Subroutine.

Figure 84. ctrl_VSC7_1 Subroutine Ladder.

(continued)
(Figure 84, continued)
(Figure 84, continued)
(Figure 84, continued)
B.8. ctrl_fuzzy2_1 Subroutine.

Figure 85. ctrl_fuzzy2_1 Subroutine Ladder.

(continued)
(Figure 85, continued)
(Figure 85, continued)

CPT

Compute
Dest: Kp
0.00086

CPT

Compute
Dest: Ki
0.0006

CPT

Compute
Dest: Kv_f
4.0

CPT

Compute
Dest: U_offset
0.0

SSV

Set System Value
Class name: AXIS
Instance name: cylinder
Attribute name: PositionProportionalGain
Source: Kp
0.00086

(continued)
(Figure 85, continued)
B.9. motion Subroutine.

** ENABLE SERVO DRIVE **

sw4_enable_drive
<Local:2.I.Data.4>

** DISABLE SERVO DRIVE **

sw5_disable_drive
<Local:2.I.Data.4>

** RESET DRIVE FAULT **

sw5_disable_drive
<Local:2.I.Data.5>

Fault_Reset.DN

** DEFINE HOME POSITION **

sw4_enable_drive
<Local:2.I.Data.4>

** Figure 86. motion Subroutine Ladder. **

(continued)
(Figure 86, continued)

** FORWARD JOG **

** REVERSE JOG **
(Figure 86, continued)
(Figure 86, continued)
(Figure 86, continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>MAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>sw7_move_to_05</td>
<td>Motion Axis Move</td>
</tr>
<tr>
<td>Local:21.Data.7</td>
<td>Motion Control: cylinder_M[8]</td>
</tr>
<tr>
<td></td>
<td>Move Type: 0</td>
</tr>
<tr>
<td></td>
<td>Position: 0.5</td>
</tr>
<tr>
<td></td>
<td>Speed: vel_move</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Speed Units: Units per sec</td>
</tr>
<tr>
<td></td>
<td>Accel Rate: 25</td>
</tr>
<tr>
<td></td>
<td>Accel Units: % of Maximum</td>
</tr>
<tr>
<td></td>
<td>Decel Rate: 25</td>
</tr>
<tr>
<td></td>
<td>Decel Units: % of Maximum</td>
</tr>
<tr>
<td></td>
<td>Profile: Trapezoidal</td>
</tr>
<tr>
<td>extend_pause.DN</td>
<td>PROFILE COMMAND</td>
</tr>
</tbody>
</table>

sw8_profile	MAM
<Local:21.Data.8>	Motion Axis Move
	Motion Control: cylinder_M[9]
	Move Type: 0
	Position: 4.0
	Speed: V[0]
	2.333
	Speed Units: Units per sec
	Accel Rate: A[0]
	1.556
	Accel Units: Units per sec2
	Decel Rate: A[0]
	1.556
	Decel Units: Units per sec2
	Profile: Trapezoidal
(Figure 86, continued)
QUADRATIC SINE COMMAND

<table>
<thead>
<tr>
<th>Motion Axis Move</th>
<th>sw9_quad_sine Local:21.Data.9</th>
<th>cylinder_M[14].IP</th>
<th>MAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Control:</td>
<td>cylinder_M[13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Move Type:</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position:</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed:</td>
<td>V[3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Units:</td>
<td>Units per sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accel Rate:</td>
<td>A[3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accel Units:</td>
<td>Units per sec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decel Rate:</td>
<td>A[3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decel Units:</td>
<td>Units per sec2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile:</td>
<td>Trapezoidal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motion Axis Move</th>
<th>cylinder_M[13].PC</th>
<th>MAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motion Control:</td>
<td>cylinder_M[14]</td>
<td></td>
</tr>
<tr>
<td>Move Type:</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Position:</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Speed:</td>
<td>V[3]</td>
<td></td>
</tr>
<tr>
<td>Speed Units:</td>
<td>Units per sec</td>
<td></td>
</tr>
<tr>
<td>Accel Rate:</td>
<td>A[3]</td>
<td></td>
</tr>
<tr>
<td>Accel Units:</td>
<td>Units per sec2</td>
<td></td>
</tr>
<tr>
<td>Decel Rate:</td>
<td>A[3]</td>
<td></td>
</tr>
<tr>
<td>Decel Units:</td>
<td>Units per sec2</td>
<td></td>
</tr>
<tr>
<td>Profile:</td>
<td>Trapezoidal</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

[77] Brun X., Thomasset D., and Bideaux E. “An accurate tracking control of an
electropneumatic actuator”. Proceedings of the 1st FPNI-PhD Symposium,

[79] Ben-Dov D. and Salcudean S. E. “A force-controlled pneumatic actuator”. IEEE
Transactions on Robotics and Automation, vol. 11, no. 6, pp. 906-911. December
1995.

controller applied to a pneumatic driven leg”. IEEE International Workshop on

[81] Hamerlain M. “An anthropomorphic robot arm driven by artificial muscles using a
variable structure control”. IEEE International Conference on Robotics and

September 1, 2000.

[85] “ControlLogix Motion Module”. Publication 1756-UM006D-EN-P, Rockwell

no. 8, pp. 671-684. November 1944.

systems using feedback linearization with disturbance rejection”. Proceedings of