THE EFFECTS OF THE INTUITIVE PROSECUTOR MINDSET
ON PERSON MEMORY

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
The Degree Doctor of Philosophy in the
Graduate School of The Ohio State University

By
Richard J. Shakarchi, B.S., M.A.

The Ohio State University
2002

Dissertation Committee:
Professor Marilynn Brewer, Adviser
Professor Gifford Weary
Professor Neal Johnson

Approved by

Adviser
Department of Psychology
ABSTRACT

The intuitive prosecutor metaphor of human judgment is a recent development within causal attribution research. The history of causal attribution is briefly reviewed, with an emphasis on explanations of attributional biases. The evolution of such explanations is traced through a purely-cognitive phase to the more modern acceptance of motivational explanations for attributional biases. Two examples are offered of how a motivational explanatory framework of attributional biases can account for broad patterns of information processing biases. The intuitive prosecutor metaphor is presented as a parallel explanatory framework for interpreting attributional biases, whose motivation is based on a threat to social order. The potential implications for person memory are discussed, and three hypotheses are developed: That intuitive prosecutors recall norm-violating information more consistently than non-intuitive prosecutors (H1); that this differential recall may be based on differential (biased) encoding of behavioral information (H2); and that this differential recall may also be based on biased retrieval of information from memory rather than the result of a reporting bias (H3). A first experiment is conducted to test the basic recall hypothesis (H1). A second experiment is conducted that employs accountability in order to test the second and third hypotheses.
This work is dedicated to
 All those who saw me through:
To Bill and Marilynn’s advisorship,
 To Beth’s and Geoff’s companionship;
To Philip and his conceptualizing,
 To all my committee members’ help in realizing
The completion of this dissertation.
To the weekly Social Cog Research Group
 That met from ’96 to 2002,
To Patrick Vargas, who showed me the ropes,
 To Derek Rucker, who always gave me hope.
To the many undergrad research assistants,
 And especially Chris McLaughlin, whose assistance
Made this tome possible.
To Matt Erdelyi and Kay Deaux for their direction;
 To Rich Petty, for ability and motivation.
To all the SPA Faculty at Mirror Lake Inn;
 To Curt Haugtvedt, for his collaboration.
To Shirley Bostwick, who made things hum;
 To Judy and Chaviva, so I didn’t have to run.
And to Tim, for just being him.
Finally, to those I love most dearly,
 And saw me but yearly:
To Yehudit, whose infancy I missed;
 To Rivqah, often too low on my list -
Although this you cannot yet appreciate
 The sacrifices you made do not depreciate:
You are my Sunshine when skies are gray.
To my Father and Mother,
 My staunchest supporters;
To Stanley and Phyllis,
 Who made our lives bliss (relatively speaking);
To Ariela and Suri, Lana and Gary,
 And all those who loved our family:
I am indebted forever.
But most of all, to LIBA who did all
 The work I ignored, to help me afford
The time and energy to make this a reality;
 Whose love and devotion dispelled any notion
That I could not achieve, and made me believe
 In my potential:
Thank you. I love you. You are my Precious.

And to G-d, with Whom all things are possible.
ACKNOWLEDGMENTS

I wish to thank Bill von Hippel for six years of encouragement and collaboration. His attention, intellectual support, and patience were integral to my success, and to the completion of this dissertation. Words can not express the depth of my appreciation.

I thank Marilynn Brewer for working with me toward both of my graduate degrees. Her generosity with her time and resources have made this dissertation possible.

I am indebted to Philip Tetlock, who agreed to co-chair this dissertation and to provide conceptual and methodological insight throughout this process. I am honored to have had the opportunity to collaborate with him.

My infinite thanks go to Chris McLaughlin, who tirelessly devoted many, many hours to coding data even after he could no longer earn course credit for his involvement.

This dissertation would not have been possible without the invaluable feedback of my Prospectus Committee, consisting of Philip Tetlock, Marilynn Brewer, and Gifford Weary. I also appreciate the additional feedback from my Dissertation Committee, including Marilynn, Giff, Neal Johnson, and Barbara Hanawalt. I am grateful for the input of the Social Cognition Research Group, as well as Derek Rucker and Mark Polifroni, in conceptualizing and interpreting this research.

This research was funded by a Graduate Fellowship from the National Science Foundation, and by a Distinguished University Doctoral-Year Fellowship from The Ohio State University.
VITA

October 1, 1974..Born – New York City, USA

1996..B.S. Psychology, with Honors,
Brooklyn College, CUNY

1998..M.A. Psychology,
The Ohio State University

1998-2001 ..Graduate Teaching and Research,
Graduate Research Fellow,
The Ohio State University

2001-present...Graduate Teaching and Research,
Graduate Teaching Associate,
The Ohio State University

PUBLICATIONS

psychology and resistance to persuasion: Issues for basic research and application. In E.

FIELDS OF STUDY

Major Field: Psychology

Concentration: Social Psychology

Minor Fields: Quantitative Psychology
 Cognitive Psychology
 Marketing
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>Vita</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>Chapters:</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Causal Attribution</td>
<td>2</td>
</tr>
<tr>
<td>The Age of Logic</td>
<td>3</td>
</tr>
<tr>
<td>The Age of Error</td>
<td>4</td>
</tr>
<tr>
<td>Error in Causality</td>
<td>5</td>
</tr>
<tr>
<td>Correspondence bias</td>
<td>5</td>
</tr>
<tr>
<td>Actor-observer effect</td>
<td>6</td>
</tr>
<tr>
<td>Error in Responsibility</td>
<td>6</td>
</tr>
<tr>
<td>Accident severity</td>
<td>6</td>
</tr>
<tr>
<td>Belief in a just world</td>
<td>7</td>
</tr>
<tr>
<td>Self-serving biases</td>
<td>8</td>
</tr>
<tr>
<td>Cognitive Models of Attribution Processes</td>
<td>8</td>
</tr>
<tr>
<td>Motivated Cognition</td>
<td>11</td>
</tr>
<tr>
<td>Learned Helplessness</td>
<td>15</td>
</tr>
<tr>
<td>Causal Uncertainty</td>
<td>16</td>
</tr>
<tr>
<td>The Intuitive Prosecutor Metaphor</td>
<td>17</td>
</tr>
<tr>
<td>Supporting Data</td>
<td>19</td>
</tr>
<tr>
<td>Accountability Effects</td>
<td>20</td>
</tr>
<tr>
<td>Goals of the Current Research</td>
<td>21</td>
</tr>
<tr>
<td>Hypothesis 1: Differential Recall</td>
<td>22</td>
</tr>
<tr>
<td>Hypothesis 2: Motivated Learning</td>
<td>26</td>
</tr>
<tr>
<td>Attenuation-Normalization Explanation</td>
<td>29</td>
</tr>
<tr>
<td>Preference-Inconsistent Explanation</td>
<td>31</td>
</tr>
</tbody>
</table>
Hypothesis 3: Biased Retrieval ...34

2. Experiment 1 ..37

Method ...37
 Participants ..38
 Materials ...39
 Mindset Manipulation ..39
 Emotion Measures ..40
 Manipulation Checks ..40
 Expectancy Manipulation ...40
 Behaviors ...43
 Judgments ...43
 Procedure ...43

Results ..45
 Manipulation Checks ..45
 Emotional Reactions ..46
 Recall Rates ..46
 Responsibility and Punitive Judgments ..51
 Mindset ..52
 Profile ...52
 Profile x Mindset ..53
 Recall-Judgment Correlation ...54

Discussion ..55

3. Experiment 2 ..58

Method ...60
 Participants ..60
 Materials ...60
 Procedure ...61

Results ..62
 Manipulation Checks ..62
 Emotional Reactions ..63
 Recall Rates ..63
 Responsibility and Punitive Judgments ..68
 Mindset ..69
 Profile ...70
 Accountability ...70
 Profile x Mindset ...70
 Accountability x Mindset, Accountability x Profile, Accountability x Profile x Mindset
 x Mindset ...71

Discussion ..71
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Predicted recall rates in Experiment 1</td>
</tr>
<tr>
<td>1.2</td>
<td>Predicted recall rates in Experiment 2, assuming an attenuation-normalization effect for accountability</td>
</tr>
<tr>
<td>1.3</td>
<td>Predicted recall rates in Experiment 2, assuming a preference-inconsistent effect for accountability</td>
</tr>
<tr>
<td>2.1</td>
<td>Recall rates among all participants for behaviors as a function of Profile</td>
</tr>
<tr>
<td>2.2</td>
<td>Recall rates among control participants for behaviors as a function of Profile</td>
</tr>
<tr>
<td>2.3</td>
<td>Recall rates among intuitive prosecutors for behaviors as a function of Profile</td>
</tr>
<tr>
<td>3.1</td>
<td>Recall rates for behaviors as a function of Profile for each Accountability condition</td>
</tr>
<tr>
<td>3.2</td>
<td>Likelihood judgments for irresponsible and responsible targets as a function of Mindset</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

The current research is involved with understanding the cognitive substrates of the intuitive prosecutor mindset (Goldberg, Lerner, & Tetlock, 1999; Lerner & Tetlock, 1999). Research regarding the intuitive prosecutor mindset stems from the integration of several important lines of social psychological inquiry, most prominently classic causal attribution and motivated cognition. In order to better appreciate the intuitive prosecutor metaphor of human information processing, a brief overview of the relevant literature will be presented.

The overview begins with an acknowledgement of the contributions of Heider (1958) and Kelley (1967) in laying the foundations of attribution research, with an emphasis on causal attribution. Moving from an Age of Logic to an Age of Error championed by Kahneman and Tversky (e.g., 1972), the development of causal attribution research is traced through research on attributional biases (both causal and responsibility). The rise of interest in motivated cognition is compared to the “cold” explanations for attributional biases inspired by the social-cognitive revolution. Examples of motivational/adaptive explanations for systems of attributional biases are presented. The explanatory metaphor of the intuitive prosecutor is set in this context, and its potential implications for person memory are explored.
Finally, two studies are outlined to explore the potential effects of an intuitive prosecutor mindset for person memory. Specifically, an initial study is designed to determine whether intuitive prosecutors do, in fact, recall different information about a target who is ostensibly unrelated to the social disorder that induces the intuitive prosecutor mindset. A second study is designed to explore the relationship between the intuitive prosecutor mindset and person memory through the use of an accountability manipulation that is strategically interpolated at different points in the procedures used in the first study.

Causal Attribution

Research on causal attribution is generally traced back to Heider’s (1958) seminal work, “The Psychology of Interpersonal Relations.” His analysis of ordinary personology posited that people have the skills necessary to determine causal relationships from their observations of behavior. Invariances in behavior indicate dispositional causes, according to Heider, whereas variances indicate situational causes for a specific behavior. If an actor is seen behaving aggressively across several social interactions, for example, Heider believed it appropriate to assume that the actor’s behavior was due to dispositional or internal characteristics (most likely, an aggressive personality). However, if the actor is seen aggressing in only one of many interactions, according to Heider the aggressive behavior would most likely be the result of situational or external forces (perhaps the interaction partner is particularly aggravating).

Heider (1958) stressed this personal-dispositional vs. physical-situational dichotomy as the core of his theory of person perception. The precise dispositions to be inferred, Heider argued, are not always apparent. Heider’s cautious approach to this issue
paved the way for a new tradition of person perception, that of causal attribution:

Attributional analyses are the attempt to break down social interactions into their dispositional and situational causes. Heider’s causal model of attributional processes also focused on perceiver’s careful analysis of disposition and situation, “factoring out” the situational forces from the dispositional forces observed in a behavior, to arrive at a true, accurate dispositional inference.

The Age of Logic

Heider’s theory was the framework from which Jones and Davis (1965) developed their theory of correspondent inferences. Jones and Davis focused not as much on whether the person or the situation was the prime cause of an action, but on what specific disposition can be learned from unique (anti-consensus or anti-social) behavior. Jones and Davis (1965) abandoned Heider’s (1958) inclusion of physical-situational factors in the attribution processes, and instead focused on creating a model to distinguish ordinary from extraordinary behaviors. The result of this perspective was an attribution process where behavior always indicated personal dispositions, and perceivers worked to determine only the unique dispositions of a target (Shaver, 1975). Although their work was a major breakthrough in translating Heider’s (1958) theories into testable hypotheses for trait attribution, Jones and Davis’s (1965) specific contributions toward causal attribution are limited. Because they primarily focused on trait (dispositional) attributions, and minimized their discussion of situational attributions, their impact on causal attribution is overshadowed by Kelley (1967).

Kelley’s core idea of covariation was a blend of Heider’s (1958) model of person perception, and Jones and Davis’s (1965) theory of correspondent inferences. Whereas
Heider distinguished the personal-dispositional from physical-situational, and Jones and Davis distinguished ordinary from extraordinary behaviors and dispositions, Kelley distinguished the internal from the external causes. At first blush, this seems to be identical to Heider’s distinction. However, Kelley (1967, 1972) included ordinary dispositions with physical-situational forces when he referred to external causes. For Kelley, an external cause was any influence on behavior whose effect was invariant. Just as all people struck by a lightning bolt die, all people threatened by a snake take action to avoid being bitten. Although the former example describes a physical constraint of the environment, and the latter describes a motivation aroused within the actor, both are expected, natural, and (fairly) uniform across humans. For Kelley, then, the threat of a snake was causally equivalent to being struck by lightening: In either scenario, the outcome is predetermined by forces external to the actor. It was this new internal-external distinction (also referred to as dispositional-situational [Jones & Nisbett, 1972]) that spearheaded research into causal attribution. Such a straightforward dualism allowed for simple measurement of causal attribution. (Although this dichotomy has been attacked for its ambiguity [e.g., Kruglanski, 1975; Ross, 1977; Sabini, Siepmann, & Stein, 2001; White, 1990] and its over-simplicity [e.g., Malle, 1999; Malle, Knobe, O’Laughlin, Pearce, & Nelson, 2000], it still remains as the predominant paradigm of causal attribution.)

The Age of Error

The research inspired by these logical models of causal attribution quickly found that the data were not always reliably predicted by the models driving the research. In general, the decade following the early theories of attribution was a time when the
limitations and failures of the human judgment process were coming into the limelight. The focus of much psychological inquiry shifted to an emphasis on these shortcomings. Kahneman and Tversky led the challenge against models based on human rationality, most pointedly in a series of articles published in Psychological Review (1973) and Science (1974, 1981). The authors concluded that their research challenged the theory of rational choice, and strongly supported the notion that humans are not necessarily rational decision makers.

Error in Causality

Correspondence bias. In particular to causal attribution, widespread limitations on human accuracy were brought to light by Jones and Nisbett (1972). Their research demonstrated that observers identify personal or internal forces as primary causes of behavior, an effect that Jones and Nisbett labeled the “correspondence bias”. (Although Jones & Nisbett [1972; see also Kelley, 1972] credited Heider [1958] for first identifying this bias, Jones and Nisbett are generally credited for bringing this, and other attributional biases, to the forefront of attribution research.) This attributional bias\(^1\) was termed the Fundamental Attribution Error by Ross (1977) because of its reliability and robustness. Although some take issue with Ross’s (1977) terminology (e.g., Fiske & Taylor, 1984; see Sabini, Siepmann, & Stein, 2001, for an extensive criticism of the FAE), the robustness of the correspondence bias is generally undoubted (see Ross & Nisbett, 1991; Sabini et al., 2001; but see Burger, 1991, regarding its temporal robustness). Modern

\(^1\) The term “bias” is used in accordance with the definition provided by Fiske and Taylor (1991), that biases are systematic distortions (overuse or underuse) of otherwise accurate or appropriate cognitive processes.
models of attribution (discussed below) incorporate this bias into the judgment process, and, for some, provide the basis for the model itself (e.g., Gilbert & Malone, 1995).

Actor-observer effect. Jones and Nisbett (1972) also identified an asymmetry between causal attributions made by those who perform behaviors, and those who perceive the behaviors. Jones and Nisbett cited research indicating that, relative to actors, perceivers tend to attribute causality to an actor (i.e., to stable dispositions of an actor), whereas actors attribute causality to situational forces for their own behavior, relative to perceiver’s attributions. Initial research by Nisbett, Caputo, Legant, and Marecek (1973) and by Storms (1973) seemed to provide strong support for this asymmetry. However, researchers soon identified important qualifications to this effect (e.g., Gould & Sigall, 1977; Harvey, Arkin, Gleason, & Johnston, 1974; Harvey, Harris, & Barnes, 1975; Quattrone, 1982). Reviews by Monson and Snyder (1977), Zuckerman (1979), and Goldberg (1981), concluded that the actor-observer effect was modest and constrained by context to a much greater degree than the correspondence bias.

Error in Responsibility

Accident severity. Heider’s (1958) *Psychology of Interpersonal Relations* not only dealt with trait and causal attribution, but with responsibility attribution as well. Although attribution for responsibility has typically taken a back seat within the causal attribution literature, Heider (1958) considered simple causality to be only one part of the more complex development of responsibility attributions, that is, the assignment of blame and moral culpability. Much of the interest in Heider's model has focused on developmental approaches to responsibility judgments, and the limitations of judgment complexity as a function of age. However, Walster (1966) identified a limit on the
complexity of adult judgment: Observers judged an actor as more responsible for an accidental behavior when the results of the accident had more severe (negative) outcomes. Shaver (1970a, 1970b) argued that this effect is qualified by perceived situational and personal similarity. When perceived situational similarity is low, and an observer does not expect to encounter a situation similar to one in which the accident occurs, then no attributional bias is elicited. However, when perceived situational similarity is high, a bias is elicited whose direction depends on perceived personal similarity. If an observer feels very similar to an actor, then the observer will attribute less responsibility for an accident to the actor as the consequence severity increases. Otherwise, Walster’s (1966) original finding that observers make judgments of increased responsibility with increased consequence severity is typical. Burger’s (1981) review of the responsibility attribution literature supports Shaver’s general framework, though he found Walster’s (1966) effect to be present even when situational similarity was low.

Belief in a just world. Accident severity biases occur when an accident is, at least to some degree, the outcome of some behavior performed by, or associated with, an actor. That the actor has some basic role in an outcome, some degree of simple or associated causality, seems intuitively necessary in order to infer any personal responsibility for that outcome. This is also at least implicitly required by the classic theories of attribution (Heider, 1958; Jones & Davis, 1965; Kelley, 1967). For example, Heider’s (1958) lowest level of responsibility, Association, refers to some degree of connection between a target and the cause of a behavior. However, contemporaneously with Walster’s (1966) findings, Lerner & Miller (1978) discovered a bias in judging moral responsibility of a target for something that occurred to the target without any apparent relevant action taken
by, or associated with, the target. Specifically, when suffering befalls an apparently innocent target, people will tend to judge the target as morally reprehensible. This responsibility bias seems to fly in the face of any theory of causal attribution, and poses serious doubts for the notion that any systematic theory of causal attribution can accurately reflect human judgment processes.

Self-serving biases. Biases in judgments of responsibility are not limited to judgments of others: People tend to take credit for their own successes more than they accept responsibility for their own failures (Miller & Ross, 1975; see Weary Bradley, 1978, for an interesting explanation of the reversal of this effect). High internalization of success is more consistent than internalization of failure. When future performance will be enhanced, people will also tend to accept responsibility for failure. When no such enhancement can be achieved, however, people tend to deny responsibility for failures (Miller & Ross, 1975; Weary Bradley, 1978). This effect has also been shown to generalize to self-relevant others (Burger, 1981), such that the failure of a self-relevant other is dismissed as the result of external influences, whereas success is attributed to ability and skill.

Cognitive Models of Attribution Processes

Such findings dealt a serious blow to conceptions of the human processor as a rational processor. Social psychology as a whole metaphorically represented people as intuitive scientists (Ross, 1977). Attribution theories took a logical approach in their predictions, and the very principles underlying causal attributions were thought to require unbiased, accurate cognitive representations. If naïve attributional processes have the goal “to attain cognitive mastery of the causal structure of the environment” (Kelley,
1967, p. 193), and if “it is an important principle... that man grasps reality, and can predict and control it” (Heider, 1958, p. 79), then the discovery that people do not (always) grasp reality has fundamental implications for the theories underpinning causal attribution. New models and theories of the attribution process were deemed necessary to accommodate the apparent attributional shortcomings.

Early explanations of the correspondence bias suggested that salience may be responsible for such effects. Heider (1958) had allowed for this possibility in explaining that “behavior engulfs the field.” This purely cognitive explanation of the correspondence bias was wholly espoused by Jones and Nisbett (1972), supported by research such as Taylor and Fiske (1975), and championed by Ross (1977). Ross (1977; see also Monson & Snyder, 1977) suggested that a variety of heuristics identified by Kahneman and Tversky (1972, 1973; Tversky & Kahneman, 1974) could be applied to explain causal attribution. Quattrone (1982) developed a model of causal attribution where Tversky and Kahneman’s (1974) anchoring effect was at play. Specifically, Quattrone (1982) argued that people encounter a behavior and use it “as a starting point, or anchor, in the attributional task... Adjustments are made for information about constraint, but the adjustments are insufficient” (Quattrone, 1982, p. 596). This model of the attribution process provided a firm cognitive basis for the correspondence bias (or its inverse, depending on the initial attributional focus). More recently, Gilbert and Malone’s (1995) model of causal attribution posits mechanisms very similar to Quattrone’s application of anchor-and-adjustment inferences to the attributional process (Gilbert [Gilbert, Miller, & Ross, 1998] suggests that it is merely an extension of Quattrone, 1982). According to their model, internal (personal) attributions are made
automatically, and external (contextual) attributions are made effortfully. The
correspondence bias is no more than a failure to effortfully attribute causality to external
influences, or to integrate such attributions sufficiently with the automatic internal
attributions (Gilbert & Malone, 1995).

The actor-observer effect also seems to be very amenable to cognitive
explanations. Jones and Nisbett (1972) provided a *prima facie* plausible explanation of
the effect. Actors have introspective access to their own feelings, thoughts, intentions,
and efforts directed toward performing some behavior, and memories of behavioral
consistency. Observers, however, have access to none of this information, and must draw
attributional conclusions with a paucity of information. Without this “contextual”
information, an observer is likely to assume that some internal cause generated the actor’s
behavior. The actor, on the other hand, may be aware of some contextually compelling
influence and realize that the current behavior is not typical based on past behavior. The
result is a discrepancy between the causal attributions of actors and observers. More
recently, Malle and Knobe (1997) have provided an alternative cognitive account of the
actor-observer effect. They show that actors and observers differ in the types of (causal)
information in which they are interested, and in the types of private explanations they
provide for behaviors. However, Malle and Knobe (1997) have shown that this
difference dissipates when making communicative (public) explanations of behavior –
both actors and observers tend to focus on explaining intentional and observable causal
forces.

There are a plethora of cognitive models of causal attribution biases, and this non-
motivational approach has inspired several cognitive models of responsibility attributions
biases. Schlenker’s Triangle Model of Responsibility (Schlenker, Britt, Pennington, Murphy, & Doherty, 1994) is one such an attempt to apply a primarily cognitive explanation for attributions of responsibility. Schlenker et al. (1994) identified three categories of responsibility-relevant information: Prescriptions, which are social norms that are appropriate to some setting; Events, which are the specific behaviors that occur in some setting; and Identity, which refers to an actor’s roles, qualities, convictions, and aspirations relevant to the event and prescriptions. According to this model, responsibility is judged according to the strength of association between these three factors. In fact, Schlenker et al. (1994) found evidence that people search out information relevant to the strength of association between these three factors, and consider such information relevant to making judgments of responsibility.

Miller and Ross (1975) also argued strongly for a purely cognitive explanation of self-serving attributions. They suggested that prior expectations of success result in simple acceptance of expectancy-consistent information. Furthermore, since people put effort into their success, people are able to detect the covariation of their own effort and the successful outcome. Finally, estimates of personal control are generated from successful instances of control more than unsuccessful instances. As a result, people will tend to overestimate their control in situations of success relative to failure.

Motivated Cognition

These purely cognitive models of attributional error, beginning with Jones and Nisbett (1972), were representative of a larger movement within social psychology. The social cognition approach revolutionized the way in which social psychology as a whole approached theoretical and methodological issues across every domain (Taylor, 1998).
Although cognitive explanations were always part of social psychological inquiry (Zajonc, 1980), the 1970s saw the wholesale assimilation and application of cognitive psychology. This revolution has become so entrenched within social psychology that some have argued that current social psychological inquiry is, by definition, social cognition (Taylor, 1998).

In the midst of this powerful revolution, Ross (1977) identified another potential class of explanations for attributional errors. Although he favored the cognitive approach, he discussed several potential motivational explanations for systematic biases in causal attribution. His attention to “ego-defensive” explanations alludes to a richer, broader literature on ego-defensive processing begun by Bruner and his colleagues. In what came to be known as the New Look, Bruner (1957; Bruner & Tagiuri, 1954; Postman, Bruner, & McGinnies, 1948) argued for the notion of ‘perceptual defense’, that the human mind selectively processes information based on its potential objectionableness. Although couched in cognitive processes, its psychoanalytic underpinnings were clear. Bruner’s ideas were well ahead of their time (Jones, 1998), but met with opposition because of their Freudian ties, and because of methodological and theoretical limitations (Erdelyi, 1974). Erdelyi (1974) marks 1958 as the year in which perceptual defense, and motivated cognition more broadly speaking, met its erstwhile demise. The New Look had a short revival commensurate with Erdelyi’s (1974) review (the New Look II), but the emphasis on purely non-motivational mechanistic theories and explanations that pervaded psychology was in full swing again by the time Ross (1977) wrote his critiques of then-current motivational theories of attribution biases.
Despite the *zeitgeist* of the 1970s, some researchers persisted with their motivational models of attribution. For example, Miller and Ross (1975) make a valiant effort to provide a compelling cognitive framework for interpreting self-serving attributions. However, the inherent logical paradox that a self-serving effect is merely a cognitive by-product of the attribution process did not go unnoticed (Fiske & Taylor, 1984). Even Ross (Ross & Sicoly, 1979) later admitted, though cursorily, that self-serving biases “are multidetermined in real life” (p. 334), alluding to motivational explanations. Further research served to weaken purely cognitive explanations of self-serving biases, and to support (often parallel) motivational (ego-defensive and self-presentation) accounts of these biases (Burger, 1981; Kunda, 1990; Reiss, Rosenfeld, Melburg, & Tedeschi, 1981; Tetlock & Levi, 1982; Weary Bradley, 1978; Zuckerman, 1979). Similarly, a full account of biases in judgments of responsibility for accidents is best accommodated by ego-defensive explanations (Burger, 1981). Schlenker et al.’s (1994) purely cognitive Triangle Model of Responsibility fails to even mention Walster’s (1966) findings of a responsibility bias apparently because such purely rational-cognitive explanations are unable to accommodate these attributional biases (although see Brewer, 1977, for an alternative non-motivational explanation of Walster’s [1966] responsibility bias). It would certainly be a challenge to provide a compelling purely cognitive explanation for Lerner’s (Lerner & Miller 1978, 1980) belief in a just world (Kunda, 1990). Each of these motivational explanations for biases clearly identifies an adaptive, utilitarian purpose of each bias. Even the shortcomings highlighted by Kahneman and Tversky over the past 30 years can be cast in a functional, reasoned light (Gigerenzer,
In comparing mechanistic and motivational approaches to causal attribution, one is struck by a profound difference in their approach to biases. Whereas mechanistic (cognitive) explanations describe the human processor as faulty, motivational explanations identify the utility of attributional biases. Heider (1958) sought to explain the correspondence bias not only through cognitive mechanisms, but also through motivated (‘egocentric’) processing. Sabini and colleagues (Sabini et al., 2001) have identified another set of motivations that could potentially explain the correspondence bias. They argue that the motivation to avoid embarrassment and save face, while simultaneously denying or downplaying such motivations, can give rise to a correspondence bias. That is, the motivated dismissal of strong normative influences on behaviors of avoiding embarrassment lead to a correspondence bias. Such normative influences are underestimated because Western culture dismisses them as unimportant or undesirable, and so do not receive the appropriate attention in the attributional process.

In addition to explanations of the adaptive functions of specific biases, motivational explanations of attribution processes have also been developed to account for information processing strategies. These explanatory frameworks do not focus on explaining a single bias. Rather, such explanatory frameworks analyze a system of beliefs, processing strategies, and mental health to interpret a pattern of attributions that are adaptive for social interaction and development. These motivational explanations also tend to be rooted in the functional utility of attributions, which serve to maintain or enhance personal control or cognitive mastery over one’s environment.
Learned Helplessness

At the same time that Kelley (1967) laid the foundations of causal attribution, Seligman (Seligman & Maier, 1967) laid the foundation of learned helplessness. His early research on Pavlovian instrumental learning with animals indicated that inescapable punishment leads to maladaptive behavior – a failure to escape a future punishment when the opportunity arose. By the mid-1970s, Seligman had already begun to extend the implications of his research to include humans (e.g., Seligman, 1972), and had also begun to include humans in his research (e.g., Hiroto & Seligman, 1975). By 1976, learned helplessness had become a theory of perceived control (Maier & Seligman, 1976). Its reformulation by Abramson, Seligman, and Teasdale (1978) made explicit the relationship of causal attribution and learned helplessness. Specifically, learned helplessness depends on causal attributions of stability, specificity, and locus of control, and has been shown to be a cause of depression (e.g., Buchanan & Seligman, 1995; Nolen-Hoeksema, Girgus, & Seligman, 1986). This research helped propel causal attribution to the forefront of applied social psychology. (A search of the online PsycINFO database found 2,017 hits for the exact phrase “learned helplessness”.)

Research on learned helplessness, as well as on the cognitive/attributional substrates of depression more globally (Beck, 1976; Minkoff, Bergman, Beck, & Beck, 1973), has developed to the point where methods for clinical and counseling treatment of depression have been developed, where causal-attributional retraining plays an important role in restoring mental well-being (e.g., Beck, 1993; Clark, Beck, & Alford, 1999; Schweizer, Beck-Seyffer, & Schneider, 1999). This research domain has clearly demonstrated the adverse psychological effects of a lack of causal mastery over one’s
environment, and how critical a role acquiring causal mastery over one’s environment is to continued and enhanced mental health. Similarly, Taylor and Brown (1988, 1994) have argued that illusions of personal control are part of a system of unrealistically positive self-perceptions that foster mental health.

Causal Uncertainty

As an extension of the research on uncontrollability underlying the learned helplessness model of depression (Weary & Gannon, 1996), Weary (Weary & Jacobson, 1997; Weary, Jacobson, Edwards, & Tobin, 2001) has shown that causal uncertainty (often heightened by mild and moderate depression/dysphoria) has noticeable effects on information processing. Weary and Edwards (1996) have described a model of causal uncertainty in terms of goal-directed behavior. In an apparent attempt to regain predictive control over their environment, people high in causal uncertainty are motivated to process information with the goal of developing causal explanations that should remain contextually stable and predictively valid (Edwards, 1998). This diagnostic information seeking can lead to contradictory effects of disregarding contextual information for a behavior in favor of a dispositional inference (correspondence bias; Edwards, 1998) and of sensitivity to situational information (Yost & Weary, 1996), depending on the perceived diagnosticity of the information. Similarly, the reliance upon category information in impression formation depends on the diagnosticity of categorical information (Edwards, Weary, von Hippel, & Jacobson, 2000). As inferred from the learned helplessness literature, the research on causal uncertainty demonstrates the desire of people to restore causal mastery over the environment. It also demonstrates that this attempt to restore causal mastery depends on the expected success of any attempt made
(i.e., the degree of effortful processing of information depends on the perceived
diagnosticity of that information), and that subjective accuracy (Swann, 1984; Weary &
Edwards, 1996) is of greater importance than objective accuracy.

The Intuitive Prosecutor Metaphor

The metaphor of the lay personologist (to use the terminology of Gilbert, 1998) as
an intuitive prosecutor may be thought of as a parallel motivational explanatory
framework for attribution biases. Explanatory frameworks of correspondence bias and
responsibility judgments, as those described above, tend to focus on the subjective benefit
presented to those engaged in the bias. However, the intuitive prosecutor metaphor
identifies another, broader motive for engaging in correspondence biases, namely to
restore social order. Harvey and Weary (1981) allude to this possibility. In discussing
attributions of responsibility, they grapple with the issue of defining responsibility. In
addition to the classic definition of responsibility as causal agency, they identify the
modern trend of responsibility to be used as a “utilitarian concept…as a conditional
attribute” (p. 61). Such a perspective implies that criminals are not only punished to
restore social order (i.e., to remove the “rupture of the social order” [p. 61]), but also to
increase “individual social productivity” (p. 61). Tetlock (2002; Goldberg et al., 1999)
takes this one step further and argues that judgments of responsibility can also serve to
increase social productivity for an entire society by setting an example and strengthening
the deterrents of violating social and legal norms. This motive to restore social order
moves beyond discussions of accuracy, whether objective or subjective, and suggests that
judgments of causality and responsibility may be made with a purpose or goal in mind
that goes beyond explaining the target behavior.
The intuitive prosecutor metaphor is the result of applying a social-functional approach to ordinary personology, and specifically to biases in judgments of causality and responsibility (Goldberg et al., 1999; Tetlock, 2002). The mindset, as described by Goldberg et al. (1999), is motivated by social justice and fueled by anger. When a (potentially) criminal behavior elicits anger in a social perceiver, the perceiver determines whether justice has been or will be served. Failure to identify proper justice initiates an intuitive prosecutor mindset, whereby the social perceiver endeavors to take action to restore social order.² The first step in this process is to assess simple (non-complex) causality and responsibility. Such a judgment would essentially be a correspondence or responsibility bias, but would be a socially and morally motivated, tactical judgment process (Tetlock, 1992). This social-function approach is unlike the traditional approach to judgment biases, which assume that biases are unintended, undesirable human error (e.g., Ross, 1977; see Tetlock, 2002; Tetlock & Lerner, 1999). The result of this prosecutorially-motivated attribution is a justification for increased punitiveness toward the criminal. Anger and punitiveness subside (are “satiated”) once there is a subjective feeling that justice has been served and the social order has been restored. The

² In this sense, the intuitive prosecutor mindset is a type of implemental mindset (Gollwitzer, 1990; Gollwitzer & Kinney, 1989). The social context of the target behavior (i.e., lack of social order and justice) automatically initiates a goal-state to restore social order and justice. As Taylor and Gollwitzer (1995) have argued, an implemental mindset can be thought of as adaptive for achieving a goal-state. Unlike their deliberative counterparts, implemental mindsets enlist a number of biases to achieve a goal, including unrealistic optimism for achieving a goal and a lack of self-focus. The former bias may be necessary for the intuitive prosecutor to believe that increased punitiveness toward a single target could have manifest implications for social order. The latter bias allows the intuitive prosecutor to blame and punish without reflection upon the absolute fairness to the target.
correspondence and responsibility biases, in such a framework, should not necessarily be considered evidence of an irrational human processor (Tetlock, 2002; Visser & Tetlock, 1997).

Supporting Data

In a direct examination of the theoretical mechanisms of the intuitive prosecutor mindset, Visser and Tetlock (1997) constructed a study that permitted them to test the causal implications of the intuitive prosecutor mindset through a structural equation model.

Specifically, the activation of an intuitive prosecutor mindset led to stronger affective reactions to a scenario of criminal negligence, and to an increased sensitivity to violations of the social and legal norms. These two processes led to higher perceived blameworthiness of the target, which directly led to a preference for harsher punishment. The authors reported that this model achieved adequate fit to the data, and that no other causal model tested achieved an adequate fit to the data.

In an interesting twist to the paradigm, Visser & Tetlock (1997) were able to reverse their effects; intuitive prosecutors were more sensitive to extenuating circumstances when the transgressor was an over-aggressive officer of the law engaged in law enforcement. Under such circumstances, intuitive prosecutors seemed to have sympathized with the responsibility of the officer to restore social order. Intuitive prosecutors found the officer less blameworthy and preferred milder punishment than did their non-prosecutorial counterparts. Such findings strongly support the hypothesis that individuals who sense a threat to the social order are motivated to restore that order at the expense of objectivity and fairness in punishment.
Accountability Effects

However, Tetlock has shown that social judgments such as those made by intuitive prosecutors tend to be moderated by accountability (e.g., Tetlock, 1985). Furthermore, extensive research on accountability indicates that accountability has a direct impact on information processing and cognitive biases (Tetlock, 1985, 1992; for a review, see Lerner and Tetlock, 1999). For example, Tetlock (1983) was able to eliminate a primacy effect for pro- vs. anti-defendant information when participants were held accountable for their judgments. Tetlock (1985) was also able to leverage accountability to eliminate the correspondence bias using a standard essay-writing paradigm. Tetlock (1985) argued that accountability actually affected the way in which participants initially encoded and analyzed stimulus information. This was confirmed by the increased efficacy of accountability in attenuating the correspondence bias when participants were notified of their accountability prior to reading the target scenarios. Once those materials were presented, however, introducing accountability had much less of an attenuating effect. Tetlock and Kim (1987) were able to replicate this pattern of accountability effects on information processing and cognitive biases in a personality prediction task. Personality prediction was more integratively complex and predictively valid only when participants were informed of their accountability prior to stimulus exposure. Once participants had already been exposed to the stimuli, accountability came too late: Participants had already selectively processed the stimulus information, and their personality predictions were equivalent to those who were not held accountable for their predictions.
The effects of accountability on judgments of responsibility and blame were studied by MacCoun and Kerr (1988). Although they focused on jury deliberation as their construct affecting judgment, it is not difficult to equate juror deliberations with accountability: The requirement to justify one’s decisions to another individual or group. MacCoun and Kerr (1988) found that people who deliberated (were held accountable for their judgments, and knew they would be in advance of stimulus exposure) were less likely to find a “suspect” guilty, and so favored acquittal. This leniency was only found when participants were instructed to follow a “reasonable doubt” criterion for conviction. When the criterion was changed to “preponderance of data,” however, no such leniency was found. These data provide support for Lerner and Tetlock’s (1999) assertion that accountability has a context-specific effect, and that people adjust their responses in accordance with the standards to which people are held accountable.

The effect of accountability to modify information processing and social judgments will provide a method for determining the role that an intuitive prosecutor mindset plays in influencing judgments of responsibility and punishment (see below).

Goals of the Current Research

The current state of the literature regarding the intuitive prosecutor mindset is limited in two important ways. First, all published literature to date has reported the effects of the intuitive prosecutor mindset on judgments of blame, responsibility, and punishment. There has not yet been a systematic investigation of the information processing strategies of the intuitive prosecutor. Since it seems reasonable that intuitive prosecutors would want to “make their case” against a social deviant, it stands to reason
that intuitive prosecutors may seek out or use information selectively to justify their judgments (Tetlock, 2002). Yet there is no reported data that can address this possibility.

Furthermore, the intuitive prosecutor literature does not specify what stages of the judgment process might be influenced by this mindset. Although there may be information processing strategies involved, the judgments of the intuitive prosecutor may be driven solely by a response tendency (Lerner et al., 1998). That is to say, intuitive prosecutors and non-intuitive prosecutors may observe the same information, retain and recall the same information, but choose to report and to utilize different aspects of that information. On the other hand, as hypothesized above, intuitive prosecutors may, in fact, be completely driven by the type of information sought, absorbed, retrieved, and reported, and the actual judgment process is equally “fair” as that of non-intuitive prosecutors. The difference may lie not in their decision process, but the information that goes into that decision process.

Hypothesis 1: Differential Recall

The current research is an attempt to address these two limitations in the intuitive prosecutor literature. Can the intuitive prosecutor mindset actually produce observable differences in the type of information that is used in the judgment process? It would seem so, based on other motivational investigations of information processing. The causal uncertainty literature reported above clearly demonstrates such an effect. Causally uncertain people who are motivated to improve their causal mastery scrutinize decision-relevant information for its diagnosticity (Edwards et al., 2000). Once a determination of diagnosticity has been made, more diagnostic information will weigh more heavily in the
decision process than less diagnostic information. Causally uncertain people who do not
display this motivation are less sensitive to diagnostic information (Weary et al., 2001).

In a similar manner, intuitive prosecutors who are more motivated to identify
violations of social and legal norms should be more sensitive to this sort of information.
The findings of Visser and Tetlock (1997) indicate that intuitive prosecutors (generally)
lower their threshold for identifying a given behavior as violating social or legal norms,
in the service of restoring social order through harsh punishment for norm-violating
behaviors.\(^3\) Such a sensitivity should make potentially norm-violating behaviors salient
among a list of neutral or norm-supporting behaviors. This salience, in turn, should
produce heightened attention to and rehearsal of the norm-violating behavior. Attempts
to recall the entire list of behaviors should result in better recall for the norm-violating
behaviors among intuitive prosecutors. This biased recall could serve to justify later
judgments of blameworthiness and punitiveness.

The hypothesis that memory functions may be recruited in service of decision
processes is also consistent with the adaptationist perspective of memory described by
Klein, Cosmides, Tooby, and Chance (2002). Klein et al. argue that “memory systems
must have evolved their structure in response to the informational needs of the decision
rules guiding behavior” (p. 306). They suggest that memory systems are designed to

\(^3\) Although norm-violation has specific meaning within the attribution literature with
implications for correspondent inferences (i.e., unexpected, non-normative behavior), the
intuitive prosecutor literature, in line with the greater responsibility attribution literature,
defines norm-violation as the violation of social and/or legal norms (e.g., Lerner et al.,
1998). This latter definition will be the one intended when referring to norm-violation.
learn and store information relevant to decision rules, and that memory “search engines … dynamically … identify and route stored information … to the decision rules that are active” (p. 306). Within the current context, this could translate onto the judgment processes of an intuitive prosecutor. Specifically, intuitive prosecutors may learn and retrieve judgment-relevant information (i.e., norm-violating behaviors) more effectively than judgment-irrelevant information (i.e., norm-supporting behaviors).

However, under typical circumstances, a similar prediction may be made regarding the type of information better learned and recalled by a non-intuitive prosecutor. Norm-violating (i.e., criminal) information is typically unexpected social behavior. According to Srull and Wyer’s (1989) model of person memory, expectancy-inconsistent information will be better encoded and recalled than expectancy-congruent information (under certain circumstances; see Srull & Wyer, 1989, for a complete discussion). Incongruent behaviors tend to form more interbehavior associations, providing a richer mental network of information for incongruent behaviors than congruent behaviors, which results in enhanced recall of incongruent behaviors (Srull, 1981). As compared to intuitive prosecutors, unmotivated people may also recall norm-violating information better than norm-supporting information. Should this be the case, intuitive prosecutors and non-intuitive prosecutors may differ only in the severity of their responsibility judgments, with no apparent difference in behavior recall.

This conundrum may be averted by reversing the expectations of behavior. When norm-violating (i.e., criminal) behavior is to be expected from a target, the standard person memory finding of enhanced recall for incongruent information should produce better recall of norm-supporting behaviors. Since norm-supporting behaviors are
unexpected for this target, they will form more interbehavior associations and be recalled more frequently than norm-violating (expectancy-congruent) behaviors. However, this may only hold true for people not in an intuitive prosecutor mindset. Intuitive prosecutors may continue to show evidence of increased sensitivity to norm-violating behavior, in an effort to bolster (cf. Srull & Wyer, 1989) their prosecution of the target. Recall could diverge under this condition: Intuitive prosecutors may better recall expectancy-congruent, norm-violating behaviors, whereas non-intuitive prosecutors may better recall expectancy-incongruent, norm-supporting behaviors.

Experiment 1 is intended to test the hypothesis that under conditions where norm-supporting behavior is anticipated, intuitive prosecutors and control participants will better recall norm-violating (expectancy-incongruent) behaviors, but that under conditions where norm-violating behavior is anticipated, control participants will better recall norm-supporting (expectancy-incongruent) behaviors while intuitive prosecutors will better recall norm-violating (expectancy-congruent) behaviors. The predicted pattern of enhanced recall is illustrated in Figure 1.1.
Hypothesis 2: Motivated Learning

Although this first experiment should indicate differential recall of information based on prosecutorial mindset, a reporting-bias explanation of the intuitive prosecutor’s enhanced recall for norm-violating behaviors may be asserted. Intuitive prosecutors may reach their judgment of a target well before they are asked to recall behaviors performed by the target. These *a priori* judgments can lead to a selective memory search for consistent information (Lingle & Ostrom, 1979; Lingle, Dukerich, & Ostrom, 1983; Snyder & Cantor, 1979). This search for supporting evidence will lead to a uniform improvement in recall of norm-violating information no matter the actual behavior expectancies. However, both intuitive prosecutors and control participants may have initially learned and encoded all of the behaviors in an identical manner.
The question remains, then: Can the intuitive prosecutor mindset motivate differential information seeking or retention strategies (intentional or not intentional) within person memory? There are grounds to assume that mindset can, in fact, affect information seeking or retention strategies. Srull and Wyer (1989) provide evidence for a bolstering effect, whereby expectancy-consistent information is attended to in order to confirm the validity of the expectancy. Typically, the effects of bolstering are overshadowed by the increased frequency of interbehavior associations for inconsistent information (Srull, 1981; Srull & Wyer, 1989). However, Srull and Wyer (1989) cite (unpublished) evidence that when people are motivated and able to process consistent information, the effect of bolstering may overshadow the inconsistency effect. The intuitive prosecutor mindset may provide the motivation necessary for a bolstering effect for norm-violating information. Although the typical motivation behind the consistency-bolstering effect is a preference for consistency (Srull & Wyer, 1989), the intuitive prosecutor’s sensitivity to norm-violating behavior seems to reflect a preference to identify social threats with an eye to restore social order (Visser & Tetlock, 1997). This preference may produce a bolstering effect, as described by Srull and Wyer (1989), for norm-violating information that is uniform across expectancy conditions. Such a uniform bolstering effect could explain the results predicted for Experiment 1.

In order to distinguish between reporting bias and actual information processing biases (i.e., bolstering), an accountability manipulation can be employed. According to the findings of Tetlock (1983, 1985) and Tetlock and Kim (1987), pre-exposure accountability seems to affect the type of information processed. Post-exposure accountability, on the other hand, seems to attenuate response biases. Experiment 2 will
attempt to replicate Experiment 1, but introduce three accountability conditions for the intuitive prosecutor mindset. In the pre-exposure condition, intuitive prosecutors will be forewarned of their accountability before receiving behavioral information. In the post-exposure condition, intuitive prosecutors will be forewarned of their accountability only after receiving behavioral information, but prior to the recall task. Finally, a control condition of intuitive prosecutors will not receive accountability information.

If an intuitive prosecutor mindset has an impact on the way in which behavioral information is learned, recall patterns for post-exposure and unaccountable intuitive prosecutors should be identical: The effects of the mindset on information processing would have occurred prior to the accountability manipulation. Since recall rates are the result of biased learning, according to this hypothesis, the effects of the mindset would be in full force for these two groups of participants when they learn the target behaviors, producing a pattern of recall identical to that found for intuitive prosecutors in Experiment 1. A change in recall rates would only occur for pre-exposure accountable intuitive prosecutors. If an information-processing bias explanation of recall rate patterns is correct, only these pre-exposure accountable intuitive prosecutors would be motivated to process and study the target’s behaviors differently as a result of the accountability, thereby affecting recall rates.

If, on the other hand, the predicted recall pattern in Experiment 1 is the product of a reporting bias, recall patterns for pre- and post-exposure accountable intuitive prosecutors should be identical. In both of these conditions, intuitive prosecutors would have the opportunity to adjust (i.e., normalize) their recall in response to the
accountability manipulation. Only unaccountable intuitive prosecutors should produce a pattern of recall as in Experiment 1.

Attenuation-Normalization Explanation

Assuming that the intuitive prosecutor mindset does, in fact, affect the learning and storage of behavioral information, pre-exposure accountability may have one of two effects. The findings of Tetlock (1983, 1985) and Tetlock and Kim (1987) suggest that pre-exposure accountability will attenuate or normalize the biased processing of behavioral information. These effects would reflect more normative or even-handed processing of behavioral information, and recall patterns made by pre-exposure accountable intuitive prosecutors will match recall patterns made by non-intuitive prosecutors. Specifically, when norm-supporting behaviors are anticipated, pre-exposure accountable intuitive prosecutors and control participants will better encode and recall norm-violating (expectancy-incongruent) behaviors. Similarly, when norm-violating behaviors are anticipated, pre-exposure accountable intuitive prosecutors and control participants will better encode and recall norm-supporting (expectancy-incongruent) behaviors. This pattern of enhanced recall is illustrated in Figure 1.2.
Reporting Bias / Attenuated Processing

<table>
<thead>
<tr>
<th>Mindset</th>
<th>Norm-supporting</th>
<th>Norm-violating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Unaccountable IPM</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>Post-exposure IPM</td>
<td>-/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Pre-exposure IPM</td>
<td>-/-</td>
<td>+/+</td>
</tr>
</tbody>
</table>

Figure 1.2. Predicted recall rates based on mindset and expectancy conditions in Experiment 2, assuming an attenuation-normalization effect for accountability. IPM = Intuitive Prosecutor mindset. A minus sign refers to better recall for norm-violating (negative) behaviors, and a plus sign refers to better recall for norm-supporting (positive) behaviors. The sign before the slash indicates the predicted pattern of enhanced recall under the reporting bias hypothesis; the sign after the slash indicates the predicted pattern under the attenuated processing hypothesis.
Preference-Inconsistent Explanation

However, an alternative prediction of the effects of accountability is that pre-exposure accountability will invert the main effect for intuitive prosecutor mindset observed in Experiment 1 (i.e., no-accountability). Under no-accountability conditions, a main effect is predicted such that norm-violating information will be better encoded and recalled by intuitive prosecutors, regardless of expectancy. According to this alternative accountability hypothesis, pre-exposure accountability may actually serve to increase the encoding and recall of norm-supporting behavior by intuitive prosecutors, regardless of expectancy. Such a prediction can be made by extending Lerner and Tetlock’s (1999) analysis of the social sensitivity of accountability. Pre-exposure accountable intuitive prosecutors may feel that they will need to justify (rather than avoid, as in the attenuation-normalization prediction) their harsh judgments of responsibility, blame, and punishment. In order to accomplish this goal, pre-exposure accountable intuitive prosecutors may search out potentially threatening evidence, i.e., norm-supporting behaviors, for the purpose of counterarguing or dispelling their legitimacy. This attention and effortful processing of norm-supporting behaviors would result in superior recall of norm-supporting behaviors no matter the expectancy.

Such a prediction is consistent with work by Ditto, Scepanisky, Munro, Apanovitch, and Lockhart (1998). They argue that the preference for consistent information motivates people to process consistent information more leniently, and inconsistent information more rigorously. This double standard results in increased attention and scrutiny of preference-inconsistent information, and a decreased threshold for accepting (and processing) consistent information. Since an intuitive prosecutor has a
preference for identifying norm-violating behaviors (for the purpose of restoring social order; Tetlock, 2002), intuitive prosecutors who expect to be held accountable for their judgments may pay more attention to preference-inconsistent (not expectancy-inconsistent) information. By rigorously evaluating norm-supporting behaviors, pre-exposure accountable intuitive prosecutors may hope to discredit their implications for the target in the eyes of those who hold the intuitive prosecutors accountable, thereby justifying harsh judgments of the target. Such scrutiny would have the ironic effect of making norm-supporting behaviors more salient and studied, and so better recalled than norm-violating behaviors, no matter the expectancy condition. Post-exposure accountable intuitive prosecutors, however, would have no such motivation to study preference-inconsistent behaviors, and would respond under this hypothesis as they would under the attenuation-normalization hypothesis. This alternative pattern of recall rates is depicted in Figure 1.3.
Reporting Bias / Preference-Inconsistent Behavior Expectancy

<table>
<thead>
<tr>
<th>Mindset</th>
<th>Norm-supporting</th>
<th>Norm-violating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Unaccountable IPM</td>
<td>-/-</td>
<td>-/-</td>
</tr>
<tr>
<td>Post-exposure IPM</td>
<td>+/-</td>
<td>+/-</td>
</tr>
<tr>
<td>Pre-exposure IPM</td>
<td>-/+</td>
<td>+/-</td>
</tr>
</tbody>
</table>

Figure 1.3. Predicted recall rates based on mindset and expectancy conditions in Experiment 2, assuming a preference-inconsistent effect for accountability. IPM = Intuitive Prosecutor mindset. A minus sign refers to better recall for norm-violating (negative) behaviors, and a plus sign refers to better recall for norm-supporting (positive) behaviors. The sign before the slash indicates the predicted pattern of enhanced recall under the reporting bias hypothesis; the sign after the slash indicates the predicted pattern under the preference-inconsistent hypothesis.
Hypothesis 3: Biased Retrieval

Although the discussion of the effects of the intuitive prosecutor mindset on information processing has focused on reporting bias explanations versus information-encoding/learning explanations, a third explanation of the pattern of recall rates observed in Experiment 1 may be offered that is also based on biased information processing. Intuitive prosecutors and non-intuitive prosecutors may, in fact, attend to and learn behavioral information in an identical manner. However, rather than the hypothesized improved recall by intuitive prosecutors for norm-violating behaviors (from Experiment 1) resulting from a reporting bias (i.e., intuitive prosecutors intentionally report such behaviors to support their judgments, and suppress other behaviors), a biased retrieval process may occur, consistent with Klein et al.’s (2002) adaptationist perspective of memory search engines. That is, intuitive prosecutors may not actually have access to all behavioral information equal to a non-intuitive prosecutor’s access at the time that judgments are made, since only a subset of information (i.e., norm-violating behaviors) is directly relevant to the decision rules of intuitive prosecutors. Whereas a reporting bias explanation assumes that intuitive prosecutors might report only some of the available information, a biased retrieval explanation (as used here) posits that intuitive prosecutors may only have limited and selective access to behavioral information from memory. This type of biased recall could result from a sort of intrapsychic confirmatory hypothesis testing (Snyder, 1981; Snyder & Swann, 1978a, 1978b), or from greater sensitivity in the memory retrieval process itself (Fiedler, Nickel, Muehlfriedel, & Unkelbach, 2001; Klein et al., 2002). Intuitive prosecutors may be motivated to produce confirmatory evidence for their harsh judgments. A biased search of memory for hypothesis-confirming
evidence could produce a pattern of recall heavily in favor of these harsh judgments. Intuitive prosecutors would thereby be limited in their access to other behavioral information, and a recall task would accurately reflect what behaviors are accessible; norm-supporting behaviors are not willfully omitted, as suggested by a reporting bias explanation. Once intuitive prosecutors reach the judgment phase, according to the biased retrieval hypothesis, their judgment processes are, subjectively, as “fair” as a non-intuitive prosecutor.

This type of information processing effect can be detected through the inclusion of a post-recall accountability manipulation for intuitive prosecutors, when compared to a control (no-accountability) group of intuitive prosecutors. If intuitive prosecutors selectively report behaviors (reporting bias), then post-recall accountability should cause intuitive prosecutors to recalibrate their judgments of responsibility, blame, and punishment to more normative standards, as in Lerner et al. (1998), despite a recall protocol that justifies harsher judgments – intuitive prosecutors may realize that they are not “telling the whole story.” If, on the other hand, retrieval itself is a biased process, then intuitive prosecutors are not intentionally slanting the recalled evidence. Under such circumstances, a post-recall accountability manipulation will not affect judgment severity. According to a biased-retrieval explanation of Experiment 1, intuitive prosecutors do not realize that they are retrieving the information in a biased manner. They will therefore perceive their judgments to be based on the preponderance of evidence, as they recall it. The presence of biased retrieval does not necessarily rule out other forms of biased information processing, including the biased learning and encoding processes hypothesized above.
An additional accountability condition is incorporated into Experiment 2 to differentiate between a potential bias in the memory retrieval process and mere reporting bias. Participants in this condition will be forewarned of their accountability only after the recall task, but prior to the judgments of responsibility, blame, and punishment. Recall patterns for both post-recall accountable intuitive prosecutors and unaccountable intuitive prosecutors should be identical, and conform to the pattern predicted in Experiment 1. The criterion for differentiating between reporting bias and biased retrieval is the severity of responsibility, blame, and punitive judgments. If a reporting bias is at work, the accountable intuitive prosecutors will attenuate or normalize their judgments relative to unaccountable intuitive prosecutors. If biased retrieval is at work, though, accountable intuitive prosecutors will not realize that they are biased, and will continue to make judgments as severe as their unaccountable counterparts.
CHAPTER 2

EXPERIMENT 1

The purpose of this first experiment is to assess whether an intuitive prosecutor mindset does, in fact, produce symptoms of biased information processing. Specifically, the goal in Experiment 1 is to demonstrate that intuitive prosecutors recall norm-violating behaviors better than norm-supporting behaviors, even when control participants tend to recall norm-supporting behaviors better.

According to the person memory literature (cf. Srull & Wyer, 1989), recall of behavioral information typically favors behaviors that are incongruent with expectations. There are three conditions for this effect to emerge. The first is that an \textit{a priori} trait impression be available to participants prior to exposure to behavioral information (Srull & Wyer, 1989). The second condition is that the valence of incongruent behaviors must be incongruent with the general valence of the \textit{a priori} trait impression. The final condition is that behaviors must be learned with an impression-formation instruction set.

Method

The current design is a 2 x 2 between-participant manipulation. Half of the participants were induced into an intuitive prosecutor mindset, whereas half received information that should not activate such a mindset (Appendix A). After participants received this information, they responded to an affect scale to indicate what emotions
were activated by the mindset manipulation, and questions designed to verify the success of the manipulation (Appendix B). Orthogonal to this manipulation, half of the participants received information (a profile of the target) leading them to believe that a target has either rowdy tendencies or has an upstanding nature (Appendix C), and then asked to indicate one trait that best described the target. This manipulation is necessary to create an a priori trait impression of the target required for the expectancy-incongruency recall effect to emerge (Srull & Wyer, 1989). Following the profile manipulation, participants were exposed to a series of 20 behaviors purportedly conducted by the target. (Srull [1981] has suggested that 20-30 behaviors were sufficient to produce expectancy-incongruency recall effects.) Of these 20 behaviors, 8 were suggestive of criminal (norm-violating) activities, 8 were suggestive of upstanding (norm-supporting) activities, and 4 were neutral behaviors (see Appendix D). Following a short delay, participants were asked to recall as many of the target’s behaviors as came to mind. After the recall task, participants made a series of judgments about the likelihood that the target engaged in criminal activity, and a series of judgments of the degree to which the target should be blamed, held responsible, and punished for any criminal activity in which he engaged (Appendix E).

Participants

A total of 87 participants were recruited from the Ohio State University Psychology Research Experience Program. Forty-five of these were male, and 42 female. All participants were students in an introductory course in psychology, all of whom participated in partial fulfillment of course requirements.
Materials

Materials for this experiment were developed around an important campus event that transpired during the Spring 2001 academic quarter. During that quarter, several student block party riots erupted adjacent to the Ohio State University main campus. These riots led to thousands of dollars in property damage, as well as hundreds of student and law-enforcement casualties. Materials were developed based on reports of these events recorded in the student newspaper, The Lantern, as well as in Columbus’s primary newspaper, The Columbus Dispatch.

Mindset Manipulation

An intuitive prosecutor mindset is typically induced by convincing participants that there is a severe and continuing disruption in social order. All participants were provided with information describing the block party riots. Although the severity of the events that transpired was not manipulated, the duration of consequences for the participants themselves and the OSU community at large was exaggerated in the intuitive prosecutor mindset induction.

The intuitive prosecutor mindset induction stressed the impact the riots have had and will have for the participants. Subjective impressions as well as objective measures of the quality of life and quality of education were included that suggested negative consequences in the long-term. The control condition received information that is reassuring that the riots were unlikely to occur again, and that stronger social controls were in place to avoid a similar situation. These inductions are presented in Appendix A.

Common to both descriptions was information useful in identifying behavior consistent with a rioter. This information (such as intent to stay at the block party past
1am; being an upper-classman) provided the necessary cues to interpret a later target’s behaviors in terms of likelihood that the target was a rioter.

Emotion Measures

An eight-item scale of emotions was included in the research to determine the emotional impact of the mindset inductions. Participants were asked to indicate the extent to which the information they read made them feel afraid, angry, anxious, concerned, excited, happy, sad, and scared. These emotions were rated along a 7-point Likert scale ranging from (1) “Not at all” to (7) “Extremely”.

Manipulation Checks

Participants were then asked to indicate their impressions of the OSU riots, based on the material they had just read. Specifically, participants indicated how severe they thought were the outcomes of the riots; how important they felt was block-party prevention; how serious they thought were the riots; how serious of a threat are potential riots for the following Spring academic quarter; how likely such riots are to occur; and how often rioters go unpunished. The specific questions are listed in Appendix B.

Expectancy Manipulation

Participants received what they believed to be a brief profile of an OSU student who attended one of the block party riots, but may or may not have actually participated in the riot. This profile included basic information regarding the physical and academic characteristics of the target, and information on criminal activities of the target. Additionally, the profile included impressions and behaviors of the target supposedly provided by 11 acquaintances of the target. Two profiles were developed to manipulate the expectation that the target is socially responsible. The degree of social responsibility
should be related to the likelihood that the target would engage in a socially irresponsible behavior such as the block party riot. As can be seen in Appendix C, one profile depicts an irresponsible and rowdy student, likely to enjoy a block-party riot; the other profile depicts a squeaky-clean, responsible student, unlikely to enjoy a block-party riot. However, both profiles depict someone who would likely attend a block party.

These profiles were pretested to verify that the former profile leads people to think of the target as a potential rioter, and the latter that the target is not a potential rioter. Specifically, 53 participants read one of these two profiles. Participants were asked to indicate the first trait to come to mind, and to rate the likelihood (7-point scale, 1 = Extremely Unlikely and 7 = Extremely likely) that the target would 1) attend a block party, 2) get involved with a block party riot, 3) get drunk at a block party when he is not the designated driver, 4) engage in any type of criminal activities, and 5) would engage in violent criminal activities.

For the responsible profile, 18 participants provided trait responses. Six of these participants indicated that “responsible” was the first trait to come to mind, and one “reliable.” No other trait was indicated by more than three participants. For the irresponsible profile, 20 participants provided trait responses. Eleven of these participants indicated that “irresponsible” was the first trait to come to mind, and one “reckless.” No other trait was indicated more than twice. These modal data suggest that the profiles do tend to manipulate responsibility of the target, as predicted.

The likelihood measures support the prediction that this manipulation also affects expected rioting behavior. For the responsible target profile, participants rated the target along a 7-point scale (1 = Extremely Unlikely to 7 = Extremely Likely) as significantly
unlikely (compared to the scale midpoint value of 4) to participate in a riot, \(M = 2.46, t(25) = -6.17, p < .01 \), but rated the irresponsible target as significantly likely (compared to the scale midpoint value of 4) to participate in a riot, \(M = 5.78, t(26) = 10.36, p < .01 \).

These ratings, of course, differed from each other significantly, \(t(51) = 11.02, p < .01 \).

This difference in likelihood to riot was not due to a differences in likelihood to attend block parties or to get drunk. Both responsible (\(M = 5.73, t(25) = 6.06, p < .01 \)) and irresponsible (\(M = 6.48, t(26) = 17.13, p < .01 \)) targets were seen as more likely than not (compared to the scale midpoint) to attend block parties when rated along a 7-point scale (1 = Extremely Unlikely to 7 = Extremely Likely). Both were also seen as more likely than not (compared to the scale midpoint) to get drunk when rated along a similar 7-point scale, responsible target \(M = 5.08, t(25) = 3.11, p < .01 \); irresponsible target \(M = 6.15, t(26) = 11.23, p < .01 \). Although the direction of likelihood was the same for both responsible and irresponsible targets, there was, in fact, a significant difference (\(p < .01 \)) between targets for both likelihood judgments. A simultaneous regression indicated that although likelihood to attend block parties and likelihood to get drunk significantly predicted likelihood to riot (actually, likelihood to attend block parties was not significant when likelihood to get drunk was simultaneously included in the equation), the responsibility manipulation itself was the strongest predictor of likelihood to riot, with a beta \((.720, t(49) = 9.83, p < .01) \) three times that of the next-strongest predictor, likelihood to get drunk \((.245, t(49) = 3.22, p < .01) \).

This evidence suggests that the dimension of responsibility does, in fact, manipulate expectancies of participating in a block party riot. This is further supported by a general trend of increased expectancies of criminal behavior from the irresponsible
Participants rated the responsible target as significantly unlikely to engage in any criminal activities, $M = 2.35$, $t(25) = -6.37$, $p < .01$, and even more so violent criminal activities, $M = 1.92$, $t(25) = -8.00$, $p < .01$. However, participants rated the irresponsible target as significantly likely to engage in any criminal activities, $M = 5.22$, $t(26) = 6.27$, $p < .01$, including violent criminal activities, $M = 5.04$, $t(26) = 4.52$, $p < .01$. Taken together, the profiles seem to adequately manipulate trait impressions of responsibility, and this manipulation has a direct effect on expectations of even violent criminal behavior.

Behaviors

The behaviors listed in Appendix D were developed to vary in the likelihood that the behavior would typically describe the type of person who would or would not participate in a block-party riot. Of those 20 behaviors, eight were developed to seem congruent with an expectancy that the target would be likely to participate in a block-party riot, based on the common information provided in the riot descriptions. Each behavior was paired with one of eight behaviors that were developed to seem equally incongruent, and of approximately the same length. Four were developed to be irrelevant to this dimension, as filler behaviors (see Srull, 1981, for the role of fillers).

Judgments

Appendix E lists the various judgments of responsibility, blame, punishment, and perceived justice to be employed in this research.

Procedure

Participants were welcomed to the experiment, and seated at a computer. They were informed that the research is a compilation of short, unrelated research activities,
and that the first task dealt with the block party riots of April 2001. Participants were told that they could notify the experimenter if any questions or problems should arise, but that the computerized experiment contains all of the relevant information.

Participants were randomly assigned to a mindset condition. Mindset was induced by the content of the riot description, as described earlier. After receiving the riot description, participants were asked to indicate their emotional state along eight dimensions. Participants then completed a filler anagram task to separate the mindset induction from the profile memory task.

Following this anagram task, participants were randomly assigned to read the profile of either the responsible or irresponsible OSU student (from Appendix C), and were asked to form an impression of the target. This manipulation was orthogonal to the mindset induction. The profile was followed by a request for participants to identify a single trait that they feel best characterizes the target. This step is necessary to create the a priori trait impression that Srull and Wyer (1989) indicate is necessary for expectancy-incongruency effects. Participants were then presented with a list of behaviors that the target performed. Participants were asked to read the behaviors as they are presented on-screen and to form an impression of the target. Each of the 20 behaviors listed in Appendix D were presented to participants, 8s at a time (Srull & Wyer, 1989), in a randomized order. Another brief anagram task was administered to participants prior to the recall task (Srull, 1981).

In the recall task, participants were asked to recall each of the 20 behaviors in any order. After completing this task, participants made judgments regarding the likelihood that the target participated in a block-party riot. Participants were also asked to assume
that the target had, in fact, rioted, and to judge the target on dimensions of responsibility, blame, and punishment (see Appendix E). Finally, participants were debriefed (see Appendix G) and thanked for their participation.

Results

Based on Hypothesis 1, non-intuitive prosecutor participants were expected to recall expectancy-incongruent behaviors better than expectancy-congruent behaviors, regardless of whether they expected criminal or upstanding behaviors. Intuitive prosecutors, on the other hand, were expected to better recall norm-violating behaviors, regardless of expectancy.

Although the recall rates were the primary focus of this study, the data were also analyzed to verify the mindset manipulation, detect emotional reactions to the mindset, and indicate the effects of the mindset manipulation on judgments of responsibility and blame.

Manipulation Checks

As described previously, all participants were asked to indicate how severe they thought the OSU Spring 2001 riots to be, the importance of future riot prevention, and the seriousness of the Spring 2001 riots. Intuitive prosecutors and non-intuitive prosecutors did not differ in these judgments: For severity, $M = 4.65$ for intuitive prosecutors vs. $M = 4.89$ for control participants, $t(85) = 0.95, p = .347$; for importance, $M = 4.84$ for intuitive prosecutors vs. $M = 4.66$ for control participants, $t(85) = 0.60, p = .549$; for seriousness, $M = 4.93$ for intuitive prosecutors vs. $M = 4.77$ for control participants, $t(85) = 0.54, p = .592$. However, intuitive prosecutors perceived a greater threat for future riots, $M = 4.44$ vs. $M = 3.80$ for control participants, $t(85) = 2.35, p = .021$; a greater likelihood of their
reoccurrence, $M = 4.79$ vs. $M = 3.80$ for control participants, $t(85) = 4.23, p < .001$; and felt that rioters typically go unpunished, $M = 5.44$ vs. $M = 4.39$ for control participants, $t(85) = 3.47, p < .001$. This pattern of results suggest that the mindset manipulation was successful in beliefs of a long-term breakdown in social order, while maintaining equivalent perceptions of block-party riot severity.

Emotional Reactions

Although previous research suggests that an intuitive prosecutor mindset is associated with an increase in anger, the current data did not indicate such differences as a function of mindset. Both intuitive prosecutors and control participants were moderately angry, $M = 3.27$ and $M = 3.47$, respectively, and did not differ significantly from one another, $t(85) = .537, p = .593$. This may be a function of the manipulation, which sought to equate riot severity across conditions. However, so long as intuitive prosecutors were moderately angry, this finding does not directly contradict previous research into the intuitive prosecutor mindset: Anger may be a necessary but not sufficient cause of the mindset.

Recall Rates

The data were analyzed in a 2 (Profile: Responsible vs. Irresponsible, between-participants) x 2 (Mindset: Control vs. Intuitive Prosecutor) x 2 (Behavior: Positive vs. Negative, within-participants) Omnibus Mixed GLM ANOVA. There was no main effect for Profile, $F(1,83) = 1.91, p = .171$, or for Mindset, $F(1,83) = 0.694, p = .407$. However, there was a significant main effect for Behavior, $F(1,83) = 6.92, p = .010$, such that 43.7% of norm-violating behaviors were recalled correctly compared to only 38.1% of norm-supporting behaviors.
This main effect was qualified by a significant Behavior x Mindset interaction, $F(1,83) = 4.97, p = .029$, such that control participants recalled 42.6% of norm-violating behaviors and 42.0% of norm-supporting behaviors while intuitive prosecutors recalled 44.8% of norm-violating behaviors and only 34.0% of norm-supporting behaviors.

The main effect for Behavior was also qualified by a Behavior x Profile interaction, $F(1,83) = 8.46, p = .005$, where participants who read about a responsible target recalled 49.4% of norm-violating behaviors and 37.2% of norm-supporting behaviors (consistent with the expectancy-incongruency effect in the person memory literature), and participants who read about an irresponsible target recalled 38.1% of norm-violating behaviors and 38.9% of norm-supporting behaviors (failing to replicate the expectancy-incongruency effect). The interaction is illustrated in Figure 2.1.

![Figure 2.1](image-url) Figure 2.1. Recall rates among all participants for norm-supporting and norm-violating behaviors as a function of Profile (Responsible vs. Irresponsible).
The Mindset x Profile interaction was also significant, $F(1,83) = 4.85, p = .031$. Control participants recalled more information regarding an irresponsible target (43.8%) than a responsible target (40.8%). A reversal was found among intuitive prosecutors, such that 32.7% of the behaviors were recalled for an irresponsible target, but 45.7% were recalled for a responsible target.

Finally, a significant three-way interaction was expected, as control participants would exhibit the expectancy-incongruency effect for person memory (cf. Srull & Wyer, 1989), but intuitive prosecutors would not. In fact, the three-way interaction was not significant, $F(1,83) = 0.05, p = .820$. However, visual inspection of the means suggested that the pattern of recall was consistent with predictions, so the Profile x Behavior effects were explored.

The data were analyzed separately for control and intuitive prosecutor participants, as a 2 (Profile: Responsible vs. Irresponsible, between-participants) x 2 (Behavior: Positive vs. Negative, within-participants) Mixed GLM ANOVA. For control participants, the standard recall advantage for expectancy-incongruent behaviors was expected. That is, participants who read the profile of a responsible OSU student were expected to recall better norm-violating behaviors, while those who read the irresponsible profile would better recall norm-supporting behaviors.

The data did, in fact, replicate this pattern. Participants in the control condition who read the responsible profile recalled 44.6% of the norm-violating behaviors, as compared to just 36.9% of the norm-supporting behaviors, $t(20) = 1.89, p = .073$. Conversely, control participants who read the irresponsible profile recalled only 40.8% of norm-violating behaviors, but recalled 46.7% of the norm-supporting behaviors, $t(22) = \ldots$
This interaction, illustrated in Figure 2.2, was significant, $F(1,42) = 5.11$, $p = .029$.

![Figure 2.2](image)

Figure 2.2. Recall rates among control participants for norm-supporting and norm-violating behaviors as a function of Profile (Responsible vs. Irresponsible).

For intuitive prosecutors, however, a main effect for Behavior was expected, such that norm-violating behaviors were consistently recalled better than norm-supporting behaviors, even when the norm-supporting behaviors were expectancy-incongruent.

This prediction was borne out through a significant main effect for Behavior: Intuitive prosecutors recalled 44.8\% of the norm-violating behaviors and only 34.0\% of norm-supporting behaviors, $F(1,41) = 11.38$, $p < .002$. Intuitive prosecutors who read the responsible profile recalled 54.0\% of the norm-violating behaviors, as compared to just 37.5\% of the norm-supporting behaviors, $t(21) = 3.63$, $p = .002$. This finding can easily
be interpreted by the expectancy-incongruency effect. But intuitive prosecutors who read the irresponsible profile also displayed superior recall for norm-violating behaviors, recalling 35.1% of norm-violating behaviors as compared to a mere 30.4% of the norm-supporting behaviors, $t(20) = 1.09$, $p = .287$. The interaction, illustrated in Figure 2.3, was only marginally significant, $F(1,41) = 3.46$, $p = .070$, and exhibited a consistent recall advantage for norm-violating behaviors, as predicted.

![Recall rates among intuitive prosecutors for norm-supporting and norm-violating behaviors as a function of Profile (Responsible vs. Irresponsible).](image)

This marginal interaction was interesting, though, as it suggested that the intuitive prosecutor recall bias compounded the expectancy-incongruency effect for the responsible profile condition. Whereas control participants displayed a 7.74% recall benefit for norm-violating behaviors when they read the responsible profile, intuitive
prosecutors displayed a 16.48% recall benefit. However, the magnitude of this bias when intuitive prosecutors were exposed to the irresponsible profile (4.76%) was roughly equivalent to the expectancy-incongruency effect for control participants (5.98%).

An inspection of the recall rates among intuitive prosecutors across profiles suggests that intuitive prosecutors recalled more behaviors for the responsible profile (45.7%) than for the irresponsible profile (32.7%), $F(1,41) = 6.14, p = .017$, and recalled far more norm-violating behaviors performed by responsible targets (53.98%) than performed by irresponsible targets (35.12%), $t(41) = 2.915, p < .006$. This pattern of recall may indicate a judgment threshold for intuitive prosecutors. Specifically, intuitive prosecutors who are led to believe that a target is an upstanding citizen may require additional evidence from memory in order to justify their punitiveness, whereas intuitive prosecutors who are led to believe that a target is a social degenerate may not feel compelled to bring much evidence in support of harsh punitiveness. Such an interpretation is further supported by a comparison of recall rates for control and intuitive prosecutor participants as a function of Profile. Control participants recalled 40.8% of all behaviors when they read about a responsible target, but intuitive prosecutors recalled 45.7%; control participants recalled 43.7% of all behaviors when they read about an irresponsible target, but intuitive prosecutors recalled only 32.7%, $F(1,83) = 4.85, p = .031$.

Responsibility and Punitive Judgments

As described previously, participants were first informed after the recall task that the target had, in fact, attended a riot, but did not necessarily participate in the rioting, and then asked to complete judgments of target responsibility for rioting; participants
were then informed that conclusive evidence indicated that the target did participate in the riots, and asked to make an additional series of responsibility and punitive judgments.

Mindset

The mindset manipulation had a direct impact on likelihood of property damage, where intuitive prosecutors felt that there was a greater likelihood that the target was responsible for property damage before they learned that he participated in the riot ($M = 4.52$ vs. $M = 4.02$ for control participants), $F(1,83) = 3.88$, $p = .052$, and after ($M = 5.72$ vs. $M = 5.23$ for control participants), $F(1,83) = 4.48$, $p = .037$. Mindset also affected the way participants perceived the target’s enjoyment of violent riots, as intuitive prosecutors felt that their target enjoyed such riots ($M = 5.50$) more than control participants felt theirs did ($M = 4.93$), $F(1,83) = 6.77$, $p = .011$. Furthermore, intuitive prosecutors felt it less likely that the target would be punished appropriately ($M = 3.18$ vs. $M = 4.41$ for control participants), $F(1,83) = 18.13$, $p < .001$, or that justice would be served in punishing the target ($M = 3.28$ vs. $M = 4.27$ for control participants), $F(1,83) = 13.68$, $p < .001$. Finally, intuitive prosecutors felt that the target would be more likely to participate in future riots ($M = 5.17$ vs. $M = 3.98$ for control participants), $F(1,83) = 19.74$, $p < .001$.

Profile

Prior to confirming the target’s participation in the riot, the profile manipulation was successful in increasing the likelihood with which participants believed the irresponsible target to have participated in the riot ($M = 5.24$) compared to the responsible target ($M = 4.31$), $F(1,83) = 13.11$, $p < .001$, to enjoy violent riots ($M = 5.10$ vs. $M = 4.10$, respectively), $F(1,83) = 19.36$, $p < .001$, to have behaved recklessly ($M = 5.29$ vs. $M = 4.36$, respectively), $F(1,83) = 13.91$, $p < .001$, and to be responsible for
property damage ($M = 4.76$ vs. $M = 3.76$, respectively), $F(1,83) = 13.43, p < .001$. The irresponsible target was also seen as being in less control of himself ($M = 2.69$ vs. $M = 3.69$ for the responsible target), $F(1,83) = 14.20, p < .001$, as having stronger intentions to attend a riot ($M = 4.64$ vs. $M = 3.95$ for the responsible target), $F(1,83) = 7.01, p = .01$, and as having more freedom in choosing to attend the riot ($M = 5.52$ vs. $M = 5.00$ for the responsible target), $F(1,83) = 3.79, p < .055$.

Once informed that the target had, in fact, participated in the riot, participants found the irresponsible target to be more likely to have behaved recklessly ($M = 5.83$ vs. $M = 5.02$ for the responsible target), $F(1,83) = 13.25, p < .001$, and caused property damage ($M = 5.74$ vs. $M = 5.19$ for the responsible target), $F(1,83) = 5.29, p = .024$; to have more intention to riot ($M = 5.38$ vs. $M = 4.88$ for the responsible target), $F(1,83) = 4.23, p = .043$; to be more likely to enjoy violent riots ($M = 5.48$ vs. $M = 4.93$ for the responsible target), $F(1,83) = 6.40, p = .013$; and to be more likely to plan to participate in future riots ($M = 4.79$ vs. $M = 4.31$ for the responsible target), $F(1,83) = 3.73, p = .057$. Finally, participants felt that more justice would be served in punishing the irresponsible target ($M = 4.19$) than the responsible target ($M = 3.40$), $F(1,83) = 8.13, p = .006$.

Profile x Mindset

Several of the main effects for Profile were qualified by an interaction with Mindset. Specifically, the likelihood that the target was in complete control of his actions, prior to confirming his participation in the riot, varied as a function of both factors. Although control participants found the responsible target to be more in control ($M = 3.48$) than the irresponsible target ($M = 2.96$), this effect was exaggerated for intuitive prosecutors ($M = 3.90$ vs. $M = 2.37$, respectively), $F(1,83) = 3.47, p = .066$.

53
This interaction persisted after the target’s participation in the riot was confirmed, where control participants now rated the two targets similarly ($M = 3.05$ for responsible target, $M = 3.35$ for irresponsible target), and intuitive prosecutors further exaggerated the difference ($M = 4.24$ vs. $M = 2.79$, respectively), $F(1,83) = 5.73, p = .019$.

There was also a significant interaction for judgments of how severely the target should be punished relative to other rioters. Control participants felt that responsible and irresponsible targets should be punished equally relative to other rioters, $M = 4.86$ and $M = 4.74$, respectively. However, intuitive prosecutors felt that responsible targets should be punished less severely ($M = 4.33$) than irresponsible targets ($M = 5.42$) compared to other rioters, $F(1, 81) = 5.61, p = .02$. A similar pattern emerged for judgments of the extent to which targets should be punished, where control participants felt that responsible ($M = 4.48$) and irresponsible ($M = 4.35$) targets should be subjected to equally severe punishment, but intuitive prosecutors were more lenient toward responsible targets ($M = 4.05$) and more harsh toward irresponsible targets ($M = 5.21$), $F(1, 81) = 4.96, p = .029$.

Recall-Judgment Correlation

Based on the pattern of recall and pattern of judgment, which were partially consistent with the current predictions, the relationship between recall and judgments was explored. Recall rates for both norm-supporting and norm-violating behaviors, as well as the difference between these two rates, were correlated with all of the judgments made by participants (listed in Appendix E). Controlling for the family-wise error rate by lowering the critical alpha level to .01, there were no significant correlations between recall and judgment.
Discussion

Taken together, the results of this initial experiment suggest that intuitive prosecutors are more sensitive to normative behavior and target characteristics than control participants. Intuitive prosecutors maintained a lower threshold of punitiveness for irresponsible targets. Specifically, intuitive prosecutors did not display better recall for norm-supporting behaviors performed by irresponsible targets, in defiance of the person-memory incongruency effect (in fact, they displayed nonsignificantly better recall for norm-violating behaviors). This effect was largely driven by poor recall of norm-supporting behaviors performed by the irresponsible target, as described above. This pattern of recall seemed to serve as a justification for the more severe punishments preferred by intuitive prosecutors compared to control participants.

At the same time, however, intuitive prosecutors recalled far more norm-violating behaviors performed by responsible targets than performed by irresponsible targets. Although this was initially interpreted as justification for the purpose of prosecuting responsible targets, punitive judgments by intuitive prosecutors toward responsible targets were actually more lenient than those made by control participants, contrary to expectations.

The implications of these findings suggest three potential interpretations of the effects of the intuitive prosecutor mindset on person memory. One interpretation of the consistently superior recall for norm-violating behaviors is that intuitive prosecutors are more vigilant and attentive to negative behaviors than positive behaviors. This would lead to the hypothesis that the recall effects exhibited in this first experiment are the result of unintended attention effects, i.e., an information-processing bias.
However, intuitive prosecutors recalled as many norm-supportive behaviors performed by responsible targets (37.5%) as did control participants (36.9%). This contradicts a simple attention effect. The exaggerated memory of intuitive prosecutors for norm-violating behaviors performed by responsible targets, combined with the extremely poor overall recall for behaviors (and especially norm-supporting behaviors) performed by the irresponsible target, suggests that intuitive prosecutors may be “building their case” against the targets. This would lead to the hypothesis that the recall effects exhibited in this first experiment are the result of biased recall, either intentional (i.e., a response bias) or unintentional (i.e., a retrieval bias).

This is further supported by the surprising finding that intuitive prosecutors remembered the most negative information about responsible targets, yet also thought the best of those same targets, being more lenient in judgments of responsible targets. From an information-processing bias approach, intuitive prosecutors should have been even more prosecutorial toward those individuals about whom they learned the most norm-violating information. Instead, it is as if intuitive prosecutors attempted to “build their case” against responsible targets by exaggerating their norm-violating behaviors, but could not, in the end, justify extreme punitiveness toward such upstanding OSU citizens.

Conversely, the unexpected relationship between recall and punitive judgments for responsible targets may suggest that intuitive prosecutors attempted to “explain away” the norm-violating behaviors of responsible targets, consistent with the explanation of the person-memory incongruency effect provided by Srull and Wyer (1989). This interpretation posits that intuitive prosecutors are, in fact, more sensitive to information about targets, but may be willing to interpret positively or dismiss (when it comes to
judgments of punishment) the behavioral shortcomings of targets who normally contribute to the social order. This would be consistent with the findings of Visser and Tetlock (1997) reported previously, but shows that their effect may not be limited to targets actively and formally engaged in restoring social order at the point of indiscretion.

Any such interpretations, however, are severely limited by the null relationship between recall and judgments of responsibility, blame, and punishment.
CHAPTER 3

EXPERIMENT 2

The purpose of this second experiment is twofold. Although the pattern of recall in Experiment 1 seemed supportive of Hypothesis 1, that intuitive prosecutors would exhibit better recall for norm-violating behaviors even in the face of the expectancy-incongruency effect, it was far from conclusive. Experiment 2 serves to replicate the basic findings of Experiment 1.

The second experiment also has the purpose to determine whether the differential recall by intuitive prosecutors and control participants suggested by Experiment 1 reflects a difference in encoding of the target behaviors, a reporting bias, or biased retrieval. This will be accomplished through the introduction of three accountability manipulations into the sequence of events in Experiment 1, in addition to a no-accountability condition designed to be an exact replication of Experiment 1. As discussed earlier, accountability manipulations have the tendency to attenuate or normalize biased information processing (Lerner & Tetlock, 1999).

If a reliable recall effect emerges as predicted in this second experiment, it may be due to the way in which intuitive prosecutors encoded behavioral information. It may also be the result of other biases later in the memory process (the retrieval and reporting stages). Post-exposure (i.e., after exposure to the behavioral information but prior to
accountable intuitive prosecutors should produce biased recall patterns like unaccountable intuitive prosecutors if the recall effect is the product of biased encoding, since the cause of the recall effects preceded the accountability manipulation. Post-exposure accountable intuitive prosecutors should produce recall patterns like pre-exposure (i.e., before exposure to the behavioral information) accountable intuitive prosecutors, on the other hand, if the biased recall effect is the product of a reporting bias or a retrieval bias – any accountability that precedes the recall protocol will influence participants to normalize or attenuate their retrieval or reporting of behavioral information.

The inclusion of a post-recall accountability manipulation should permit the differentiation of a retrieval bias from a reporting bias. Although intuitive prosecutors may have biased recall patterns in this condition, this recall should only influence judgments if participants are unaware of the bias. If biased recall is the result of a reporting bias, intuitive prosecutors should be sensitive to the accountability manipulation, and make more attenuated judgments of responsibility and punishment. If, on the other hand, biased recall is the result of an unconscious retrieval bias, then intuitive prosecutors may persist in their exaggerated judgments of responsibility and punishment because such judgments seem justified, given what is remembered about the target. The inclusion of all four accountability conditions (none, pre-exposure, post-exposure, and post-recall) should permit the exploration of the biased recall effect to determine its source within the recall process.
Method

The design is a 2 x 2 x 4 between-participant manipulation. The Mindset and the Profile manipulations were orthogonally manipulated as they were in Experiment 1. In addition, one of four Accountability manipulations was introduced orthogonal to all other manipulations, as described below. Participants were exposed to the same series of 20 behaviors from Experiment 1, and were then asked to recall as many of the target’s behaviors as came to mind. After the recall task, participants made a series of judgments about the likelihood that the target engaged in criminal activity, and a series of judgments about the degree to which the target should be blamed, held responsible, and punished for any criminal activity in which he engaged, just as in Experiment 1.

Participants

A total of 470 undergraduates enrolled in an introductory Psychology course at the Ohio State University participated in this research in partial fulfillment of course requirements. The data from 18 participants were dropped because the participants refused to allow their responses to be recorded in accordance with the accountability manipulation (13) or because the participants formed an impression of the target opposite the profile (e.g., “cool” for the irresponsible target; 5), and the remaining 452 data sets were retained. Of the remaining participants, 202 were females and 250 were males.

Materials

Materials were identical to those used in Experiment 1, with three exceptions. Because the emotion measure in the first experiment was unsuccessful at detecting any effects of the Mindset manipulation, two more dimensions were added to the original eight, “relieved” and “upset”. The response scale was also expanded from a 7-point scale
to a 9-point scale so as to increase its sensitivity to subtle changes in mood. Finally, an accountability manipulation (see Appendix F) was introduced at one of three points in the experimental task sequence, as outlined below.

Procedure

The procedure for Experiment 2 closely followed the procedure for Experiment 1. Half of the participants were induced into an intuitive prosecutor mindset, whereas half received information that should not activate such a mindset (Appendix A). After participants received this information, they responded to an affect scale to indicate what emotions were activated by the Mindset manipulation. In an attempt to increase the sensitivity of the emotional measures so as to more carefully explore emotional reactions to the mindset manipulation, the response scale for the emotional items was expanded from a 7-point scale anchored from “Not at all” to “Extremely” to a 9-point scale anchored from “Not at all” to “Very”. The affect scale was followed by a series of questions to verify the success of the Mindset manipulation (Appendix B).

Orthogonal to this manipulation, half of the participants received a target profile indicating either rowdy tendencies or an upstanding nature (Appendix C). Immediate following the profile, participants were asked to indicate one trait to describe the target, so as to consolidate their impression of the target (necessary to produce expectancy-incongruency recall effects; Srull & Wyer, 1989). All participants were then exposed to a series of 20 behaviors purportedly conducted by the target, as listed in Appendix D. Following a short delay, participants were asked to recall as many of the target’s behaviors as came to mind. After the recall task, participants made a series of judgments about the likelihood that the target engaged in criminal activity, and a series of judgments
of the degree to which the target should be blamed, held responsible, and punished for any criminal activity in which he engaged, as listed in Appendix E.

Orthogonal to both the mindset and profile manipulations, participants were randomly assigned to one of four accountability manipulations. The accountability manipulation was modeled after Tetlock and Kim (1987). It informed participants that the researcher would ask them to explain their responses, and that this interview may be recorded (see Appendix F). This manipulation has been shown (e.g., Tetlock & Kim, 1987) to make participants feel accountable for their responses.

The accountability manipulation was introduced at one of three different points in the experiment: After reading the target profile but prior to seeing the behaviors (“pre-exposure”), after seeing the behaviors but prior to completing the recall task (“post-exposure”), or after completing the recall task but prior to completing the judgments of responsibility and punishment (“post-recall”). Participants were randomly assigned to one of these three conditions, plus a fourth, control condition in which no accountability was induced. This design expanded the original 2 x 2 design in Experiment 1 to a 2 x 2 x 4 design, with two levels of Mindset (Intuitive Prosecutor, Control), two levels of Profile (Irresponsible, Responsible), and four levels of Accountability (Pre-Exposure, Post-Exposure, Post-Recall, Control).

Results

Manipulation Checks

As in the first experiment, all participants were asked to indicate the severity and the seriousness of the Spring 2001 riots. Intuitive prosecutors and non-intuitive prosecutors did not differ in these judgments: For severity, intuitive prosecutors
responded with a mean of 4.38, and control participants 4.46, \(t(450) = 0.61, p = .544; \) for seriousness, intuitive prosecutors responded with a mean of 4.54, and control participants 4.70, \(t(450) = 1.13, p = .258. \) However, intuitive prosecutors perceived a greater threat for future riots than control participants \((M = 4.15 \text{ vs. } M = 3.71), t(450) = 3.13, p = .002,\) a greater likelihood of their reoccurrence \((M = 4.52 \text{ vs. } M = 3.77), t(450) = 6.10, p < .001,\) and felt that rioters typically go unpunished \((M = 5.16 \text{ vs. } M = 4.04), t(450) = 8.16, p < .001.\) This pattern of results suggest that the mindset manipulation was again successful in manipulating beliefs of a long-term breakdown in social order, while maintaining equivalent perceptions of block-party riot severity.

Emotional Reactions

Despite the attempt to increase the sensitivity of the emotion measures, both intuitive prosecutors and control participants were moderately angry, \(M = 4.32 \) and \(M = 4.44, \) respectively, \(t(450) = 0.64, p = .524. \) This further supports the initial interpretation from the first experiment that this equivalence may be a function of this particular mindset manipulation.

Interestingly, though, intuitive prosecutors tended to be more excited about the riots \((M = 3.31)\) than control participants \((M = 2.87), t(468) = 2.36, p = .019,\) happier about the riots \((M = 2.81)\) than control participants \((M = 2.41), t(468) = 2.40, p = .017,\) but less relieved \((M = 2.31)\) than control participants \((M = 2.94), t(468) = 4.23, p < .001.\) There were no other differences in emotional reactions to the mindset manipulation.

Recall Rates

The data were analyzed in a 2 (Profile: Responsible vs. Irresponsible, between-participants) x 2 (Mindset: Control vs. Intuitive Prosecutor) x 4 (Accountability: None vs.
Pre-Exposure vs. Post-Exposure vs. Post-Recall) x 2 (Behavior: Positive vs. Negative, within-participants) Omnibus Mixed GLM ANOVA. There was a main effect for Behavior, such that negative behaviors were better recalled (55.6%) than positive behaviors (50.72%), $F(1,436) = 24.72, p < .001$.

This was qualified by an interaction between Behavior and Profile ($F(1,436) = 25.82, p < .001$), wherein participants recalled 58.7% of the negative behaviors and only 48.9% of the positive behaviors when the target was described as responsible, consistent with the person memory incongruency effect. However, participants recalled 52.6% of the negative behaviors and 52.5% of the positive behaviors when the target was described as irresponsible, indicating no incongruency effect.

Finally, this two-way interaction was qualified by a three-way interaction between Behavior, Profile, and Accountability ($F(3,436) = 3.41, p = .017$). An inspection of the means for this effect, presented in Appendix H, suggests that the interaction is driven by the pattern of recall for post-exposure and post-recall accountable participants. These participants recalled negative behaviors better than positive behaviors, regardless of profile. This was confirmed through separate Profile x Mindset x Behavior Mixed GLM ANOVA analyses run for each of the four Accountability conditions in order to explore this interaction. Both unaccountable ($F(1,80) = 16.38, p < .001$) and pre-exposure accountable ($F(1,142) = 19.64, p < .001$) participants exhibited the person memory incongruency (Behavior x Profile) effect, as can be seen in the top panels of Figure 3.1. However, the post-exposure accountable participants failed to exhibit the interaction ($F(1,122) = 1.13, p = .290$), only a main effect for Behavior ($F(1,122) = 14.81, p < .001$). Finally, post-recall accountable participants exhibited null effects, with neither a main
effect for Behavior \((F(1,92) = 0.56, p = .456)\) nor the higher-order Behavior x Profile interaction effect \((F(1,92) = 0.72, p = .399)\). This was particularly unexpected, given that post-recall accountable participants had received the same stimuli as control participants from the beginning of the experiment through the recall task.

Both statistical and visual inspection of the data indicated no reliable effects for the Mindset manipulation, with a nonsignificant Behavior x Profile x Mindset x Accountability four-way interaction, \(F(3,436) = 0.51, p = .673\), a nonsignificant Behavior x Profile x Mindset three-way interaction, \(F(1,436) = 0.88, p = .350\), a nonsignificant Behavior x Mindset x Accountability three-way interaction, \(F(3,436) = 0.26, p = .854\), a nonsignificant Profile x Mindset x Accountability three-way interaction, \(F(3,436) = 0.82, p = .485\), a nonsignificant Behavior x Profile x Mindset three-way interaction, \(F(3,436) = 0.88, p = .350\), a nonsignificant Behavior x Mindset two-way interaction, \(F(1,436) = 1.32, p = .251\), a nonsignificant Profile x Mindset two-way interaction, \(F(1,436) = 0.50, p = .811\), a nonsignificant Mindset x Accountability two-way interaction, \(F(3,436) = 1.43, p = .233\), and a nonsignificant main effect for Mindset, \(F(1,436) = 0.25, p = .619\).

Although there was an exact methodological replication of Experiment 1 through the unaccountable condition, the findings of the first study were only partially replicated. As in Experiment 1, neither the main effect for Profile nor the main effect for Mindset was significant, \(F(1,80) = 0.32, p = .574\) and \(F(1,80) = 1.82, p = .182\), respectively. Behavior was again significant, \(F(1,80) = 6.31, p = .024\), as 54.5% of norm-violating behaviors were recalled as compared to only 50.3% of norm-supporting behaviors.

The Behavior x Mindset interaction was not significant, \(F(1,80) = 1.04, p = .310\), but the Behavior x Profile interaction was, \(F(1,80) = 16.38, p = .0001\). Participants who
read about a responsible target recalled 57.8% of the norm-violating behaviors compared to 45.0% of the norm-supporting behaviors. Participants who read about an irresponsible target recalled 51.4% of norm-violating behaviors but 55.1% of norm-supporting behaviors. This is consistent with the person memory incongruency effect. The Mindset x Profile interaction was not significant, $F(1, 80) = 0.00, p = .989$. The Mindset x Profile x Behavior interaction was also not significant, $F(1, 80) = 0.93, p = .337$, and visual inspection of the data indicated that the standard incongruency effect emerged for both control participants and intuitive prosecutors.
Figure 3.1. The pattern of recall rates for norm-supporting and norm-violating behaviors, as a function of Profile, for each of the four Accountability conditions in Experiment 2.
Responsibility and Punitive Judgments

The effects of both Mindset and Profile on judgments of responsibility and punishment were consistent with those found in Experiment 1. However, no effects of Accountability were detected in these judgments. In order to facilitate the exposition of these results, the judgments were collapsed to create four scales.\[4\]

These four scales represented judgments of likelihood of rioting (prior to confirmation that the target rioted), judgments for responsibility for rioting (after confirmation that the target rioted), punitive judgments for rioting, and expectations of justice. A complete list of means for each of these scales can be found in Appendices I, J, K, and L.

The Likelihood scale included the first nine items listed in Appendix E, and included questions such as “How likely is John F. to have participated in the block-party riot?” and “How likely is John F. to have behaved recklessly during the riot?” Questions 4 (How likely is John F. to have been in complete control of his actions during the riot?) and 9 (How likely is it the influences outside of John F.’s control lead John to attend the riot?) were reverse scored. The resulting Likelihood scale had a standardized Cronbach’s alpha of .78.

The Responsibility scale consisted of 16 questions from Appendix E, specifically questions 10-17, 19-25, and 34, with questions 11 (How likely is John F. to have been in complete control of his actions during the riot?) and 9 (How likely is it the influences outside of John F.’s control lead John to attend the riot?) were reverse scored. The resulting Responsibility scale had a standardized Cronbach’s alpha of .78.

4 A similar approach could have been taken with the results of the first experiment; scale items for the first experiment exceeded a Cronbach’s standardized alpha of 0.75 for each of the four scales. However, collapsing across judgments to create four scales in Experiment 1 would have unnecessarily obscured the details of the judgment effects, so the item analyses were maintained.
complete control of his actions during the riot?) and 15 (How likely is it that influences outside of John F.’s control lead John to participate in the riot?) reverse-scored. (Question 31 was excluded because informal feedback from participants indicated that they did not understand the meaning of “extenuating.”) The scale included questions such as “To what extent did John F. intend to riot?” and “How responsible is John F. for his actions?” The resulting Responsibility scale had a standardized Cronbach’s alpha of .86.

The Punishment scale was made up of three questions, “How severely should John F. be punished for his rioting?”, “How severely should John F. be punished relative to other rioters?”, and “On a scale ranging from the minimum possible punishment by law to the maximum punishment by law, to what extent should John F. be punished?” (questions 26-28 from Appendix E). These three items created a Punishment scale that had a standardized Cronbach’s alpha of .83.

Finally, the Justice consisted of only two items, “To what degree do you believe that John F. will be appropriately punished?” and “To what degree do you believe that justice will be served in punishing John F.?” (questions 32-33 from Appendix E). The Justice scale had a standardized Cronbach’s alpha of .84.

Mindset

As expected, Mindset had a significant impact on judgments of responsibility and justice. Specifically, intuitive prosecutors judged targets to be more responsible for rioting ($M = 5.27$) than did control participants ($M = 5.00$), $F(1,436) = 12.96, p < .001$. Intuitive prosecutors expected that the target would be punished less appropriately ($M = 3.45$) than did control participants ($M = 4.24$), $F(1,436) = 37.06, p < .001$. Nonetheless,
intuitive prosecutors did not overestimate the likelihood that the target was involved in the riots ($M = 4.42$) relative to control participants ($M = 4.35$), $F(1,436) = 0.66$, $p = .416$, and were not more punitive in their judgments ($M = 4.63$) than control participants ($M = 4.78$), $F(1,436) = 2.10$, $p = .148$.

Profile

The Profile manipulation had a significant effect on the Likelihood scale. Participants who received the irresponsible profile overestimated the likelihood that the target participated in the riot ($M = 4.66$) relative to participants who received the responsible profile ($M = 4.11$), $F(1,436) = 61.33$, $p < .001$. Participants also judged the irresponsible target to be more responsible for rioting ($M = 5.29$) than the responsible target ($M = 4.99$), $F(1,346) = 20.42$, $p < .001$. Irresponsible targets were punished more severely ($M = 4.87$) than responsible targets ($M = 4.52$), $F(1,436) = 11.93$, $p = .001$. The Profile manipulation had no effect on expectations of justice, $M = 3.87$ for irresponsible targets vs. $M = 3.78$ for responsible targets, $F(1,436) = 0.28$, $p = .598$.

Accountability

There were no significant main effects of accountability for any of the four judgment measures.

Profile x Mindset

There was a significant interaction of Profile x Mindset for judgments of likelihood, such that the effects of the Profile manipulation on Likelihood were magnified for intuitive prosecutors relative to control participants. Whereas control participants who had read the irresponsible profile expected the target to be involved in the riot ($M = 4.52$) more than participants who read the responsible profile ($M = 4.17$), $t(216) = 3.78$, p
< .001, intuitive prosecutors exaggerated these expectations ($M = 4.80$ for the irresponsible profile vs. $M = 4.04$ for the responsible profile, $t(232) = 7.38, p < .001$), $F(1,436) = 9.46, p = .002$. This interaction is illustrated in Figure 3.2. No other effects of this interaction emerged for Responsibility, Punishment, or Justice.

![Figure 3.2](image)

Figure 3.2. The pattern of Likelihood judgments for irresponsible and responsible targets, as a function of Mindset.

Accountability x Mindset, Accountability x Profile, Accountability x Profile x Mindset

There were no effects of these interactions on any of the four measures.

Discussion

Although the first experiment was suggestive that recall might be sensitive to mindset induction, the current experiment failed to replicate the findings of the first
experiment. The robust person memory expectancy-incongruency effect emerged for both control and intuitive prosecutor participants. Although there was a significant interaction of this effect with the Accountability manipulation, this must be interpreted with caution. The main effect for Behavior in the post-exposure Accountability condition might suggest that accountability can affect intentional recall strategies or biased reporting of recall. However, the null effects for post-recall Accountability, where accountability could not have played any direct role in the recall process, suggests that the recall effect in the post-exposure Accountability condition may also not be attributable to the manipulation.

Despite this failure to support the hypotheses of this research, there are reasons to believe that the manipulations were successful, at least partially. In addition to the manipulation checks for the Mindset manipulation, the pattern of judgments influenced by the Profile and Mindset manipulations are consistent with expectations: Irresponsible targets seemed more likely to riot, more responsible for rioting, and were punished more severely than responsible targets. Intuitive prosecutors, for their part, were more severe in their judgments of responsibility, and anticipated that the target would not be punished appropriately.

There were also clear difficulties with the manipulations. It was surprising to find intuitive prosecutors happier and more excited about the OSU Spring 2001 block-part riots than control participants, even though intuitive prosecutors were simultaneously less relieved than control participants. Although intuitive prosecutors are typically more severe in punitive judgments, not just judgments of responsibility, such was not the case in Experiment 2. Furthermore, although the first study suggested that intuitive
prosecutors demonstrated a stronger incongruency effect for responsible targets than for irresponsible targets, this second study found no differences as a function of Mindset; instead, both control participants and intuitive prosecutors demonstrated this effect across all four accountability conditions, as illustrated in Figure 3.1. Finally, although the Accountability manipulation seemed genuine enough to make 13 participants refuse to cooperate, it did not exhibit any interpretable pattern of results.
CHAPTER 4

GENERAL DISCUSSION

The goal of this research was to explore the potential effects of the intuitive prosecutor mindset on memory for norm-supporting and norm-violating behavior. I hypothesized that participants induced into an intuitive prosecutor mindset may be biased not only in their judgments of responsibility, as has been shown by Goldberg et al. (1999) and Lerner et al. (1998), but in the types of information learned, retrieved, and reported about a target. Intuitive prosecutors were hypothesized to be more sensitive to norm-violating behaviors than control participants to serve as a justification for the severity of judgments made by intuitive prosecutors.

The first experiment seemed to provide some initial support for this hypothesis. Specifically, intuitive prosecutors seemed to differ from control participants in their recall rates for norm-violating and norm-supporting behavior. Control participants recalled norm-violating behaviors more frequently than norm-supporting behaviors of a target when participants had developed a positive (responsible) expectation of that target, and recalled norm-supporting behavior more frequently than norm-violating behaviors of a target when participants had developed a negative (irresponsible) expectation of that target. This significant interaction replicates the robust expectancy-incongruency effect reported in the person memory literature (cf. Srull & Wyer, 1989).
However, participants induced into an intuitive prosecutor mindset failed to replicate this interaction effect. Instead, participants induced into an intuitive prosecutor mindset displayed a significant main effect for type of behavior, with an overall recall advantage for norm-violating behaviors compared to norm-supporting behaviors. Intuitive prosecutors did not exhibit the expectancy-incongruency effect when they read about an irresponsible target, as was found among control participants. This is consistent with the central hypothesis of the current research, that intuitive prosecutors may recruit person memory to justify harsh judgments of responsibility for targets.

Furthermore, intuitive prosecutors exhibited a marginally-significant magnification of the expectancy-incongruency effect when they read about a responsible target. This can be interpreted as an attempt by intuitive prosecutors to attend more carefully to norm-violating behaviors performed by responsible targets in order to justify overly-severe punitive judgments. However, since intuitive prosecutors actually judged responsible targets to be less responsible and less punishable than irresponsible targets, this attempt may have failed. An alternative interpretation of these results suggests that, rather than attending to norm-violating behaviors to justify disproportionate punishment, intuitive prosecutors ignore norm-supporting behaviors, relatively speaking, in their attempt to explain and dismiss norm-violating behaviors performed by responsible targets so as to minimize the culpability of the targets. This has the ironic effect of encoding the norm-violating behaviors of responsible targets to a greater extent than those of irresponsible targets.

A second experiment was conducted to replicate and extend these initial findings. The first experiment did not find a significant three-way interaction for Behavior...
Profile x Mindset, even though the separate two-way analyses were suggestive. The second experiment was an opportunity to confirm these initial findings with a larger sample, and to explore the exact nature of this potential memory effect. Specifically, I hypothesized that any recall advantage for norm-violating behaviors exhibited by intuitive prosecutors could be the result of several processes. Intuitive prosecutors may be more sensitive to norm-violating behaviors due to the mindset induction, in which case intuitive prosecutors actually learn norm-violating behaviors better than they learn norm-supporting behaviors. On the other hand, intuitive prosecutors may engage in selective retrieval of behavioral information in anticipation of harsher judgment of the target. Finally, intuitive prosecutors may selectively report behavioral information to justify, to themselves or to others, future judgments of target responsibility.

In order to distinguish between these potential effects, an accountability manipulation was introduced into what was otherwise a replication of the first experiment. Tetlock has shown that accountability tends to attenuate or normalize motivated cognition (Tetlock, 1992), and accountability manipulations have been shown to be an effective technique in decreasing the correspondence bias (Corneille, Leyens, Yzerbyt, and Walther, 1999; Tetlock, 1985). The stage at which participants were made accountable for their experimental responses was hypothesized to provide a method for distinguishing between the potential memory effects. When accountability preceded exposure to the behavioral information, all memory biases were expected to be affected. When accountability followed exposure but preceded recall, differential recall was expected to persist among intuitive prosecutors only if it was due to biased encoding, but
not if the differential recall was the result of either a biased retrieval process or biased reporting.

When accountability followed recall but preceded judgments of responsibility and punishment, such judgments were expected to be attenuated only if the recall effects for intuitive prosecutors were based on selective reporting of norm-violating behaviors: Selective reporting suggests an intentional bias of which intuitive prosecutors are in control. Once participants were held accountable for their judgments of responsibility and punishment, intuitive prosecutors would be unlikely to persist in their intentional deception and harshness in judgment of the target, since intuitive prosecutors would realize that their recall was biased and was insufficient justification for harsh judgments of the target. However, if the recall effect for intuitive prosecutors was due to biased encoding or biased retrieval, intuitive prosecutors would be unaware that their judgments were influenced by biased recall, and would not attenuate their judgments despite their accountability – the harsh judgments of the intuitive prosecutor would seem reasonable given the behavioral information accessible in memory.

The second experiment, however, did not support the suggestive findings of the first experiment. In fact, there was no effect for the mindset manipulation in any of the four accountability conditions, including the control condition that served as an exact replication of Experiment 1. These data would suggest that the findings of the first experiment were, in fact, spurious, as the null interaction effect suggested, and not the result of low statistical power. In fact, Experiment 2 demonstrated a reliable and robust expectancy-incongruency effect for both control and intuitive prosecutor participants. The replication of this robust effect suggests that Experiment 2 was successful in design,
and lends greater credence to the interpretation that, in fact, intuitive prosecutors do not rely on biased memory to support their judgments.

Nonetheless, there might be at least two reasons to reserve judgment on the viability of a memory effect for the intuitive prosecutor mindset, despite the evidence to the contrary from Experiment 2. The first reason is due to the unexpected and counter-intuitive mood effects for intuitive prosecutors in the second experiment. In Experiment 2, intuitive prosecutors reported being happier and more excited about the riots expected to erupt in the Spring 2002 quarter than did control participants. This increase in positive mood was simultaneous with (and in contradiction to) an expression of increased relief by control participants. The increase in positive mood also seemed at odds with the apparent success of the mindset manipulation to increase perceived likelihood that riots would occur, to increase judgments of target responsibility, and to decrease perceived justice. This enthusiasm for upcoming riots induced through the mindset manipulation is not only contrary to expectations, but problematic for interpreting the effectiveness of the intuitive prosecutor mindset induction. Such positive affect may indicate that participants in Experiment 2 did not perceive the riots to be as threatening or as unpleasant as did participants in the pretesting of the experimental materials or in Experiment 1. One could speculate that as potential rioting grew closer, anticipation of block party riots increased. This is consistent with the current profile of the Ohio State University undergraduate student body, which has caused the Ohio State University to be ranked as the 8th-best party school in the U.S. (Franek, Meltzer, & Owens, 2001). This speculation is also borne out by the fact that, despite active attempts to the contrary, block-party riots did, in
fact, erupt several times over the course of the Spring 2002 academic quarter at the Ohio State University.

The second reason to reserve judgment as to whether intuitive prosecutors may rely on biased memory is that the current intuitive prosecutor mindset manipulation did not elicit more anger from participants than the control manipulation. As explained earlier, Tetlock and colleagues (e.g., Goldberg et al., 1999) posit that anger fuels the intuitive prosecutor mindset. More recent work by Rucker, Polifroni, and Tetlock (2002) suggests that the intuitive prosecutor mindset may take two forms, one stemming from a more emotional reaction (anger), and the other from a more cognitive reaction (perceived injustice) that is only accompanied by a weak emotional reaction. The exact nature of this latter mindset is as yet unexplored, but the current intuitive prosecutor induction does seem driven more by cognitive than emotional reactions. It may be the case that this more cognitive process does not rely on biased memory, whereas the more affective mindset does.

Theoretical Implications

The current research is generated from the hypothesis that “intuitive prosecutors will play favorites only when they can generate convincing justifications that they have not done so” (Tetlock, 2002, p. 462). A reasonable extension of this argument is that intuitive prosecutors may use memory as “convincing justifications” for their punitive judgments when they have access to extensive information about the target of their judgments.

Such memory-based justifications could result from a bias at one (or more) of three stages of person memory: The encoding stage, the retrieval stage, or the reporting
stage (what participants purposely express in recall protocols). Wyer and Srull (1986) suggest that social judgments may drive information-seeking behaviors. However, it is unclear whether Wyer and Srull refer to information seeking at the encoding stage or only at the retrieval stage. Tetlock’s hypothesis regarding the sensitivity of intuitive prosecutors to “convincing justifications” leaves open the possibility of a response bias: So long as intuitive prosecutors report that a target engaged in more norm-violating than norm-supporting behaviors, they have provided evidence (“convincing justifications”) that the target is deserving of harsh judgment. Although the first experiment suggests that some sort of memory bias may, in fact, occur for intuitive prosecutors in their quest for convincing justifications, the second experiment failed to replicate this effect, and so failed to provide evidence for the stage at which any potential effect may occur.

Despite the intuitive connection between memory and judgment (cf. Klein et al., 2002), the relationship between these two cognitive processes is fickle. Hastie and Park (1986) have argued that, more often than not, social judgment will not be based on memory. This observation was incorporated into Wyer and Srull’s (1986) model of social cognition, but more fully and directly explored by Hastie and Park (1986) in a series of experiments looking at the correlations between memory and judgment. They determined that significant relationships between memory and judgment tend to occur only for memory-based judgments, but not for online judgments. They also suggested that memory-based judgments are relatively rare, and that most social judgments are spontaneous, i.e., online. Therefore, most investigations of the relationship between memory and judgment should, at best, produce unreliable and weak correlations.
However, Hastie and Park suggested that “probably the most reliable method to produce memory-based judgments is to surprise [participants] with a novel judgment that is unlikely to be preceded by a relevant online judgment” (p. 262). The current research attempted to satisfy this criterion by creating a series of ostensibly unrelated experimental tasks; informal feedback from participants suggested that this cover story was believed. Since the experimental materials were designed to eliminate any direct connection between block party rioting and targets, judgments of likelihood to riot and responsibility for rioting should have been unexpected, and therefore memory-based. This dissociation was strengthened by the fact that the target was not described as having attended or participated in a riot prior to the judgment task, thereby reducing the likelihood of a \textit{a priori} spontaneous inferences driven by stimulus properties or target behavior (Hastie & Park, 1986). However, it is the case that at least some participants recognized the connection between the mindset manipulation and the target information, and proceeded to judge the target on his potential participation in the riot. Many more may have made the connection, and made spontaneous, online judgments, without necessarily reporting having sensed the connection between the block-party riots and the target. These online judgments would not have exhibited strong or reliable correlations between memory and judgment, consistent with the findings of both Experiments 1 and 2.

Nonetheless, Hastie and Park (1986) do suggest that goals or motivations may create a unique situation in which participants may engage in spontaneous goal-related inferences even in the absence of inference-promoting stimuli. If Hastie and Park (1986) are correct in their suppositions, then the intuitive prosecutor mindset should not produce any memory bias. Instead, intuitive prosecutors may jump to an inference about the
responsibility of a target for any social culpability in the environment without first consulting memorial representations of target behavior.

Such a possibility seems unlikely for two reasons. First, at the theoretical level, Tetlock (2002) argues that intuitive prosecutors are guided by a sense of subjective fairness and commitment to procedural justice. A memory-based justification for overly-harsh judgments seems a natural and appropriate extension of the intuitive prosecutor motivational framework, and is consistent with Klein et al.’s (2002) understanding of the function of memory structures. This perspective is also theoretically consistent with Kunda’s (1990) analysis of motivated reasoning, in which she also posits that “people do not seem to be at liberty to conclude whatever they want to conclude merely because they want to. Rather…people [who are] motivated to arrive at a particular conclusion attempt to be rational and construct a justification of their desired conclusion that would persuade a dispassionate observer (pp. 482-483). Biased memory for goal-congruent information would certainly fulfill this type of justification.

Second, at the empirical level, there exists evidence (albeit limited) that motivated judgments can produce corresponding memory effects. Ross and Sicoly (1979), for example, found a reliable correlation between memory and judgments of responsibility across five experiments in which judgments were made in a self-esteem-maintaining way. They interpreted their data to support a biased (confirmatory) retrieval effect rather than a biased encoding effect. Similar evidence for biased retrieval has been produced by Markus and Kunda (1986) and by Sanitioso, Kunda, & Fong (1990). A similar process may be at work within the motivated mindset of the intuitive prosecutor.
The mixed results from the current research make it impossible to draw any firm conclusions. The pattern of data from the first experiment is suggestive that, in disagreement with Hastie and Park’s (1986) intuitions, goal-directed processing may produce memory-judgment correlations. The pattern of data from the second experiment casts such a hypothesis in doubt, and supports Hastie and Park’s prediction. Since the second experiment has a number of unexpected results (e.g., increased happiness for intuitive prosecutors, null Behavior x Profile interaction for post-recall accountable participants), it may be even more difficult to generalize from Experiment 2 than from Experiment 1. However, the robust expectancy-incongruency effect exhibited in Experiment 2 and lack of any evidence for biased memory seem consistent with Hastie and Park’s (1986) predictions. Although prior research has shown that self-serving biases are successful in creating memory biases that correlate with related self-serving judgments, the current research suggests that other types of motivational mindsets drive biased judgments without affecting memory (encoding, retrieval, or reporting) for relevant information.

Future Directions

There were a number of unexpected effects in the second experiment that suggest that an additional attempt to explore potential memory biases resulting from an intuitive prosecutor mindset may be productive. As described above, the content of the manipulation itself may have lost its effect over time. Furthermore, the surprising null Behavior x Profile interaction for post-recall accountable participants violates the expectancy-incongruency effect. This suggests that at least some participants were responding to the experimental stimuli in an unpredictable fashion, deviating from the
typical person memory effects reported by Srull and Wyer (1989), and of those replicated in the current research. A conceptual replication of Experiment 2 could address these shortcomings by altering the content of the mindset manipulation.

A conceptual replication of Experiment 2 could also provide an opportunity to explore potential differences between the “classic” emotional intuitive prosecutor (cf. Goldberg et al., 1999) and the recently identified cognitive intuitive prosecutor (cf. Rucker et al., 2002).

Although the data were mixed, this research is a first attempt to explore the memory underpinnings of biased judgments. It may be the case that biased judgments, such as those produced by intuitive prosecutors, do not actually result from biased memory, and do not motivate people to report memories in a biased manner, either. However, this should not be assumed true for all biased judgments, as the evidence reviewed above suggests that self-serving judgments are often correlated with correspondingly biased memory (cf. Ross & Newby-Clark, 1998). An exploration of potential memory effects that co-occur with biased judgments, such as the Fundamental Attribution Error, may be instructive in understanding the role memory plays in influencing and justifying such judgments to those making and perceiving the biased judgments.
LIST OF REFERENCES

Hastie, R., & Park, B. (1986). The relationship between memory and judgment depends on whether the judgment task is memory-based or on-line. Psychological Review, 93(3), 258-268.

87

APPENDIX A

MINDSET MANIPULATION
Control (Non-Intuitive Prosecutor) Mindset

Thank you for coming today to participate in this research. This first research project is sponsored by the Office of Student Affairs, the Office of Campus Safety, and the Columbus Department of Police. Participation is completely voluntary. By clicking Continue below, you consent to share your responses, in aggregate, with these organizations. If you have any questions, please ask the experimenter now. Otherwise, please click Continue to begin.

As I'm sure you've heard, the OSU community was terrorized most weekends of the Spring 2001 quarter by student rioting. Thousands of students attended late-night 400-keg parties, and riots broke out repeatedly after 1 AM each night. These riots posed a serious threat to life, and caused severe property damage and personal injuries. The OSU administration and city officials worked together to put a stop to these riots. Block party hosts worked with the student government and the OSU administration to put in place preventative measures, and several potential riots were averted through these efforts. As a result, the university and the city are developing preventative measures that will make sure that those quarter's events are never repeated at any another university in the State of Ohio.

As you probably know, the riots were violent, criminal, and dangerous. Crisis analysts as well as general consensus indicates that these post-party riots are NOT LIKELY to continue next Spring. A number of unique variables influenced the rioting during that quarter. For one, OSU had just announced its intent to introduce the largest proportionate tuition increase in its history, and many students were fearful and angry.
Also, many bars in the area had recently closed down, so that the block parties were two-to three-times as large as usual. Party hosts were unprepared for such turnouts.

The riots threatened large sections of the OSU community, and will likely have long-term effects for OSU students. The city's Department of Transportation was forced to eliminate parking in busy near-campus student housing areas, and may do so again in the Spring of 2002 as a preventative measure. Landlords have had to increase rent to balance the economic damage from last Spring’s riots. Landlords have also begun to initiate a zero-tolerance rule, where any party that gets "too rowdy" may be grounds for eviction. Many students have complained that the quality of life on campus and in the surrounding area has disintegrated as a result of these block-party riots.

Most importantly, the image of OSU has been severely tarnished. In the recent College Board annual analysis of public universities, OSU jumped from the 23rd “best party school” to the 8th-best. Parents don't want their kids going to OSU, knowing that OSU is unable to maintain social order and that their kids could get caught in the middle of the violence. This results in a decrease in the academic quality of the student body, as qualified students leave for better schools. Also, employers don't want to hire OSU graduates for fear that they are rowdy, violent, and disrespectful of authority. The value of an undergraduate degree from OSU decreases markedly with each riot, even at a time when OSU is compelled to dramatically increase undergraduate tuition.

Through careful coordination between the administration and the student body, OSU was able to identify the vast majority of rioters. These rioters were held responsible for the riots; rioters were subject to the OSU Student Code of Conduct, and were severely punished by both OSU and the City of Columbus. Over 90% of the rioters were
identified and subject to fines, jail time, and academic dismissal. The best available evidence from attitude surveys conducted late last Spring and over the Summer indicates that students are unsympathetic to the rioters, and are eager to prevent block-party riots from erupting again next Spring.

Intuitive Prosecutor Mindset

Thank you for coming today to participate in this research. This first research project is sponsored by the Office of Student Affairs, the Office of Campus Safety, and the Columbus Department of Police. Participation is completely voluntary. By clicking Continue below, you consent to share your responses, in aggregate, with these organizations. If you have any questions, please ask the experimenter now. Otherwise, please click Continue to begin.

As I'm sure you've heard, the OSU community was terrorized most weekends of the Spring 2001 quarter by student rioting. Thousands of students attended late-night 400-keg parties, and riots broke out repeatedly after 1 AM each night. These riots posed a serious threat to life, and caused severe property damage and personal injuries. The OSU administration and city officials worked furiously to put a stop to these riots, but to no avail. Block party hosts worked with the student government and the OSU administration to put in place preventative measures, but they simply failed to prevent the riots. As a result, the university and the city are investigating ways to make sure that those quarter's events are never repeated.

As you probably know, the riots were violent, criminal, and dangerous. Crisis analysts as well as general consensus suggests that these post-party riots are LIKELY to continue next Spring, despite efforts to the contrary. Several initiatives by the OSU
administration and by the student government failed to curb the riots. OSU extended its Student Code of Conduct to off-campus activities, and increased the penalties for violating the Code. Nonetheless, the riots continued, and almost no rioters were caught or punished.

The riots threatened large sections of the OSU community, and will likely have long-term effects for OSU students. The city's Department of Transportation was forced to eliminate parking in busy near-campus student housing areas, and may do so again in the Spring of 2002 as a preventative measure. Landlords have had to increase rent to balance the economic damage from last Spring’s riots. Landlords have also begun to initiate a zero-tolerance rule, where any party that gets "too rowdy" may be grounds for eviction. Many students have complained that the quality of life on campus and in the surrounding area has disintegrated as a result of these block-party riots.

Most importantly, the image of OSU has been severely tarnished. In the recent College Board annual analysis of public universities, OSU jumped from the 23rd “best party school” to the 8th-best. Parents don't want their kids going to OSU, knowing that OSU is unable to maintain social order and that their kids could get caught in the middle of the violence. This results in a decrease in the academic quality of the student body, as qualified students leave for better schools. Also, employers don't want to hire OSU graduates for fear that they are rowdy, violent, and disrespectful of authority. The value of an undergraduate degree from OSU decreases markedly with each riot, even at a time when OSU is compelled to dramatically increase undergraduate tuition.

Despite careful coordination between the administration and the student body, OSU was unable to identify the vast majority of rioters. Less than 10% of rioters were
actually caught, and all of the rioters who were caught were let off on legal technicalities.

Neither OSU nor the City of Columbus was able to punish those responsible for the Spring 2001 block-party riots. The best available evidence from attitude surveys conducted late last Spring and over the Summer indicates that there is a hard-core group of students who are sympathetic to the rioters and eager to do it again next Spring. These students realize that the police can’t even catch them, and that the few who are caught are guaranteed to be let off on a technicality. Many were themselves rioters last Spring, who got to experience first-hand how easy it was to deface property, flip cars, and pelt police with beer bottles, all without punishment or even reprimand. They feel that there are no real consequences for themselves, and are unconcerned about the consequences for the rest of the OSU community. This hard-core group of rioters are certain that they can enjoy the thrill of violent riots next Spring, terrorize the OSU community, and not worry about being caught or punished. They find it particularly funny that despite all the effort put into riot prevention by student government, the OSU administration, and the Columbus Department of Police, that there is not a single thing that can be done to prevent them from rioting next Spring.
APPENDIX B

MINDSET MANIPULATION CHECKS
How serious do you consider last Spring’s block-party riot to be?

How serious of a threat do you consider potential block-party rioting next Spring?

How likely were last Spring’s riots to occur, given the situational circumstances?

How likely are riots to occur this coming Spring?

How often do block-party rioters go unpunished?

How important is it to try to punish rioters, even at the expense of spectators?

How important is it make sure not to punish riot spectators, even at the expense of letting rioters go unpunished?
APPENDIX C

EXPECTANCY MANIPULATION: TARGET PROFILES
Responsible Profile

Below is a brief description of an OSU student, John F. This description is based on information provided by seven of his classmates, one of his roommates, and two of his childhood acquaintances. Please read this description of John F.

Name: John F.
Sex: Male
Race/Ethnicity: Caucasian
Occupation: Student, OSU
Duration at current occupation: Three years
Prior arrests: None
Prior convictions: None

Personality profile: Based on information provided by 11 acquaintances of John F. (references attached), John F. seems to be upstanding, friendly, and responsible. To date, John F. has not been involved in any prior criminal activity. John F. maintains an acceptable academic record, with no indication of academic reprimand. He has participated in several community charity events, and one peaceful demonstration. John F. enjoys fraternity parties, and is part of a rotation of designated drivers with his friends where he is the designated driver for one out of every seven parties.

Irresponsible Profile

Below is a brief description of an OSU student, John F. This description is based on information provided by seven of his classmates, one of his roommates, and two of his childhood acquaintances. Please read this description of John F.

Name: John F.
Sex: Male
Race/Ethnicity: Caucasian
Occupation: Student, OSU
Duration at current occupation: Three years
Prior arrests: 3
Prior convictions: 0

Personality profile: Based on information provided by 11 acquaintances of John F. (references attached), John F. seems to be aggressive, cynical, and irresponsible. To date, John F. has been involved in three known prior criminal activities. John F. maintains an acceptable academic record, with one academic reprimand for suspected cheating. He has participated in at least one bar fight during the past academic year, and has outstanding tabs at three local bars. John F. enjoys fraternity parties, and has on several occasions required an escort home because of his intoxication.
Irresponsible Behaviors:

Told his roommate he would be out partying past 2am
Flipped off a driver that he cut off because he felt that the other driver was going too slow
Decided to blow off a study group and go to a bar instead
Didn't return 2-week overdue library books
Had a couple of beers while he was the designated driver
Parked in a handicap space even though there were regular spots available
Smashed a beer bottle on the ground after he finished drinking it
Purchased beer for a local high school student

Responsible Behaviors:

Helped a young mother pick up her groceries off the sidewalk when her bag ripped
Found that he had received extra change from a cashier and returned to the store to return the surplus
Wished a police officer a good day as he walked by
Agreed to participate in a charity marathon
Currently volunteers in the Big Brother program
Cleaned out his closet to find stuff to donate to the Kidney Foundation
Volunteered to be a tour guide for OSU Freshman Orientation
Turned in a wallet to the police without taking any cash first
Neutral Behaviors:

Attended a paid psychology experiment

Bought a can of soda on his way to class in the morning

Came home and watched some television

Stopped in a McDonalds to grab a bite to eat
Based on interviews with students who were spectators of these block-party riots, the Office of Campus Safety has identified several characteristics that are common among rioters. First, these individuals attend block parties with the goal of getting drunk. Second, these rioters plan to stay past 1 AM, knowing that riots are likely to occur after that time. Third, rioters know which block parties are likely to erupt into riots: The Chittenden and Norwich block parties consistently turned violent after 1 AM or so throughout the Spring 2001 quarter. Rioters plan to attend these block parties. Rioters have also displayed a clear lack of respect for other people's personal property, and are willing to damage vehicles and other property. Also, rioters tend to be upper-classman.

John F. did, in fact, attend at least one of the block parties last Spring that developed into a riot. It is unclear whether or not he actually participated in the rioting, or whether John F. was only a spectator. We would like you to judge the likelihood of events that evening. Please answer each of the following questions on the scale provided.

1. How likely is John F. to have participated in the block-party riot?
2. How likely is John F. to enjoy violent riots?
3. How likely is John F. to have behaved recklessly during the riot?
4. How likely is John F. to have been in complete control of his actions during the riot?
5. How likely is John F. to be responsible for property damage at the block-party riot?
6. From John F.’s perspective, how foreseeable was it that the block party would turn into a riot?
7. To what extent did John F. intend to attend a riot?
8. How freely did John F. choose to attend the riot?

9. How likely is it that influences outside of John F.’s control lead John to attend the riot?

Now, please assume that John F. was, in fact, an active rioter.

10. How likely is John F. to have behaved recklessly during the riot?

11. How likely is John F. to have been in complete control of his actions during the riot?

12. From John F.’s perspective, how foreseeable was it that the block party would turn into a riot?

13. To what extent did John F. intend to riot?

14. How freely did John F. choose to riot?

15. How likely is it that influences outside of John F.’s control lead John to participate in the riot?

16. How likely is John F. to have caused property damage at the block-party riot?

17. How severe is the property damage inflicted by John F. during the riot?

18. Please provide a dollar estimate of how much damage John F. probably did during his rioting: $__________

19. How responsible is John F. for his actions?

20. How much to blame is John F. for participating in the riot?

21. How blameworthy is John F. for rioting?

22. How accountable is John F. for rioting?

23. How likely is it that John F. knew that he would have the opportunity to riot?
24. Compared to other rioters, how likely is it that John F. planned to riot?

25. How likely is John F. to enjoy violent riots?

Punishment

26. How severely should John F. be punished for his rioting?

27. How severely should John F. be punished relative to other rioters?

28. On a scale ranging from the minimum possible punishment by law to the maximum punishment by law, to what extent should John F. be punished?

29. To what extent should John F. be held financially responsible for any damage to personal property he inflicted during the riot? _______%

30. To what extent should John F. be held financially responsible for any damage to personal property others near him inflicted during the riot? _______%

31. To what extent should extenuating circumstances be taken into account when punishing John F.?

32. To what degree do you believe that John F. will be appropriately punished?

33. To what degree do you believe that justice will be served in punishing John F.?

34. To what degree do you think John F. will participate in future block-party riots?
APPENDIX F

ACCOUNTABILITY INDUCTION
Please enter the last 5 digits of your Social Security Number:

Please enter your complete name:

Please enter your primary email address (as used through the REP system):

Thank you. For the remainder of the various tasks you will complete as part of this research, you will need to explain your responses to each task in an essay at the end of this research session. You may also be asked by the experimenter to provide an oral explanation of your judgments, which may be recorded. Please type in your initials here to verify that you authorize the experimenter to tape record your oral explanation:
Thank you for coming in today and participating in this research. As you may have guessed, several of the research tasks were, in fact, related to one another. Specifically, the news story and profile were related, to determine what effect such stories have on judgments of other, seemingly random people.

When you began the experiment, you read a news clipping about crime. Although the article was modeled on a real news article, its contents were inaccurate, and developed for the purpose of today’s research. People are exposed to news stories on crime many times a day. They often paint a picture of danger and despair, a total lack of social order. We are interested in understanding how such reporting affects the way we see the world. More specifically, we are interested in understanding how people attribute fault for accidents, and make judgments of liability and punishment. We hypothesize that believing news reports that social order has deteriorated leads people to be more harsh in these judgments. (In the present research, the target, John F., was actually fictional for the purpose of exploring your responses.) Furthermore, we think that these judgments are based on selective memory for events that have occurred. You provided several judgments and recalled behaviors in the course of this research, and these will be analyzed to see if our predictions are supported.

We told you that the experimental tasks were unrelated to make sure that you did not specifically penalize John F. for the OSU Spring 2001 riots. Since our hypothesis is that a perceived breakdown in social order leads to a generalized increase in punitiveness and selective memory for negative behaviors, it was important to make John F. seem unrelated to the breakdown in social order. Furthermore, we developed two versions of the OSU riots report. In one, the riots were depicted as a resolved thing of the past; in the
other, the riots were depicted as an ongoing problem for the OSU community. These versions served to make participants feel that there either was or wasn’t a breakdown in the social order. We expect that participants who read the report suggesting that the riots are an ongoing problem will sense a breakdown of social order, and remember more negative behaviors that John F. performed, and be more punitive toward him. Accurate information about the riots may be obtained from the Office of Student Affairs at http://www.osu.edu/units/stuaff/assessment/riots.htm

In the course of this experiment, you may have been asked to submit personally identifying information. The purpose of this was to lead you to pay more attention to your responses, and such information was not recorded at all. In fact, all of the data you provided today were recorded anonymously. The attendance taken will not be related to your responses, and will only be used for REP crediting purposes. If you have any questions about any aspect of this research, or are interested in getting involved in research, please see the experimenter, or email shakarchi.1@osu.edu. You may also contact the Principal Investigator, Marilynn Brewer, at brewer.64@osu.edu.
APPENDIX H

EXPERIMENT 2 RECALL RATES FOR POSITIVE AND NEGATIVE BEHAVIORS
SPLIT BY ACCOUNTABILITY AND PROFILE
<table>
<thead>
<tr>
<th>ACCOUNTABLE</th>
<th>PROFILE</th>
<th>BEHi</th>
<th>Mean</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Responsible</td>
<td>Negative</td>
<td>.578</td>
<td>.030</td>
<td>.518 - .637</td>
</tr>
<tr>
<td>None</td>
<td>Responsible</td>
<td>Positive</td>
<td>.443</td>
<td>.033</td>
<td>.379 - .507</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Negative</td>
<td>.513</td>
<td>.029</td>
<td>.457 - .569</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Positive</td>
<td>.550</td>
<td>.031</td>
<td>.490 - .610</td>
</tr>
<tr>
<td>Pre-Exposure</td>
<td>Responsible</td>
<td>Negative</td>
<td>.598</td>
<td>.022</td>
<td>.554 - .641</td>
</tr>
<tr>
<td>Pre-Exposure</td>
<td>Responsible</td>
<td>Positive</td>
<td>.463</td>
<td>.024</td>
<td>.416 - .510</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Negative</td>
<td>.531</td>
<td>.022</td>
<td>.487 - .574</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Positive</td>
<td>.544</td>
<td>.024</td>
<td>.497 - .591</td>
</tr>
<tr>
<td>Post-Exposure</td>
<td>Responsible</td>
<td>Negative</td>
<td>.557</td>
<td>.025</td>
<td>.509 - .606</td>
</tr>
<tr>
<td>Post-Exposure</td>
<td>Responsible</td>
<td>Positive</td>
<td>.473</td>
<td>.026</td>
<td>.421 - .525</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Negative</td>
<td>.537</td>
<td>.023</td>
<td>.491 - .583</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Positive</td>
<td>.489</td>
<td>.025</td>
<td>.440 - .538</td>
</tr>
<tr>
<td>Post-Recall</td>
<td>Responsible</td>
<td>Negative</td>
<td>.619</td>
<td>.027</td>
<td>.565 - .672</td>
</tr>
<tr>
<td>Post-Recall</td>
<td>Responsible</td>
<td>Positive</td>
<td>.584</td>
<td>.029</td>
<td>.527 - .641</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Negative</td>
<td>.519</td>
<td>.028</td>
<td>.464 - .573</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>Positive</td>
<td>.521</td>
<td>.030</td>
<td>.462 - .579</td>
</tr>
</tbody>
</table>
APPENDIX I

EXPERIMENT 2 LIKELIHOOD SCALE MEANS
SPLIT BY ACCOUNTABILITY, MINDSET, AND PROFILE
<table>
<thead>
<tr>
<th>Accountability</th>
<th>Mindset</th>
<th>Profile</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Responsible</td>
<td>4.0523</td>
<td>.7537</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.5608</td>
<td>.7977</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3333</td>
<td>.8095</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>3.8986</td>
<td>.7763</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.6957</td>
<td>.8014</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.2971</td>
<td>.8780</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>3.9639</td>
<td>.7609</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.6313</td>
<td>.7932</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3135</td>
<td>.8429</td>
<td>84</td>
</tr>
<tr>
<td>Pre-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.1199</td>
<td>.6229</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.6125</td>
<td>.6274</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3694</td>
<td>.6687</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.1714</td>
<td>.8821</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.8268</td>
<td>.7915</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.4944</td>
<td>.8955</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.1446</td>
<td>.7533</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.7123</td>
<td>.7117</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.4285</td>
<td>.7838</td>
<td>146</td>
</tr>
<tr>
<td>Post-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.2181</td>
<td>.8174</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.4444</td>
<td>.4977</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3391</td>
<td>.6694</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.2593</td>
<td>.8313</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.9111</td>
<td>.6528</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.5948</td>
<td>.8087</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.2407</td>
<td>.8183</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.6919</td>
<td>.6264</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.4771</td>
<td>.7558</td>
<td>126</td>
</tr>
<tr>
<td>Post-Recall</td>
<td>Control</td>
<td>Responsible</td>
<td>4.3043</td>
<td>.6760</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.4293</td>
<td>.7420</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3654</td>
<td>.7038</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>3.7222</td>
<td>.8364</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.7200</td>
<td>.6254</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.2113</td>
<td>.8895</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>3.9955</td>
<td>.8124</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.5839</td>
<td>.6906</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.2836</td>
<td>.8074</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td>Control</td>
<td>Responsible</td>
<td>4.1746</td>
<td>.7049</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.5211</td>
<td>.6506</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3542</td>
<td>.6977</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.0427</td>
<td>.8539</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.8034</td>
<td>.7164</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.4231</td>
<td>.8740</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.1051</td>
<td>.7880</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irresponsible</td>
<td>4.6647</td>
<td>.6979</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3899</td>
<td>.7937</td>
<td>452</td>
</tr>
</tbody>
</table>
APPENDIX J

EXPERIMENT 2 RESPONSIBILITY SCALE MEANS
SPLIT BY ACCOUNTABILITY, MINDSET, AND PROFILE
<table>
<thead>
<tr>
<th>Accountability</th>
<th>Mindset</th>
<th>Profile</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Responsible</td>
<td>4.7647</td>
<td>.7069</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.1667</td>
<td>.7311</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4.9868</td>
<td>.7390</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.8315</td>
<td>.7002</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.3098</td>
<td>.7555</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.0707</td>
<td>.7597</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.8031</td>
<td>.6948</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.2415</td>
<td>.7388</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.0327</td>
<td>.7471</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Pre-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.9951</td>
<td>.7431</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.2356</td>
<td>.5930</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.1169</td>
<td>.6777</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>5.2750</td>
<td>.8292</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.3750</td>
<td>.7948</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.3243</td>
<td>.8080</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>5.1293</td>
<td>.7926</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.3005</td>
<td>.6928</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.2149</td>
<td>.7468</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>Post-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.9028</td>
<td>.8336</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.0161</td>
<td>.5778</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4.9634</td>
<td>.7042</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>5.2670</td>
<td>.8907</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.5786</td>
<td>.8414</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.4274</td>
<td>.8734</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>5.1031</td>
<td>.8774</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.3144</td>
<td>.7775</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.2138</td>
<td>.8300</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>Post-Recall</td>
<td>Control</td>
<td>Responsible</td>
<td>4.6576</td>
<td>.6903</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.1108</td>
<td>.5783</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4.8792</td>
<td>.6711</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.8870</td>
<td>.9284</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.4300</td>
<td>.7106</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.1532</td>
<td>.8652</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.7793</td>
<td>.8250</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.2806</td>
<td>.6469</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.0247</td>
<td>.7883</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Control</td>
<td>Responsible</td>
<td>4.8601</td>
<td>.7520</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.1383</td>
<td>.6121</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.0043</td>
<td>.6956</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>5.0994</td>
<td>.8606</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.4348</td>
<td>.7812</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.2671</td>
<td>.8372</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.9862</td>
<td>.8181</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td>5.2891</td>
<td>.7173</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5.1403</td>
<td>.7824</td>
<td>452</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX K

EXPERIMENT 2 PUNISHMENT SCALE MEANS
SPLIT BY ACCOUNTABILITY, MINDSET, AND PROFILE
<table>
<thead>
<tr>
<th>Accountability</th>
<th>Mindset</th>
<th>Profile</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Control</td>
<td>Responsible</td>
<td>4.5490</td>
<td>1.1483</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>5.0635</td>
<td>.8001</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.8333</td>
<td>.9917</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.3478</td>
<td>1.0273</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.5652</td>
<td>1.3869</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.4563</td>
<td>1.2118</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.3333</td>
<td>1.0707</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.8030</td>
<td>1.1599</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.6270</td>
<td>1.1270</td>
<td>84</td>
</tr>
<tr>
<td>Pre-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.6930</td>
<td>1.0466</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>5.0513</td>
<td>.8771</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.8754</td>
<td>.9749</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.8000</td>
<td>.9470</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.7353</td>
<td>1.0661</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.7681</td>
<td>1.0005</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.7443</td>
<td>.9946</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.9041</td>
<td>.9758</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.8242</td>
<td>.9851</td>
<td>146</td>
</tr>
<tr>
<td>Post-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.5432</td>
<td>1.0748</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.9785</td>
<td>1.0326</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.7759</td>
<td>1.0658</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.6667</td>
<td>1.4860</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.8476</td>
<td>1.1006</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.7598</td>
<td>1.2953</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.6111</td>
<td>1.3079</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.9091</td>
<td>1.0630</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.7672</td>
<td>1.1905</td>
<td>126</td>
</tr>
<tr>
<td>Post-Recall</td>
<td>Control</td>
<td>Responsible</td>
<td>4.2174</td>
<td>1.1174</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.9545</td>
<td>.8747</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.5778</td>
<td>1.0622</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.1154</td>
<td>1.4328</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.7200</td>
<td>1.2460</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.4118</td>
<td>1.3656</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.1633</td>
<td>1.2822</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.8298</td>
<td>1.0832</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.4896</td>
<td>1.2292</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td>Control</td>
<td>Responsible</td>
<td>4.5270</td>
<td>1.0848</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>5.0147</td>
<td>.8980</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.7798</td>
<td>1.0197</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td>4.5214</td>
<td>1.2597</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.7322</td>
<td>1.1722</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.6260</td>
<td>1.2187</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.5240</td>
<td>1.1776</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.8710</td>
<td>1.0538</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.7006</td>
<td>1.1285</td>
<td>452</td>
</tr>
</tbody>
</table>
APPENDIX L

EXPERIMENT 2 JUSTICE SCALE MEANS
SPLIT BY ACCOUNTABILITY, MINDSET, AND PROFILE
<table>
<thead>
<tr>
<th>Accountability</th>
<th>Mindset</th>
<th>Profile</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Control</td>
<td>Responsible</td>
<td>3.8824</td>
<td>1.8669</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.4048</td>
<td>1.2905</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.1711</td>
<td>1.5738</td>
<td>38</td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td></td>
<td>3.1957</td>
<td>1.3878</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.4130</td>
<td>1.6421</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.3043</td>
<td>1.5073</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>3.4875</td>
<td>1.6231</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.8864</td>
<td>1.5509</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.6964</td>
<td>1.5888</td>
<td>84</td>
</tr>
<tr>
<td>Pre-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.0526</td>
<td>1.4132</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.3590</td>
<td>1.3952</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.2078</td>
<td>1.4034</td>
<td>77</td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td></td>
<td>3.6571</td>
<td>1.3546</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.5000</td>
<td>1.1807</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.5797</td>
<td>1.2650</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>3.8630</td>
<td>1.3901</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.9589</td>
<td>1.3610</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.9110</td>
<td>1.3717</td>
<td>146</td>
</tr>
<tr>
<td>Post-Exposure</td>
<td>Control</td>
<td>Responsible</td>
<td>4.1667</td>
<td>1.2785</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.2581</td>
<td>1.2641</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.2155</td>
<td>1.2604</td>
<td>58</td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td></td>
<td>3.2424</td>
<td>1.4314</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.5571</td>
<td>1.1554</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.4044</td>
<td>1.2965</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>3.6583</td>
<td>1.4306</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.8864</td>
<td>1.2490</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.7778</td>
<td>1.3380</td>
<td>126</td>
</tr>
<tr>
<td>Post-Recall</td>
<td>Control</td>
<td>Responsible</td>
<td>4.5652</td>
<td>1.1707</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.1591</td>
<td>1.2188</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.3667</td>
<td>1.1985</td>
<td>45</td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td></td>
<td>3.6154</td>
<td>1.2191</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.2800</td>
<td>1.5075</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.4510</td>
<td>1.3648</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>4.0612</td>
<td>1.2773</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.6915</td>
<td>1.4354</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.8802</td>
<td>1.3626</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td>Control</td>
<td>Responsible</td>
<td>4.1667</td>
<td>1.4136</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>4.3009</td>
<td>1.2931</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>4.2362</td>
<td>1.3510</td>
<td>218</td>
</tr>
<tr>
<td>Intuitive Prosecutor</td>
<td>Responsible</td>
<td></td>
<td>3.4402</td>
<td>1.3537</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.4530</td>
<td>1.3342</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.4466</td>
<td>1.3411</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Responsible</td>
<td>3.7838</td>
<td>1.4264</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Irresponsible</td>
<td></td>
<td>3.8696</td>
<td>1.3784</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>3.8274</td>
<td>1.4013</td>
<td>452</td>
</tr>
</tbody>
</table>