Design of an Algae Harvesting Cable Robot, Including a Novel Solution to the Forward Pose Kinematics Problem

A thesis presented to
the faculty of
the Russ College of Engineering and Technology of Ohio University

In partial fulfillment
of the requirements for the degree
Master of Science

Noah J. Needler

August 2013

© 2013 Noah J. Needler. All Rights Reserved.
This thesis titled
Design of an Algae Harvesting Cable Robot, Including a Novel Solution to the Forward
Pose Kinematics Problem

by

NOAH J. NEEDLER

has been approved for
the Department of Mechanical Engineering
and the Russ College of Engineering and Technology by

Robert L. Williams II
Professor of Mechanical Engineering

Dennis Irwin
Dean, Russ College of Engineering and Technology
Abstract

NEEDLER, NOAH J., M.S., August 2013, Mechanical Engineering

Design of an Algae Harvesting Cable Robot, Including a Novel Solution to the Forward Pose Kinematics Problem

Director of Thesis: Robert L. Williams II

A cable robot system is proposed for implementation as an algae harvesting tool. The proposed system consists of four cables that run from four winches, up and over four adjustable towers, and meet at a point on the robot’s end-effector. The robot is to be controlled by a PID controller that controls all cables independently, but simultaneously. The research consists of robot kinematics/dynamics analyses, MATLAB simulation, and design.

In addition to providing a simplified method of solving the forward pose kinematics problem, this research shows that to minimize cable tension, the towers should be at least 1.5 times the maximum height of the end effector, which can be set by the operator. This result is verified by a simulation in which the tower heights are varied, showing a rapid decrease in tension as tower height increases. In addition, cable parameters are determined and four possible end effectors designs are proposed.
Dedication

This work is dedicated to Dr. Bob, world-class teacher and advisor.
Acknowledgments

The author would like to acknowledge the following for their support on this project:

Dr. Robert Williams, without his instruction and guidance this research would not have been possible, Dr. Hajrudin Pasic, whose constant encouragement was an inspiration, committee members Dr. David Bayless and Dr. Morgan Vis-Chiasson, whose feedback and flexibility were invaluable, Jesus Pagan, who provided valuable experience and information, and Dr. Sara Wiseman, for her patience, support, and love.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Dedication</td>
<td>4</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>8</td>
</tr>
<tr>
<td>List of Tables</td>
<td>10</td>
</tr>
<tr>
<td>1. Background</td>
<td>11</td>
</tr>
<tr>
<td>1.1 Algae</td>
<td>14</td>
</tr>
<tr>
<td>1.1.1 Cultivation</td>
<td>14</td>
</tr>
<tr>
<td>1.1.2 Harvest</td>
<td>15</td>
</tr>
<tr>
<td>1.1.3 Dewatering</td>
<td>16</td>
</tr>
<tr>
<td>1.1.4 Extraction</td>
<td>17</td>
</tr>
<tr>
<td>1.1.5 Other Uses</td>
<td>19</td>
</tr>
<tr>
<td>1.1.6 Current Interest</td>
<td>21</td>
</tr>
<tr>
<td>1.2 Cable Robots</td>
<td>22</td>
</tr>
<tr>
<td>1.2.1 Applications</td>
<td>22</td>
</tr>
<tr>
<td>1.2.2 Under-constrained vs. Fully-constrained</td>
<td>22</td>
</tr>
<tr>
<td>1.2.3 Method of Control</td>
<td>23</td>
</tr>
<tr>
<td>1.2.4 Current Interest</td>
<td>25</td>
</tr>
<tr>
<td>1.2.5 Proposed Cable Robot Design</td>
<td>25</td>
</tr>
<tr>
<td>2. Thesis Objectives</td>
<td>29</td>
</tr>
<tr>
<td>3. Analysis</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Definitions</td>
<td>30</td>
</tr>
<tr>
<td>3.2 Workspace</td>
<td>32</td>
</tr>
<tr>
<td>3.3 Kinematics</td>
<td>32</td>
</tr>
<tr>
<td>3.3.1 Inverse Pose Kinematics Analysis</td>
<td>32</td>
</tr>
<tr>
<td>3.3.2 Novel Forward Pose Kinematics Analysis</td>
<td>33</td>
</tr>
<tr>
<td>3.3.3 Velocity Kinematics Analysis</td>
<td>38</td>
</tr>
<tr>
<td>3.3.4 Resolved-Rate Control Solution</td>
<td>41</td>
</tr>
<tr>
<td>3.3.5 Acceleration Kinematics Analysis</td>
<td>41</td>
</tr>
<tr>
<td>3.3.6 Cable/Cable Reel Kinematics</td>
<td>42</td>
</tr>
<tr>
<td>3.4 Pseudostatics</td>
<td>43</td>
</tr>
<tr>
<td>3.4.1 Static Equilibrium</td>
<td>43</td>
</tr>
<tr>
<td>3.4.2 Forward Pseudostatics Solution</td>
<td>45</td>
</tr>
<tr>
<td>3.4.3 Inverse Pseudostatics Solution</td>
<td>45</td>
</tr>
<tr>
<td>3.4.4 Singularities</td>
<td>46</td>
</tr>
<tr>
<td>3.4.5 Cable Tension/Actuator Torque</td>
<td>46</td>
</tr>
<tr>
<td>3.4.6 Translational Stiffness</td>
<td>47</td>
</tr>
<tr>
<td>3.5 Dynamics</td>
<td>48</td>
</tr>
<tr>
<td>3.5.1 Dynamics Equations of Motion</td>
<td>49</td>
</tr>
<tr>
<td>3.5.2 Inverse Dynamics Solution</td>
<td>50</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Import dependency for the U.S.</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Lipid Extraction from algae biomass</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Processing for algae biomass</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Reclaiming fossil fuel emissions for use in biofuel production</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Feedback control loop block diagram</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Solid Edge model of the proposed algae harvesting cable robot</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Raceway pond</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Earthise farm pond cluster</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>Algae harvesting robot diagram, including nomenclature</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Diagram of the three-spheres approach</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>Free-body diagram of cable robot end effector</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>Cable tension/actuator statics free-body diagram</td>
<td>47</td>
</tr>
<tr>
<td>13</td>
<td>Dynamics free-body diagram</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>Single actuator/cable reel diagram</td>
<td>52</td>
</tr>
<tr>
<td>15</td>
<td>Actuator/cable reel free-body diagram</td>
<td>54</td>
</tr>
<tr>
<td>16</td>
<td>Single input, single output, negative feedback closed loop block diagram</td>
<td>57</td>
</tr>
<tr>
<td>17</td>
<td>MATLAB simulation of the proposed system</td>
<td>65</td>
</tr>
<tr>
<td>18</td>
<td>Center point snapshot simulation</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>Snapshot example at [40 -30 4]</td>
<td>67</td>
</tr>
<tr>
<td>20</td>
<td>End effector at the staging area for a 1 acre pond</td>
<td>68</td>
</tr>
<tr>
<td>21</td>
<td>End effector at a harvest location of [60 40 0]</td>
<td>68</td>
</tr>
<tr>
<td>22</td>
<td>Cable lengths as a function of time steps for a single harvest</td>
<td>69</td>
</tr>
<tr>
<td>23</td>
<td>End effector position as a function of time steps for a single harvest</td>
<td>69</td>
</tr>
<tr>
<td>24</td>
<td>Cable velocities as a function of time steps for a single harvest</td>
<td>70</td>
</tr>
<tr>
<td>25</td>
<td>Cable tensions as a function of time steps for a single harvest</td>
<td>70</td>
</tr>
<tr>
<td>26</td>
<td>Stiffness norm as a function of time steps for a single harvest</td>
<td>71</td>
</tr>
<tr>
<td>27</td>
<td>End effector at the start of a corner-to-corner trajectory</td>
<td>71</td>
</tr>
<tr>
<td>28</td>
<td>End effector at the end of a corner-to-corner trajectory</td>
<td>72</td>
</tr>
<tr>
<td>29</td>
<td>Cable lengths as a function of time steps for a corner-to-corner trajectory</td>
<td>72</td>
</tr>
<tr>
<td>30</td>
<td>End effector position as a function of time for a corner-to-corner trajectory</td>
<td>73</td>
</tr>
<tr>
<td>31</td>
<td>Cable velocities as a function of time for a corner-to-corner trajectory</td>
<td>73</td>
</tr>
<tr>
<td>32</td>
<td>Cable tensions as a function of time for a corner-to-corner trajectory</td>
<td>74</td>
</tr>
<tr>
<td>33</td>
<td>Stiffness norm as a function of time for a corner-to-corner trajectory</td>
<td>74</td>
</tr>
<tr>
<td>34</td>
<td>Scorpion® tower from Alumina Tower Company, Inc. [43]</td>
<td>76</td>
</tr>
<tr>
<td>35</td>
<td>Standard pond setup with a center point harvest and 10 ft towers</td>
<td>77</td>
</tr>
<tr>
<td>36</td>
<td>1 acre pond, center harvest, 100 lbm, 10 ft towers, and vertical lift</td>
<td>78</td>
</tr>
<tr>
<td>37</td>
<td>Standard pond setup with a center point harvest and 20 ft towers</td>
<td>79</td>
</tr>
<tr>
<td>38</td>
<td>1 acre pond, center harvest, 100 lbm, 20 ft towers, and vertical lift</td>
<td>79</td>
</tr>
<tr>
<td>39</td>
<td>Standard pond setup with a center point harvest and 30 ft towers</td>
<td>80</td>
</tr>
<tr>
<td>40</td>
<td>1 acre pond, center harvest, 100 lbm, 30 ft towers, and vertical lift</td>
<td>81</td>
</tr>
</tbody>
</table>
Figure 41: Standard pond setup with a [60 40] harvest and 10 ft towers 82
Figure 42: 1 acre pond, [60, 40] harvest, 100 lbm, 10 ft towers, and vertical lift 82
Figure 43: Standard pond setup with a [-130 -80] harvest and 10 ft towers 83
Figure 44: 1 acre pond, [-130, -80] harvest, 100 lbm, 10 ft towers, and vertical lift 84
Figure 45: 100’x100’ pond with a center harvest and 10 ft towers 85
Figure 46: 100’x100’ pond, center harvest, 100 lbm, 10 ft towers, and vertical lift 85
Figure 47: 1 acre pond, center harvest, 50 lbm, 10 ft towers, and vertical lift 86
Figure 48: 1 acre pond, center harvest, 200 lbm, 10 ft towers, and vertical lift 87
Figure 49: 1 acre pond, center harvest, 100 lbm, and varying tower height 88
Figure 50: 1 acre pond, center harvest, 50 lbm, and varying tower height 89
Figure 51: ½ acre pond, center harvest, 100 lbm, and varying tower height 90
Figure 52: 100’x100’ pond, center harvest, 100 lbm, and varying tower height 90
Figure 53: 10’x10’ pond, center harvest, 100 lbm, and varying tower height 91
Figure 54: Color plot of all four cables ... 93
Figure 55: Color plot of T1 for a 1 acre pond, 100 lbm load, with 10 ft towers 95
Figure 56: Color plot of T1 for a 1 acre pond, 50 lbm load, with 10 ft towers 96
Figure 57: Color plot of T1 for a ½ acre pond, 100 lbm load, with 20 ft towers ... 97
Figure 58: Solid Edge model of end effector design 1 .. 98
Figure 59: Solid Edge model of end effector design 2 .. 100
Figure 60: Solid Edge model of end effector design 3 .. 101
Figure 61: Solid Edge model of end effector design 4 .. 103
Figure 62: Solid Edge model of end effector design 5 .. 104
List of Tables

Table 1: Land area needed to replace transportation fuel consumption [6] 13
Table 2: Spectec-12 specifications [44] .. 94
1. Background

Due to the increased costs and limited availability of fossil fuels, in addition to environmental concerns, the race to obtain economically viable renewable energy sources has become a global issue. Since the 1950’s, energy consumption in the United States has increased dramatically, and the need for foreign importation has risen to meet the demand.

![Figure 1: Import dependency for the U.S. [1]](image)

For years, researchers have been experimenting with various sources of energy that can be produced locally. Many possible alternatives exist, each having both positive and negative aspects; some examples include nuclear, wind, solar, and hydroelectric energies.
Although nuclear energy has the potential for large scale power supply and is currently being used throughout the world, there are growing concerns about its safety. Nuclear accidents like Chernobyl, Three Mile Island, and Fukushima have left the world’s population questioning if there is something better, something safer. In addition to accidents, nuclear waste storage and processing has become an issue [2]. Existing power plants are running out of storage for spent fuel, and there is a growing concern about the possible use of nuclear waste to create weapons of mass destruction.

While wind, solar, and hydroelectric are popular options due to the fact that they are abundant and free, they have major drawbacks. The biggest dilemma with these energy sources is location. Not every area has large wind and solar availability, and dams must be built over active rivers. An additional drawback is energy storage. Especially concerning wind and solar, the source is not always available. Since the grid must maintain power at all times, the question arises as to how best store the energy produced.

An alternative source currently being heavily researched is the use of algal lipids and biomass to create biofuels and biomass [3]. Lipids are naturally occurring molecules that include fats, vitamins such as A, D, E, and K, and glycerides, among other organic materials. In fact, lipids serve as every biological organism’s energy storage system [4]. Biofuels, such as biodiesel, are fuels derived from biological sources. In fact, it has been reported that the biodiesel production from algae is ten to twenty times higher than production from vegetable oil [5]. Biomass is simply a burnable biological material, such as wood or grass.
Since algae are abundant, naturally occurring organisms that can be grown anywhere in the world, they are providing researchers with another option for natural energy. Unlike wind, solar, and hydroelectric power, algae can be produced anywhere and at any time. Therefore, energy storage and location are not limiting factors. Furthermore, algae are safe, allowing for safe waste storage and disposal. Also, compared to other plant sources of biodiesel, microalgae cultivation uses far less land area. See Table 1.

Table 1: Land area needed to replace transportation fuel consumption [6]

<table>
<thead>
<tr>
<th>Plant</th>
<th>Land area needed to replace transportation diesel consumption (km²)</th>
<th>Land area needed to replace sum of diesel and motor gasoline consumption (km²)</th>
<th>(% US land)</th>
<th>(% US land)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>12,166,420</td>
<td>45,917,664</td>
<td>133</td>
<td>501</td>
</tr>
<tr>
<td>Oat</td>
<td>9,640,060</td>
<td>36,382,849</td>
<td>105</td>
<td>397</td>
</tr>
<tr>
<td>Cotton</td>
<td>6,462,018</td>
<td>24,388,503</td>
<td>71</td>
<td>266</td>
</tr>
<tr>
<td>Soybean</td>
<td>4,704,349</td>
<td>17,754,830</td>
<td>51</td>
<td>194</td>
</tr>
<tr>
<td>Safflower</td>
<td>2,693,330</td>
<td>10,164,979</td>
<td>29</td>
<td>111</td>
</tr>
<tr>
<td>Sunflower</td>
<td>2,205,164</td>
<td>8,322,577</td>
<td>24</td>
<td>91</td>
</tr>
<tr>
<td>Peanut</td>
<td>1,982,170</td>
<td>7,480,968</td>
<td>22</td>
<td>82</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>1,764,131</td>
<td>6,658,061</td>
<td>19</td>
<td>73</td>
</tr>
<tr>
<td>Jojoba</td>
<td>1,154,536</td>
<td>4,357,370</td>
<td>13</td>
<td>48</td>
</tr>
<tr>
<td>Microalgae</td>
<td>120,831</td>
<td>456,032</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
1.1 Algae

Since the algal lipids are the basis for biofuel, the algae crop must have high lipid content. Algal lipid content varies from 15-75% dry weight, based on the algae being used [3]. In the case of biofuels, the higher the lipid content, the better the algae. *Botryococcus braunii*, one of many species, is heavily researched for biofuel production because it usually contains from 29-75% lipids by dry weight [7]. It also has the distinction of being the only species of microalgae that has lipids located outside its cell walls [8].

In order to retrieve the useful lipids from the algae, they must be harvested and dewatered, and the useful components must be extracted. In addition, they must be cultivated on a large enough scale to make the process economically feasible.

1.1.1 Cultivation

Current algae cultivation methods use photo-reactors and open ponds. Photo-reactors are closed systems that utilize photons to accelerate the naturally occurring algal growth. They can be illuminated naturally or artificially. Photoreactor types include: bubble column, airlift column, stirred tank, helical tubular, conical, torus, and seaweed bioreactors [9]. They are not open to the environment and therefore are less susceptible to contamination. In addition, they can lead to higher productivity due to that fact that since they are not open to the environment they can be strictly controlled [9]. Photo-bioreactors are generally limited to smaller-scale operations due to the equipment required and have a well-established harvest procedure, since all the algae can be pumped past a given point in the system that contains a harvest tool.
Open ponds are simply man-made ponds in which algae are grown. Some of the most commonly used open pond systems include: shallow ponds, tanks, circular ponds, and raceway ponds [9]. Currently, raceway ponds are the most common open pond system. Although more susceptible to contamination, these designs lend themselves better to large-scale, inexpensive operation. The largest advantage of raceway ponds are their simplicity, which results in lower construction and operation costs. One drawback due to the massive size of these ponds is the fact that algae are difficult to collect from them. Since open pond harvesting is the purpose of this research, it is discussed more thoroughly in a later chapter.

1.1.2 Harvest

Current harvesting methods include: the use centrifugation, flocculation, and froth flotation. Centrifugation methods use an impeller to separate the algae from the water via centrifugal force. This method rotates a harvest about an axis, which applies a perpendicular force toward the wall of the centrifuge. The centrifuge wall is porous enough to let the water pass through it, but not the algae. This action forces the water from the algae [10]. Flocculation is the process by which the algae are forced to come together in clumps. Current methods for achieving this are generally mechanical or chemical ones.

In the mechanical process, the algae are forced to group on a growth medium, such as a micro-screen. Micro-screens are simply mesh screens with a small enough mesh size that allows the water to pass while collecting the algae. While the size of individual microalga vary between 3μm and 30μm, studies have shown that polyester with a mesh
size of 1 mm is effective at removing 74% to 85% of the suspended algae [5, 11]. This is the method on which this research focuses.

During the chemical process, chemicals such FeCl₃, Al₂SO₄, Alum, Ca(OH)₂, chitosan, polyacrylamide or organic polyelectrolytes are added to the algae [5, 12]. These chemicals attached themselves to the algae in long chains, causing the algae to clump together [12]. Chemical means are currently the most effective method, but they are expensive and raise health concerns due to the addition of harmful materials and metals [11]. Once the algae are massed together, they are forced to the surface by passing gasses through the water, which pushes the clumps upwards. Once on the surface they can be harvested by skimming the surface of the water [13].

Froth flotation involves the use of an aerator which bubble air through a diffuser plate at the bottom of the algal growth vessel. This air causes the water to froth, which collects the suspended algae and brings it to the surface. After the algae have been surfaced, they can be skimmed from the surface, similar to the flocculation method. This method, while more inefficient, has the benefit of no harmful chemicals being added to the algal culture [14].

1.1.3 Dewatering

After harvesting the algae biomass, it must be dewatered by drying the biomass. The algae are generally dried either by exposing them to open-air, which can possibly introduce contaminants and is considered too slow for commercial applications, or by heated natural gas dryers, which allow for less contamination and an accelerated process.
This process accounts for 89% of the total energy input for traditional algal life cycles [15].

1.1.4 Extraction

Once dewatered, the lipids and sugars are extracted using methods including mechanical, chemical, and ultrasonic means.

Mechanical separation is the simplest method and consists of crushing the algae to release the oil. Since microalgae (excluding *Botryococcus braunii*) have lipids inside the cells, it is necessary to break the cell wall to extract the lipids [8]. Some mechanical methods used to break these cell walls include: bead mills, sonication, cavitation, and autoclaving [13].

The most common method for lipid extraction is by chemical separation, using polar solvents such as hexane, chloroform, petroleum ether, butanol, and methanol [16]. These solvents disrupt the hydrogen bonds and electrostatic forces between the proteins in the algae and the lipids inside of them, releasing the lipids for extraction [13].

Ultrasonic extraction works as follows: the algae are pumped into a “resonating chamber” which consists of a reflector and transducer. The chamber is precisely sized to create a standing wave. When turned on, regions of maximum and minimum energy are created. The lipid cells slowly gather into the nodes of the standing waves. When the ultrasonic wave is removed, the cells fall out of solution due to gravity. This method, although efficient, uses more energy than the other methods and has only been implemented in a laboratory setting [17]. Figure 2 shows a flowchart of the entire process.
These lipids are then converted to biofuels and other products. While biomass can simply be dried and burned like wood or coal, other products must be obtained by other means. Biodiesel is typically produced through a process called transesterification. The three main approaches to transesterification are catalyzed, acid catalyzed, and non-catalytic [13]. Transesterifications are reactions that occur between lipids and alcohols which produce esters and glycerol. Methanol is the alcohol typically used in these reactions, due to cost-effectiveness. The methyl esters released from this process are a large component of biodiesel.
Figure 3 shows a graphical representation of the options available at each step along the process chain, from cultivation to utilization.

![Graphical representation of algae biomass processing](image)

Figure 3: Processing for algae biomass [16]

1.1.5 Other Uses

As more researchers use these organisms, more uses are being found for them. In addition to *botryococcus braunii*, which contain hydrocarbons similar to the ones in oil deposits [7], other varieties are also being researched. Brown algae, which contain alginate, a natural polysaccharide, are being researched for use in the anodes of Li-Ion
batteries [18]. *Cyanobacteria*, another common species, can be used for many things, including the following [19]:

- photosynthesize and fix atmospheric nitrogen levels in rice fields
- food source for both humans and animals. In fact, one strain, *Spirulina*, has the highest protein content of any natural food (65%). Currently, 30% of all algae production is sold as animal feed
- pigments, where it can be found as a blue coloring in products such as gum, popsicles, candy, and soft drinks, as well as lipstick and eyeliner
- antibiotics and other pharmaceuticals due to their production of bioactive metabolites

In addition, research at M.I.T. has shown that bubbling exhaust gases from coal plants through algae can cut the CO$_2$ emissions dramatically. Feeding the algae filter from the smokestack and providing enough light for photosynthesis could help pave the way for cleaner air [20, 21]. One interesting suggestion for this research was to couple power plants to algae farms, feeding the algae CO$_2$ to produce biofuels. A schematic of the process can be found in Figure 4.
1.1.6 Current Interest

This paper focuses on the harvest of these organisms from open ponds. One promising method of harvest from these ponds is mechanical flocculation using polyester micro-screens. This method has great potential due to its low cost and low energy consumption. It does have the potential drawback of possible screen fouling, but this can be minimized with proper design. After the algae are collected, the harvest of these micro-screens is a problem without an obvious solution. It is for this reason that this research has been done on the potential use and benefits of cable robots for algal harvesting.

Figure 4: Reclaiming fossil fuel emissions for use in biofuel production [22]
1.2 Cable Robots

Cable robots are a type of robotic manipulator that consists of a mobile platform, or end effector, that is connected to cables whose lengths are controlled by winches or other means. Cable robot research has increased in recent years due to several advantages over traditional robot systems. In general, cable robot systems are cheaper and easier to build than conventional robots, can cover enormous workspaces, and can be made portable.

1.2.1 Applications

Cable robots can be configured in many different ways and, therefore, have been used for many applications. Some examples include material handling [23, 24], haptics, or robot controlled touch feedback [25, 26], the International Space Station [27], topography [28], large-scale construction [29], and even urban search and rescue [30]. The most famous example of cable robotics is probably the Skycam system being used at large sporting stadiums and other large public venues [31]. Skycam consists of a camera mounted to cables which are strung across the arena to multiple winches. These winches are controlled by one operator using a joystick. Operating the winches in tandem allows the camera to be positioned anywhere along the field of play to provide previously unattainable video feeds and photographs.

1.2.2 Under-constrained vs. Fully-constrained

Cable robots are generally placed in one of two categories, under-constrained and fully-constrained. In a fully constrained robot, the cables completely control the robot’s position and velocity, while in an under-constrained robot, once the end effector has
reached its desired location, there is the possibility of extra motion. In a fully-constrained robot, the position and velocity of the end effector can be fully determined using the active cable lengths. Historically, fully-constrained robots have been used in applications that require high precision, speed/acceleration, and stiffness (Skycam), while under-constrained robots have been proposed primarily for contour crafting type construction, as proposed by Williams et al [32].

1.2.3 Method of Control

The goal of any control system is to obtain a desired system response for a given input [33]. In this case, the cable lengths and velocities will be controlled to move the end effector to the desired location and perform its function. A common method for controlling system response is using a closed-loop, proportional-integral-derivative (PID) controller. In a closed-loop system, the system output is fed back to the controller input via a sensor, so that the system constantly adjusts itself until it achieves the correct response. A block diagram of this feedback control loop can be seen in Figure 5.

![Feedback control loop block diagram](image)

Figure 5: Feedback control loop block diagram [33]
PID controllers use three actions to accomplish desired system response: proportional action, integral action, and derivative action.

1.2.3.1 Proportional Action

A proportional controller is the simplest type of controller and acts proportionally to the current error from the feedback loop. Although simple, the main disadvantage of using a purely proportional controller is that it can create steady-state oscillations [33]. The transfer function for a proportional controller is as follows.

\[G_{\text{cp}}(s) = K_p \]

1.2.3.2 Integral Action

An integral controller acts proportionally to the integral of the control error. Integral action is related to the past values of the control error feedback [33]. An integral controller solves the problem of the steady-state error encountered with purely proportional controllers. Its transfer function is defined as follows.

\[G_{\text{ci}}(s) = \frac{K_I}{s} \]

1.2.3.3 Derivative Action

In contrast to proportional controllers which act based on the current error and integral controllers which act based on the previous errors, derivative controllers act based on the predicted error [33]. Its transfer function is shown below.

\[G_{\text{cd}}(s) = K_Ds \]

1.2.3.4 Combined Action

Although being able to predict the system response is good in theory, doing it in practice often leads to instability. It is for this reason that the actions are usually
combined to create the standard PID controller. This will be covered in a later section.

For now, the standard transfer function is:

$$G_c(s) = K_p + \frac{K_i}{s} + K_d s$$

1.2.4 Current Interest

Given the large area covered by algal ponds, and the necessity of high precision and stiffness, a fully-constrained cable robot has great potential for use in large-scale outdoor, algae harvesting farms. Some of these ponds cover multiple acres and some farms harvest from multiple ponds. One of the drawbacks to this type of farm is that the algae are often difficult to harvest from them due to the size of the ponds. Since cable robot systems are portable and have enormous workspaces, they lend themselves very well to this endeavor. Although several other fully-constrained cable robots exist \([26, 34, 35, 36]\), they are only practical for small-workspace applications due to the geometry of the cables and end effector. After researching the literature, no other fully-constrained cable robot system has been found or proposed for large-scale algae harvest.

1.2.5 Proposed Cable Robot Design

The proposed robot consists of a moving platform, suspended from four cables at its corners. Due to the large workspace and need for precise motion with high stiffness, a fully-constrained robot is preferred. This design allows for kinematic redundancy and enhanced stability. The cables run from the end effector to pulleys atop four towers along the pond's edge. Since the system needs to be easily moved from pond to pond, these towers will likely be mounted to trucks or trailers that can be easily moved into place and erected. The tower height must be variable to keep the pulleys at the same height. The
cables then run from the pulleys to four independent electric winches which reel the cable as the platform requires. A wireless system controls the four winches in tandem to control the end effector. The system will use a proportional-integral-derivative (PID) controller that controls cable velocities at discrete points along a trajectory in order to move the robot as desired. The end effector design will be discussed in a later section. Figure 6 shows a CAD model of such a system.

In reality, open-air algae ponds are rarely just one giant, open pond. Rather, most researchers using open ponds are currently using what is known as a “raceway” pond. A raceway pond consists of a shallow, racetrack-shaped channel through which water is moved using a paddlewheel. These channels are kept shallow to ensure sunlight penetration and minimize water handling. Typical raceway ponds have depths from 10-30
cm [37]. They can be scaled-up to virtually any size. The paddlewheel serves to move the water and keep the algae suspended in it. An example can be seen in Figure 7.

Figure 7: Raceway pond [38]

To achieve production level, multiple raceway ponds are grouped together to allow harvest in some ponds while others maintain growth. An example of this can be seen at Earthrise Farms in southeastern California. The farm covers 108 acres [39]. Figure 8 shows one of the pond clusters at the farm.
Since commercial production is already accomplished this way, it makes sense to design the harvest system around it. Mounting the cable suspended robot harvester at the four corners of a pond cluster makes it possible to automatically harvest mature algae communities while allowing others to grow. The robot can be programmed to harvest specific locations at specific times across the pond cluster. For the sake of simplicity, all simulations will be done assuming one pond, however, adaptation to multiple raceways is a simple matter.
The objective of this research is to incorporate a cable suspended robot harvesting system into the current method of growing algae across large, commercial, open ponds. This system will consist of four cables, which control the robot’s end-effector via four winches, which are controlled independently, but simultaneously. This research includes:

- Kinematic, pseudostatic, and dynamic modeling of the proposed system
- The introduction of a novel approach to solving the forward pose kinematic problem associated with cable robots
- Controller design proposal
- Robot design parameters, including:
 - Tower specification
 - Cable specification
 - Mobility
 - End effector suggestions
- MATLAB simulation, including examples
- Presentation of simulation results
3. Analysis

3.1 Definitions

In order to analyze this robot, it is necessary to establish frames and some standard nomenclature. For this research, the English system of units is used, i.e., ft, lbf, lbm, and sec. In this research, “ft” always stands for feet, “lbf” always stands for pounds-force, “lbm” always stands for pounds-mass, and “sec” always stands for seconds. The distinction between lbm and lbf must be noted here. “Lbm” is a unit of mass and “lbf” is a unit of force. The simulation can be adopted for use with the metric system via small alterations to the “define.m” MATLAB file. Figure 9 shows the variables chosen for this model. These variables will be referenced throughout this paper.

Figure 9: Algae harvesting robot diagram, including nomenclature
The base Cartesian reference frame is \(\{A\} \), where the origin is located in the center of the algae pond, at a height of zero. The coordinate axes \(X_A, Y_A, \) and \(Z_A \) are shown in the figure. The harvest point is \(P \). Since only position is being controlled with this robot, the orientation of the platform is identical to \(\{A\} \). A system can be added to point \(P \) to control the orientation of the end effector. The cables are numbered from one to four, clockwise from the lower left corner.

As shown in Figure 3, each cable is attached to a winch/reel at points \(A_i \). The cables pass over each telescoping tower at points \(P_i \), which share the same \(x \) and \(y \) coordinates as the pole bases, \(B_i \), and have the \(z \) coordinates, \(h_i \). The \(P_i \) coordinates in the \(\{A\} \) frame are:

\[
\begin{align*}
^A P_1 &= \begin{bmatrix} -L / 2 - \Delta X & W / 2 + \Delta Y & h_1 \end{bmatrix}^T \\
^A P_2 &= \begin{bmatrix} L / 2 + \Delta X & W / 2 + \Delta Y & h_2 \end{bmatrix}^T \\
^A P_3 &= \begin{bmatrix} L / 2 + \Delta X & -W / 2 - \Delta Y & h_3 \end{bmatrix}^T \\
^A P_4 &= \begin{bmatrix} -L / 2 - \Delta X & -W / 2 - \Delta Y & h_4 \end{bmatrix}^T
\end{align*}
\]

Where \(L \) and \(W \) are the rectangular dimensions of the pond, \(\Delta X \) and \(\Delta Y \) are the \(x \) and \(y \) offsets from the pond edges, and \(h_i \) are the support pole heights.

The cable lengths are \(L_i \), as measured from \(P_i \) to \(P \). This is the straight-line distance, and does not take into account the catenary sag caused by the cable weight and/or external forces.

This system has actuation redundancy since there are four cables controlling the robot in three Cartesian coordinates. This redundancy, along with gravity’s effect on the
end effector and load, is used to maintain cable tension at all times. This is central to the design due to the fact that cables can only be controlled using tension.

3.2 Workspace

In general, cable robot system workspaces are defined by two areas:

- Kinematic motion ranges and constraints, actuator limits, and cable interference
- Demanding that all workspace operations require only cable tension to maintain pseudostatic equilibrium

Cable interference will be eliminated by robot and controller design. Therefore, the workspace will be limited, in general, to the area enclosed by the four support poles since negative cable tension would be required to move outside the poles. In addition, cable tensions tend to increase exponentially as the end effector approaches the workspace boundaries, so the actual workspace is slightly smaller than the area enclosed by the poles.

3.3 Kinematics

3.3.1 Inverse Pose Kinematics Analysis

The first step in analyzing this system is to perform the inverse pose kinematics analysis. That is, given the position of the platform in the pond, determine the lengths of the cables. Finding the cable length L can be found by taking the norm of the difference between B_i and P_i in the $\{A\}$ frame. The equation is:

$$L_i = \|P_i - P\|$$

or:
\[L_i = \sqrt{(P_{ix} - x)^2 + (P_{iy} - y)^2 + (P_{iz} - z)^2} \]

3.3.2 Novel Forward Pose Kinematics Analysis

The forward pose analysis is much more difficult than the inverse pose analysis. The forward pose problem statement is: given the cable lengths, determine the position of the platform. This is a very challenging problem that requires the solution of coupled non-linear equations. However, a simplified method for solving the forward pose problem using the intersection of three spheres was proposed by R. L. Williams et al. in 2004 [34]. This approach involves setting the origins and radii of three spheres in the system and finding where the spheres intersect. In this case, the origins are at the \(B_i \) and the radii are \(L_i \). This problem is still moderately difficult to solve due to non-linear terms. The approach can be seen in Figure 10.

Figure 10: Diagram of the three-spheres approach
A novel approach to this problem is shown below.

This system can be radically reduced by setting $z_1 = z_2 = z_3$ as follows:

\[
\begin{align*}
(x-x_1)^2 + (y-y_1)^2 + (z-z_n)^2 &= r_1^2 \\
(x-x_2)^2 + (y-y_2)^2 + (z-z_n)^2 &= r_2^2 \\
(x-x_3)^2 + (y-y_3)^2 + (z-z_n)^2 &= r_3^2
\end{align*}
\]

Where x_n, y_n, z_n are the location of the tower tops and r_n are the cable lengths.

Multiplying these out and subtracting equation 3 from one and two, the remaining terms are:

\[
\begin{align*}
(-2x_1 + 2x_3)x + (-2y_1 + 2y_3)y + x_1^2 + y_1^2 - x_3^2 - y_3^2 &= r_1^2 - r_3^2 \\
(-2x_2 + 2x_3)x + (-2y_2 + 2y_3)y + x_2^2 + y_2^2 - x_3^2 - y_3^2 &= r_2^2 - r_3^2
\end{align*}
\]

or:

\[
\begin{align*}
ax + by &= c \\
dx + ey &= f
\end{align*}
\]

where:

\[
\begin{align*}
a &= -2x_1 + 2x_3 \\
b &= -2y_1 + 2y_3 \\
c &= r_1^2 - r_3^2 \quad - x_1^2 - y_1^2 + x_3^2 + y_3^2 \\
d &= -2x_2 + 2x_3 \\
e &= -2y_2 + 2y_3 \\
f &= r_2^2 - r_3^2 \quad - x_2^2 - y_2^2 + x_3^2 + y_3^2
\end{align*}
\]

It then becomes possible to solve for x and y, since they are the only unknowns, as z was eliminated in step one.

\[
x = \frac{ce - bf}{ae - bd}
\]
\[y = \frac{af - cd}{ae - bd} \]

Going back to the equation for the first sphere:

\[(x - x_1)^2 + (y - y_1)^2 + (z - z_n)^2 = r_1^2 \]

Since \(x \) and \(y \) are now known, the \(z \) component can be expanded. \(z \) can be solved for using the quadratic equation:

\[z^2 - 2z_nz + \left[z_n^2 + (x - x_1)^2 + (y - y_1)^2 - r_1^2 \right] = 0 \]

\[z = \frac{-g \pm \sqrt{g^2 - 4h}}{2} \]

Where:

\[g = -2z_n \]
\[h = z_n^2 + (x - x_1)^2 + (y - y_1)^2 - r_1^2 \]

This will yield two values of \(z \). It is easy to determine the correct \(z \), however, as one of the answers will invariably be above the height of the tower.

The unused sphere may be used to determine the accuracy of the solution by using the inverse pose solution to find \(L_i \) using the \(x, y, z \) values and comparing the results.

3.3.2.1 Example:

Let the tower positions be at the corners of a 200’x100’ rectangle, with a tower height of 10 ft, and a harvest location of \([50 \ 25 \ 0]\):

\[P_1 = \begin{bmatrix} -100 & -50 & 10 \end{bmatrix} \]
\[P_2 = \begin{bmatrix} -100 & 50 & 10 \end{bmatrix} \]
\[P_3 = \begin{bmatrix} 100 & 50 & 10 \end{bmatrix} \]
\[P_4 = \begin{bmatrix} 100 & -50 & 10 \end{bmatrix} \]
Using the IPK solution:

\[L_i = \sqrt{(P_{ix} - x)^2 + (P_{iy} - y)^2 + (P_{iz} - z)^2} \]

\[L_1 = 168.0030 \]
\[L_2 = 152.3975 \]
\[L_3 = 56.7891 \]
\[L_4 = 90.6918 \]

Therefore:

\[x_1 = -100 \]
\[y_1 = -50 \]
\[x_2 = -100 \]
\[y_2 = 50 \]
\[x_3 = 100 \]
\[y_3 = 50 \]
\[z_n = 10 \]
\[r_1 = 168.0030 \]
\[r_2 = 152.3975 \]
\[r_3 = 56.7891 \]
\[r_4 = 90.6918 \]

Following the FPK solution from above:

\[(x - (-100))^2 + (y - (-50))^2 + (z - (10))^2 = 168.0030^2 \]
\[(x - (-100))^2 + (y - (50))^2 + (z - (10))^2 = 152.3975^2 \]
\[(x - (100))^2 + (y - (50))^2 + (z - (10))^2 = 56.7891^2 \]

Therefore:

\[\left[-2(-100) + 2(100) \right] x + \left[-2(-50) + 2(50) \right] y + (-100)^2 + (-50)^2 + (-100)^2 + (50)^2 = 25000.0061 \]
\[\left[-2(-100) + 2(100) \right] x + \left[-2(50) + 2(50) \right] y + (-100)^2 + (50)^2 + (-100)^2 + (50)^2 = 1999.9961 \]

So:
So:

\[
x = \frac{25000 \times 0 - 200 \times 20000}{400 \times 0 - 200 \times 400} = 50.0000
\]

\[
y = \frac{400 \times 20000 - 25000 \times 400}{400 \times 0 - 200 \times 400} = 25.0001
\]

Going back to the equation for the first sphere:

\[
(50.0000 - (-100))^2 + (25.0001 - (-50))^2 + (z - 10)^2 = 168.0030^2
\]

\[
z^2 - 2(10)z + \left[10^2 + (150)^2 + (75.0001)^2 - 168.0030^2\right] = 0
\]

\[
z^2 - 20z + 0.0070 = 0
\]

Solving for \(z\):

\[
z = \frac{20 \pm \sqrt{400 - 4 \times 0.0070}}{2}
\]

\[
z_+ = 19.9996
\]

\[
z_- = -0.0002
\]

\(z_+\) is above the top of the tower and can be dismissed and \(z_-\) is very nearly zero.

The slight deviation from zero can be eliminated by using more significant figures. This result verifies the harvest position of \([50 \ 25 \ 0]\). As a further verification, the unused equation for the fourth cable, \((x - x_4)^2 + (y - y_4)^2 + (z - z_n)^2 = r_4^2\) can be used to check the results.
\[(x - x_4)^2 + (y - y_4)^2 + (z - z_n)^2 = r_4^2\]
\[(50.0000 - 100)^2 + (25.0001 - (-50))^2 + (-0.0002 - 10)^2 = r_4^2\]
\[2500 + 5625 + 100.0040 = r_4^2\]
\[r_4 = 90.6918\]

Which is the correct length for the fourth cable.

3.3.3 Velocity Kinematics Analysis

The algae harvesting cable robot velocity kinematics analysis makes use of the inverse pose solution, which is rewritten below, in its entirety.

\[L_i = \sqrt{(P_{ix} - x)^2 + (P_{iy} - y)^2 + (P_{iz} - z)^2}\]

3.3.3.1 Inverse Velocity Kinematics Analysis

The inverse velocity kinematics problem is as follows: given the robot’s pose and the desired velocity of the center of the platform, calculate the four cable rates.

The velocity equations come from the time derivative of the previous equation.

\[\dot{L}_i = \frac{\partial L_i}{\partial t} = \frac{\partial L_i}{\partial x} \frac{dx}{dt} + \frac{\partial L_i}{\partial y} \frac{dy}{dt} + \frac{\partial L_i}{\partial z} \frac{dz}{dt}\]

Where:

\[\frac{\partial L_i}{\partial x} = \frac{x - P_{ix}}{\sqrt{(P_{ix} - x)^2 + (P_{iy} - y)^2 + (P_{iz} - z)^2}}\]
\[\frac{\partial L_i}{\partial y} = \frac{y - P_{iy}}{\sqrt{(P_{ix} - x)^2 + (P_{iy} - y)^2 + (P_{iz} - z)^2}}\]
\[\frac{\partial L_i}{\partial z} = \frac{z - P_{iz}}{\sqrt{(P_{ix} - x)^2 + (P_{iy} - y)^2 + (P_{iz} - z)^2}}\]
Therefore:

\[
\dot{L}_i = \frac{x-P_{ix}}{L_i} \dot{x} + \frac{y-P_{iy}}{L_i} \dot{y} + \frac{z-P_{iz}}{L_i} \dot{z}
\]

This can be written in the form:

\[
\{\dot{L}\} = \left[^A{J} \right] \{^A\dot{P}\}
\]

Where \(^A{J} \) is the Jacobian matrix and \(\{^A\dot{P}\} \) is the velocity pose [40].

or:

\[
\begin{bmatrix}
\dot{L}_1 \\
\dot{L}_2 \\
\dot{L}_3 \\
\dot{L}_4 \\
\end{bmatrix}
= \begin{bmatrix}
\frac{x-P_{1x}}{L_1} & \frac{y-P_{1y}}{L_1} & \frac{z-P_{1z}}{L_1} \\
\frac{x-P_{2x}}{L_2} & \frac{y-P_{2y}}{L_2} & \frac{z-P_{2z}}{L_2} \\
\frac{x-P_{3x}}{L_3} & \frac{y-P_{3y}}{L_3} & \frac{z-P_{3z}}{L_3} \\
\frac{x-P_{4x}}{L_4} & \frac{y-P_{4y}}{L_4} & \frac{z-P_{4z}}{L_4} \\
\end{bmatrix}
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\end{bmatrix}
\]

Cable velocities can be easily found using the precious equation.

3.3.3.2 Forward Velocity Kinematics Analysis

The forward velocity kinematics problem is as follows: given the robot’s pose and cable rates, calculate the velocity of the center of the platform. In this case, however, the problem is over-constrained due to having four equations and three unknowns. The solution to this problem is:

\[
\{^A\dot{P}\} = \left[^A{J} \right]^\dagger \{\dot{L}\}
\]

Where the over-constrained pseudoinverse is [40]:
\[
\left[^A J \right] = \left(\left[^A J^T \right] \left[^A J \right] \right)^{-1} \left[^A J^T \right]
\]

This is a standard method of finding a suitable inverse of an over-constrained matrix. Extracting any three of the four equations and taking the standard inverse will yield the same results. The fourth equation can be used to validate the results.

3.3.3.3 Velocity Singularities

Cable robots are subject to singularities when the determinant of the Jacobian matrix equals zero, causing a divide-by-zero problem in the denominator. These mathematical singularities are often signs of physical singularities such as exceeding the workspace. The cable robot singularities can be found by solving:

\[
\left[^A J^T \right] \left[^A J \right] = 0
\]

The solution to this problem exceeded MATLAB’s display capabilities, so a simplification was done. As before, all tower heights were set to the same value, in this case ‘h’. When the problem was again put to MATLAB and factored, the result was:

\[
\det \left(\left[^B J^T \right] \left[^B J \right] \right) = \frac{C (h - z)^2}{L_1 L_2 L_3 L_4}
\]

Where C was an extremely long constant consisting only of \(L_i \), \(P_{iy} \), and \(P_{ix} \). Setting this result to 0, the robot was found to be singular only when \(h = z \). This proves that singularities exist when the platform is equal to the tower height.

Interestingly, the statics singularities are identical to the velocity singularities. This is due to the fact that the statics Jacobian is the negative transpose of the velocity Jacobian [40].
3.3.4 Resolved-Rate Control Solution

The inverse velocity kinematics solution can be used as the basis for the resolved rate control algorithm, which is an alternative control method for this robot. The resolved rate method is useful if the user wants the platform to travel at a specific speed in the x, y, and z coordinate system.

Using a given velocity input, the cable velocity \(\{ \dot{L} \} \) is calculated at each time step using:

\[
\{ \dot{L} \} = [^A \dot{J}] \{ ^A \dot{P} \}
\]

This information is then integrated to achieve \(\{ L \} \). Next, the cable values are inputted in each cable’s controller in order to achieve the desired motion.

3.3.5 Acceleration Kinematics Analysis

In order do the dynamics analysis of the system, the acceleration kinematics has to be derived. In order to do this, the derivative of \(\{ \dot{L} \} \) is taken, giving:

\[
\{ \ddot{L} \} = [^A J] \{ ^A \ddot{P} \} + [^A J] \{ ^A \dot{P} \}
\]

or:

\[
\{ \ddot{L} \} = \begin{bmatrix}
\ddot{x} \\
\ddot{y} \\
\ddot{z}
\end{bmatrix}
= \begin{bmatrix}
\frac{x + P_{1x}}{L_1} \\
\frac{y + P_{1y}}{L_1} \\
\frac{z - P_{1z}}{L_1}
\end{bmatrix}
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix}
+ \begin{bmatrix}
\frac{x + P_{2x}}{L_2} \\
\frac{y + P_{2y}}{L_2} \\
\frac{z - P_{2z}}{L_2}
\end{bmatrix}
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix}
+ \begin{bmatrix}
\frac{x + P_{3x}}{L_3} \\
\frac{y + P_{3y}}{L_3} \\
\frac{z - P_{3z}}{L_3}
\end{bmatrix}
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix}
+ \begin{bmatrix}
\frac{x + P_{4x}}{L_4} \\
\frac{y + P_{4y}}{L_4} \\
\frac{z - P_{4z}}{L_4}
\end{bmatrix}
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix}
\]
3.3.5.1 \textit{Inverse Acceleration Kinematics Solution}

The previous solution leads to the inverse solution in a straightforward manner. Given the robot’s pose configuration, velocity, and desired Cartesian acceleration, the acceleration equation will give the cable acceleration, or \(\{ \ddot{L} \} \).

3.3.5.2 \textit{Forward Acceleration Kinematics Solution}

The forward acceleration kinematics solution is not quite as straightforward as the inverse. The problem is: given the robot pose configuration, velocity, and cable acceleration, \(\{ \ddot{L} \} \), calculate the Cartesian acceleration. The equation for \(\{ \ddot{L} \} \) must be inverted to solve it. The inverted matrix is over-constrained, however, so the Moore-Penrose pseudoinverse must again be used \[40\], giving:

\[
\{ ^A \ddot{P} \} = \left[^A J \right]^T \left(\{ \ddot{L} \} - \left[^A J \right]\{ ^A \ddot{P} \} \right)
\]

3.3.6 \textit{Cable/Cable Reel Kinematics}

In this section, the position, velocity, and acceleration kinematics for the rotational to translational transformation of the active cable as they are spooled off the reels is discussed. The solutions are straightforward, and can be achieved using geometry and derivative calculus.

\[
L_i = r_i \theta_i + L_{0i}
\]

\[
\dot{L}_i = r_i \dot{\theta}_i
\]

\[
\ddot{L}_i = r_i \ddot{\theta}_i
\]

Where \(L_i, \dot{L}_i, \ddot{L}_i \) are the cable length, velocity, and acceleration respectively, \(r_i \) is the reel radius, and \(\theta_i, \dot{\theta}_i, \ddot{\theta}_i \) are the reel angle, angular velocity, and angular acceleration.
\(L_{01} \) is the initial length of the cable, which is generally known as part of the calibration process. This design is accurate only for reels where the cable does not wrap in layers.

3.4 Pseudostatics

Since the velocities of this cable robot system are relatively small and the weight of the end effector will likely dominate the system, the robot can be analyzed using pseudostatics. By this, it is assumed that the robot is in static equilibrium at every point along its path of travel during its translation. For completeness, system dynamics will be discussed in the next section.

3.4.1 Static Equilibrium

For the system to be in static equilibrium, the vector sum of the cable tensions, the outside forces, and the weight of the end effector must be zero. The end effector weight always acts down and includes the weight of the actual effector, as well as the weight of the load being carried by it. When the end effector is underwater, the gravitational force is reduced due to buoyancy, and the drag forces on it are increased. The free-body diagram of the end effector is shown in Figure 11.

![Free-body diagram of cable robot end effector.](image)

The force-only statics equations are:
\[
\sum_{i=1}^{4} t_i \{^A{\hat{L}}_i\} + \{^A{F}\} + m \{^A{g}\} = \{0\}
\]

Where:

- \(t_i\) is the cable tension along its cable length unit direction \(^A{\hat{L}}_i\)
- \(^A{F}\) is the resultant force exerted on the platform by its environment

Under ideal conditions, \(F\) would be zero. It is included in this research to accommodate external forces due to wind and water loading.

This equation may be represented in matrix form as:

\[
\begin{bmatrix}
^A{A} \\
\end{bmatrix} \{T\} = - \begin{bmatrix}
^A{F} \\
\end{bmatrix} - m \begin{bmatrix}
^A{g} \\
\end{bmatrix}
\]

Where:

\[
\begin{bmatrix}
^A{A} \\
\end{bmatrix} = \begin{bmatrix}
^A{\hat{L}}_1 & ^A{\hat{L}}_2 & ^A{\hat{L}}_3 & ^A{\hat{L}}_4 \\
\end{bmatrix}
\]

From kinematics, \(^A{\hat{L}}_i\) can be determined as follows:

\[
^A{L}_i = ^A{P}_i - ^A{P}
\]

\[
^A{\hat{L}}_i = \frac{^A{P}_i - ^A{P}}{L_i} = \frac{^A{P}_i - ^A{P}}{L_i}
\]

\(L_i\) was found earlier, in the IPK solution. When this is introduced, \([^A{A}]\) becomes the statics Jacobian matrix:
One noteworthy piece of information is $[^{\text{A}}A] = -[^{\text{A}}J]^T$. This is important because only one of them needs to be calculated in a real-time control loop.

3.4.2 Forward Pseudostatics Solution

The forward pseudostatics solution is quite straightforward. Given the robot configuration, the four cable tensions, and the end effector mass, the external force, $[^{\text{A}}F]$, can be calculated using the following equation, from above:

$$\{[^{\text{A}}F]\} = -[^{\text{A}}A]\{T\} - m\{[^{\text{A}}g]\}$$

3.4.3 Inverse Pseudostatics Solution

The inverse solution is slightly more difficult to derive than the forward solution, but it is important. The problem is stated as follows: given the pose, end effector mass, and external forces, $[^{\text{A}}F]$, calculate the cable tensions, $[^{\text{A}}T]$. The same equation from the forward solution is used to derive the inverse, only it must be inverted to give the solution. Since the matrix $[^{\text{A}}A]$ is not square, a plain inversion cannot be used. Since the matrix is 3x4, this problem is under-constrained. This means that there are infinitely many solutions to the problem since there are four cables and only three Cartesian coordinates. This problem may be addressed by once again using the pseudoinverse of the Jacobian [40]:

$$[^{\text{A}}A] = \begin{bmatrix}
P_{1x} - x & P_{2x} - x & P_{3x} - x & P_{4x} - x \\
\frac{P_{1y} - y}{L_1} & \frac{P_{2y} - y}{L_2} & \frac{P_{3y} - y}{L_3} & \frac{P_{4y} - y}{L_4} \\
\frac{P_{1z} - z}{L_1} & \frac{P_{2z} - z}{L_2} & \frac{P_{3z} - z}{L_3} & \frac{P_{4z} - z}{L_4}
\end{bmatrix}$$
\[
\{T\} = -\left[\begin{bmatrix} ^A A \end{bmatrix} \right]^T \{ ^A F + mg \}
\]

Where:

\[
\left[\begin{bmatrix} ^A A \end{bmatrix} \right]^T = \begin{bmatrix} ^A A \end{bmatrix}^T \left(\begin{bmatrix} ^A A \end{bmatrix} \begin{bmatrix} ^A A \end{bmatrix}^T \right)^{-1}
\]

These equations solve the inverse pseudostatics problem in such a way that the Euclidian norm of the resulting cable tensions is minimized, which is an efficient method for real-world simulation.

3.4.4 Singularities

Cable robots are subject to singularities, which are potential trouble configurations in the workspace. A robot singularity occurs when the determinant of the Jacobian matrix is zero, causing a divide-by-zero problem in the math, which is usually accompanied by a physical problem such as loss or unwanted gain in freedom of end effector movement. Problems can also occur in close proximity to singularities.

The cable-suspended robot singularity condition results from the following determinant:

\[
\left| \begin{bmatrix} ^A A \end{bmatrix} \begin{bmatrix} ^A A \end{bmatrix}^T \right| = 0
\]

3.4.5 Cable Tension/Actuator Torque

In order to achieve the desired cable tensions to ensure static equilibrium with no cable slack, actuator torques are the four control variables. Figure 12 shows the statics free-body diagram for this torque via the cable reel.
Where τ_i is the actuator torque for joint i, r_i is the cable reel radius, and t_i is the cable tension for cable i. This is most accurate for reels with a single cable layer, as r_i changes as the cable wraps.

The cable tension/actuator statics transformation uses the cross product:

\[
\{\tau_i\} = \{r_i\} \times \{t_i\}
\]

This solution only holds true for pseudostatics, due to reel inertia and robot acceleration.

3.4.6 Translational Stiffness

Translational stiffness is the ability of a robot to resist translational deflections when Cartesian forces, $\{^A F\}$, are exerted on it. High stiffness is desired in this case because of the nature and task of the robot. The robot is outdoors and disturbances such as waves and wind could push the robot off course. A stiffness study was first conducted by Unger et al. in 1988 [41]. Translational stiffness units are lbf/ft, and rotational stiffness units are (lbf-ft)/rad. The stiffness equation for the overall robot is [42].

\[
[^A K] = [^A A][k_i]_{\text{diag}} [^A A]^T
\]
Where \([^A K] \) is the 3x3 stiffness matrix, \([^A A] \) is the 3x4 forward pseudostatics Jacobian matrix of the robot and and \([k_i]_{\text{diag}}\) is a 4x4 diagonal matrix, with diagonal individual spring constant terms:

\[
k_i = \frac{E A}{L_i}
\]

Where \(E \) is Young’s modulus of the cable material, \(A \) is the cross-sectional area, and \(L_i \) are the four cable lengths. The stiffness matrix diagonal terms are the stiffness of the primary Cartesian components, \(x, y, \) and \(z \) and the other six terms represent the cross-coupling directions. Translational stiffness depends on the end-effector position, via the Jacobian matrix, and the cable lengths. Although the stiffness matrix is relatively easy to calculate, there is some difficulty in evaluation and comparison. In order to standardize and simplify, the three eigenvalues of the matrix are extracted. These eigenvalues represent the principal stiffness components and the eigenvectors will give the directions of these stiffness values. If further simplification is required, the Euclidian norm of the three principal values will give a single stiffness value in lbf/ft.

3.5 Dynamics

Dynamics is the study of motion with regard to forces. Dynamics modeling is important for large outdoor cable robot systems wherein large velocities and accelerations are required. Dynamics modeling is also required for the design of cable robot controllers because it helps determine the characteristics of designed controllers before implementation.
3.5.1 *Dynamics Equations of Motion*

In this section, dynamics modeling is presented. These equations are used to simulate overall system dynamics and to calculate the cable tensions, and hence actuator torques, to provide dynamic motions in all robotic configurations. Dynamics depend on knowing all kinematics variables for all motion.

Figure 13 shows the dynamics free-body diagram for the robot, assuming the end effector is a point mass with no rotation.

![Figure 13: Dynamics free-body diagram](image)

The diagram is identical to the one presented in the pseudostatics section of this document.

For dynamics modeling, Newton’s second law is used:

\[
\sum \{ \Delta F \} = m \{ \Delta \ddot{P} \}
\]

The summation of forces involves the vector sum of the four active cable tensions exerted on the end effector, the external forces, and the total end-effector weight. Generally, for highly dynamic motions with large velocities and accelerations, it is not
desirable to exert an external force. This force is included in the modeling for completeness and due to the fact that it does not change the complexity of the problem.

The translational acceleration $\{^4\dot{P}\}$ is the second time derivative of the Cartesian translational position of the end effector $\{P\}$.

The force-only translational dynamics equations are:

$$
\sum_{i=1}^{4} \{^4t_i\} + \{^4F\} + m\{^4g\} = m\{^4\dot{P}\}
$$

$$
\sum_{i=1}^{4} t_i \{^4L_i\} + \{^4F\} + m\{^4g\} = m\{^4\dot{P}\}
$$

In these equations, t_i is the cable tension from the reel along the cable, $\{F\}$ is the external force due to water and wind, or other sources, m is the total mass of the end effector, including payload, $\{g\}$ is the acceleration due to gravity, $\{^4L_i\}$ is the direction vector of the cables, and $\{\dot{P}\}$ is the Cartesian acceleration of the end effector.

This equation may be written in matrix form:

$$
\left[^4A \right] \{ T \} = m \{^4\dot{P}\} - \{^4F\} - m \{^4g\}
$$

Where $\left[^4A \right]$ is the 3x4 statics Jacobian matrix.

3.5.2 Inverse Dynamics Solution

The inverse dynamics problem is as stated: given the robot’s kinematic configuration, end effector mass, external force, and the desired trajectory $\{^4\dot{P}\}, \{^4\ddot{P}\}, \{^4\dot{P}\}, \{^4\dot{P}\}$, calculate the four active cable tensions.

This solution is useful for control since the computer calculates the desired cable tensions to achieve the desired motion for any velocity or acceleration.
Using the matrix form of the dynamics equation, the need for the pseudoinverse arises again due to the fact that \(\left[A^T A \right] \) is not a square matrix, giving:

\[
\{ T \} = \left[A^T A \right]^{-1} \left(m \{ \dot{A} \dot{\dot{P}} \} - \{ A F \} - m \{ A g \} \right)
\]

Where \(\left[A^T A \right]^{-1} \) is the pseudoinverse [40]:

\[
\left[A^T A \right]^{-1} = \left[A^T A \right]^{-1} \left(\left[A^T A \right] \right)^{-1}
\]

It is possible to use this method to optimize additional constraints. Although the weight of the end effector and load will generally keep the cables taut under pseudostatic conditions, conditions may arise when end effector acceleration may cause the cables to go slack. Simulation must be done in order to find the acceleration at which this happens to avoid problems with the system.

3.5.3 Forward Dynamics Solution

The forward kinematics problem is as stated: given the robot’s kinematic configuration, end effector mass, external force, and the active cable tensions, calculate the motion \(\{ A \dot{P} \} \), \(\{ A \ddot{P} \} \), \(\{ A \dot{P} \} \) of the robot.

This solution is useful for simulation of dynamic motion, especially to evaluate the performance of a designed controller prior to implementation.

Using the dynamics equation again and solving for \(\{ A \dot{P} \} \), the solution is:

\[
\{ A \dot{P} \} = \frac{1}{m} \left(\left[A^T \right] \{ T \} + \{ A F \} + m \{ A g \} \right)
\]

Velocity and acceleration can be found by numerically integrating the results of the previous equation.
3.5.4 Actuator/Cable Reel Dynamics

Deriving the dynamics equations for a single actuator/cable reel is important for designing a proportional-integral-derivative (PID) controller for the system. Following standard industrial practice, it is generally effective to control all cable lengths independently, but simultaneously.

First, the general dynamics model for a DC motor driving a cable reel will be derived. Then some simplifications will be introduced to achieve an acceptable dynamics model for the PID controller.

Figure 14 shows the diagram for an actuator with its cable reel and cable, connected to the end effector of mass m.

![Figure 14: Single actuator/cable reel diagram](image)

The brush DC motor is activated by an armature circuit with input voltage $v(t)$, current $i(t)$ back emf $v_B(t)$, plus constant inductance and resistance coefficients L and R.
The motor torque $\tau(t)$ is generated via the circuit current, rotating the motor shaft relative to the stator. The cable reel, radius r, is rotated through the gear ratio n. In turn, the cable reel changes the cable length L, which is attached to the end effector, of mass m. Since there are four cables supporting the end effector, each will bear a fraction of the weight. For simplification, the fraction borne by each cable will be taken as a constant m^*. The armature circuit dynamic model is a first order ordinary differential equation:

$$L \frac{di(t)}{dt} + Ri(t) = v(t) - v_B(t)$$

The electromechanical coupling equations are proportional algebraic equations:

$$\tau(i) = Ki(t)$$
$$v_B(t) = K\omega(t)$$

Where the motor torque $\tau(t)$ is proportional to the circuit by a torque constant K and the back emf voltage $v_B(t)$ is proportional to the shaft angular velocity $\omega(t)$ by the same constant.

Making two standard simplifications make this system much more manageable. First, the electrical circuit first order rise time constant is usually much faster than the mechanical rotational system first order time constant. Therefore, the inductor will not have enough time to full charge. This means the inductance value can be assumed to be 0. Second, the back emf voltage will be ignored for the sake of simplicity.

This simplifies the armature dynamic model from an ODE to a proportional equation:

$$Ri(t) = v(t)$$
Figure 15 shows the free-body diagram for the mechanical portion of the actuator/cable reel.

Figure 15: Actuator/cable reel free-body diagram

Where the motor shaft and cable reel mass moment of inertia are lumped into one constant J, the rotational viscous damping coefficient is c, the torque applied to the reel shaft is $n\tau(t)$ where n is the gear ratio, the cable tension is $t(t)$, and the cable reel shaft angle is $\theta_{CR}(t)$. The gear ratio relationships are:

$$n = \frac{\tau_{CR}(t)}{\tau(t)} = \frac{\theta(t)}{\theta_{CR}(t)}$$

Where the CR subscript indicates the cable reel shaft torque and no subscript indicates the motor shaft torque.

For the cable reel dynamics model, Euler’s Rotational Dynamics Law is used:

$$\sum M = J\alpha(t)$$

$$n\tau(t) - c_{E}\dot{\theta}_{CR}(t) - rt(t) = J\ddot{\theta}_{CR}(t)$$
Where the angular acceleration of the cable reel shaft is \(\alpha(t) = \ddot{\theta}_{CR}(t) \) and the effective rotational viscous damping coefficient is represented at the shaft as \(c_E \).

For the partial mass \(m^* \) translational dynamics model, Newton’s second law is used:

\[
\sum F = m^* a(t) \\
t(t) = m^* \ddot{x}(t)
\]

Where the translational acceleration of the cable reel shaft is \(a(t) = \ddot{x}(t) \). The following relationships between cable reel rotation and cable length change also exist:

\[
x(t) = r\dot{\theta}_{CR}(t) \\
\dot{x}(t) = r\ddot{\theta}_{CR}(t) \\
\ddot{x}(t) = r\dddot{\theta}_{CR}(t)
\]

Combining Euler’s equation with Newton’s equation and the rotational relationships gives the following second order ODE model for the mechanical portion of the cable reel system:

\[
\left(J + m^* r^2 \right) \ddot{\theta}_{CR}(t) + c_E \dddot{\theta}_{CR}(t) = n\tau(t)
\]

Finally, combining the mechanical and electrical models gives the following:

\[
\left(J + m^* r^2 \right) \ddot{\theta}_{CR}(t) + c_E \dddot{\theta}_{CR}(t) = \frac{nK}{R} v(t)
\]

Applying the Laplace transformation:

\[
s^2 \Theta_{CR}(s) \left(J + m^* r^2 \right) + s\Theta_{CR}(s) c_E = \frac{nK}{R} V(s)
\]

\[
\Theta_{CR}(s) \left[\left(J + m^* r^2 \right) s^2 + c_E s \right] = \frac{nK}{R} V(s)
\]
The associated open loop transfer function from the previous equation for a single joint PID controller design is:

\[
G(s) = \frac{\Theta(s)}{V(s)} = \frac{nK}{R \left((s + m*r^2)(s^2 + c_E s)\right)} = \frac{nK}{Rs(J_E s + c_E)} = \frac{b}{s(J_E s + c_E)}
\]

Where the effective rotational inertia of the cable reel /motor shaft is

\[J_E = J + m r^2\] and \[b = \frac{nK}{R}\] is a system constant defined for convenience.

This result will be used in the following section to design the controller for the system.

3.6 PID Controller Design

This section presents PID controller design applied to each joint of the proposed cable-suspended robot. This is for independent, but simultaneous, control of all four cables for coordinated motion. The standard system block diagram used in this design is shown in Figure 16.
The open-loop transfer function for this design was derived in the previous section:

\[G(s) = \frac{b}{s(J_E s + c_E)} \]

Including a controller function \(G_c(s) \) and a sensor transfer function \(H(s) \), the resulting standard closed-loop transfer function \(T(s) \) is given below:

\[T(s) = \frac{Y(s)}{R(s)} = \frac{G_c(s)G(s)}{1 + G_c(s)G(s)H(s)} \]

Using the open-loop transfer function derived above, the standard PID transfer function \(G_c(s) \), and assuming a perfect sensor \((H=1) \), the closed-loop transfer function derivation is:
\[G_e(s) = K_p + \frac{K_I}{s} + K_D s \]

\[G(s) = \frac{b}{s(J_E s + c_E)} \]

\[H(s) = 1 \]

\[T(s) = \frac{G_e(s)G(s)}{1 + G_e(s)G(s)H(s)} \]

\[T(s) = \frac{\left(K_p + \frac{K_I}{s} + K_D s \right) \left(\frac{b}{s(J_E s + c_E)} \right)}{1 + \left(K_p + \frac{K_I}{s} + K_D s \right) \left(\frac{b}{s(J_E s + c_E)} \right)} \]

\[T(s) = \frac{\left(K_p b + \frac{K_I b}{s} + \frac{K_D b}{s^2(J_E s + c_E)} \right)}{1 + \left(K_p b + \frac{K_I b}{s} + \frac{K_D b}{s^2(J_E s + c_E)} \right)} \]

\[T(s) = \frac{\left(K_p b s + K_I b + K_D b s^2 \right)}{s^2(J_E s + c_E)} \]

\[T(s) = \frac{\left(K_p b s + K_I b + K_D b s^2 \right)}{1 + \left(K_p b + K_I b + K_D b s^2 \right)} \]

\[T(s) = \frac{\left(K_p b s + K_I b + K_D b s^2 \right)}{s^2(J_E s + c_E)} \]

\[T(s) = \frac{\left(K_p b s + K_I b + K_D b s^2 \right)}{s^2(J_E s + c_E)} \]

\[T(s) = \frac{b \left(K_D s^2 + K_p s + K_I \right)}{J_E s^3 + (c_E + bK_D)s^2 + (bK_p)s + (bK_I)} \]
For controller design, it is convenient to normalize the denominator of the above equation so that the leading coefficient of the characteristic equation is 1. This is shown in the following equation:

\[
T(s) = \frac{b(K_ds^2 + K_ps + K_i)}{J_E s^3 + \left(\frac{c_E + bK_D}{J_E}\right)s^2 + \left(\frac{bK_P}{J_E}\right)s + \left(\frac{bK_I}{J_E}\right)}
\]

The basis of controller design via denominator matching is to match the symbolic form of the T(s) denominator with the numerical desired characteristic polynomial, since it is well known that the nature of the roots of the denominator determine the nature of the transient response. Given that there are many methods to determine good system behavior, for now only the form of the desired characteristic polynomial is given:

\[
\Delta_{DES}(s) = s^3 + a_2s^2 + a_1s + a_0
\]

To solve for the unknown controller gains K_P, K_I, and K_D, the denominator of the derived transfer function T(s) will be matched to \(\Delta_{DES}(s)\):

\[
\begin{align*}
s^3 &\rightarrow 1 \\
s^2 &\rightarrow \frac{\left(\frac{c_E + bK_D}{J_E}\right)}{J_E} = a_2 \\
s^1 &\rightarrow \frac{\left(\frac{bK_P}{J_E}\right)}{J_E} = a_1 \\
s^0 &\rightarrow \frac{\left(\frac{bK_I}{J_E}\right)}{J_E} = a_0
\end{align*}
\]

Therefore, the PID controller solution is:
The previous solution guarantees correct behavior of the denominator in the closed-loop system, however, it introduces an unwanted numerator that will change the transient response by adding unwanted zeros in the numerator. This problem is easily remedied by using a pre-filter function $G_p(s)$ before the summing junction in Figure 9. This pre-filter function is given below:

$$
G_p(s) = \frac{(bK_i)}{J_E} = \frac{K_i}{b(J_E s^2 + K_p s + K_f)} = \frac{K_i}{K_D s^2 + K_p s + K_f}
$$

Since the values of n, K, R, J_E, and c_E are dependent on the winch used, they will be determined later. For now, this PID controller design will continue to use variables.

The controller designer always needs to choose the desired behavior of the closed-loop system; this is called dynamics shaping. In order to define the system behavior, the closed-loop polynomial (Δ_{DES}) must be defined. Although there are many methods to do dynamic shaping, this research focuses on the standard underdamped generic second order system resulting from a unit step input.

Using the standard equations:
PO = 100e \left(\frac{-\xi \pi}{\sqrt{1-\xi^2}} \right)

\[t_s \approx \frac{4}{\xi \omega_n} \]

\[\Delta_{DES}(s) = s^2 + 2\xi \omega_n s + \omega_n^2 \]

Where PO is percent overshoot, \(\xi \) is the damping ratio, \(t_s \) is the settling time, \(\omega_n \) is the approximate natural frequency, and \(\Delta_{DES} \) is the desired closed-loop characteristic polynomial.

From PO, it is possible to calculate \(\xi \):

\[L_{PO} = \ln \left(\frac{PO}{100} \right) = \frac{-\xi \pi}{\sqrt{1-\xi^2}} \]

\[L_{PO}^2 \left(1-\xi^2 \right) = \xi^2 \pi^2 \]

\[\xi^2 \left(\pi^2 + L_{PO}^2 \right) = L_{PO}^2 \]

\[\xi = \sqrt{\frac{L_{PO}^2}{\pi^2 + L_{PO}^2}} \]

From this point, it is possible to calculate \(\omega_n \):

\[t_s \approx \frac{4}{\xi \omega_n} \]

\[\omega_n \approx \frac{4}{\xi t_s} \]

Substituting into the desired characteristic polynomial:
\[\Delta_{DES}(s) = s^2 + 2\xi\omega_n s + \omega_n^2 \]

\[\Delta_{DES}(s) = s^2 + 2\sqrt{\frac{L_{PO}^2}{\pi^2 + L_{PO}^2} + \frac{4}{\xi t_s} s + \left(\frac{4}{\xi t_s}\right)^2} \]

\[\Delta_{DES}(s) = s^2 + \frac{8}{t_s} s + \frac{16\left(\pi^2 + L_{PO}^2\right)}{L_{PO}^2 t_s^2} \]

In order to match this polynomial with the third-order polynomial needed for this controller, a third pole, \(s_3 \), must be introduced. The standard method for doing this is to take the real part of the dominant second order poles, and include it as a real, negative, 10x third pole. Since doing this symbolically would be messy, an example is included to clarify the method.

3.6.1 Potential Errors and Disturbances

While, by design, the PID controller inherently controls most disturbances and deviations from the desired system response, extra steps must be taken to ensure proper system operation in the event of error. Since the system relies on proper cable tension to function, inline tension meters should be installed in case of cable slack or breakage. In addition, an accurate GPS device could be attached to the end effector to collaborate the position and velocity of the harvester. This backup check would help in the case where the cables became snagged or tangled as well, and could alert the device operator of errors.

3.6.2 Design Example

Assuming a PO of 5% and \(t_s \) of 1.5s, the resultant values are:
\[\Delta_{DES}(s) = s^2 + \frac{8}{t_s} s + \frac{16 \left(\pi^2 + L_{PO}^2 \right)}{L_{PO}^2 t_s^2} \]

\[\Delta_{DES}(s) = s^2 + \frac{8}{1.5} s + \frac{16 \left(\pi^2 + 8.9744 \right)}{8.9744 \times 2.25} \]

\[\Delta_{DES}(s) = s^2 + 5.3333 s + 14.9316 \]

The roots of which are \(-2.6667 \pm 2.7965i\). Therefore, the third pole is \(s_3 = -26.6667\).

The resulting closed-loop characteristic polynomial is now third order:

\[\Delta_{DES}(s) = (s + 26.6667) \left(s^2 + 5.3333 s + 14.9316 \right) \]

\[\Delta_{DES}(s) = s^3 + 32s^2 + 157.2s + 398.2 \]

From above, the form of the desired polynomial is:

\[\Delta_{DES}(s) = s^3 + a_2 s^2 + a_1 s + a_0 \]

Where:

\[s^3 \rightarrow 1 \]

\[s^2 \rightarrow \frac{(c_E + bK_D)}{J_E} = a_2 \]

\[s^1 \rightarrow \frac{(bK_P)}{J_E} = a_1 \]

\[s^0 \rightarrow \frac{(bK_I)}{J_E} = a_0 \]

Therefore:
\[a_2 = \frac{(c_E + bK_D)}{J_E} = 32 \]
\[a_1 = \frac{(bK_p)}{J_E} = 152.2 \]
\[a_0 = \frac{(bK_I)}{J_E} = 398.2 \]

So:

\[K_D = \frac{32J_E - c_E}{b} \]
\[K_p = \frac{152J_E}{b} \]
\[K_I = \frac{398.2J_E}{b} \]

Depending on the characteristics of the winch, these values are used to find the transfer function and pre-filter using the equations given previously:

\[T(s) = \frac{b(K_Ds^2 + K_ps + K_I)}{J_E} \cdot \frac{J_E}{s^3 + \frac{(c_E + bK_D)}{J_E}s^2 + \frac{(bK_p)}{J_E}s + \frac{(bK_I)}{J_E}} \]

\[G_p(s) = \frac{K_I}{K_Ds^2 + K_ps + K_I} \]
In this chapter, MATLAB was used to simulate the cable suspended robot in order to verify derivations and determine some design parameters for the system. The following constants were used for this simulation: 1 acre pond with a rectangular shape that follows the golden ratio, or $\varphi \approx 1.618:1$, with $W \approx 164.1$ ft and $L \approx 265.5$ ft. The four telescoping poles had a height of 10 ft, and were set away from the pond edges a distance of 5 ft in the x and y directions. The combined mass of the end effector and algae payload was estimated to be 100 lbm. For stiffness calculations, a cable diameter of $\frac{1}{2}$ inch was used, with a modulus of elasticity of $29,000,000$ lbf/in2. Figure 17 shows an example of the output from the program, showing a one acre pond with 10 ft tall towers, where the end effector is at the staging/calibration area.

Figure 17: MATLAB simulation of the proposed system
4.1 Snapshot Examples

Given the above constants and a harvest position of \([0 0 0]\), the MATLAB simulation returned the following results using the math derived previously:

\[
L_1 = L_2 = L_3 = L_4 = 163.2440 \text{ ft}
\]
\[
T_1 = T_2 = T_3 = T_4 = 408.1099 \text{ lbf}
\]

Figure 18 shows the simulation returned from the program:

![Figure 18: Center point snapshot simulation](image)

When the active lengths were applied to the forward pose kinematic (FPK) solution supplied above, the results were as follows:

\([x, y, z] = [0, 0, 0]\)

This proved the results from the inverse pose kinematic solution (IPK) were accurate.

As a secondary check, the system was given the initial coordinates of: \([40 -30 4]\). Figure 19 is from the simulation.
The results of the snapshot were:

\[
L_1 = 186.7662\, \text{ft} \\
L_2 = 212.8997\, \text{ft} \\
L_3 = 152.6027\, \text{ft} \\
L_4 = 113.3265\, \text{ft} \\
T_1 = 678.2294\, \text{lbf} \\
T_2 = 485.8180\, \text{lbf} \\
T_3 = 485.1462\, \text{lbf} \\
T_4 = 858.3550\, \text{lbf}
\]

Inputting the results back into the FPK solution yielded:

\[[x, y, z] = [40, -30, 4]\]

Once again, this solution verified the results.

4.2 Single Point Harvest
Figure 20: End effector at the staging area for a 1 acre pond

Figure 21: End effector at a harvest location of [60 40 0]
Figure 22: Cable lengths as a function of time steps for a single harvest

Figure 23: End effector position as a function of time steps for a single harvest
Figure 24: Cable velocities as a function of time steps for a single harvest

Figure 25: Cable tensions as a function of time steps for a single harvest
Figure 26: Stiffness norm as a function of time steps for a single harvest

Max: 1358.8 lbf

4.3 Corner to Corner Harvest

Figure 27: End effector at the start of a corner-to-corner trajectory
Figure 28: End effector at the end of a corner-to-corner trajectory

Figure 29: Cable lengths as a function of time steps for a corner-to-corner trajectory
Figure 30: End effector position as a function of time for a corner-to-corner trajectory

Figure 31: Cable velocities as a function of time for a corner-to-corner trajectory
Figure 32: Cable tensions as a function of time for a corner-to-corner trajectory

Figure 33: Stiffness norm as a function of time for a corner-to-corner trajectory
4.4 Tower Choice

It is important that the tower is: adjustable to equalize z–height, mobile, sturdy enough to withstand the forces on the system, and rugged enough to withstand the elements. There are many towers available commercially. Their marketed uses include communication, military, emergency, and mobile lighting and sound systems. Most variations involve a lattice or tube structure that is raised by pulleys and winches and stabilized by arms that pivot away from the main body and secure to the ground. Although the option exists to mount the towers to vehicles, the system will be a semi-permanent fixture in this research. Therefore, the trailer type tower will be considered primarily.

One example of these mobile towers, made by Aluma Tower Company, Inc., can be found in Figure 34.
4.5 Appropriate Tower Height

Since it is known that the cable tension will increase toward infinity as the end effector approaches the height of the towers, a program was written to simulate the system pseudostatics as a load is raised vertically at different points, pond sizes, tower heights, and loads. The simulation sets the origin of the end effector at 0 ft, level with the bottom of the towers, and raises it to 90% of the tower height to avoid singularities. It does not take into account the size of the end effector and must be edited when an appropriate harvest tool is chosen. This program can be found in the appendix. The
program operated using the pseudostatics derivation provided earlier and a constant step size in the z-direction.

This simulation finds the height at which the cable tension is three times the tension at a height of zero. This height, expressed as a percentage of tower height, provides a reasonable estimate of the maximum height to which a load should be raised, based on plot trends from trial and error experimentation. At three times the base tension, the cable tensions are universally still far from approaching infinity toward the beginning of the exponential trend. Although this method is not as accurate as accounting for dynamics, it provides a reasonable response for determining general tower height. Figure 35 shows a pond of one acre, with the load of 100 lbm in the middle of the pond, being raised to a tower height of 10 ft. This will be the standard device configuration.

Figure 35: Standard pond setup with a center point harvest and 10 ft towers
Figure 36: 1 acre pond, center harvest, 100 lbm, 10 ft towers, and vertical lift

It can be seen from Figure 36 that all cable tensions were equal since the end effector was in the center of the pond. The output from the simulation gave a 3x height of 6.73 ft, or 67.3% of tower height for all cables.

Using the same pond configuration and increasing the tower height to 20 ft gave the following results.
Figure 37: Standard pond setup with a center point harvest and 20 ft towers

Figure 38: 1 acre pond, center harvest, 100 lbm, 20 ft towers, and vertical lift
Figure 38 showed that the tensions are once again equal. Interestingly, the 3x value from the simulation was 13.45 ft, or 67.3% again. In order to validate this claim, the simulation was run once again, this time with a tower height of 30 ft. The results are shown below.

Figure 39: Standard pond setup with a center point harvest and 30 ft towers
Once again, this result verified the trend. The tensions were again equal and the 3x value was 20.18 ft, or 67.3% again.

The next issue to discuss becomes that of harvest location. It is necessary to determine how the cable tensions change as the location of the end effector changes. The simulation was run at different points in the same one acre point, with a fixed tower height of 10 ft, and a load of 100 lbm, with a vertical lift. Figure 41 shows the same one acre pond, with a harvest point of [60, 40].

Figure 40: 1 acre pond, center harvest, 100 lbm, 30 ft towers, and vertical lift
Figure 41: Standard pond setup with a [60 40] harvest and 10 ft towers

Figure 42: 1 acre pond, [60, 40] harvest, 100 lbm, 10 ft towers, and vertical lift
Although the tensions were no longer identical, they still maintained a 3x point of 6.73 ft or 67.3% of tower height. This result was identical to the results from the center harvest.

Figure 43 shows a harvest location of [-130, -80], which is near the edge of the pond.

Figure 43: Standard pond setup with a [-130, -80] harvest and 10 ft towers
From the simulation, while the 3x points had changed slightly, the values were:

1 = 75.5%
2 = 67.3%
3 = 66.4%
4 = 68.2%

Which were still close to the values for the center harvest.

In order to ensure the same tension response for all situations, the system was modeled again using different sized ponds and with different payloads. Figure 45 shows a 100’x100’ pond with 10 ft tall towers, a center harvest, and a load of 100 lbm.
Figure 45: 100’x100’ pond with a center harvest and 10 ft towers

Figure 46: 100’x100’ pond, center harvest, 100 lbf, 10 ft towers, and vertical lift
Once again, the tension trend followed the same pattern of 67.3% of tower height.

Finally, to fully ensure the system behaves the same under all conditions, the load was varied on the standard pond from 50 lbm to 200 lbm. The following figures show the results.

Figure 47: 1 acre pond, center harvest, 50 lbm, 10 ft towers, and vertical lift
Figure 48: 1 acre pond, center harvest, 200 lbm, 10 ft towers, and vertical lift

Once again, the system behaved as expected with a 3x height of 67.3%.

As a final test, the tower height was incrementally increased from 0 to 100 ft, using a center harvest and 50 and 100 lbm loads at a harvest height of zero ft. In this simulation, the tension at the maximum towers height was calculated first, and the height at which the tensions were 3x the minimum tension were found to benchmark the results. The following figures show the results.
As seen in the figure, the tension started high and quickly decreased. For the standard pond setup, the 3x point was found to be at 18 ft.
Figure 50: 1 acre pond, center harvest, 50 lbm, and varying tower height

The tension curve followed the same shape, with a 3x height of 18 ft, once again.

The pond size was changed to a half acre and the simulation was performed again.
Figure 51: ½ acre pond, center harvest, 100 lbm, and varying tower height

In this case, the 3x height was found to be 16 ft.

Figure 52: 100’x100’ pond, center harvest, 100 lbm, and varying tower height
For the 100’x100’ pond, the 3x point was found to be 13 ft.

Figure 53: 10’x10’ pond, center harvest, 100 lbm, and varying tower height

For the 10’x10’ pond, the 3x point was found to be 3 ft.
From the above simulations, it can be observed that cable tensions decreased rapidly as tower height increases. From multiple tests, it can be seen that the 3x criteria was useful in determining proper height since it approached the exponential region in every case. For most cases (with the exception of the 10’x10’ pond, which is likely too small an area to be useful), the 3x point fell between 10 and 20 ft. This test was useful because it showed that since tension decreases so rapidly, proper tower height is primarily a function of maximum load height.

Dividing 1 by 0.673 shows tower height should be at least approximately one and a half times the height of the highest point on the harvest trajectory. The highest point on the trajectory is determined by the robot’s configuration, including pond and end effector, which will be discussed later. This height can be controlled by the PID controller of the robot.

4.6 Cable Choice

Cable choice is greatly dependent on robot design. The cable must be strong enough to withstand the forces applied to it by the end effector, the robot’s motion, and any outside forces. The cables must also be as light as possible due to the long spans needed for implementation. In addition, the lines will be outside and exposed to wet conditions and must therefore be resistant to oxidation.

It is for these reasons that synthetic rope is preferable to metal rope. Synthetic rope can be as strong as steel at a tenth of the weight [44]. It is also immune to rust and is being used worldwide for marine applications. One type of synthetic rope being considered currently is Novabraid® Spectec-12. In addition to the desired qualities
mentioned above, Spectec-12 has a very low elongation of approximately 3% at 40% load according to the manufacturer [44]. Of course, the cable diameter must be chosen based on the end effector design and final load weight.

4.6.1 Examples

Using the simulation software again, various ponds were used, along with differing load weights, to create a tension map of the four cables at points along the same z – height. The height chosen was 70% of tower height, based on a previous simulation. The figures below show the results of the simulation. All four cables are shown to show the relationships between them.

Figure 54: Color plot of all four cables
All cable size choices will be made based on Table 2, from the manufacturer of Spectec-12®

Table 2: Spectec-12 specifications [44]

<table>
<thead>
<tr>
<th>Size</th>
<th>Dia. In</th>
<th>Dia. MM</th>
<th>Circ. Inch</th>
<th>Approx. Weight</th>
<th>Approx. Average Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lbs./100 ft</td>
<td>Kg/100 M</td>
<td>Lbs.</td>
<td>Kg.</td>
<td></td>
</tr>
<tr>
<td>1/8"</td>
<td>3/8"</td>
<td>0.53</td>
<td>0.8</td>
<td>1,600</td>
<td>726</td>
</tr>
<tr>
<td>3/16"</td>
<td>9/16"</td>
<td>1.04</td>
<td>1.5</td>
<td>3,200</td>
<td>1,453</td>
</tr>
<tr>
<td>1/4"</td>
<td>3/4"</td>
<td>1.7</td>
<td>2.5</td>
<td>6,500</td>
<td>2,951</td>
</tr>
<tr>
<td>5/16"</td>
<td>1"</td>
<td>2.9</td>
<td>4.3</td>
<td>9,500</td>
<td>4,313</td>
</tr>
<tr>
<td>3/8"</td>
<td>1 1/8"</td>
<td>3.8</td>
<td>5.7</td>
<td>14,200</td>
<td>6,447</td>
</tr>
<tr>
<td>7/16"</td>
<td>1 1/4"</td>
<td>4.3</td>
<td>6.4</td>
<td>16,500</td>
<td>7,491</td>
</tr>
<tr>
<td>1/2"</td>
<td>1 1/2"</td>
<td>6.4</td>
<td>9.5</td>
<td>24,000</td>
<td>10,896</td>
</tr>
<tr>
<td>9/16"</td>
<td>1 3/4"</td>
<td>7.5</td>
<td>11.2</td>
<td>28,000</td>
<td>12,712</td>
</tr>
<tr>
<td>5/8"</td>
<td>2"</td>
<td>10.6</td>
<td>15.8</td>
<td>41,000</td>
<td>18,614</td>
</tr>
<tr>
<td>3/4"</td>
<td>2 1/4"</td>
<td>13.2</td>
<td>19.7</td>
<td>49,000</td>
<td>22,246</td>
</tr>
<tr>
<td>7/8"</td>
<td>2 3/4"</td>
<td>19.5</td>
<td>29.0</td>
<td>68,000</td>
<td>30,872</td>
</tr>
<tr>
<td>1"</td>
<td>3"</td>
<td>23.3</td>
<td>34.7</td>
<td>79,000</td>
<td>35,866</td>
</tr>
<tr>
<td>1 1/8"</td>
<td>3 1/2"</td>
<td>32.0</td>
<td>47.7</td>
<td>100,000</td>
<td>45,400</td>
</tr>
<tr>
<td>1 1/4"</td>
<td>3 3/4"</td>
<td>36.1</td>
<td>53.8</td>
<td>110,000</td>
<td>49,940</td>
</tr>
</tbody>
</table>

4.6.1.1 Example 1

Since the maximum value is the same for each cable, the remainder of the simulations was done on the first cable only to show detail. Figure 55 shows the tension plot for a 1 acre pond, with a 100 lbm load, and a tower height of 10 ft.
Figure 55: Color plot of T1 for a 1 acre pond, 100 lbf load, with 10 ft towers

Based on the simulation, the maximum tension for this configuration was 2266.9 lbf, with an average tension of 999.4 lbf. Based on this tension and using a safety factor of 2, the proper cable diameter for this specific robot was 1/4” [44].

4.6.1.2 Example 2

The following example shows a 1 acre pond with a 50 lbf load and tower heights of 10 ft.
Based on the simulation, the maximum tension for this configuration was 1134.5 lbf, with an average tension of 499.7 lbf. Based on this tension and using a safety factor of 2, the proper cable diameter for this specific robot was 3/16” [44].

4.6.1.3 Example 3

The following example is a ½ acre pond with 20 ft towers and a load of 100 lbm.
Based on this simulation, the maximum tension for this configuration was 375.1 lbf, with an average tension of 170.5 lbf. Based on this tension and using a safety factor of 2, the proper cable diameter for this specific robot was 1/8” [44].

It was apparent from the simulation that cable diameter is dependent on robot configuration, so this design decision will be left until the end effector has been chosen.

4.7 End Effector Design

Arguably the most important component of the cable robot system is the harvester, or end-effector. Although its importance cannot be questioned, it is difficult to determine exact design characteristics without knowing pond design specifications,
including dimensions, current method of harvest, and payload. Therefore, this thesis will propose a few possible solutions to the problem.

4.7.1 Design 1: Mesh Filter

This design consists of a micro-filter suspended from the end effector by four cables. It requires that the end effector touches down in the water near the algae colony and scoops it out. It is, in essence, a net with a very small mesh size. Figure 58 shows a solid edge model of a possible design.

![Figure 58: Solid Edge model of end effector design 1](image)

Of course, the design is preliminary, but it serves to show the basic idea. The four cables can be seen at the top, with the mesh basket suspended underneath by four other cables.
The pros and cons of the system are as follows:

- **Pros:**
 - Lightweight end effector
 - Able to harvest from any point in the pond. Not limited to one harvest location
 - Inexpensive

- **Cons:**
 - Complicated harvest trajectory
 - No automation
 - May not be able to collect the colony accurately. i.e. just pushing the algae, or creating currents that move the algae away from the collector
 - Difficult to empty the net once algae are collected
 - Possible to tangle cables from which the basket is suspended

4.7.2 *Design 2: Rotating net*

This design also consists of a micro-filter mounted to the end effector. In this case, however, the filter is firmly mounted and can be rotated remotely. Once again, the end effector scoops through the water, collecting the algae. In this design, the filter rotates to a horizontal position before returning for emptying. Figure 59 shows a solid edge model of a possible design.
The four cables can be seen at the top, with the mesh basket mounted underneath.

The pros and cons of the system are as follows:

- **Pros:**
 - Lightweight end effector
 - Able to harvest from any point in the pond. Not limited to one harvest location
 - Inexpensive
 - No problems with slack cable tangling

- **Cons:**
 - Complicated harvest trajectory
 - No automation
 - May not be able to collect the colony accurately. i.e. just pushing the algae, or creating currents that move the algae away from the collector
Difficult to empty the net once algae are collected

4.7.3 Design 3: Cage

This design is similar to the proposed net design except that it uses a rigid cage to collect the algae instead of a net. The end effector is lowered, with the bottom open, over an algal colony. The bottom is then closed and the end effector is raised, leaving the water behind. The primary benefit to this method is that the scooping motion can be eliminated, since the cage can be lowered over the colony with the bottom open. Additionally, the load dumping is simpler due to the trap door in the bottom. This design complicates the previous design further and increases expense.

Figure 60 shows a possible version of the proposed end effector. The four cables can be seen at the top, with the cage attached.

Figure 60: Solid Edge model of end effector design 3
• Pros:
 o Able to harvest from any point in the pond. Not limited to one harvest location
 o Ease of dumping

• Cons:
 o No automation
 o Complicated end effector
 o May not be able to collect the colony accurately. i.e. just pushing the algae, or creating currents that move the algae away from the collector
 o More expensive

4.7.4 Design 4: Stationary Cage

This design uses a similar cage harvester to the second design, except that the cage is stationary. The system’s paddle wheel moves the water around the raceway and the algae collects in the cage, which sits in the raceway. When the cage is ready for harvest, the door is closed and the end effector collects it. The robot picks up and deposits the whole collector at the collection location. Figure 61 shows a possible version of the proposed end effector.
• Pros:
 o Can be made automatic
 o Simple motion
 o Can harvest from multiple raceway ponds
 o Ease of load depositing

• Cons:
 o Not able to harvest from any point in the workspace
 o Can collect other debris from the raceway
 o May collect too much algae and destabilize the system

4.7.5 Design 5: Stationary Mesh Filter

This design utilizes a filter similar to the first design, but in this case, the filter is mounted to a rigid frame that is always in the same position. The system uses a paddlewheel to move the water, which causes the algae to collect on the cloth. The mesh
can be chosen so that algae are likely to adhere to it. The end effector consists of a mechanism which can pick up the cloth and frame, move it to the collection area, and rotate it to the correct orientation. Figure 62 shows an example of the proposed design.

![Solid Edge model of end effector design 5](image)

Figure 62: Solid Edge model of end effector design 5

- **Pros:**
 - Can be made automatic
 - Simple end effector
 - Simple motion
 - Can harvest from multiple raceway ponds
 - Lightweight
 - Ease of load depositing
• Cons:
 o Not able to harvest from any point in the workspace
 o May collect too much algae and destabilize the system
 o Can possibly collect other debris from the raceway

Of these five designs, the fifth seems the most likely for use in this proposed system based on its adaptability, simplicity, and ease of automation. Regardless of the chosen design, the problem with using a micro-screen to collect algae is that the algae and other particles can foul the screen. To overcome this issue, algae can be collected by blowing air or water through the screen to remove the collection. This is most easily done using the raceway mounted micro-screen seen in the fifth design suggestion. Testing will need to be done to determine this design’s actual feasibility.

4.8 Robot Control

Although incomplete, work has been done by Jesus Pagan, of Ohio University, on the method of control for these robots. Mr. Pagan has successfully controlled four winches independently using four Galil® motion controllers, connected wirelessly. This design allows for rapid, wireless deployment of the robot system over large areas. The research presented here will help create an appropriate PID controller using Mr. Pagan’s research, as well as provide a fast, accurate way to determine robot design parameters such as tower height, tower type, cable diameter, and end effector.
5. Conclusions and Recommendation

5.1 Conclusions

This research shows the potential advantages of merging the fields of cable robotics and renewable energy by proposing a robot system to serve as a harvesting tool for large algae farms. Furthermore, it outlines some of the pitfalls of current methods and proposes a solution to one of these limitations, algae harvest from open ponds.

Based on the mathematical derivations and simulations, it is clear that the forward and inverse pose kinematics solutions are accurate. These results show the usefulness of the simplified three spheres method in solving the forward pose kinematics problem. The results from these solutions, in addition to the forward and inverse dynamics problems, and the forward and inverse pseudostatics problems, were used to create a simulation to help choose robot design parameters and work toward an operational PID controller for the system.

This simulation is used to verify the mathematical derivations performed, as well as calculate important values at each step along a trajectory. These values can be used in a PID controller to manipulate the robot as desired, so designs for a sample controller were also included in this research.

From this simulation, it is demonstrated that although design specifications are extremely dependent upon each specific farm layout, some parameters can be obtained. Critical in achieving the minimum cable tension, the tower height should not exceed 1.5 times the height of the top of the end effector, which is a parameter that can be fixed by
the operator. This result was verified by the tower raising simulation, demonstrating the drastic decrease in cable tension as the tower height was increased.

Also included in this research is a tool that can be used to determine proper cable thickness, based on the maximum tension for a given robot configuration. This simulation can be used in tandem with manufacturer specifications to determine proper cable selection.

In addition to simulation, this research proposes four designs for the end effector of the algae harvesting cable robot. These designs are: end effector suspended basket, end effector mounted basket with revolve control, end effector mounted cage with controllable door, raceway mounted cage with controllable door, and raceway mounted screen. Given its economy, adaptability, simplicity, and ease of automation, the raceway mounted screen is likely the best option.

Furthermore, this research provides multiple programming tools to allow for easier design parameter selection. Given the pond size, end effector size and mass, harvest location, and total load, the provided MATLAB programs are capable of calculating cable length, velocity, and tension, as well as tower height, proper cable selection, trajectory, and stiffness. Applying these results provides algae farmers with an effective and rapid design tool. As the energy race continues to drive research, this research can help pave the way to the future by creating effective utilization of biological resources for clean and safe energy.
5.2 Recommendations

While this research has laid much of the necessary groundwork for the implementation of a cable suspended robot for algae harvest, a good deal of work remains before the idea can come to fruition. Most notably, more work is required in the areas of controller design, end effector design, and catenary sag compensation.

In order to further controller and end effector design, it becomes necessary to determine the exact characteristics of the system being designed, such as pond size, harvest type, load weight, algae being harvested, etc. Once a specific pond setup and algal target has been determined, the end effector can be designed. When the end effector has been designed, the simulations can be re-performed using the updated masses in order to find the proper system parameters such as cables and cable winches. When the winches have been chosen, the controller can be designed.

One large obstacle that impedes the design process is the existence of catenary sag in the cables caused by cable weight and/or external forces. This catenary sag will cause the end effector position indication to be incorrect, as the cable lengths will be longer than the straight line distance between points. While trial and error experimentation can alleviate this problem, an analytical solution is required. Some research along these lines has already been performed and may be applicable to furthering this study [45, 46, 47].

Once these issues have been overcome, a scale model of the system can be constructed and tested. This model will allow future researchers to fine-tune the system
and will pave the way for full industrial implementation of cable suspended robots into algal harvest.
Works Cited

[45] P. Cella, "Reexamining the catenary," *The College Mathematical Journal*, vol. 30,

Appendix:

MATLAB Code

Algae.m

```matlab
% {
algae.m
Noah Needler - 2012
Simulates an algae harvesting cable robot
Part of a thesis entitled: "Design of an Algae Harvesting Cable Robot,
Including a Novel Approach to Solving the
Forward Pose Kinematics Problem"
Most recent revision - 5/27/2013
Files required to run:
towervary.m
justraise.m
snaps.m
oneharvest.m
define.m
corntocorn.m
algfigs.m
algae_pose.m
algae_plot.m
algae_surf.m
%
}
clc;
clear all;
close all;
format compact;

define;

choose = menu('Type:', 'Trajectory', 'Tension', 'Snapshot');
if choose == 1
    chooser = 2;
    choosea = menu('Animate?', 'Yes', 'No');
    choose1 = menu('Trajectory', 'Single Harvest', 'Corner to Corner');
    if choose1 == 1
        oneharvest
    elseif choose1 == 2
        corntocorn
```
elseif choose == 2
 choose2 = menu('Tension','Raise','Surface Plot','Tower Height');
 if choose2 == 1
 justraise
 elseif choose2 == 2
 algaesurft
 elseif choose2 == 3
 towervary
 end
elseif choose == 3
 snaps;
end

T1max = max(T1(:));
T2max = max(T2(:));
T3max = max(T3(:));
T4max = max(T4(:));
Tmax = [T1max;T2max;T3max;T4max];
if choose == 1
 maximum_tension = max(Tmax(:))
 maximum_total_length = max(Ltot(:));
end
% algaeplot.m
% Part of Algae.m
% Prints the simulated pond to the screen

%Support Poles
plot3([B01(1) B1(1)], [B01(2) B1(2)], [B01(3) B1(3)], 'k', 'LineWidth', 3)
hold on;
plot3([B02(1) B2(1)], [B02(2) B2(2)], [B02(3) B2(3)], 'k', 'LineWidth', 3)
plot3([B03(1) B3(1)], [B03(2) B3(2)], [B03(3) B3(3)], 'k', 'LineWidth', 3)
plot3([B04(1) B4(1)], [B04(2) B4(2)], [B04(3) B4(3)], 'k', 'LineWidth', 3)

%Grass
patch([-L/2-2*dx L/2+2*dx L/2+2*dx -L/2-2*dx],[W/2+2*dy W/2+2*dy -W/2-2*dy -W/2-2*dy],'g')

%Pond
patch([-L/2 L/2 L/2 -L/2],[W/2 W/2 -W/2 -W/2],'c')

%Landing Zone
patch([-dx/2 dx/2 dx/2 -dx/2],[-W/2-dy -W/2-dy -W/2 -W/2],'y')

%Target
plot3([dx/2 -dx/2 dx/2 -dx/2],[-W/2-dy -W/2-dy -W/2 -W/2],'r','LineWidth', 2)

%Cables
plot3([B1(1) P1(1)], [B1(2) P1(2)], [B1(3) P1(3)], 'k')
plot3([B2(1) P2(1)], [B2(2) P2(2)], [B2(3) P2(3)], 'k')
plot3([B3(1) P3(1)], [B3(2) P3(2)], [B3(3) P3(3)], 'k')
plot3([B4(1) P4(1)], [B4(2) P4(2)], [B4(3) P4(3)], 'k')

%End Effector
effvert = [P1e(1) P1e(2) P1e(3);
P2e(1) P2e(2) P2e(3);
P3e(1) P3e(2) P3e(3);
P4e(1) P4e(2) P4e(3);
P1e(1) P1e(2) P1e(3)-h1;
P2e(1) P2e(2) P2e(3)-h1;
P3e(1) P3e(2) P3e(3)-h1;
P4e(1) P4e(2) P4e(3)-h1];
utofface = [1 2 3 4;
 2 6 7 3;
 4 3 7 8;
 1 5 8 4;
 1 2 6 5;
 5 6 7 8];
patch('Vertices',effvert,'Faces',effface,'FaceColor',cface);
grid on;
axis equal;
axis([-L/2-dx-5 L/2+dx+5 -W/2-dy-5 W/2+dy+5 0 h])
M(i) = getframe;
hold off;
pause(1/64);
algaepose.m

% algaepose.m
% Part of Algae.m
% Performs the calculations
P1 = [x(i) y(i) z(i)];
P2 = [x(i) y(i) z(i)];
P3 = [x(i) y(i) z(i)];
P4 = [x(i) y(i) z(i)];
P1e = [x(i)-l/2 y(i)+w/2 z(i)];
P2e = [x(i)+l/2 y(i)+w/2 z(i)];
P3e = [x(i)+l/2 y(i)-w/2 z(i)];
P4e = [x(i)-l/2 y(i)-w/2 z(i)];
D1 = B1-P1;
D2 = B2-P2;
D3 = B3-P3;
D4 = B4-P4;
L1(i) = norm([D1(1),D1(2),D1(3)]);
L2(i) = norm([D2(1),D2(2),D2(3)]);
L3(i) = norm([D3(1),D3(2),D3(3)]);
L4(i) = norm([D4(1),D4(2),D4(3)]);
Ltot(i) = L1(i)+L2(i)+L3(i)+L4(i);

Jb = [(x(i)-B1(1))/L1(i) (y(i)-B1(2))/L1(i) (z(i)-B1(3))/L1(i);
 (x(i)-B2(1))/L2(i) (y(i)-B2(2))/L2(i) (z(i)-B2(3))/L2(i);
 (x(i)-B3(1))/L3(i) (y(i)-B3(2))/L3(i) (z(i)-B3(3))/L3(i);
 (x(i)-B4(1))/L4(i) (y(i)-B4(2))/L4(i) (z(i)-B4(3))/L4(i)];

pJb = pinv(Jb);
Ab = -(Jb');
pAb = pinv(Ab);
Ldb = Jb*Pdb;
Ld1(i) = Ldb(1);
Ld2(i) = Ldb(2);
Ld3(i) = Ldb(3);
Ld4(i) = Ldb(4);

T = -pAb*F;
T1(i) = T(1);
T2(i) = T(2);
T3(i) = T(3);
T4(i) = T(4);

detJ(i) = det(Jb'*Jb);
kdiag = [(E*A)/L1(i) 0 0 0;
 0 (E*A)/L2(i) 0 0;
 0 0 (E*A)/L2(i) 0;
 0 0 0 (E*A)/L4(i)];
Kb = Ab*kdiag*Ab';
eigK = eig(Kb);
eK1(i) = eigK(1);
eK2(i) = eigK(2);
eK3(i) = eigK(3);
normeig(i) = norm([eK1(i), eK2(i), eK3(i)]);
% algaesurft.m
% Part of Algae.m
% Creates a color map of tensions for a particular pond

z = input('Enter end effector height (0-10 ft): ');
F = Ff;

steps = 50;

xpoints = linspace(-max_x,max_x,steps);
ypoints = linspace(-max_y,max_y,steps);
x1,y1 = meshgrid(xpoints,ypoints);

Ti = 1;

for j = 1:steps
 for i = 1:steps
 x = xpoints(i);
y = ypoints(j);
P1 = [x y z];
P2 = [x y z];
P3 = [x y z];
P4 = [x y z];
D1 = B1-P1;
D2 = B2-P2;
D3 = B3-P3;
D4 = B4-P4;
L1 = norm([D1(1),D1(2),D1(3)]);
L2 = norm([D2(1),D2(2),D2(3)]);
L3 = norm([D3(1),D3(2),D3(3)]);
L4 = norm([D4(1),D4(2),D4(3)]);
Jb = [(x-B1(1))/L1 (y-B1(2))/L1 (z-B1(3))/L1;
(x-B2(1))/L2 (y-B2(2))/L2 (z-B2(3))/L2;
(x-B3(1))/L3 (y-B3(2))/L3 (z-B3(3))/L3;
(x-B4(1))/L4 (y-B4(2))/L4 (z-B4(3))/L4];
Ab = -(Jb');
pAb = pinv(Ab);
T = -pAb*F;
T1(j,i) = T(1);
T2(j,i) = T(2);
T3(j,i) = T(3);
T4(j,i) = T(4);
end
T_max = max(T1(:))
T_min = min(T1(:))
T_average = mean(T1(:))
subplot(2,2,1)
pcolor(x1,y1,T2)
axis equal;
title('T2')
subplot(2,2,2)
pcolor(x1,y1,T3)
axis equal;
title('T3')
subplot(2,2,3)
pcolor(x1,y1,T1)
axis equal;
title('T1')
subplot(2,2,4)
pcolor(x1,y1,T4)
axis equal;
title('T4')
pause;
figure;
pcolor(x1,y1,T1)
axis equal;
title('T1');
colorbar
algfigs.m

% algfigs.m
% Part of Algae.m
% Plots the results
if choosea == 1
 pause;
end

figure;
plot(t,L1,t,L2,t,L3,t,L4);
grid on;
legend('L1','L2','L3','L4');
if chooser == 1
 xlabel('t (s)');
else
 xlabel('Time Steps');
end
ylabel('Length (ft)');
pause;

figure;
plot(t,x,t,y,t,z);
grid on;
legend('x','y','z');
if chooser == 1
 xlabel('t (s)');
else
 xlabel('Time Steps');
end
ylabel('Position (ft)');
pause;

figure;
plot(t,Ld1,t,Ld2,t,Ld3,t,Ld4);
grid on;
legend('Ld1','Ld2','Ld3','Ld4');
if chooser == 1
 xlabel('t (s)');
else
 xlabel('Time Steps');
end
ylabel('Cable Velocity (ft/s)');
pause;
```matlab
figure;
plot(t,T1,t,T2,t,T3,t,T4);
grid on;
legend('T1','T2','T3','T4');
if chooser == 1
    xlabel('t (s)');
else
    xlabel('Time Steps');
end
ylabel('Cable Tension (lbf)');
pause;

figure;
plot(t,normeig);
grid on;
if chooser == 1
    xlabel('t (s)');
else
    xlabel('Time Steps');
end
ylabel('Eigenvalue norm (lbf/ft)');
pause;
```
\hspace{3cm} corntocorn.m

\% corntocorn.m
\% Part of Algae.m
\% Performs the corner-to-corner trajectory
pos = [-L/2+l -W/2+w 0]; \% initial position
x(1) = pos(1);
y(1) = pos(2);
z(1) = pos(3);

P1 = [x(1) y(1) z(1)];
P2 = [x(1) y(1) z(1)];
P3 = [x(1) y(1) z(1)];
P4 = [x(1) y(1) z(1)];

D1 = B1-P1; \% dist. from the tower top to the platform
D2 = B2-P2;
D3 = B3-P3;
D4 = B4-P4;

L1(1) = norm([D1(1),D1(2),D1(3)]);
L2(1) = norm([D2(1),D2(2),D2(3)]);
L3(1) = norm([D3(1),D3(2),D3(3)]);
L4(1) = norm([D4(1),D4(2),D4(3)]);

posf = [L/2-l W/2-w h*.7];
xf = posf(1);
yf = posf(2);
zf = posf(3);
dist = sqrt((xf-x(1))^2+(yf-y(1))^2+(zf-z(1))^2);
stepp = dist/numsteps;
th = atan2(yf-y(1),xf-x(1));
ph = atan2(zf-z(1),xf-x(1));
stepx = stepp*cos(th);
stepy = stepp*sin(th);
stepz = stepp*sin(ph);
F = Ff;
cface = 'g';

for i = 1:numsteps
 if i <= 100
 x(i+1) = x(i)+stepx;
y(i+1) = y(i)+stepy;
z(i+1) = z(i)+stepz;
end
end
algaePose
algaePlot
if i == 1
 pause;
end;
end
t = (1:numsteps);
algfigs;
% define.m
% Part of Algae.m
% Sets up definitions and conversions
DR = pi/180; % degree to radian conversion
LN = 4.44822162; % lbf to N conversion
FM = 0.3048; % ft to m conversion
LK = 0.45359237; % lbm to kg conversion
phi = (1+sqrt(5))/2; % pond L/W ratio
acre = 43560; % (ft^2)
size = 1*acre; % pond size
m = 95; % end effector mass (lbm)
g = 32.2; % acceleration due to gravity (ft/s^2)
W = sqrt(size/phi); % width of the pond(ft)
L = W*phi; % length of the pond
%W = 10;
%L = 10;
l = 2; % length of the end effector (ft)
w = 2; % width of the end effector (ft)
h1 = 2; % height of the end effector (ft)
ml = 5; % mass of the load (lbm)
h = 10; % height of the towers (ft)
dx = 5; % dist. from the pond to the towers in x (ft)
ody = 5; % dist. from the pond to the towers in y (ft)
vel = 3; % velocity of the end effector (ft/s)
max_x = L/2 % maximum harvest point in x (ft)
max_y = W/2 % maximum harvest point in y (ft)
B01 = [-L/2-dx -W/2-dy 0]; % location of the tower bases
B02 = [-L/2-dx W/2+dy 0];
B03 = [L/2+dx W/2+dy 0];
B04 = [L/2+dx -W/2-dy 0];
B1 = [-L/2-dx -W/2-dy h]; % location of the tower tops
B2 = [-L/2-dx W/2+dy h];
B3 = [L/2+dx W/2+dy h];
B4 = [L/2+dx -W/2-dy h];
E = 29000000; % cable modulus of elasticity
dia = 0.5; % cable diameter (in)
A = pi*(dia/2)^2; % cable cross-sectional area (in^2)
dt = 0.5; % time step (s)
safeh = h1+3; % height to raise the end effector (ft)
Pdb = [vel;vel;vel]; % resolved rate end effector velocity
Fe = [0;0;-m]; % empty forces (lbm)
Ff = [0;0;-m-ml]; % loaded forces (lbm)
dstep = 1; %step size
umsteps = 100;
justraise.m

% justraise.m
% Part of Algae.m
% Performs the vertical lift tension simulation
pos = input('Enter [x y] (ft): '); % initial position

x(1:numsteps) = pos(1);
y(1:numsteps) = pos(2);
z = linspace(0, 0.9*h, numsteps);

F = Ff;
cface = 'g';

gather1 = 1;
gather2 = 1;
gather3 = 1;
gather4 = 1;

for i = 1:numsteps
 almaepose
 algaeplot
 if i == 1
 pause;
 end
 if T1(i) > 3*T1(1) && gather1 == 1
 T1trip = z(i)
 Perc1 = T1trip/h
 gather1 = 0;
 end
 if T2(i) > 3*T2(1) && gather2 == 1
 T2trip = z(i)
 Perc2 = T2trip/h
 gather2 = 0;
 end
 if T3(i) > 3*T3(1) && gather3 == 1
 T3trip = z(i)
 Perc3 = T3trip/h
 gather3 = 0;
 end
 if T4(i) > 3*T4(1) && gather4 == 1
 T4trip = z(i)
 Perc4 = T4trip/h
 gather4 = 0;
 end

end
end

end

pause;
figure;
plot(z,T1,z,T2,z,T3,z,T4)
grid on;
legend('T1','T2','T3','T4');
xlabel('Height (ft)');
ylabel('Tension (lbf)');
oneharvest.m

% oneharvest.m
% Part of Algae.m
% Simulates a single harvest of the device

pos = [0 -W/2-dy/2 h1]; % initial position
i = 1;
F = Fe;
x(i) = pos(1);
y(i) = pos(2);
z(i) = pos(3);
algaepose;

stop = 0;
while stop == 0;
 dest = input(’Enter harvest location [x y]: ’);
 xnew = dest(1);
 ynew = dest(2);
 znew = z(1);
 if abs(xnew) > L/2;
 warning(’The target location is outside the pond.’)
 elseif abs(ynew) > W/2
 warning(’The target location is outside the pond.’)
 else
 stop = 1;
 end
end

dist12 = sqrt((ynew-y(1))^2+(xnew-x(1))^2);
dtot = 2*(2*safeh+dist12-h1);

%dCalculates number of steps per action to meet numsteps
d01 = floor(((safeh-h1)/dtot)*numsteps)+1;
d12 = floor(((dist12)/dtot)*numsteps)+1;
d23 = floor(((safeh)/dtot)*numsteps)+1;
d34 = floor(((safeh)/dtot)*numsteps)+1;
d45 = floor(((dist12)/dtot)*numsteps)+1;
d56 = floor(((safeh-h1)/dtot)*numsteps)+1;

t1i = d01;
t2i = d01+d12;
t3i = t2i+d23;
t4i = t3i+d34;
t5i = t4i+d45;
t6i = t5i+d56;

if choosea == 1
 figure;
end

% First Leg - Lift
z1 = safeh;
stepp = (z1-z(1))/t1i;
F = Fe;
cface = 'w';

for i = 1:t1i
 x(i+1) = x(1);
y(i+1) = y(1);
z(i+1) = z(i) + stepp;
algaepose
 if choosea == 1
 algaeplot
 end
 if i == 1 && choosea == 1
 pause;
 end;
end

if choosea == 1
 pause(.5);
end

% Second Leg - Travel
x2 = xnew;
y2 = ynew;
z2 = z(i+1);
stepp = dist12/(d12);
th = atan2(y2-y(i), x2-x(i));
stepx = stepp*cos(th);
stepy = stepp*sin(th);
F = Fe;
cface = 'w';
for i= t1i: t2i
 x(i+1) = x(i)+stepx;
y(i+1) = y(i)+stepy;
z(i+1) = z2;
algaepose
 if choosea == 1
 algaeplot
 end
end

if choosea == 1
 pause(.5);
end

% Third Leg - Drop
x3 = x(i);
y3 = y(i);
z3 = 0;
stepp = (z3-z2)/(d23);
F = Fe;
cface = 'w';

for i = t2i:t3i
 x(i+1) = x3;
y(i+1) = y3;
z(i+1) = z(i)+stepp;
algaepose
 if choosea == 1
 algaeplot
 end
end

if choosea == 1
 pause(2);
end

%Fourth Leg - Lift
x3 = x(i);
y3 = y(i);
z3 = safeh;
stepp = (z3)/(d34);
F = Ff;
cface = 'g';

for i = t3i:t4i
 x(i+1) = x3;
y(i+1) = y3;
z(i+1) = z(i)+stepp;
 algaepose
 if choosea == 1
 algaeplot
 end
end

if choosea == 1
 pause(.5);
end

pause;

%%Fifth Leg - Travel

x5 = x(1);
y5 = y(1);
z5 = z(i);
stepp = dist12/(d12);
th = atan2(y5-y(i),x5-x(i));
stepx = stepp*cos(th);
stepy = stepp*sin(th);
F = Ff;
cface = 'g';

for i = t4i:t5i
 x(i+1) = x(i)+stepx;
y(i+1) = y(i)+stepy;
z(i+1) = z2;
 algaepose
 if choosea == 1
 algaeplot
 end
end

if choosea == 1
 pause(.5);
end

%SIXTH LEG - DROP

x6 = x(i);
y6 = y(i);
z6 = h1;
stepp = (z6-z5)/(d56);
F = Ff;
cface = 'g';

for i = t5i:t6i

 if i ~= t6i
 x(i+1) = x6;
y(i+1) = y6;
z(i+1) = z(i)+stepp;
 end
end
algaeplot
if choosea == 1
 algaeplot
end
end

algfigs;

snaps.m
% snaps.m
% Part of Algae.m
% performs calculations at a specific location

i = 1;
F = Ff;
cface = 'g';
snapc = input('Enter coordinates: [x y z] ');
x(i) = snapc(1);
y(i) = snapc(2);
z(i) = snapc(3);
algaeplot;
L1(i)
L2(i)
L3(i)
L4(i)
T1(i)
T2(i)
T3(i)
T4(i)
towervary.m

v = 100;
pos = input('Enter position [x y]: '); % initial position
x = pos(1);
y = pos(2);
z = 0;

F = Ff;
cface = 'g';

B1 = [-L/2-dx W/2+dy 100];
B2 = [L/2+dx W/2+dy 100];
B3 = [L/2+dx -W/2-dy 100];
B4 = [-L/2-dx -W/2-dy 100];
P1 = [x y z];
P2 = [x y z];
P3 = [x y z];
P4 = [x y z];
D1 = B1-P1;
D2 = B2-P2;
D3 = B3-P3;
D4 = B4-P4;
L1 = norm([D1(1),D1(2),D1(3)]);
L2 = norm([D2(1),D2(2),D2(3)]);
L3 = norm([D3(1),D3(2),D3(3)]);
L4 = norm([D4(1),D4(2),D4(3)]);

Jb = [(x-B1(1))/L1 (y-B1(2))/L1 (z-B1(3))/L1;
(x-B2(1))/L2 (y-B2(2))/L2 (z-B2(3))/L2;
(x-B3(1))/L3 (y-B3(2))/L3 (z-B3(3))/L3;
(x-B4(1))/L4 (y-B4(2))/L4 (z-B4(3))/L4];

Ab = -(Jb');
pAb = pinv(Ab);
T = -pAb*F;
T1100 = T(1);
T2100 = T(2);
T3100 = T(3);
T4100 = T(4);
gather1 = 1;
gather2 = 1;
gather3 = 1;
gather4 = 1;

for i = 1:v
 B1 = [-L/2-dx W/2+dy z+i];
 B2 = [L/2+dx W/2+dy z+i];
 B3 = [L/2+dx -W/2-dy z+i];
 B4 = [-L/2-dx -W/2-dy z+i];
 P1 = [x y z];
 P2 = [x y z];
 P3 = [x y z];
 P4 = [x y z];
 D1 = B1-P1;
 D2 = B2-P2;
 D3 = B3-P3;
 D4 = B4-P4;
 L1(i) = norm([D1(1),D1(2),D1(3)]);
 L2(i) = norm([D2(1),D2(2),D2(3)]);
 L3(i) = norm([D3(1),D3(2),D3(3)]);
 L4(i) = norm([D4(1),D4(2),D4(3)]);
 Jb = [(x-B1(1))/L1(i) (y-B1(2))/L1(i) (z-B1(3))/L1(i);
 (x-B2(1))/L2(i) (y-B2(2))/L2(i) (z-B2(3))/L2(i);
 (x-B3(1))/L3(i) (y-B3(2))/L3(i) (z-B3(3))/L3(i);
 (x-B4(1))/L4(i) (y-B4(2))/L4(i) (z-B4(3))/L4(i)];

 Ab = -(Jb');
 pAb = pinv(Ab);
 T = -pAb*F;
 T1(i) = T(1);
 if T1(i) < 5*T1100 && gather1 == 1
 T1trip = i
 gather1 = 0;
 end
 T2(i) = T(2);
 if T2(i) < 5*T2100 && gather2 == 1
 T2trip = i
 gather2 = 0;
 end
 T3(i) = T(3);
 if T3(i) < 5*T3100 && gather3 == 1
T1trip = i
 gather3 = 0;
end
T4(i) = T(4);
if T4(i) < 5*T4100 && gather4 == 1
 T1trip = i
 gather4 = 0;
end
end
height = [z+1:z+v];
plot(height,T1,height,T2,height,T3,height,T4)
grid on;
xlabel('Tower Height (ft)');
ylabel('Cable Tension (lbf)');
legend('T1','T2','T3','T4');