Repeat Viewing in China: An Expansion of Determinants of Program Choice

A thesis presented to
the faculty of
the Scripps College of Communication of Ohio University

In partial fulfillment
of the requirements for the degree
Master of Arts

Lin Yao
June 2008
This thesis titled
Repeat Viewing in China: An Expansion of Determinants of Program Choice

by
LIN YAO

has been approved for
the School of Media Arts and Studies
and the Scripps College of Communication by

Roger A. Cooper
Associate Professor of Media Arts and Studies

Gregory J. Shepherd
Dean, Scripps College of Communication
ABSTRACT

YAO, LIN, M.A., June 2008, Telecommunications

Repeat Viewing in China: An Expansion of Determinants of Program Choice (67 pp.)

Director of Thesis: Roger A. Cooper

Repeat viewing focuses on the extent to which an audience for one program watches subsequent episodes of the same program, and is an important concept in “models of choice” theories of audience behavior. Research has examined repeat viewing in the U.S. and Europe, but no known studies have examined this phenomena in China, which is the largest and fastest-growing television market in the world. This study examined 300 episodes of television in China and found repeat viewing levels to be lower (22.28%) than studies in the U.S. and Europe. Ratings, daypart, availability, strip scheduling, story line and channel combined to explain 36.3% of variance in repeat viewing. Although ratings was still the strongest predictor, the correlation between ratings and repeat viewing only held true within three of six dayparts (noon, early fringe and prime time). Contrary to previous research, storyline was not a significant predictor. The lower repeat viewing rates and declining explanatory power of structural factors in predicting repeat viewing appears to be a function of a fragmenting audience.

Approved: ___

Roger A. Cooper

Associate Professor of Media Arts and Studies
ACKNOWLEDGMENTS

First and foremost, I am deeply grateful to my advisor, Roger Cooper. His tremendous enthusiasm for audience research has done so much to keep me motivated. I am indebted to Dr. Cooper for invaluable advice and patient guidance about carrying out my research, and writing in a lucid manner. He really has been a good friend and inspiring collaborator.

I would like to thank Duncan Brown, Gregory Newton, and Drew McDaniel, for their excellent suggestions and thought-provoking questions. In particular, I am grateful for the guidance of Dr. Brown throughout my program at OU. I appreciate Dr. Newton’s insightful comments on my work. Dr. McDaniel’s encouragement, guidance and professionalism have inspired me throughout the courses of my studies. I thank them all.

I am also fortunate to have been part of School of Media Arts and Studies at Ohio University. I thank media school for giving me the trust, and providing the financial support for my studies. I would also like to thank my colleague, Tang, for sharing her research experiences with me.

This study would not have been possible without the help of my friend, Don, in China. I am grateful to him for the friendship, and his help in the data collection process.

My parents have given me constant support and encouragement. I am deeply indebted to them for all the sacrifices and efforts they have made to provide me the opportunity of studying overseas.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Theoretical Frameworks of Program Choice</td>
<td>2</td>
</tr>
<tr>
<td>Structural Approach</td>
<td>3</td>
</tr>
<tr>
<td>Integrated Models</td>
<td>7</td>
</tr>
<tr>
<td>Summary</td>
<td>9</td>
</tr>
<tr>
<td>Chapter 2 Literature Review</td>
<td>12</td>
</tr>
<tr>
<td>Structural Determinants of Repeat Viewing</td>
<td>14</td>
</tr>
<tr>
<td>Repeat Viewing and Audience Availability</td>
<td>18</td>
</tr>
<tr>
<td>Demographic Factors in Program Choice Studies</td>
<td>21</td>
</tr>
<tr>
<td>Summary</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 3 Rationale, Research Questions and Hypotheses</td>
<td>26</td>
</tr>
<tr>
<td>Research Questions and Hypotheses</td>
<td>26</td>
</tr>
<tr>
<td>Chapter 4 Methodology</td>
<td>33</td>
</tr>
<tr>
<td>Sampling</td>
<td>33</td>
</tr>
<tr>
<td>Unit of Analysis</td>
<td>34</td>
</tr>
<tr>
<td>Dependent Variables and Measures</td>
<td>35</td>
</tr>
<tr>
<td>Independent Variables, Measures and Coding</td>
<td>36</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1: ANOVA: Repeat Viewing by Channels ...39
Table 2: Correlation Matrix of Factors Influencing Repeat Viewing40
Table 3: Hierarchical Multiple Regression of Repeat Viewing41
Table 4: Repeat Viewing by Different Dayparts and its Correlation with Ratings42
Table 5: ANOVA: Repeat Viewing by Different Types of Programs44
Table 6: ANOVA and TSV: Repeat Viewing by Different Audience Groups45
CHAPTER 1
INTRODUCTION

Television program choice has been a central theme in communication research. Patterns of exposure are widely thought to be connected with media effects if not ultimately determine media effects (e.g., Bryant & Zillmann, 1985). Repeat viewing is phenomena relevant to both the media industry as well as media scholars. It focuses on the proportion of viewers that watch consecutive episodes of a regular program or series (Goodhardt, Ehrenberg, & Collins, 1975, 1987), and is a special tenet of audience duplication research (Cooper, 1996; Davis & Walker, 1990; Goodhardt, Ehrenberg, & Collins, 1975, 1987; Tiedge & Ksobiech, 1986; Webster, 1985). Repeat viewing not only offers programming managers a yardstick for evaluating program loyalty, but also allows scholars to understand and explain viewing behavior.

Many studies in the past three decades have examined the case of repeat viewing (Barwise, 1986; Ehrenberg & Wakshlag, 1987; Goodhardt et al., 1987; Sherman, 1995; Soong, 1988; Webster & Wang, 1992; Zubayr, 1999). Nearly all the studies are conducted in the western context, and indicate surprisingly low repeat viewing. Few, if any, have addressed repeat viewing in countries other than the U.S. and Europe. Thus, little is known about whether theories and patterns developed in western culture are relevant in different social contexts. China, with a total number of 1.3 billion television viewers, is the largest and fastest-growing media market in the world, and second only to the U.S. in advertising revenue (Variety, 2008). Given the dramatic increase of television channels and the proliferation of new media services, and as well as scant attention given to repeat viewing in recent years, it is important to assess this phenomenon. This study
seeks to further enhance audience research literature by focusing on repeat viewing patterns in China.

Theoretical Frameworks of Program Choice

The quest for a coherent understanding of audience program choice has long been the focus of communication research. Scholars have resorted to different theoretical foundations, and employed different methods for explanations. Webster and Phalen (1997) proposed two perspectives that are often used to explain audience behaviors. The first emphasizes “the structural factors that are common to, or characteristics of, the mass. These macro-level factors may be built on individual behaviors, but they reveal themselves only in aggregate” (p.24). The second perspective highlights the importance of individual traits when making program choice. The structural factor approach has achieved consistency in demonstrating their predictive power on audience program choices, as far as “mass” audience behaviors are concerned. Thus, structural factors are often recommended to be considered first when estimating audience size (Webster & Phalen, 1997).

Embedded in the two approaches are two different perspectives with regard to program choice. Social psychologists are more interested in exploring how causal factors drive audience’s media consumption, while the structural approach is mainly concerned with the general patterns of mass audience behavior, and how extraneous factors influences viewer’s program choices. Beyond the different foci, there is also a conflict about whether the audience should be conceptualized as active individuals or a passive mass, and whether activity or passivity casts more influence on the final outcome of their program choice.
Juxtaposing both approaches and recognizing the complicated human nature, some scholars have proposed integrated models (McQuail, 1997; Webster & Wakshlag, 1983; Weibull, 1985). They pointed out, in the first place, viewers are being constrained by social structures that formulate their long-term media orientation. However, on a daily basis, they are actively choosing their preferred programs, while also submitting to structural boundaries. Though attempts have been made to bridge the two theoretical perspectives, due to the epistemological and methodological differences, empirical investigations have rarely integrated the two approaches.

Structural Approach

Rather than focusing on individual characteristics, structural approaches in program choices take on a social-economic perspective (Litman & Kohl, 1992). This perspective eschews individual traits and concentrates on gross or cumulative measures of audience size. They believe that other activities (e.g. household chores, work hours, and so on) in one’s daily life are pre-eminent over television viewing. In any event, audience availability will influence program choice, as a viewer must be free to watch before choosing what to watch (Webster, 1985; Cooper, 1996). Because audience availability will mitigate the impact of audience’s program preference, scholars working within structural approach believe that scheduling strategies will play a larger role in deciding the outcome of program choices (Webster & Wakshlag, 1983). In other words, viewers in most cases are not choosing programs only according to their preferences. The outcome of their choice is constrained by factors like availability and scheduling characteristics. Such effects, when aggregated, are reflected in mass audience behavior patterns defined as audience duplication.
Audience duplication is recognized as the major component of program choice within the structural factor approach. In the simplest terms, audience duplication is the percentage of those who watch program “X” who also watch program “Y” regardless of different channels or nights (Webster, 1985). The four recognized components of audience duplication research – inheritance effects, repeat viewing, channel loyalty, and repeated exposure – reflect some special tendencies the television industry and media scholars use to explain patterns of viewing (Cooper, 1996). Using this information, media scholars can determine whether the audience of one program is represented in the audience of another program.

Probably because of the limited power to influence individual’s preference, scholars working in structural theories are more interested in how to use program scheduling characteristics to produce certain aggregate audience viewing behaviors under the given situation. Thus, rather than concentrating on individual characteristics, their studies focus on extraneous factors. Specific program choice is explained as the result of those factors, beginning with audience availability, and including such interacting variables as the structure of program options, program preferences, viewers motivations, program awareness and the context of viewing (Webster & Wakshlag, 1983).

Contemporary studies of television viewing have employed sophisticated statistical procedures to demonstrate how structural factors are much stronger predictors of program choice than any measure of program typology (Cooper, 1993; Goodhardt, et al., 1987; Webster, 1985; Webster & Newton, 1988; Webster, 2006). Indeed, structural factors have had some success in predicting program ratings, patterns of audience flow, and audience duplication. Theoretically, these findings suggest, at some level, the
The audience is “bound” by the way programs are offered. Practically, the television industry also believes that viewership can be increased (or maintained) simply by properly structuring the “flow” of available audience. Set in either an applied or theoretical context, structural variables have been considered important characteristics that might predict choice and produce certain behaviors. Remarkably, some research has shown that these variables can explain as much as 80% to 90% of the variance in a program's audience (e.g., Cooper, 1993; Webster, 1985). Moreover, after replicating a study of inheritance effects conducted 20 years ago, Webster (2006) still found structural factors have strong predictive power in the new media environment, even though cable penetration, satellite broadcasting and DVR have complicated viewers' interactions with media.

Criticisms of the structural approach unanimously point to their inability to explain the audience behaviors underlying those structural patterns. Structural studies are criticized for lacking meaning when explaining audience behaviors. Structural factors predict patterns without telling why patterns exist. Terms such as audience availability and channel loyalty also suffer from loose definitions. Furthermore, as their theoretical interest is more apt to focus on the power of structural variables, like total audience availability, or the scheduling characteristics of programs, individual-level variables are seldom used to create aggregate audience measurements (e.g., men vs. women; old vs. young).

The structural approach contrasts with the social psychological approach, which offers another theoretical framework for studying audience program choice (Bryant & Zillmann, 1985; Rosengren, Wenner, & Palmgreen, 1985). The uses and gratifications
approach is the most dominant one under this perspective. Under this approach, theoretical interests tend to focus on how viewers’ motivations, preferences, and other mental states determine their program choice (Rosengren, Wenner, & Palmgreen, 1985; Bryant & Zillmann, 1985). The logic (sometimes treated as assumption) of the uses and gratifications theory is that media use is motivated by a rational self-awareness of the viewer’s own needs and an expectation that those needs will be satisfied by particular types of media and content (Katz, Blumler, & Gurevitch, 1974). Thus, this approach usually links the audience’s needs to their preference for a specific program type, and often assumes that needs and preferences are relatively consistent. In other words, the linkage between constant needs and preferences for program of a type leads to an individual’s program choices.

Criticism of this approach revolves around three aspects. First of all, this perspective is not particularly helpful in unraveling the patterns of mass or predicting audience’s behavior though it is useful for offering explanations regarding media exposure once it has occurred. Second, although uses and gratifications researchers try to demonstrate how the selection of specific types of programming is driven by individual audience needs and preferences, as advertising researchers Rust, Kamakura & Alpert (1992) reminded us that scholarly investigations in this area continually failed to conclusively reveal a relationship between patterns of program selection and programming content. Furthermore, the validity of the methodologies employed by this approach is somewhat dubious. Studies are more dependent on self-reported typologies of viewing garnered with questionnaires or interviews, and rely on the interpretation of lifestyle and attitude variables rather than observable audience behavior. Thus, these
methods may not be measuring the audience’s actual behavior so much as gauging their awareness and interpretation of their behavior.

Integrated Models

Webster and Wakshlag (1983) made the first attempt, followed by many others (McQuail, 1997, p.77; Weibull, 1985, p.128; Webster, Lichty & Phalen, 2006, p.200), to integrate divergent program choice research approaches into a single “model of program choice.” Webster and Wakshlag (1983, p.433), taking two theoretical foundations into consideration, proposed the following components as important factors for understanding program choice: viewer availability, viewers’ awareness of program options, program and program type preferences, viewer needs, viewing group and the structure of available programming. This model captures the likely interaction between media structures, content preferences, and viewing conditions in the program choice process (see Cooper, 1996). In addition, the model particularly emphasized the importance of audience availability, considering availability to be most responsible for patterns of viewing. According to Webster and Wakshlag (1983), audience availability and program scheduling are the most important determinants of program choice, while preference for a program type is considered a probable cause for specific program preferences.

Webster and Wakshlag’s model is followed by more models with similar conceptualizations. Weibull (1985) developed a more comprehensive model, which captures the interaction among social, media, and the individual/content factors. The main idea of his model is that program choice is a joint outcome of long-term stable media orientation and daily-based individual circumstantial decision. Long-term media orientation is an audience’s habitual pattern of media use, which reflects the impacts of
overall social structural and media structural factors. Social structure refers to social facts—such as those of education, income, gender, place of residence, position in the life-cycle—that have a strong determining influence on general outlook and behavior. Media structure refers to the relatively constant array of channels, choices, and content that is available in a given place and time. According to Weibull (1985), social factors and media factors led not only to a regular pattern of behavior, but also to a fairly constant disposition, tendency, or set, which was called a person’s media orientation. In terms of daily based usage, Weibull (1985) identified three factors that will interactively determine audience’s final program choice. They were individual preference, content available at that moment and social context of consumption (i.e. group viewing). This model offers a comprehensive picture for understanding of audience program choice. It not only captures how the habitual media orientation and daily circumstantial condition interactively determine program choice, but also traces the factors concerning the formation of media orientation, as well as circumstances on which daily decision is based. After proposing this model, Weibull (1985) actually tested it with newspaper reading. However, his research design barely reflected the comprehensiveness of his model. Nor did he capture the interactive relationship among factors he had proposed.

Closely based on Webster and Wakshlag’s (1983) and Weibull’s (1985) model, McQuail (1997) worked out a revised model. His model combined all the components proposed in the previous studies. By clearly depicting the direction of how each factor work with another, his model is dedicated to accounting for the procedures of audience program choice. However, as social science could barely demonstrate causal relationship between two variables, empirical studies that employed this model are rarely found.
Summary

To the extent that audience behavior is the activity in the constrained structure, the course to comprehend program choice will probably never reach a clear-cut verdict. However intricate audience behavior is and however impossible it is to obtain an unequivocal answer, the theories and models reviewed above are significant in the sense that they provide the epistemological infrastructure for understanding the interactive relationship between media and audience. The structural factors approach emphasizes the importance of the audience availability and scheduling characteristics in manipulating audience behavior. The uses and gratifications approach underscores the importance of psychological elements in program choice. Meanwhile, some scholars recognize the explanatory power of both theoretical frameworks and combined them into integrated models.

Among the three approaches, structural factors tend to be most successful in predicting audience size. However, what is missing in this approach is a thorough understanding of audience availability, which is identified as the most influential determinant of audience program choice. So far, little is known about how audience availability is influenced by other factors. In addition, knowledge of whether and how audience availability varies among viewers with different characteristics is also limited.

This study has three objectives. First, it seeks to enrich audience research literature in the non-western world by extending repeat viewing studies in China. Few program choice studies, if any, have addressed contexts other than the U.S. and Europe. Thus, little is known about whether theories and patterns developed in western culture are relevant in different social contexts. Selecting the Chinese context has some pragmatic
implications. With a total number of 1.3 billion television audience, China is the biggest television market in the world. It is also the fastest-growing market. Keeping an annual growth rate of around 10%, to date, China has surpassed Germany and Japan to be the second largest advertising market next to the U.S. Thus, contribution to the knowledge about this exploding market is necessary. Understanding the underlying rules of repeat viewing will be helpful for media practitioners.

Second, and most importantly, this study seeks to further advance our academic understanding of repeat viewing. Previous studies on repeat viewing have been inconclusive thus far. It is still difficult to get a coherent conceptualization of detailed repeat viewing patterns. Structural factors, such as audience availability, are usually considered as the most important determinants of repeat viewing. However, the loosely defined concept of audience availability has not been truly tested in repeat viewing studies. This study, after trying to clarify the connotations of audience availability, will further test its impacts on repeat viewing.

In addition, this study is going to bring in another factor, audience characteristics, to examine whether different repeat viewing patterns will emerge among diverse viewer groups in the new media environment. If media scholars and practitioners used to be concerned about the impacts of cable, remote control and DVR, the current media environment is further complicated by more alternative media choices, such as streaming media via the Internet, mobile phone, and television on public transportation systems (bus and subway), etc. As some viewers have more media choices and more accesses to media, it is interesting and important to examine whether different viewer groups have cultivated behaviors different from the past.
The following chapters will be organized as follows: Chapter 2 will first review the literature concerning repeat viewing studies, and then specify two connotations of audience availability. Chapter 3 will provide the rationale, research questions and hypotheses. Chapter 4 will describe the methodology, and Chapter 5 will report the results. Discussion of this study and its implications will be provided in Chapter 6.
CHAPTER 2
LITERATURE REVIEW

Repeat viewing is one of four recognized components of audience duplication research, along with inheritance effects, channel loyalty, and repeated exposure (Cooper, 1996). Audience duplication refers to the special tendency of viewers to watch programs or channels, and is commonly associated with structural theories of audience behavior. In some cases, repeat viewing is understood as “program loyalty” because research in this area focuses on the degree to which viewers are likely to watch the consecutive episode of same program in a fixed time (e.g., Goodhardt et al., 1975, 1987; also see Cooper, 1996). Repeat viewing can also be defined operationally as the proportion of viewers overlapping between the consecutive episodes of a regular program (Goodhardt et al., 1987).

Earlier studies focused on discovering the general patterns of repeat viewing by examining diary rating data. The first published research on repeat viewing appeared in 1975 (Goodhardt et al.). The picture that emerged from that study on Britain television market suggested that repeat viewing for all television series was around 55%. It was a finding that surprised many in the media industries, who assumed that viewers were very loyal to the programs they watched. Furthermore, Goodhardt et al. (1975) found no variation in repeat viewing across the type of series. There was also no significant difference among different demographic groups. Repeat viewing studies in the mid 1980s began to use Nielsen ratings data for analysis (Barwise, 1986; Ehrenberg & Wakshlag, 1987). Studies usually generated a repeat viewing rate ranging between 25 and 35 percent.
(Ehrenberg & Wakshlag, 1987; Soong, 1988). That is, 65 to 75 percent of a population did not watch the next episode.

Low repeat viewing particularly points to irregular audience availability as an explanation (Barwise, Ehrenberg, & Goodhardt, 1982; Ehrenberg & Wakshlag, 1987; Goodhardt et al., 1987). By using survey methods to ask people what they were doing when they failed to watch the consecutive episode, researchers found the low repeat viewing was accompanied by the fact that of the majority, a minimum of 40% of the viewers, did not watch any TV at all (Goodhardt et al., 1987). Only a few people, about 10%, of those not watching the next episode do watch a different program during the same time. Most people (90%) who do watch TV will view the next episode. Ehrenberg & Wakshlag (1987) attributed this irregular television viewing behavior to the low involvement nature of the medium.

Of all the studies, a frequently observed phenomenon is the correlation of repeat viewing levels with ratings (Barwise, 1986; Sherman, 1995). That is, the more people watch a program, the higher the repeat viewing level is (Ehrenberg, Goodhardt, & Barwise, 1990). This phenomenon was first coined as “Law of Double Jeopardy” by McPhee (1963) who stated that “the jeopardy of low ratings for a program is supplemented by the additional jeopardy of disloyal viewers.” In this view, repeat viewing level seems to be dependent upon the ratings. Yet, this rule has been under challenge by the studies in the context of channel proliferation.

The heavy increase of available channels has led to reduced ratings for each single program and thus reduced the repeat viewing rate (Webster & Wang, 1992). The strong relationship between ratings and repeat viewing levels has been challenged.
Studies found certain programs had either high ratings and low repeat viewing rates, or low ratings and high repeat viewing rates (Ehrenberg & Wakshlag, 1987; Ehrenberg, Goodhardt, & Barwise, 1990; Webster & Wang, 1992). Webster and Wang (1992) found the general correlation between ratings and repeat viewing was no longer significant. The relationship between ratings and repeat viewing only held within the construct of daypart. In other words, repeat viewing rates still correlated on ratings, but that relationship only exists in daytime or in prime-time.

Three most recent studies in the 1990s (Webster & Wang, 1992; Sherman, 1995; Zubayr, 1999) further confirmed that repeat viewing levels were substantially lower than what had been found in earlier studies. Thus, debates on the declining repeat viewing level have shifted to identify determinants and predictors. Studies during this period focused on testing different independent variables. Scholars also extended the scope of their studies, going beyond the U.S. and U.K. to Germany (Zubayr, 1999) to examine patterns in different social environments, and moving from commercial stations to PBS stations in the U.S. (Sherman, 1995). Researchers have frequently operationalized the following independent variables to examine repeat viewing patterns: ratings, strip-scheduling, daypart, storyline, and program type.

Structural Determinants of Repeat Viewing

Ratings

A frequently observed phenomenon is the correlation of repeat viewing levels with ratings (Barwise, 1986; Sherman, 1995). Consistent with the Law of Double Jeopardy, many studies showed that the higher the average rating of a series, the higher the average level of repeat viewing. That is also to say, the more people watch a program,
the higher the repeat viewing level is (e.g., Ehrenberg et al., 1990). Here, ratings were often understood as a surrogate variable for audience availability, because the higher the ratings, the more people watch a program. Webster and Wang’s (1992) study complicated the relationship between ratings and repeat viewing rates. They found the highest levels of repeat viewing are associated with daytime programs that have considerably lower ratings than their prime-time counterparts. But a substantial double jeopardy effect still existed within dayparts. The implication of this finding is that ratings can only serve as a predictor for industrial practitioners when they schedule programs or craft media plans. As for an academic explanation, ratings might only be a manifestation of other predictor or confounded with other factors.

Strip-schedule

Whether the series in question is strip-scheduled across weekdays or broadcast once a week has a strong impact on repeat viewing. Webster and Wang (1992) found that programs strip-scheduled in daytime across consecutive days generated higher rates of repeat viewing than those scheduled weekly, and serial dramas (i.e., soap operas) had higher rates of repeat viewing than other program types. Unfortunately, by using daytime soap opera as the unit of analysis, their study confounded the impact of three factors – program type, strip schedule and storyline – as daytime soap operas are usually strip-scheduled and always have continuous storylines. Following Webster and Wang’s (1992) study, Sherman (1995), focused on PBS, and separated the effect of daypart and strip-scheduling by studying prime-time PBS stripped programming. His study confirmed strip-schedule as a strong predictor of repeat viewing.
Daypart

Among all the structural variables, daypart has been identified as an important structural variable, which is deemed as a surrogate variable for audience availability (Webster & Wang, 1992). Actually, earlier studies have already identified the impacts of dayparts. As Goodhardt, et al. (1987) have mentioned, “…off-peak dayparts (i.e., non-prime-time) are thought to serve viewers who are more regularly available. Hence, we would expect higher levels of repeat viewing to be associated with non-prime-time dayparts.” Webster and Wang’s study of daytime soap operas confirmed the impacts of daypart. However, as mentioned before, their study confounded the influence of daypart with other factors such as program type (soap opera) and continuous storylines. Except for Webster and Wang’s (1992) study, so far, there is no other specific study dedicated to clarify the influence of daypart on repeat viewing.

Storyline

Webster and Wang (1992) explicitly distinguished between continuing and non-continuing storylines in the programs they examined. Zubayr (1999) further developed this variable by identifying three kinds of storyline: continuous storylines through all the episodes; each episode narrates a complete new story, but the characters are enriched by their experience in the past episodes; and independent episodes that are totally interchangeable. His study showed that repeat viewing highly correlated with continuous storyline. Although storyline unfortunately interacted with the time and frequency of broadcast, its contribution to the amount of repeat viewing was statistically significant.
Program Type

Before Webster and Wang’s (1992) study, nearly all previous studies had limited the examined program types to entertainment programs. Consistent among all the studies that touched on program types, soap operas always had the highest repeat viewing levels (e.g. Barwise, 1986; Barwise, Ehrenberg, & Goodhardt, 1990; Headen, Klompmaker, & Rust, 1979). Notwithstanding the audience for soap operas, Goodhardt et al. (1987) reported “…there is virtually no systematic variation by program type or content. Repeat viewing of a serial with a continuing storyline is generally not higher than that for a regular film slot with radically different showings each week.” Given the importance of content-related preferences emphasized by the uses and gratifications approach, intuition would suggest that the content of a television series would have implications for patterns of repeat viewing. Thus, Zubayr (1999) systematically investigated the difference among different program types. Soap operas still enjoyed the highest rates of repeat viewing, whereas sports programs had the lowest rates and the highest variation. Though he found different patterns occur among various program types, explanation for different patterns associated with program types are still limited.

Channel Type

Previous studies have rarely considered channel type as a factor. Zubayr (1999) included channel type as a factor when building his regression model for repeat viewing in Germany. He found that the RTL channel, the German market leader channel, was the best performing channel in terms of repeat viewing. Furthermore, channel type in his study contributed a fairly large amount of variance in explaining repeat viewing, next only to ratings and strip-scheduling.
Repeat Viewing and Audience Availability

Since audience availability has been identified as the most important structural factor in repeat viewing, it is essential to discuss its connotations. Overall, audience availability is a loosely-defined concept. Although scholars usually consider it as the most important predictor for television viewing, surprisingly, thorough reviewing in the literature provides few coherent definitions or explanations for this term. Only Webster, Lichty & Phalen (2006; also see in Webster & Phalen, 1997, p.25) defined audience availability in its practical sense as “the number of people using a medium at any point in time” (p.186). This definition gathers mass audience into aggregate groups according to time. Time can be every hour, every day, every month, every season, or even every year depending on the research context. This interpretation is based on industrial practitioners’ perspective. Programmers and advertisers are more interested in the total number of people watching television at any point in time, so they can know how to schedule programming or how to craft their media plan. Though scholars did not state what they meant when using this term, judging from the context, many scholars have followed this concept. For instance:

It has been argued that underlying patterns of audience availability, which are typically unaffected by the schedule of programs, produce high correlated patterns of television use. (Webster & Phalen, 1997, p.69)

This interpretation of audience availability shares the same meaning with Home Using Television (HUT) or Persons Using Television (PUT) as Webster, Lichty & Phalen (2006) clearly put, “…the size of total audience, as reflected in HUT or PUT levels…is largely a matter of understanding audience availability” (p.227). HUT is a basic ratings concept. HUT at a particular time, is estimated by adding ratings for all broadcasters in a
market during a given daypart or timeslot. HUT differs from ratings because it combines all viewing, rather than identifying specific program viewing. Similarly, PUT at a particular time, is expressed as percent of all persons watching television at any point in time. PUT combines all persons viewing, rather than reporting specific program viewing. In this sense, audience availability in this connotation can be measured by PUT.

There is another potential interpretation of audience availability. Some researchers might comprehend it from audience’s standpoint, which is the total amount of time people spend watching television during a certain period of time. Yuan & Webster (2006) mentioned this definition when studying channel repertoire in Beijing. They said that,

Audience availability is known to have great influence on television viewing. Program choice is dependent on an individual’s availability to view television. The total time that viewers spending viewing TV (TSV) is commonly used to indicate audience availability (p.530).

This definition gathers the time for television viewing according to people. People could either be a single person, or an aggregate of people according to a commonality, such as housewives, people above the age of 18, iPod users, etc. Some scholars actually used this connotation. For instance:

This appears to be due to the consistent non-availability of those people who are at work rather than due to any specially intensive viewing by those who actually viewing. (Goodhardt et al., 1987, p.50)

…influence by the general social habits and availability which determine whether one is watching television at all. (Goodhardt et al., 1987, p.58)

Individuals over 40 and women tend to have a more ritualized viewing behavior. These differences might, however, be a consequence of the different amount time spent with television, i.e. their availability. (Zubayr, 1999, p.359-360)
The similarity of the two interpretations of audience availability mentioned above is that they both point to the amount of time the audience actually spends watching television. Although intuition would suggest that audience availability probably means the “potential time” audience would devote to watching television (not necessarily to watch indeed), the industry prefers to measure the actual amount of time the audience spent watching television in the past to predict the possible time the audience would dedicate to television viewing in the future. As a matter of fact, to measure the actual time spent on television is measuring the audience behavior under constraints. By contrast, the potential time available to watch television will have more variation as the “potential” is not necessarily constrained by social, media and individual circumstantial constraints. Since the constraint per se will restrict the variations of the time spent watching television, audience availability defined as the actual time viewers spent watching television is more predictable. For instance, hour-by-hour television viewing is constrained by daily routines like sleep time, working hours and house chores. Thus, audience availability across dayparts is highly predictable. Similarly, winter constrains people’s outdoor activities as there is less daylight. Thus, audience availability is higher in winter than that in summer (Webster, Lichty & Phalen, 2006). For the same reason, individuals who do not work outside of home (e.g., housewives) are less likely to be constrained by daily routines. Therefore, their time available to watch television usually is the higher than other audience segments. In this sense, it is the constraints (i.e., daypart, season, and identity) that make the audience availability predictable. If audience availability is defined as the potential time viewers are willing to dedicate to television
viewing, it would be less predictable because there are not many constraints to mitigate the variations.

The difference between two interpretations is the unit of analysis: for the first definition, it is “any point in time”; for the second definition, it is “individual person”. This difference, despite being troublesome for clarifying the definition of audience availability, is deemed good as it actually offers an opportunity to examine mass audience behaviors from two perspectives. First, the number of people using a medium at any point in time, from industrial practitioner’s point view, is helpful to answer, “What media do people consume?” (see Webster, 1998). Second, the total amount of time people spent on television during a period of time, from audience’s standpoint, is helpful to answer, “What people do to media?” (see Webster, 1998). This study is going to use both conceptualizations of audience availability to examine its impact on repeat viewing. To differentiate the two connotations in the following discussion, audience availability in its first connotation will be abbreviated as AAPUT, and its second connotation as AATS.

Demographic Factors in Program Choice Studies

Demographic segmentation is the most prevalent form of market segmentation (Beane & Ennis, 1987). This is probably because subjects are placed on the natural and well-recognized demographic scales of measurement which can be relatively easily gathered and interpreted. Furthermore, using demographic segmentation, it is easier to contrast findings from one study to another, and even from one cultural context to another. Common demographic variables are age, sex, income, educational level, race, and nationality (Beane & Ennis, 1987).
The validity of using demographic variables in audience research has not been fully supported. Criticisms usually point to the variations within each demographic group. Though demographics can capture the life-span difference across groups, its limited capability makes it hard to capture other commonalities and to organize data in a more efficient way. Thus, demographic segmentation is not completely helpful for identifying different patterns if the patterns are not highly related to age, gender, etc.

Many attempts have been made by the structural approach to explore the relationship between demographics and television viewing patterns. However, few studies have shown demographic factors have significant impact on viewing patterns. In spite of this, scholars still take opportunity to test the impact of demographics probably because of the intuitive appeal of demographics’ explanatory power, and its elevated importance to the advertisers. When systematically examining audience duplication in Britain, Goodhardt et al. (1975, 1987) considered age and gender differences. However, though female elder audience showed slightly higher repeat viewing rates, the impact of demographics seem limited. Zubayr (1999) also employed age and gender variable when examining repeat viewing patterns in German, but the findings also failed to show significant differences.

Webster and Wakshlag (1983), when building their integrated model of program choice, argued for the reasons why demographic factor had not be incorporated in their model. They said “demographics may correlate with needs and so help explain choice behavior, they are not explanatory variables in of themselves” (p.440). In this sense, they merely consider demographics as the factor correlating to needs and motivations for program choice. What has been overlooked is the potential relationship between audience
availability and demographics. In other words, demographics may capture a certain viewing pattern constrained by social factors. For instance, students are less likely to watch television program during the daytime. It is not because their needs cannot be fulfilled. Rather, being a student constrains their television consumption in daytime.

Summary

Although many studies in the past three decades have examined the case of repeat viewing (Barwise, 1986; Ehrenberg & Wakshlag, 1987; Goodhardt et al., 1987; Sherman, 1995; Soong, 1988; Webster & Wang, 1992; Zubayr, 1999), findings of repeat viewing are still inconclusive. Debates used to revolve around the declining levels of repeat viewing. After recent studies confirmed the low level of repeat viewing, the focus of research moved to identify structural determinants. When the survey methods revealed most people did not watch consecutive episodes because they did not watch TV at all when it was broadcast, audience availability became elevated as the strongest influence on repeat viewing. Ratings, scheduling characteristics (i.e., daypart and strip schedule), and program characteristic (i.e., story-line) have also been demonstrated as predictors of repeat viewing. Even though all of the above factors are identified as predictors of and are given a theoretical preference to explaining repeat viewing, we are not in a position to specify which will be the most powerful determinant of repeat viewing. In addition, few studies have operationalized audience availability strictly based on its two connotations. Furthermore, audience characteristics have rarely been included in the repeat viewing studies. Thus, this study will incorporate two conceptualizations of audience availability and audience characteristics to examine the determinants of repeat viewing.
Because this study will be conducted in China, a few words about Chinese television market are helpful for getting a basic idea of the characteristic of Chinese market. Chinese television has undergone significant growth since the 1980s (Chang, Wang, & Chen, 2002; Wang, 2008). Currently, with some 1.3 billion viewers, it has the world’s largest audience. In Shanghai, the site of this study, 95% of the households have at least one TV set with a remote control. The availability of increased programming coupled with low subscription fees has resulted in a combined cable and satellite penetration rate of almost 90%, a level slightly higher than the comparable U.S. national average (Nielsen Media Research, 2004). An average adult viewer spends about 200 minutes a day watching television, or about 80 minutes less than a typical American (Veronis Suhler Stevenson, 2006).

There are three categories of television in the Shanghai market. First, China Central Television (CCTV), the only national television service, has 15 channels. Except for CCTV-1, which has a breadth of programming comparable to a traditional U.S. broadcast network, each of the other CCTV channels specializes in one or two specific program categories such as news, sports, music, and lifestyle. Second, three municipal (local level) services have altogether 15 channels in Shanghai. They are Shanghai Television (STV) and Oriental Television (OTV), and Shanghai Education Television (ETV). Among these channels, STV1 and OTV1 have broad content, and the rest of the channels are specialized in one or two program categories similar to niche channels in the U.S. Third, there are approximately 45 distant channels from other provinces and cities that are brought to the Shanghai audience by cable. Similar to “superstations” in the United States, these distant channels offer a broad range of content. Among all the
channels available in Shanghai, only CCTV-1, STV-1, STV-2, OTV-1 and ETV are broadcast over the air, while other channels are distributed via cable. These channels also have longer histories and enjoy higher audience shares than the newer cable channels.

Scheduling characteristics in China are also worth mentioning. Except for news magazine and reality entertainment programs, which are often scheduled on a weekly basis, most program types like news, sports, drama are scheduled on a daily basis. The scheduling characteristic of drama is particularly different from what is practiced in western culture. Instead of broadcasting one episode per week, in both daytime and prime time, nearly all the drama series are broadcast on a daily basis. Moreover, more than two new episodes of a drama are broadcast every evening Sunday through Saturday (sometimes Monday through Friday). In the daytime, every so often, four or even eight episodes of the same drama will be broadcast on one day. This could bring trouble for operationalizing the rates of repeat viewing between two continuous episodes because it is hard to discriminate inheritance effect from the rates of repeat viewing. To avoid this problem, this study will only count the repeat viewing rates between the last episode of drama series and the first episode of the next day.
CHAPTER 3

RATIONALE, RESEARCH QUESTIONS AND HYPOTHESES

Studies on repeat viewing patterns in the past three decades have made progress to understand this basic audience duplication pattern. However, findings are still inconclusive. Structural factors, such as audience availability, are usually reported as the most important determinants of repeat viewing. However, the loosely defined concept of audience availability has not been specially tested in repeat viewing studies. In the past decade, few studies were dedicated to further investigating this pattern. Therefore, the current revisit of repeat viewing is necessary for a more thorough understanding.

Setting this study in the Chinese context has some pragmatic implications. With a total television audience of 1.3 billion, China is the biggest television market in the world. It is also the fastest growing market. The television advertising revenue generated in China has surpassed that in Germany and Japan last year (Variety, 2008). Keeping an annual growth rate around 10%, to date, China is the second largest advertising market next to the U.S. Thus, knowledge of the underlying rules of repeat viewing in China will not only be useful for scholars seeking to understand mass audience behavior, but also be helpful to media practitioners.

In addition, this study is also going to bring in another factor, audience characteristics, to examine whether different repeat viewing patterns will emerge among diverse audience groups in the new media environment.

Research Questions and Hypotheses

As mentioned, it is important for scholars to further understand mass audience behavior, and it has pragmatic significance for programmers and advertisers to schedule
program and craft media plan. Therefore, this study is going to further examine the factors influencing repeat viewing patterns by focusing on the Chinese context. It intends to serve the following three objectives. First, because no study has reported on repeat viewing patterns in China, the initial general knowledge of average repeat viewing level will be helpful before further investigation.

RQ1: What is the average level of repeat viewing in China?

This study is going to further explore the predictors of repeat viewing. Previous studies have identified audience availability, scheduling characteristics and program characteristics as the most important factors of repeat viewing. However, audience availability suffered from its loose definition and operationalization. Furthermore, several studies failed to differentiate the compound effects of several factors such as daypart and program type. Thus, this study is going to further clarify the explanatory power of these predictors.

RQ2: What is the explanatory power of structural factors on repeat viewing in China?

Hypotheses for Audience Availability and Repeat Viewing

Audience availability is usually claimed to be the strongest predictor by previous studies. Given that two connotations have been implied by scholars, this study will test its impact on repeat viewing in two operational definitions. Considering that most people did not watch the consecutive episodes because they did not have time to watch TV when the next episode was broadcast (Ehrenberg & Wakshlag, 1987), audience availability is hypothesized as a significant predictor of repeat viewing. Since the unit of analysis here is programs, the first definition of audience availability will be tested here.
H1: Audience availability \((AAP_{UT}) \) will be a statistically significant predictor of repeat viewing.

H1a: There is a significant positive correlation between audience availability \((AAP_{UT}) \) and repeat viewing.

Hypotheses for Ratings and Repeat Viewing

Beyond audience characteristics, ratings are also frequently proved to be an important factor on repeat viewing. Consistent with the Law of Double Jeopardy, it was often shown that the higher the average rating of a series, the higher the average level of repeat viewing (Barwise, 1986; Ehrenberg & Wakshlag, 1987; Sherman, 1995; Zubayr, 1999). Thus, ratings will also be hypothesized as a statistically significant predictor in the Chinese context.

H2: Ratings will be a statistically significant predictor of repeat viewing.

H2a: There is a significant positive correlation between ratings and repeat viewing.

RQ for Comparing the Predictive Power of Ratings and Audience Availability

Because ratings are usually treated as the surrogate variable for audience availability in the previous studies, and the predictive power of PUT has not been specially tested, it will be interesting to compare the predictive power of PUT with that of ratings.

RQ3: Will audience availability \((AAP_{UT}) \) be a stronger predictor of repeat viewing than ratings?
Hypotheses for Daypart and Repeat Viewing

The impact of daypart on repeat viewing was identified in the 1980s. As Goodhardt et al. (1987) have mentioned, “…off-peak dayparts (i.e., non-prime time) are thought to serve viewers who are more regularly available. Hence, we would expect higher levels of repeat viewing to be associated with non-prime-time dayparts.” Webster and Wang’s (1992) study of daytime soap operas confirmed the impact of those dayparts. Therefore,

\[H3: \text{Daypart will be a statistically significant predictor of repeat viewing.}\]

\[H3a: \text{Repeat viewing will be significantly different across different dayparts.}\]

Hypotheses for Strip-schedule and Repeat Viewing

Webster and Wang (1992) found that programs strip-scheduled across consecutive day times (i.e., soap operas) generated higher rates of repeat viewing than those that were scheduled weekly. Sherman (1995), focusing on PBS, confirmed the strip-schedule was a strong predictor of repeat viewing by studying the prime-time PBS strip-scheduled programming.

\[H4: \text{Strip-schedule will be a statistically significant predictor of repeat viewing.}\]

\[H4a: \text{Repeat viewing of strip-scheduled programs will be significantly higher than that of non-strip-scheduled program.}\]

Hypotheses for Storyline and Repeat Viewing

Both Webster & Wang’s (1992) and Zubayr’s (1999) studies identified storyline as predictors of repeat viewing. Programs with continuous storylines had higher rates of repeat viewing.
H5: Storyline will be a statistically significant predictor of repeat viewing.

H5a: Programs with continuous storylines will have significantly higher repeat viewing than programs with discontinuous storylines.

Hypotheses for Program Type and Repeat Viewing

Before Webster and Wang’s (1992) study, nearly all previous studies only examined entertainment programs. Consistent among all the studies which touched program types, soap operas always had the highest repeat viewing levels (e.g. Barwise, Ehrenberg, & Goodhardt, 1982; Barwise, 1986; Headen, Klompmaker, & Rust, 1979). Zubayr (1999) systematically investigated the difference among different program types. Soap operas still enjoyed the highest rates of repeat viewing, whereas sports programs had the lowest rates and the highest variation.

H6: Repeat viewing will be significantly different across different types of programs.

Hypotheses for Age and Repeat Viewing

This study intends to examine repeat viewing patterns among different audience groups. Since this study focuses on differences across demographic groups, the most common demographic variable, age, will be chosen to break audience into groups. In this way, it is possible to identify the difference across groups.

The initial question of concern is how the second definition of audience availability (AA_{TSV}) varies across different audience groups. As many studies have shown, senior viewers spend more time watching television (e.g. Robinson, 1977, 1993, 1995; Zhang, 2005), age will be hypothesized to be positively related to TSV.
Earlier studies showed that repeat viewing rates were almost the same among different audience groups (Goodhardt et al., 1987). More recently, a few studies found a relatively consistent pattern: women usually had higher repeat viewing levels than men, and children and teenagers had far less ritualized viewing habits than adults (Soong, 1988; Zubayr, 1999). However, those studies only provided descriptive data. In addition, the patterns identified in the limited channel universe might be different from those in the current multi-channel universe. Because television viewing is an irregular activity in daily life (Goodhardt et al., 1987), more channel choices and more media choices (e.g., the Internet) might further mitigate some viewers’ availability to a certain television program, and thus reduce the level of repeat viewing. For instance, studies had already shown that the Internet users (usually younger generation) showed signs of more active social lives than nonusers (Robinson et al., 2000), so the youth would have a lower availability, and lower levels of repeat viewing. Thus, this study is going to examine patterns among different audience groups.

\[H7: \text{There will be a significantly positive correlation between age and audience availability (\textit{AA\textsubscript{TV}}).} \]

\[H7a: \text{Repeat viewing will be significantly different among different age groups.} \]

Hypotheses for Channel Type and Repeat Viewing

Although few previous studies have considered channel type as a factor when examining repeat viewing pattern, its impact could still be observed in Zubayr’s (1999) findings – the leading channel in the Germany had higher repeat viewing level. That finding indicated that leading channels which was more popular among audience (indicated by ratings) might enjoy higher channel loyalty. Thus, given three types of
channels in Shanghai – national service, local channels, and distant satellite channels have different popularity with the Shanghai audience, this study will hypothesize three types of channel have different repeat viewing levels.

H8: Repeat viewing will be significantly different across three types of channels.
CHAPTER 4
METHODOLOGY

The study will be based on the secondary CVSC-Sofres Media (CSM) peoplemeter panel data collected in Shanghai, China. CSM is China’s largest professional TV rating data provider. Using stratified, multi-stage and cluster sampling procedure, CSM randomly selects sample households. Similar to the meters Nielsen Media Research uses to produce national audience ratings in the United States, the CSM peoplemeter is an electronic device attached to TV sets that automatically record the minute-by-minute viewing behaviors of all the members of the household who are more than 4 years old. Such meters are known to produce a much more precise record of viewing behavior than either diaries or telephone confidential recall techniques, and have become the preferred method for measuring television audiences worldwide (Webster et al., 2006). Ratings for households and individual members of the household are all available from CSM. The 1,385-individual sample collected by CSM represents 9,438,000 television viewers in Shanghai.

Sampling

The population of interest was programs that were broadcast at least twice through both cable and over the air signals to the audience in Shanghai between March and August 2007. This half-year period was chosen because it was able to cover most popular program types, especially the whole process of reality shows, and would capture some variations across the seasons. Moreover, there were no atypical events, such as the World Cup and Olympic Games, which might have disrupted normal viewing patterns.
The sample frame was the whole list of programs obtained from TVsou (www.tvsou.com), a commercial Chinese online TV guide. The accuracy of TVsou had been compared with that of *Shanghai Weekly TV Guide* and CSM program list. Three-day programming was selected to double check the reliability of these three programming sources. The result showed that they were highly consistent. This study chose TVsou website as the sample frame mainly because the electronic data was easier to organize for analysis.

Quota sampling was employed to choose 60 programs representing different program types aired over 75 available channels in Shanghai between 6:00 a.m. and 1:00 a.m. Five most common types of programs were included in this study: news, drama series, variety shows, reality shows, and sports. Those five types of programs almost contain almost 90% of all the programs in contemporary China. The programs obtained from TVsou were organized according to these five program types, and 12 programs of each type were randomly chosen.

Unit of Analysis

For the investigation of repeat viewing rates, the unit of analysis was the pair of two consecutive episodes, for example, episodes 1 & 2, 2 & 3, 3 & 4, etc. To qualify for inclusion, each program had to have been broadcast at least twice during the half-year period. For programs with two or more episodes broadcasted consecutively on a single day, repeat viewing rates between the last episode of program series and the first episode of the next day was counted. A total of 60 programs and a total of 1424 episodes were selected. Some programs, mostly daily broadcasted news and drama series, contained a large number of episodes in the half-year period, as many as 100. To keep these programs
from minimizing the importance of other programs types, the data set was modified by using only the first four pairs of two consecutive episodes. Pairs of episodes were capped at four for each program because for weekly broadcasted shows four pairs were able to cover a whole month period. Thus, the number of episodes was reduced to 300.

For audience availability (second definition, TSV) analysis, the unit of analysis was each audience group. Although the best way to examine audience characteristics is to incorporate individual level data, secondary ratings data does not provide individual level data. The compromise way is to use sub-audience groups. It was speculated that if audience characteristics had an impact on the group level, they would also influence individual level.

Dependent Variables and Measures

The dependent measure is the percent of repeat viewing between two consecutive programs. *Infosys*, a software tool supplied by CSM, was used to automatically generate repeat viewing rates between the consecutive episodes. The underlying process to get repeat viewing rates is as follows: *Infosys* first computes cumulative frequency distributions for any given list of programs. Then, these distributions yield contact probabilities for any combination of the programs in question. Some earlier studies on repeat viewing used the same kind of data retrieval (see Barwise, 1986; Ehrenberg & Wakshlag, 1987; Webster & Wang, 1992).

For measuring the audience’s media orientation, each audience segment’s yearly based total amount of time watching television viewing in 2007 was produced.
Independent Variables, Measures and Coding

Audience availability: This study operationalized audience availability in its two connotations: 1) Persons Using Television (PUT) expresses a percent of all persons who are viewing television during a specific period of time; 2) Time Spent Viewing (TSV) expresses the total amount of time persons spends watching television in a whole day.

Ratings: Individual ratings measures the percentage of individuals turning to a specific program compared with overall homes with TV sets at that time.

Daypart: Dayparts were categorized according to the industrial practice in China, and coded as morning (6:00 a.m.-11:00 a.m.), noon (11:00 a.m.-1:00 p.m.), afternoon (1:00 p.m.-4:00 p.m.), early fringe (4:00 p.m.-7:00 p.m.), prime time (7:00 p.m.-11:00 p.m.), late night (11:00 p.m.-1:00 a.m.)\(^1\). For correlation and regression analysis, six dayparts were recoded into dummy variables. Daytime, 6a.m.-7p.m., was coded as 0, and evening time, 7p.m.-1a.m., was coded as 1\(^2\).

Strip-scheduling: If the program was broadcast less than five times a week, it was coded as non-strip-scheduled, 0. Otherwise, if the program was broadcast five or more times a week, it was coded as strip-schedule, 1.

Storyline: The two types of continuation developed in Webster & Wang’s (1992) study were adopted. The first type was programs with programs without continuous storylines. It was coded as 0. The second type was programs with one or several continuing storylines through the episodes. It was coded as 1.

\(^1\) Although no formal daypart categorization currently exists in China, categories used for dayparts were based on the my working experience for several programming consulting projects in China for stations such as Hunan Satellite Channel, Henan Satellite Channel, Zhejiang Satellite Channel, five channels for Wuxi Broadcasting Bureau, and two channels for Yunan Television Station.

\(^2\) This study chose 7p.m. as a cutting point mainly because it is the common way for industry to differentiate daytime and evening time in China. This tradition has to do with the time CCTV-1 Night Evening News (the program with the highest ratings in China) is broadcasted (7p.m.).
Program type: The five most common types of programs were included in this study: news, drama series, variety shows, reality shows, and sports.

Channel: Three categories of channels, local channels, central national channels and provincial satellite channels, were coded separately. For correlation and regression analysis, central national channels and provincial satellite channels were recoded into non-local channels. Local Shanghai channels were coded as 0, and non-local channels were coded as 1.

To differentiate audience characteristics, age was adopted to test the impact of audience characteristics. Age was divided into five age brackets according to the industrial practice in China: 4 to 10 years old; 11-24 years old; 25 to 44 years old; 45 to 55 years old; older than 55

Data Analysis

The SPSS statistical package was used to analyze the data. Descriptive data was provided for a general knowledge of the repeat viewing rate in China (for RQ1). Pearson correlation was performed to determine the relationship between audience availability (AAPUT) and repeat viewing rates (H1a); between ratings and repeat viewing rates (H2a); and between audience availability (AA_TSV) and age groups (H7). Hierarchical multiple regression procedure was used to determine the predictive ability and influence of each independent variable on the level of repeat viewing (for RQ2, H1, H2, H3, H4, and H5). Finally, t-test and ANOVA was used to test the difference across groups. First, t-test was performed to test the mean difference of repeat viewing rates between strip-scheduled and non-strip-scheduled programs (H4a); and between programs with continuous

3 These audience segments were developed based on my practical working experience for Mindshare, Zenithmedia, Hunan Satellite TV Channel, Wuxi Broadcasting Bureau and Yunan Television Stations.
storylines and without continuous storylines (H5a). Second, ANOVA was performed to
determine the mean differences across programs scheduled in different dayparts (H3a);
different repeat viewing across five types of programs (H6); mean difference in repeat
reviewing across five age groups (H7a) and across three types of channels (H8).
CHAPTER 5
RESULTS

Overall, 60 programs (300 episodes) were selected from 75 channels broadcast in Shanghai. The average repeat viewing rate was 22.28% ($SD=17.32$). ANOVA analysis (Table 1) showed a significant difference across three types of channels ($F=10.25$, $p<.0001$) (for H8). The local channels enjoyed the highest rates ($M=25.53$, $SD=17.30$). For two types of non-local channels, the repeat viewing level of the distant satellite channels ($M=10.74$, $SD=10.89$) is much lower than that of CCTV ($M=21.25$, $SD=17.87$).

Table 1: ANOVA: Repeat Viewing by Channels

<table>
<thead>
<tr>
<th>Channels</th>
<th>Average Repeat Viewing Rates</th>
<th>Standard Deviation</th>
<th>Maximum Average Repeat Viewing Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCTV</td>
<td>21.25</td>
<td>17.87</td>
<td>59.50</td>
</tr>
<tr>
<td>Local Shanghai Channels</td>
<td>25.53</td>
<td>17.30</td>
<td>61.76</td>
</tr>
<tr>
<td>Distant Satellite Channels</td>
<td>10.74</td>
<td>10.89</td>
<td>29.00</td>
</tr>
</tbody>
</table>

$F=10.25$, $p<.0001$

A correlation analysis was conducted to test the inter-relationships among all the variables used in this study (Table 2). Four of the six independent variables – ratings, PUT, storyline and channel – were significantly related to repeat viewing ($p<.05$). Consistent with previous studies, ratings had the strongest relationship with repeat viewing ($r=.532$, $p<.01$), while PUT ($r=.303$, $p<.01$), and channel ($r=.241$, $p<.01$) also had statistically significant correlations with repeat viewing. Storyline ($r=-.132$, $p<.05$) had a slight reverse relationship with repeat viewing. Daypart ($p=.090$) and strip-schedule...
(.047) were positively related to repeat viewing, but not statistically significant. In addition, all six variables – PUT (.383), dayparts (.191), strip-scheduling (.257), storyline (.243), channel (.406), repeat viewing (.532) – were significantly related to ratings \((p<.01)\). Furthermore, PUT was significantly correlated to daypart \((r=.605, p<.01)\).

Table 2: Correlation Matrix of Factors Influencing Repeat Viewing

<table>
<thead>
<tr>
<th></th>
<th>Ratings</th>
<th>PUT</th>
<th>Daypart</th>
<th>Strip-Schedule</th>
<th>Storyline</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat Viewing</td>
<td>.532**</td>
<td>.303**</td>
<td>.090</td>
<td>.047</td>
<td>-.132*</td>
<td>.214**</td>
</tr>
<tr>
<td>Ratings</td>
<td>.383**</td>
<td>.191*</td>
<td>-.257**</td>
<td>-.243**</td>
<td>.406**</td>
<td></td>
</tr>
<tr>
<td>PUT</td>
<td>.605**</td>
<td>-.444**</td>
<td>.024</td>
<td>.141*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dayparts</td>
<td>-.333**</td>
<td>.171**</td>
<td>.202**</td>
<td>-.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strip-Schedule</td>
<td></td>
<td>.051</td>
<td>-.279**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storyline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*\(p<05\); **\(p<.01\)

To address RQ2, hierarchical multiple regression was used to test the explanatory power of the predictors of repeat viewing. Meanwhile, ANOVA and t-test were conducted for further analysis. Table 3 indicates the partial correlations for each variable, plus the explanatory value for a variable when all other variables are controlled. Overall, three factors – ratings, strip-scheduling, and PUT – were significant predictors of repeat viewing. Together, all the variables explained 36.3% of the variance \((p<.0001)\). Among these variables, ratings provided a unique contribution of 18.1% when all other variables were controlled. Strip-scheduling explained 6% of the variance when other variables were controlled, while PUT added 4%. Dayparts and storyline were not statistically
significant predictor of repeat viewing. Therefore, H1 (PUT), H2 (ratings) and H4 (strip-scheduling) were confirmed, while H3 (daypart), and H5 (storyline) were rejected.

Table 3: Hierarchical Multiple Regression of Repeat Viewing

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Partial Correlation</th>
<th>Beta</th>
<th>All Variables Controlled R^2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratings</td>
<td>.471***</td>
<td>.515***</td>
<td>.181***</td>
<td>.000</td>
</tr>
<tr>
<td>Strip Scheduling</td>
<td>.292***</td>
<td>.278***</td>
<td>.060***</td>
<td>.000</td>
</tr>
<tr>
<td>PUT</td>
<td>.244***</td>
<td>.280***</td>
<td>.040***</td>
<td>.000</td>
</tr>
<tr>
<td>Dayparts</td>
<td>-.073</td>
<td>-.078</td>
<td>.003</td>
<td>.265</td>
</tr>
<tr>
<td>Storyline</td>
<td>-.022</td>
<td>-.019</td>
<td>.000</td>
<td>.736</td>
</tr>
<tr>
<td>Channel</td>
<td>-.021</td>
<td>-.019</td>
<td>.000</td>
<td>.749</td>
</tr>
</tbody>
</table>

$R^2=.363$; Adjusted $R^2=.347$, $p<.0001$

As the above correlation analysis shown, both ratings ($r=.532$, $p<.01$) and PUT ($r=.303$, $p<.01$) were significantly related to repeat viewing, therefore, H1a (about PUT) and H2a (about ratings) were confirmed. Since ratings alone provided a unique contribution of 18.1% of variance, it is clear that ratings was a stronger predictor than PUT. Thus, for RQ3, audience availability (PUT) is not the stronger predictor of repeat viewing than ratings.

For H3a (about daypart), ANOVA analysis was performed to examine the difference in repeat viewing across dayparts. The results showed that repeat viewing was significantly different across six dayparts ($F=5.44$, $p<.0001$) (Table 4). Thus, H3a was confirmed. The highest average repeat viewing rate occurred at the afternoon period ($M=25.95$, $SD=12.93$), followed closely by prime time ($M=25.79$, $SD=16.06$). The morning
period had the lowest repeat viewing rates ($M=11.02$, $SD=14.98$). These findings showed the highest repeat viewing rates did not necessarily occur in the time period when ratings was correspondingly high. Further analysis of daypart indicated that only three out of six dayparts – noon (11a.m - 1p.m.), early fringe (4p.m.-7p.m.) and prime time ratings (7p.m.-11p.m.) – were still highly correlated with repeat viewing rates ($r=.500$, $p<.05$; $r=.685$, $p<.01$; $r=.516$, $p<.01$). For the other three dayparts, namely morning, afternoon, and late night, there was no significant correlation between ratings and repeat viewing rates.

Table 4: Repeat Viewing by Different Dayparts and its Correlation with Ratings

<table>
<thead>
<tr>
<th>Dayparts</th>
<th>Average Repeat Viewing Rates</th>
<th>Standard Deviation</th>
<th>Correlation between Rating and Repeat Viewing</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning: 6a.m.-11a.m.</td>
<td>11.02</td>
<td>14.98</td>
<td>.36</td>
<td>.061</td>
</tr>
<tr>
<td>Noon: 11a.m.-1p.m.</td>
<td>18.44</td>
<td>19.78</td>
<td>.50*</td>
<td>.049</td>
</tr>
<tr>
<td>Afternoon: 1p.m.-4p.m.</td>
<td>25.95</td>
<td>12.93</td>
<td>-.026</td>
<td>.914</td>
</tr>
<tr>
<td>Early Fringe: 4p.m.-7p.m.</td>
<td>24.34</td>
<td>19.46</td>
<td>.69***</td>
<td>.000</td>
</tr>
<tr>
<td>Prime Time: 7p.m.-11p.m.</td>
<td>25.79</td>
<td>16.06</td>
<td>.52***</td>
<td>.000</td>
</tr>
<tr>
<td>Late Night: 11p.m.-1a.m.</td>
<td>11.19</td>
<td>12.83</td>
<td>.08</td>
<td>.780</td>
</tr>
</tbody>
</table>

F=5.44, $p<.0001$

For H4a (about strip-scheduling) and H5a (about storylines), t-tests were performed to compare repeat viewing between strip and non-strip scheduled programs, and between programs with and without continuous storylines. The results showed strip-scheduled programs had slightly higher repeat viewing rates ($M=22.69$, $SD=17.98$) than
those of the non-strip scheduled programs ($M = 20.63, SD = 15.02$). But the difference was not statistically significant ($t = -.816, p < .42$). Thus, H4a was rejected. As for H5a, t-test showed that there was a significant difference between programs with and without continuous storylines ($t = 2.105, p < .03$). It should be noted that programs without continuing storylines actually had higher repeat viewing rates ($M = 24.08, SD = 18.03$) than those of with continuing storylines ($M = 19.37, SD = 16.04$). Therefore, H5a was also rejected.

For H6 (about program type), ANOVA analysis was conducted to test repeat viewing difference across program types (Table 5). The results showed there was no significant difference across different program types ($F = 1.40, p < .24$). Thus, H6a was rejected. News programs had the highest average repeat viewing rates ($M = 25.76$, $SD = 20.91$), followed by drama series ($M = 23.61$, $SD = 18.47$), reality shows ($M = 22.18$, $SD = 13.47$) and variety programs ($M = 21.53$, $SD = 15.43$). Further analysis of the repeat viewing rate of each episode showed the highest repeat viewing rate for a single program still came from drama series (61.76%), followed closely by sports programs (59.60%), and news programs (59.50%).
Table 5: ANOVA: Repeat Viewing by Different Types of Programs

<table>
<thead>
<tr>
<th>Types of Programs</th>
<th>Average Repeat Viewing Rates</th>
<th>Standard Deviation</th>
<th>Maximum Average Repeat Viewing Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>News</td>
<td>25.76</td>
<td>20.91</td>
<td>59.50</td>
</tr>
<tr>
<td>Drama Series</td>
<td>23.61</td>
<td>18.47</td>
<td>61.76</td>
</tr>
<tr>
<td>Variety Shows</td>
<td>21.53</td>
<td>15.43</td>
<td>53.80</td>
</tr>
<tr>
<td>Reality Shows</td>
<td>22.18</td>
<td>13.472</td>
<td>44.50</td>
</tr>
<tr>
<td>Sports</td>
<td>17.03</td>
<td>15.875</td>
<td>59.60</td>
</tr>
</tbody>
</table>

F=1.40, p<.24

To examine how audience characteristics influence viewing behavior, a correlation analysis was first conducted to test whether age was related with total time spent on television viewing (TSV). As shown by Table 6, on average, older people tend to spend more time watching television. Thus, H7 was confirmed. Then, ANOVA analysis showed there was a significant difference across audience groups with regard to repeat viewing rates (F=39.40, p<.0001). The repeat viewing rates of the older audience group (M =26.84, SD=25.16) are significantly higher than those of the younger audience group (M=3.56, SD=16.91), which indicated that people with higher TSV had higher repeat viewing rates. Therefore, H7a was also confirmed.
<table>
<thead>
<tr>
<th>Audience Groups</th>
<th>Average Daily TSV (in minutes)</th>
<th>Average Repeat Viewing Rates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of 4-10</td>
<td>146</td>
<td>3.56</td>
<td>16.91</td>
</tr>
<tr>
<td>Age of 11-24</td>
<td>146</td>
<td>16.63</td>
<td>26.16</td>
</tr>
<tr>
<td>Age of 25-44</td>
<td>154</td>
<td>14.90</td>
<td>17.88</td>
</tr>
<tr>
<td>Age of 45-54</td>
<td>227</td>
<td>22.68</td>
<td>21.65</td>
</tr>
<tr>
<td>Age of 55 up</td>
<td>274</td>
<td>26.84</td>
<td>25.16</td>
</tr>
</tbody>
</table>

F=39.40, p<.0001
CHAPTER 6
DISCUSSION AND CONCLUSION

This study extended current program choice literature to China. To a large extent, structural factors influencing repeat viewing discovered in the western context were relevant to the Chinese context. Overall, this study found that ratings, PUT, daypart, strip-schedule together explained 36.3% of variance of repeat viewing. Although ratings was still the strongest predictor, significant correlations between ratings and repeat viewing only held true within three out of six dayparts (noon, early fringe and prime time). Contrary to earlier research, storyline was no longer demonstrated as a significant predictor.

This study found repeat viewing to be lower in China than that found in the U.S. and Europe. This might be due to current multi-channel environments, where increasing choices enable the Chinese audience to choose from a large channel menu for their daily television consumption, resulting in audience fragmentation (Webster, 2005) and even lower repeat viewing rates. In other words, fragmentation brings in lower ratings, which leads to lower repeat viewing. In addition, new media might further complicate the media environment. China has the fastest growing online population globally with 144 million users (CNNIC, 2005), second only to the United States. Government research by the China Internet Network Information Center (CNNIC) indicated that from July 2002 to 2005 the number of users was more than tripled. Thus, when there are more alternative channel and media choices, audience is less bound to a single media form and channel, and even “available” viewers are not so loyal to programs.
The different repeat viewing levels across three channel categories are also worthy of note. Local channels enjoyed the highest level, which indicates there are more regular viewers for local channels. This is probably because local channels provide programs which are more relevant to local people’s lives. For national service, there are also differences between CCTV and provincial satellite channels. CCTV channels, reputed to have high quality programming, attract far more regular Shanghai viewers than satellite channels do.

The second main objective of this study was to thoroughly examine the determinants of repeat viewing. Two findings were particularly surprising. First, although ratings was still correlated with repeat viewing rates in general, that relationship did not show statistical significance within several dayparts. Second, storyline, which used to be consistently demonstrated as a strong predictor of repeat viewing, failed to show statistical significance in predicting repeat viewing. Actually, programs with continuous storylines had lower repeat viewing rates. These two findings call to question the power of structural factors identified decades ago in determining program choice in the current multi-media environments.

Overall, ratings still served as the most influential factor on repeat viewing. This suggests that, on the whole, the Law of Double Jeopardy still exists in the current age. In other words, programs with higher ratings enjoy higher repeat viewing rates. However, further analysis of the details within each daypart indicated the double jeopardy law no longer existed in several dayparts, as Webster & Wang’s (1992) study suggested. The prime time period, with the highest ratings, did not necessarily have the highest average repeat viewing level. The highest average repeat viewing actually occurred in the
afternoon period (1p.m.-4p.m.), when the average ratings was only the third highest in the whole day. Across six dayparts, only in noon (11a.m.-1p.m.), early fringe (4p.m.-7p.m.) and prime time (7p.m.-11p.m.), was ratings related to repeat viewing. These findings suggest that viewers in different dayparts might possess different viewing behaviors. There might be more regular viewers in the afternoon period, though the absolute number of those viewers is much lower than prime time viewers.

This study surprisingly found that, storyline, previously demonstrated to be a significant predictor, did not show statistical significance in predicting repeat viewing. It should be noted that programs with continuing storylines actually have lower repeat viewing rates than those without continuing storyline. The potential explanation is that there are fewer and fewer regular television viewers who follow continuous storylines. It is highly possible that audiences only turn on the TV when they are not bound by other daily chores. In this sense, programs without continuous storylines do not require viewers to follow the programs everyday for appreciation, so that they do not discourage viewer to return even if they have missed episodes.

Unlike previous studies that unanimously found drama to have higher repeat viewing rates, this study found that news programs enjoyed the highest average repeat viewing rates though they also suffered from the highest variance. This finding further discourages the notion that programs with continuous storylines (such as drama series) would have higher repeat viewing rates.

The role of audience characteristics was not fully investigated in the previous repeat viewing studies. This study took the opportunity to examine its relationship with repeat viewing. Results showed different viewer groups have significantly different
repeat viewing levels, and viewers with higher TSV had a higher repeat viewing level. This finding agrees with intuition that people who spend more time watching television tend to have more chances to watch the consecutive episodes of a program.

Two connotations of audience availability in the literature were clarified by this study. The first definition, PUT, was significantly correlated to repeat viewing, and it provided a unique explanation of 4% of variance when other variables were controlled. The second definition of audience availability, TSV, is also related to repeat viewing. Since ratings data do not offer individual level data, the relationship between TSV and repeat viewing was examined in a more subtle way. By differentiating sub-audience groups with different TSV, repeat viewing across those groups with different TSV was compared. The finding showed that groups with higher TSV also had higher repeat viewing rates. In this sense, it can be speculated that viewers who spend more time watching television will have higher rates of repeat viewing.

By operationalizing audience availability as PUT as suggested by the literature, this study failed to demonstrate PUT as the strongest predictor of repeat viewing. The unique explanation provided by PUT was much lower than that by ratings (4% vs. 18.1%). Thus, although PUT still offers unique explanation for repeat viewing, it is not as a strong predictor as ratings. Therefore, if PUT can function as the construct of audience availability, audience availability should not be conceptualized as the strongest factor affecting repeat viewing. Rather, the major factor for repeat viewing should be ratings. According to its definition, ratings actually points to the “audience availability to a specific program.” Since PUT is the sum of ratings of all available channels, the value of PUT is closer to ratings when there is limited number of channel choices. Thus, it is
understandable why the functions of ratings and PUT were similar in three networks age. At that time when there were a limited number of channels, available time to watch television was similar to available time to a specific channel or program. Thus, we used to conclude audience availability is the major factor. However, in the current media environment in which audience was fragmented across the increasing numbers of channels (Webster, 2005), the functions of PUT and ratings became more and more different. Nowadays, ratings could no longer approximate as a surrogate for audience availability (PUT) as it once did. Ratings can only function as the availability to a specific program. The different functions of PUT and ratings make it clear that “availability to a specific program” (ratings) actually is the stronger factor to determine repeat viewing level, but availability (PUT) plays a unique role, separate from ratings, to help explain repeat viewing.

Previous studies used to treat daypart as a surrogate variable for audience availability (Webster & Wang, 1992). Their underlying logic relied on the assumption that people tend to watch television at a fixed time everyday so that the daytime audience had different availability from those in the primetime. By implying daypart’s ability to group audience with different availability, Webster and Wang (1992) actually referred to the second connotation of audience availability. The unit of analysis, they implied was the individual viewer. However, their research design did not allow them to incorporate individual level data. So, they used daypart as a surrogate variable for TSV. Their studies showed daypart was the strongest predictor of repeat viewing. Nevertheless, in this study, when daypart was recoded into a dummy variable, it did not serve as a significant predictor anymore. There are two possible reasons for that. First, the arbitrary dummy
variable of daypart did not capture the way daypart organized different viewers. This study used 7p.m. as a cut-off point to differentiate daytime and evening time. However, as the ANOVA analysis showed the noon and early fringe period actually had higher repeat viewing rates, which meant daypart per se could capture audience characteristics. Thus, it is possible that the way the dummy variable created in this study is problematic.

Second, audience availability cannot be easily surrogated by daypart anymore. In the current media environment, if viewers have a less fixed lifestyle, their availability becomes more unpredictable throughout of the day. Rather than using “daypart” to predict their availability, we need to incorporate other variables for more accurate measures.

After clarifying the concept of audience availability, this study sheds light on the role of audience characteristics in determining audience’s program choice. Although audience characteristics cannot determine ratings, (whether or not ratings are high is largely decided by the first audience availability, PUT), they are useful in differentiating the second audience availability, TSV. Thus, they can help identify the most stable viewers from irregular viewers. In this sense, audience characteristics can predict media orientations rather than deciding a specific program choice. Program choice is more predictable when AA1 and AA2 are both high, in other words, when the absolute number of viewers who have more available time to television viewing is large. This corresponds to the logic that the more people are available to watch television, the higher the ratings will be; and the more regularly viewers are available to television, the higher and more stable the ratings will be.
Conclusions and Suggestions for Future Study

By examining repeat viewing in the Chinese context, this study showed, to a large extent, most patterns of repeat viewing discovered in the western context also hold true in China. The lower repeat viewing level in China indicates the declining power of structural factors in determining audience program choice in the new media environments. As Cooper (1996) has noticed, although structural variables will likely remain effective predictors of aggregate audiences (albeit increasingly fractured), these ratings-based audience theories appear increasingly ineffective at helping us understand how programming structure actually impacts viewing. Thus, even though there are few studies in the past decade examining repeat viewing in the U.S. and Europe, it could be speculated the repeat viewing level might decrease in the same pattern because of the declining power of structural factors to impact audience viewing behavior.

The findings of this study did not confirm all of the conclusions of previous studies, so the big picture of repeat viewing may be even messier. But two findings are particularly illuminating for future study – the relationship between ratings and repeat viewing within each daypart; and the impacts of audience characteristics on repeat viewing.

Although overall ratings have the strongest predictive power on repeat viewing, the study found when divided into dayparts, ratings related to repeat viewing only in three out of six dayparts. Therefore, this questions ratings’ role as an undisputable factor. The inconsistent relationship between ratings and repeat viewing suggests there might be a mediating factor between ratings and repeat viewing. Findings on audience characteristics’ role indicate a possible new direction for further research. Since viewers
with higher TSV have higher repeat viewing, it is reasonable to speculate that the level of repeat viewing might be largely determined by the absolute number of those with higher TSV. If we could determine how ratings are influenced by habitual viewers with higher TSV, then the relationship between repeat viewing and ratings could be further clarified. Thus, future research should take audience composition into consideration. If the afternoon period was mainly composed of habitual viewers with high TSV, though the ratings were low (the absolute number of viewers was low), it could still have the highest repeat viewing rate. If all the above speculations could be confirmed, we could better explain why low rated programs sometimes have high repeat viewing rates, while high rated programs sometimes have low repeat viewing rates. This is because the detailed audience composition of the ratings varies from one other. High ratings composed of audience with low availability (TSV) would not help generate high repeat viewing. If we can identify the audience composition at any time of the day, it will help to determine the rates of repeat viewing. In this sense, the absolute number of viewers with high availability (TSV) will determine the repeat viewing rates. Thus, the above discussions challenge the notion of “Law of Double Jeopardy” which stated that “the jeopardy of low ratings for a program is supplemented by the additional jeopardy of disloyal viewers” (McPhee, 1963). In current media environment, higher ratings are not necessarily composed of more loyal viewers as the Law suggests.

This study used the actual time spent on television viewing to investigate the level of repeat viewing. PUT is used as an aggregated measure of people available to watch television. However, it only measures those who actually watch television. For those who are available to watch television, but do not turn on their TV set, this study does not
capture their viewing behaviors. Thus, this study did not capture audience availability in its true sense. It can work well in the past when limited media and channel choices highly constrain audience’s program choice. However, when there are more channel choices and more media choices (e.g., the Internet, iPod, etc.), the constraint is eliminated. Thus, the actual time dedicated to television viewing is less powerful in predicting audience choice. In the multi-media era, when there are more media substitutions, or even social activity substitutions, their predictive power will be further mitigated. As such, future research should go beyond using actual time spent on television viewing to investigate program choice. Studies are encouraged to move from media structure to social structure for a thorough understanding of how viewers behave within the social constraints. In addition, qualitative studies such as ethnographic study and focus groups studies should be also encouraged.

Following the structural approach, this study shows that structural factors can explain one-third of variance in repeat viewing in China. But it does not imply, when studying program choice, structural approaches should be emphasized and viewers’ traits should be eschewed. Actually, this study showed the impact of structural factors is not as strong as that in previous decades (e.g., the declining power of storyline). However, it could still be argued structural factors may serve as an important initial consideration for researchers interested in determining how viewers use television (see Cooper, 1993; Webster & Lichty, 1991). Just as suggested by integrated models, structural factors are helpful to understand how media orientations are formulated in the first place, while individual factors will help to explain how audiences actively make a choice according to their needs, motivations or preferences. Since many studies have already contributed to
our knowledge of how structural factors influence program choice, more future studies are needed to understand how different viewers behave within the structures. By incorporating audience characteristics, this study sheds light on how audience factors and structural factors can be combined to explain audience behaviors. If future study could employ individual level data, more detailed audience characteristics should be added in to further analyze the impact of audience characteristics on program choice.
REFERENCES

Nielsen.

