A COMPARATIVE TEST OF THE REALISTIC JOB PREVIEW AND THE
EXPECTANCY LOWERING PROCEDURE

A thesis presented to
the faculty of
the College of Arts and Sciences of Ohio University

In partial fulfillment
of the requirements for the degree
Master of Science

Brendan J. Morse
June 2007
This thesis entitled

A COMPARATIVE TEST OF THE REALISTIC JOB PREVIEW AND THE
EXPECTANCY LOWERING PROCEDURE

by

BRENDAN J. MORSE

has been approved for

the Department of Psychology

and the College of Arts and Sciences by

__
Paula M. Popovich
Associate Professor of Psychology

__
Benjamin M. Ogles
Dean, College of Arts and Sciences
Abstract

Morse, Brendan J., M.S. June 2007. Industrial/Organizational Psychology

A COMPARATIVE TEST OF THE REALISTIC JOB PREVIEW AND THE
EXPECTANCY LOWERING PROCEDURE (96 pp.)

Director of Thesis: Paula M. Popovich

Realistic Job Previews (RJPs) have been studied by researchers and utilized by practitioners to attenuate early turnover by providing both positive and negative information pertaining to a job and organization to job applicants. Historically, RJPs have suffered from several criticisms including modest effect sizes (Phillips, 1998), cost of development (Buckley et al. 1998), and adverse self-selection effects (Bretz & Judge, 1998). Recently, the expectancy lowering procedure (ELP) has been developed and tested to address these limitations of the RJP. This study compared the RJP and the ELP in terms of applicant self-selection and expectations. Results indicated consistent findings with past RJP literature in terms of expectation calibration. However, no support was found for the self-selection effect. Furthermore, the ELP demonstrated results consistent with Buckley et al. (2002) as a useful, generalized realistic recruitment procedure that was also resistant to adverse self-selection.

Approved:__

Paula M. Popovich

Associate Professor of Psychology
Acknowledgements

First and foremost, I would like to thank my committee chair and advisor, Paula Popovich, for her time, encouragement, and invaluable guidance. I would also like to thank my committee members, G. Daniel Lassiter and Jeffrey Vancouver, for their time, insight, and constructive criticisms of this project. I would also like to acknowledge my mother and father, Deborah and Gary Morse, for their support and encouragement throughout the tenure of this project. Thank you all, I could not have done it on my own.
Table of Contents

Abstract ... 3
Acknowledgements ... 4
List of Tables .. 8
List of Figures ... 9
Introduction ... 10
 History of the RJP ... 14
 Contemporary RJP Research .. 20
 Expectancy lowering procedures .. 20
 Self-selection ... 23
 The Present Study .. 29
 Hypotheses ... 34
Pilot Study ... 35
Method .. 35
 Participants ... 35
 Design ... 36
 Materials/Stimuli .. 36
 Task previews .. 36
 MediaLab ... 38
 Measures ... 38
 Task attractiveness .. 38
 Task comparisons ... 39
 Need for cognition .. 39
 Demographics ... 39
 Procedure ... 39
Results ... 40
 Task Attractiveness ... 40
 Task Comparisons ... 41
 Need for Cognition ... 41
 Additional Analyses ... 41
Discussion ... 44
 Task Choice ... 44
 NFC Effects .. 44
Military Mission Traditional Preview ... 80
Appendix F ... 81
 Expectations (prior to task choice) ... 81
Appendix G ... 82
 Short Form of the Need For Cognition Scale .. 82
Appendix H ... 83
 Demographics Questionnaire ... 83
Appendix I ... 84
 Pilot Study Consent Form .. 84
Appendix J ... 86
 Pilot Study Debriefing ... 86
Appendix K ... 87
 Expectancy Lowering Procedure .. 87
Appendix L ... 88
 Anagram Realistic Job Preview ... 88
Appendix M ... 89
 Hurricane Game Realistic Job Preview ... 89
Appendix N ... 90
 Experience Questionnaire .. 90
Appendix O ... 91
 Actual task experience (post-task completion) ... 91
Appendix P ... 93
 Computer Self-Efficacy Questionnaire .. 93
Appendix Q ... 94
 Main Study Consent Form .. 94
Appendix R ... 96
 Main Study Debriefing Form .. 96
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Means, Standard Deviations, and Reliabilities of the task attractiveness items</td>
<td>40</td>
</tr>
<tr>
<td>2. Expected frequencies, actual frequencies, degrees of freedom, and the chi-square statistic for the pair-wise comparisons of each task</td>
<td>42</td>
</tr>
<tr>
<td>3. NFC by attractiveness t-test</td>
<td>43</td>
</tr>
<tr>
<td>4. Sex by attractiveness t-test</td>
<td>43</td>
</tr>
<tr>
<td>5. Summary of descriptive statistics by task</td>
<td>54</td>
</tr>
<tr>
<td>6. Summary of descriptive statistics by task choice</td>
<td>55</td>
</tr>
<tr>
<td>7. Summary of binary logistic regression analysis for predicting task choice (n = 30)</td>
<td>58</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Psychological pathways of the ELP (Buckley et al., 1998)</td>
<td>22</td>
</tr>
</tbody>
</table>
Introduction

The attraction of qualified applicants and the subsequent retention of productive employees is a high priority for organizations. Once an applicant has been identified as highly qualified and potentially valuable, the organization has a vested interest in securing that applicant as an employee. More important, there will be an interest on the organization’s behalf in retaining the new employee for a period of time long enough to recoup, in terms of profit, the costs associated with recruitment and selection. These costs are no trivial matter. One nationwide estimate has placed the direct and indirect costs of turnover at $11 billion annually (Abbasi & Hollman, 2000). Consequently, organizations tend to portray themselves in an overly positive light in order to increase the likelihood that a desired applicant will accept a job offer (Buckley et al. 2002; Buda & Charnov, 2003; Lee, Ashford, Walsh, & Mowday, 1992; Wanous, 1980).

As Wanous (1980) has stated, “The traditional philosophy of recruitment can be best summarized as the practice of selling the organization to outsiders” (p. 35). Although this may be a successful strategy in the short term, the long term risks are not without consequence. Most notably, these risks include the potential for a type of reality shock resulting from the mismatch between a positively inflated pre-employment expectation and the reality of what life is really like inside the organization (Dugoni & Ilgen, 1981; Porter & Steers, 1973; Wanous, 1980).

The most widely suggested method for dealing with this type of reality shock has been realistic recruitment, primarily in the form of the realistic job preview (RJP: Phillips, 1998). RJPs are a popular research topic in organizational entry, having spurred
a wealth of research and four meta-analyses (McEvoy & Cascio, 1985; Phillips, 1998; Premack & Wanous, 1985; Reilly, Brown, Blood, & Malatesta, 1981). The foundation of an RJP is to present job applicants with a “realistic” view of what it is like to work in that particular organization or job by including negative as well as positive information. The specific information contained in a typical RJP is best supported when it adequately represents the positive and negative attributes of the job and/or organization in a balanced fashion (c.f., Breaugh & Billings, 1988; and Wanous, 1989 for a review on the content and construction of RJP information). There are a multitude of factors to consider during the construction of realistic previews including timing, content, source credibility, and medium of communication to name a few (c.f., Phillips, 1998 for a review on the moderating characteristics of RJP).

Research and application of RJP has persisted over the last three decades, several limitations of the procedure have consistently emerged. One major limitation for the RJP is its proper development. RJP literature has proliferated throughout the years without standardization (Breaugh & Billings, 1988). The fact that an RJP includes specific positive and negative information pertaining to the job and organization in question suggests that a job analysis would be the proper information gathering procedure with which to build an RJP (Reilly, 1981). Many organizations are hesitant or unable to continuously take such potentially costly measures in today’s fast-paced, dynamic job markets.

Another limitation of the RJP is the issue of the possibility of applicant self-selection effects. Specifically, this is the concern that upon hearing specific negative
information pertaining to the job or organization, the applicant will use that information not to calibrate unrealistically high expectations but to determine that he or she should take their skills elsewhere. Early studies demonstrated that this effect was not occurring (Wanous, 1973; Weitz, 1956). However, in a more recent study, Bretz and Judge (1998) demonstrated that a disproportionate self-selection effect may be occurring for the most highly qualified applicants. Those individuals who felt they had the best opportunity to find employment elsewhere tended to leave the applicant pool at a disproportionately higher rate from other applicants after receiving an RJP.

The previous two limitations deal primarily with RJP implementation. However, a lack of theoretical agreement has also persisted amongst RJP researchers. The met-expectations hypothesis (Porter & Steers, 1973) has been the most widely accepted explanation of the psychological processes underlying the RJP. The authors of the met-expectations hypothesis posit that the extent to which pre-employment expectations are met on the job will be directly related to job satisfaction and inversely related to the likelihood that an employee will leave the job. Although the met-expectations hypothesis has been the longest persisting theoretical framework for RJP, some disagreement still exists regarding the processes it targets and the strength of the effects it supports (Phillips, 1998; Rynes & Cable, 2003).

In response to these specific criticisms of the RJP, Buckley, Fedor, Veres, Wiese, and Carraher (1998) developed the expectancy lowering procedure (ELP) as an alternative tool for realistic recruitment. An ELP is a pre-employment expectancy
calibration tool that is more general than the RJP. The ELP has several distinct benefits which can directly target those limitations of the RJP outlined previously.

One structure-based benefit is that, unlike the RJP, the ELP is not bound by job-content or organization-specific information. This has practical benefits in the proper development of the procedure, such that the ELP does not require a job analysis or content validation. A content-based benefit is that the ELP does not need to include negative information specific to a particular organization or job. This allows for the correction of the potentially detrimental self-selection effect. And finally, a theoretical benefit is that the ELP is more directly focused on newcomer expectancies. This allows the ELP to bypass a step in the psychological process behind pre-employment expectancy calibration. The ELP procedure has been tested and supported to produce the on-the-job results of lowered (more realistic) expectations, reduced turnover, and increased satisfaction in parallel with an RJP (Buckley et al. 1998; Buckley et al. 2002).

Using a task-based study, the purpose of this thesis will be to compare the RJP and the ELP for self-selection effects. These findings will potentially shed light on the way in which individuals receive and attribute information when subjected to realistic recruitment tactics by an organization. Based on the limitations raised by Breaugh and Billings (1988), it is reasonable to conclude that realistic preview information is not disseminated equally by all organizations, and this serves to create an expectation disparity between organizations that utilize and organizations that do not utilize realistic information. Indeed, this is potentially an explanation for the self-selection effects.
Specifically, this study will examine the effects of RJP and ELP information when given the situation of realistic information not being disseminated equally for each task option.

History of the RJP

As an applied research topic, realistic recruitment was discovered and developed to specifically address the issue of early turnover (tenure of less than one year) in organizations. This practical problem called for a solution of immediate effect that organizations could implement to resolve a costly issue. Researchers were forced to take a serendipitous finding and apply theory to it. Therefore, the unfolding half century of research has struggled with the basic psychological elements of the effectiveness of realistic recruitment.

Beginning in the mid 1950’s, research emerged which suggested that job applicants may hold unrealistic ideas regarding the nature of the job they were about to enter (Weitz & Nuckols, 1955). This was due primarily to positively skewed misrepresentations of the organization by recruiters. An attempt to give applicants a more realistic idea of the working conditions was suggested to help in reducing early turnover (Weitz, 1956). These, as well as other early field studies, set the stage for the development of realistic recruitment research and practice. In a study of job satisfaction and survival, Weitz and Nuckols (1955) happened upon the finding that misrepresentations of a job by the manager prior to employment would result in an individual being more likely to leave the position. In the next year, Weitz (1956) first proposed the idea that giving job applicants a realistic concept of the job would lower the likelihood for turnover. In a study of 474 incoming insurance agents, it was found that the
group who received a realistic preview booklet (compared to those who received a traditional recruiting booklet) prior to job acceptance experienced significantly less turnover each month for the first six months of employment. At the end of the cumulative six month period, the realistic preview group experienced thirty percent less turnover than the control group.

Even at this early stage in the research on realistic recruitment, issues regarding applicant self-selection began to emerge. Concern over the potential for a reduced ability to fill vacant job openings using realistic information was also abated, with findings indicating that during a six-month period the realistic preview group had fewer weeks with job openings pending (Weitz, 1956). Thus, in this early study, providing applicants with realistic information not only helped reduce early turnover, but it also appeared to not adversely affect the applicant pool.

Wanous (1973) noted that these procedures of utilizing realistic information during recruitment to reduce early turnover had important practical benefits and deserved further study. In his initial study, Wanous examined the potential psychological processes behind realistic information and subsequent job survival as either expectations or self-selection. The results of Wanous’ work demonstrated that viewing videos containing either realistic information or more traditional recruitment information had no effect on subsequent job acceptance, but did have an effect on job survival, with the realistic information group resulting in less turnover than the traditional group (Wanous, 1973). Although the results were only marginally significant, the reasons for this were explained as a function of outside factors, such as the unemployment rate and the timing of the
preview, both of which will come to bear in later moderator analyses. Finally, Wanous is responsible for labeling this procedure the Realistic Job Preview (RJP), and would see much of the development of future research credited to his name.

Simultaneously, Porter and Steers (1973) published a popular review of turnover and absenteeism literature that addressed some of the issues behind realistic recruitment and the reduced turnover phenomenon. Notably, the authors introduced the met-expectations hypothesis as a guiding principle behind the use of realistic information during recruitment. The met-expectations hypothesis posits that the extent to which an individual’s pre-employment expectations are met on the job will have a direct effect on job satisfaction. Porter and Steers report that job satisfaction has historically been shown to be negatively related to turnover, thus unmet expectations should have a detrimental impact on job survival.

In one of the few attempts to align the met-expectations hypothesis and the effects of realistic recruitment information with more established theories such as expectancy theory, Porter and Steers (1973) stated:

… each individual is seen as bringing to the employment situation his own unique set of expectations for his job. It is likely, based on the results here, that most employees place a fairly high valence on the attainment of their expectations... (p. 170).

Wanous (1972) also proposed expectancy theory as a useful theory for predicting organizational attractiveness and preference for an individual. Wanous demonstrated that the valence by instrumentality calculation was useful for determining organizational
preference within individuals. Valence is defined as the perceived attractiveness of a specific outcome such as money. Outcomes can have positive valence (the outcome is desired), negative valence (the outcome is not desired), or have zero valence (indifference). Instrumentality is the relationship of attaining a secondary, important outcome based on the first such as social status. Instrumentality can range from positive 1.00 (the second outcome is totally dependent on the first) to negative 1.00 (the second outcome does not depend at all on the first). These two concepts work to create a monotonically increasing relationship for the perceived importance of any given outcome and the likelihood the outcome will lead to other, desired outcomes. In his concluding remarks, Wanous indirectly alluded to the idea of using expectancy theory in realistic recruitment. Specifically, organizations should be conscious of the accuracy of their descriptors when advertising jobs to potential candidates to ensure that candidates make the most accurately informed decision when engaging in this expectancy calculation.

Porter and Steers (1973) offered several solutions for an organization’s ability to meet new employees’ expectations. Using a model that tied expectations to the rewards an organization can provide an employee to reach his or her personal goals, the authors made three suggestions by which to meet expectations and reduce turnover. The first two dealt with providing more rewards to employees, and/or providing a selection of benefits from which the prospective employee could choose which were most instrumental to them. The final option, which most closely resembles the direction of subsequent research, called for providing prospective employees with realistic expectations of what they can expect to receive from the organization for their required performance. This
option should be likely to reduce unrealistic expectations as well as clarify what is expected of the employee by the organization. This final option was dubbed the “met-expectations” hypothesis and served to be instrumental in guiding future research.

Newcomer expectancies have since been singled out as a benchmark indicator of an individual’s propensity for early turnover (Porter & Steers, 1973). Katzell (1968) found that although expectations may have been the same at the time of entry, those who ended up leaving the organization (in this case, nursing school) more often reported that their expectations had not been met by their actual experience. With no attempts made by the organization to influence initial expectations, evidence began to emerge suggesting that meeting expectations had an effect on turnover intentions. Using traditional recruiting methods, which tend to focus primarily on the positive aspects of an organization, the organization is artificially inflating newcomer expectancies and setting them up for the potential to not meet those expectations. To the extent that an organization positively skews those aspects that are viewed as instrumental to the potential employee during recruiting, there is a high likelihood that the potential employee will experience a type of reality shock due to the unmet expectations when faced with the reality of the job and the organization (Wanous, 1980).

To add to the salience of this phenomenon, Wanous (1973) demonstrated that individuals’ expectations regarding a new occupation is often far from reality. This would suggest that individuals do not necessarily need any help developing unrealistically positive expectations of a new career or organization, but that it seems to be a general phenomenon. This is evidenced by the consistent finding that job applicants do not differ
in their initial expectations of a new occupation, and those expectations are generally inflated (Katzell, 1968). The use of traditional recruiting methods only tends to exacerbate this problem. Indeed, overly positive messages and tactics meant to “sell the organization” preserve and potentially enhance these unrealistic expectations, whereas realistic messages have been consistently shown to have an adequate expectancy calibrating effect when compared to those not receiving such information.

Also, Wanous (1972) reported that when individuals rank-ordered different occupations by preference and their expectations regarding various characteristics of the organizations, the rankings based on characteristics did not always align with objective data regarding the occupations (in this case, salary). This points to the potential for expectations to generally be miscalibrated.

RJP research continued throughout the decades of the 1980’s and 1990’s with mixed support (Breaugh, 1983) and examinations of many different potential moderators of RJP effectiveness (Hom, Griffeth, Palich, & Bracker, 1998; Phillips, 1998). In the most recent meta-analysis, Phillips (1998) identified several moderators of RJP effectiveness that have been investigated over the years. In general, timing, setting, and medium of RJPs and RJP studies have been shown to produce differential effects with regards to turnover, satisfaction, and performance in response to RJPs. In a recent general review of the recruitment literature, Rynes and Cable (2003) summarized the results of the Phillips meta-analysis as only demonstrating mediocre levels of effectiveness for RJPs. However, regardless of the direction and contradiction of past RJP research findings, one important point has remained unchanged: RJPs do seem to have an effect
on job applicants, and the practical significance of their use is recognized in real dollars for organizations (Colarelli, 1984; Wanous, 1989).

Contemporary RJP Research

Contemporary RJP research has seen a resurgence of some old issues, particularly self-selection, as well as some new ideas that provide very interesting new lines of research. Much of the recent research on RJP s and other realistic recruitment tactics has focused on practical usage. Specifically, current studies involve researching aspects of improvement for realistic recruitment that can be implemented in organizations which deal with the limitations of the RJP and immediately benefit their recruiting practices. The most well developed example of this is the expectancy lowering procedure (ELP: Buckley et al. 1998).

Expectancy lowering procedures. An ELP is a generalized realistic recruitment tool meant to be used as a replacement or in addition to an RJP. The ELP was designed to correct some specific criticisms of the RJP, and has at least three major advantages in its content, structure, and theory. First, the content of the ELP is general and not job or organization specific. Second, the structure of the ELP does not suffer from the development issues that have plagued the RJP in the past. Finally, the psychological processes that the ELP acts on are hypothesized to be more direct than those that the RJP acts upon (Buckley et al. 1998). Each of these issues will be discussed in detail.

The content of an ELP is designed to elicit the same results from job applicants using more general and direct information. An RJP would inform an applicant of specific, positive and negative working conditions, coworker relations, supervision, compensation
etc. An ELP, however, lacks such organization- and job-specific details, and instead focuses on helping the applicant understand the realities of entering a new organization. The specific aim of the ELP targets the potential for the applicant’s general expectations to be unrealistically optimistic. This is done in a manner that does not specifically derogate the organization by directly focusing on the calibration of pre-employment expectations rather than specific positive or negative attributes of the organization.

Structurally, the development of the ELP has distinct advantages over that of the RJP. In a modern job market characterized by rapid change, the proper development of an RJP can become a tedious and costly project. Reilly (1981) stated, “The development of an RJP is similar to the development of a content oriented test. It would seem that, at a minimum, RJP development should include steps parallel to those involved in content validation” (pg. 832). Due to the realities of modern business, the proper information gathering and development of an RJP may result in costs for the organization that outweigh the benefit of implementing the procedure. The ELP, however, does not suffer from this structural and developmental problem due to the nature of the information provided. As described previously, an ELP contains very general information, void of job or organization specific details, and is meant to inform individuals of the realities of entering a new job and their often held inflated expectations. Thus, a template ELP could be developed and implemented with relative ease and minor alterations in a number of different organizations.

Finally, the psychological mechanisms that are hypothesized to be at work with the ELP are more direct than those in an RJP. Buckley et al. (1998) proposed that the
ELP acts more directly on applicant expectations than do RJP s. RJP s rely on calibrating job-related expectations by focusing on the specifics of the job and organization, and not necessarily the intended target, the applicants’ actual expectations (see Figure 1).

Figure 1: Psychological pathways of the ELP (Buckley et al., 1998).

This leaves it up to the applicant to make the transfer of those job content beliefs into their expectations (Buckley et al. 1998). By wording the ELP in a way that specifically addresses the potential for unrealistically high expectations, this connection does not have to be made by the applicant him/herself.

The ELP was put into practice over the course of two studies with promising results. In the first study, Buckley et al. (1998) reported that the ELP was successful in creating lower pre-employment expectations as well as calibrating the discrepancy between expectations and early on-the-job experiences, less turnover, and greater job satisfaction (within the first 6 months of employment) when compared to a control group. Also, the results of an administered RJP were in parallel with the ELP results for this
study. In the second study, Buckley et al. (2002) reported identical results as in the earlier Buckley study for expectations and turnover (satisfaction was not measured in this study).

In the past, researchers have made a distinction between realistic recruitment procedures given at various times during the recruitment period (Phillips, 1998). Wanous (1978) made the distinction that an RJP given after job acceptance is made is more appropriately titled a “realistic socialization procedure” than a recruitment tool. The other difficulty that presentation of an RJP following job acceptance creates is the inability to determine if the information provided in the RJP is causing a self-selection effect. This effect is an area of concern for RJP implementation, such that organizations are concerned with providing information which would lead an applicant to remove him or herself from the applicant pool. Although early RJP research demonstrated that this effect was unlikely to occur, more recent research has demonstrated that it may be a valid concern.

Self-selection. Early RJP researchers were confronted with the argument that providing potential employees with negative information about the workplace would have a detrimental effect on selection ratios. That is, organizations using realistic recruitment tactics would be disadvantaged because applicants would decide to leave the applicant pool after receiving any negative information about the job or organization. This concern was addressed throughout the years, with researchers consistently asserting that this problem was not occurring (Colarelli, 1984; Premack & Wanous, 1985; Wanous, 1992; Weitz, 1956). Those individuals receiving RJP were not more likely to turn down
a job offer than those receiving traditional recruitment messages. However, some researchers still questioned the self-selection issue, and recent studies have uncovered some interesting findings.

Previous null results for self-selection had been blamed on external variables, such as the availability of comparable jobs (Breaugh & Starke, 2000) as well as methodological variables, such as the way in which attrition was measured or averaged across studies (Meglino, Ravlin, & DeNisi, 2001; Rynes, Bretz, & Gerhart, 1991). However, Bretz and Judge (1998) turned their focus inward for a closer examination of self-selection among different individuals within the applicant pool. The authors proposed the adverse self-selection hypothesis, which states that the presentation of negative information pertaining to a specific job or organization will result in the disproportionate attrition rate of the highest qualified applicants from the applicant pool. If this effect was found to be occurring, it would point to the potential for RJPs to be thinning the applicant pool of the best applicants.

To test this hypothesis, Bretz and Judge (1998) exposed participants to information regarding potential jobs in an RJP-like scenario and asked them to rate, among other things, their attraction to that organization/position. The authors hypothesized that their results indicated that negative information was in fact being weighted more heavily than positive information by high quality applicants as opposed to low quality applicants. Specifically, in the scenario where there were costs associated with continued interest in a specific organization/position (through the use of a non-refundable bidding system for a subsequent interview), the effects of adverse self-
selection began to emerge (although only reaching marginal significance). Thus, those applicants who were deemed as highly attractive were thought to be placing more emphasis on the negative information provided to them when there was a real cost associated with pursuing the organization/position. Rynes, Bretz, and Gerhart (1991) have also asserted that higher quality individuals would be more likely to self-select out of an applicant pool after receiving negative information due to their perceived ability to pursue other jobs. The results of these studies only weakly indicate the possibility of the adverse self-selection effect, yet this issue appears to persist primarily based on popular belief rather than the research data.

Other studies have also touched on this idea that applicants with differences in qualities may be differentially affected by realistic recruitment tactics. Meglino, Ravlin, and DeNisi (2001) proposed the idea that those individuals in the applicant pool who have more experience with the job (e.g., either having done the job previously or who have had high exposure to others doing the job) will place greater emphasis on the negative information contained in an RJP.

This relationship between experience and information focus relies on past findings suggesting that individuals who have had direct exposure to noxious events will tend to exaggerate the frequency of those events (c.f., Lichtenstein, Slovic, Fischhoff, Layman, & Combs, 1978). The authors point to the example of college students and physicians who have had a personal experience with a certain disease overestimating the likelihood of dying from that disease when compared to individuals who just read about the disease. Applying this logic to organizational selection, those applicants with
previous exposure to the actual job will be likely to weight the negative information more heavily when receiving an RJP than those individuals without previous job exposure.

With this in mind, Meglino, Ravlin, and DeNisi (2001) conducted an RJP study with correctional officers based on the idea that unless one had previously been working in corrections, one would not have much exposure to this particular job thus they could have distinct groups with and without prior job knowledge and experience. They found that those individuals with prior job experience placed more emphasis on the negative information contained in the preview (measured by their estimates of physical harm/injury that could be experienced on the job), and resulted in a lower job acceptance rate than those with less previous experience.

Meglino, Ravlin, and DeNisi (2001) also re-examined nine past RJP studies to corroborate their findings. The results of this analysis supported their hypothesis that individuals who have had previous job exposure would tend to show lower job acceptance rates (specifically, a 9.8% decrease in job acceptance rates, significant at $p < .05$) after receiving an RJP. They also report from both their study of correctional officers and reviews of the past literature that those individuals with little previous exposure to the job tend to emphasize the positive aspects of the RJP message and show higher job acceptance rates.

These findings can also be explained when considering the social psychological literature on persuasion and attitude change. Researchers in this area have found that when individuals are presented with information that is contrary to the belief or attitude that they hold, they will be likely to refute it through a process of building more counter
arguments that are congruent with their current attitude or belief (Petty & Cacioppo, 1986). Based on the findings of Meglino, Ravlin, and DeNisi (2001), it would appear that an applicant with little or no previous experience, and who has developed an unrealistically positive belief about the job or organization, will be more likely to refute the negative information and attend to the positive information presented in an RJP. Indeed, this is evidenced by the researchers’ findings and the likelihood that inexperienced applicants will likely have little previous job knowledge but will also have unrealistically high expectations.

To understand this argument in terms of the adverse self-selection hypothesis supported by the findings of Bretz and Judge (1998), consider previous job experience as a determinant of applicant quality. According to Meglino, Ravlin, and Denisi (2001), those individuals with more previous job experience attend primarily to the negative information in an RJP, resulting in a higher rate of attrition from the applicant pool. Those individuals with less (or no) previous job experience attend primarily to the positive information in an RJP to protect their previously held expectation, therefore not resulting in self-selection effects. These findings indicate the potential danger in providing job applicants with specific positive and negative information pertaining to the job or organization when attempting to calibrate pre-employment expectations. A more general procedure such as the ELP, which does not contain this information, could help diminish these effects.

Interestingly, the differences in the findings between the Bretz and Judge (1998) study and the Meglino, Ravlin, and DeNisi (2001) study may be at least partially
attributable to one of the moderator effects identified by Phillips (1998). Specifically, Phillips concluded that there tended to be differences in the behavioral effects of RJP's (i.e., turnover) between laboratory and field settings such that the behavioral effects are not always identified in the laboratory studies. The Bretz and Judge study which took place in the laboratory only found marginal significance for a behavioral effect (self-selection) of RJP's, whereas the Meglino, Ravlin, and DeNisi study which took place in the field did find such an effect. However, research on RJP's in both settings is valued. Phillips (1998) concluded that the control of the laboratory setting provides the best opportunity to systematically evaluate the change in expectations, whereas the field setting provides the best opportunity to observe the behavioral effects of RJP's.

From this evidence, it is apparent that the concerns regarding potential self-selection effects following the interaction with RJP's are still an issue. Partially in response to this growing concern, Buckley et al. (2002) published their second ELP study with applicant self-selection specifically in mind. Buckley et al. (1998) presented the realistic recruitment information (RJP and ELP) after applicants had accepted their new position. This, in effect, eliminates the possibility to examine self-selection effects. The authors of the more recent ELP study designed it so that all of the procedures were given before job acceptance took place, and hypothesized that those applicants receiving the RJP and ELP would be less likely to accept the job offer than those applicants not receiving a realistic recruitment procedure. Other hypotheses regarding on-the-job effects were the same as those in previous studies (i.e., compared to a control group, those applicants receiving the RJP or ELP would result in more realistic expectations and lower
The results of the Buckley et al. (2002) study indicated no differences between the control group and combined RJP and ELP group for job acceptance rates (measured here as first day attendance). This would suggest that applicant self-selection is not occurring after receiving realistic recruitment information. However, it may be the case that the true effect was masked due to this combinatorial design. A more useful variation would be to separate the RJP and ELP in order to examine the self-selection phenomenon. This would help us identify the ways in which job applicants react to the organization based on information provided to them in either a more specific or more general context.

The Present Study

RJPs have historically been used to prevent the undesirable on-the-job consequences resulting from unrealistically high pre-employment expectations. However, issues have arisen concerning the RJPs development requirements, message content, and potentially adverse effects. The recent development and testing of the ELP stands to correct many of these shortcomings, while also producing positive results for new employees similar to those of the RJP. However, further testing of the ELP is needed to better understand the differences in self-selection effects and information processing from the RJP.

Recent research has concluded that self-selection effects are a valid concern in realistic recruitment, particularly when one examines the applicant pool for the quality of applicants (Bretz & Judge, 1998; Meglino, Ravlin, & DeNisi, 2001; Rynes, Bretz, & Gerhart, 1991). Many other factors have also been hypothesized to mask the visibility of
self-selection effects (e.g., external economic conditions, methodological and analytical issues, etc). One inclination regarding self-selection, however, has remained unchanged: Self-selection effects appear to occur at the presentation of specific, negative information about the job or organization. A realistic recruitment tool lacking such information should have the potential to mitigate this effect.

Buckley et al. (2002) tested the ELP along with the RJP in an effort to uncover any potential self-selection effects. Their results indicated that a self-selection effect was not occurring for their combined group, although the two procedures were not separated and analyzed independently in this study. Undertaking an independent examination of these two procedures could help identify whether the ELP may be more advantageous than the RJP in terms of the self-selection hypothesis.

Specifically, a job applicant comparing two similar organizations, one which uses an RJP and one which does not, may find the negative information provided in the RJP more salient than the positive information when comparing the two organizations and view the organization using the RJP as less desirable. However, in reality, the organization using the RJP is benefiting the applicant by reducing the potential for unmet expectations whereas the organization not using the RJP is hindering the applicant by fostering unrealistic expectations. The fact that RJPs are not used across all organizations is the primary source of this potential problem. Based on the difficulties in properly constructing an RJP, it is also unreasonable to expect that all organizations adopt such a procedure in order to help solve this problem. A procedure that targets the general expectations common to all job applicants regardless of organization and is easy to
develop and able to adapt quickly would be better fitted to provide the positive effects of the classic RJP, while minimizing the problems associated with providing specific, negative information.

Although there are many factors at work in the decision making processes of job applicants, it would be useful to isolate this comparison in a controlled setting in order to better understand if the RJP has this detrimental function. If this effect is occurring, the ELP may be a better procedure to use, because it more directly targets the intended information in applicants (pre-employment expectations). The ELP accomplishes this without using job or organization specific information which may then be used to make undue decisions when compared with organizations not using such information. Therefore, in a situation where a job applicant has several choices of organizations, the ELP may prove to be the best tool to use for realistic recruitment purposes.

The present study will seek to provide insight into the way individuals receive, process, and act upon realistic information in an organizational recruitment setting. No study has yet directly examined the effects of realistic recruitment procedures when the applicants can choose between a situation where realistic information is presented and one in which it is not. The primary hypotheses for this study will center on the idea that, in a situation where an applicant is receiving different types of recruitment information from different organizations, those organizations that provide RJP may be predisposing themselves to unwanted self-selection effects.

According to the findings of Bretz and Judge (1998), this effect could also be enhanced when individual difference variables are taken into account within the applicant
pool, particularly, applicant quality. A relevant individual difference variable for measuring participant quality in a laboratory procedure is the Need for Cognition (NFC). The need for cognition was introduced by Cohen, Stotland, and Wolfe (1955) as the desire by an individual to structure situations and increase understanding of the experiential world. Failure to do so would create feelings of frustration. Cacioppo and Petty (1982) adapted this definition such that one’s need for cognition related to the amount to which he or she enjoys engaging in thinking. Over the past twenty years, the need for cognition has been a very popular individual difference construct examining the willingness of an individual to engage in complex cognitive tasks and problem solving.

The need for cognition has been previously used in RJP research. Buda and Charnov (2003) used the need for cognition and the Elaboration Likelihood Model (see Petty & Cacioppo, 1986) to investigate the effects of RJP on an applicant pool. The Buda and Charnov study resulted in several significant interaction effects with message framing and the need for cognition on job applicants’ attitudes towards the organization. Specifically, their results indicated that the need for cognition is a significant moderator of themes central to the RJP message such as source credibility and message framing.

Cacioppo, Petty, Feinstein, and Jarvis (1996) have also demonstrated that need for cognition is a useful variable for distinguishing the motivation of individuals engaging in experimental tasks. These factors make it a good measure by which to differentiate the quality of psychology participants, and make it possible to explore the effects of RJPs and applicant quality investigated by Bretz and Judge (1998) within a laboratory, task-
based procedure. This study will use such a procedure to examine the ways in which individuals act on the information presented to them.

Based on the current research with the RJP and the ELP, the following study was proposed. Using a task-based, laboratory procedure, undergraduate participants will be exposed to two experimental tasks of which they may choose one for their participation. The manipulation in the study was the associated task previews. The previews were constructed in the same fashion as organizational previews (RJP, ELP, and a traditional preview), but were directed at experimental tasks as jobs. In each condition, participants received the titles and relevant previews for the two experimental tasks, of which they were able to choose one to complete for participation. One condition was a single preview condition in which participants received an RJP for one of the tasks, and only the title and traditional preview for the remaining task. The second condition was a multiple preview condition, and had RJPs and titles for both tasks. The third condition used a general, ELP and included the titles and traditional previews for both tasks. A fourth condition where participants only received the titles and traditional previews for both tasks was used as a control.

The primary dependent variable will be task choice. The goal of this study is to observe choice behavior using a controlled, experimental condition to investigate the situation where realistic preview information is not universally applied during organizational recruitment. Task expectations will also be evaluated with respect to the relevant previews.
Hypotheses

Hypothesis 1: Individuals in the single RJP condition will be less likely to choose to participate in the task with the associated RJP.

Hypothesis 1a: Expectations will be significantly lower for the task with an associated RJP compared to the task without the associated RJP in the single-RJP condition.

Hypothesis 2: In the single RJP condition, individuals with more previous experience will be less likely to choose to participate in the task with the associated RJP than those individuals with less previous experience.

Hypothesis 3: In the single RJP condition, individuals with a higher need for cognition will be less likely to choose the task with the associated RJP for participation than those individuals with a lower need for cognition.

Hypothesis 4: Individuals in the multiple RJP condition will show no preference for a particular task when choosing their task for participation.

Hypothesis 4a: There will be no significant difference in expectations scores between the tasks in the multiple RJP condition.

Hypothesis 5: Individuals in the ELP condition will show no preference for a particular task when choosing their task for participation.

Hypothesis 5a: There will be no significant difference in expectations scores between the tasks in the ELP condition.

Hypothesis 6: There will be a significant difference in expectations for a chosen task in the multiple RJP, ELP, and control conditions prior to beginning the task.
Specifically, individuals in the multiple RJP condition and individuals in the ELP condition will have lower expectations for their chosen task than those individuals in the control condition.

Hypothesis 6a: There will be a significant difference in the discrepancy in expectations and actual experience for a chosen task in the multiple RJP, ELP, and control conditions. Specifically, individuals in the control condition will report a greater discrepancy in expectation and actual experience for their chosen task than those individuals in the experimental conditions.

Hypothesis 6b: In the multiple RJP and ELP conditions, there will be no difference in the comparative expectation ratings between the chosen task and the task not chosen prior to beginning the chosen task.

Pilot Study

The goal of the pilot study was to identify a pair of experimental tasks from a set of five potential tasks that did not differ on a variety of measures to be used in the main study. Participants viewed traditional task previews for five experimental tasks, and were asked to complete a series of attitudes measures, a pair-wise comparison task, and expectation measures. Participants also completed the Need for Cognition short form (Cacioppo, Petty, & Kao 1984), as well as a basic demographics questionnaire.

Method

Participants

The participants for this study consisted of 54 undergraduate students enrolled in an introductory psychology course at a large Midwestern university. The sample was
made up of 21 males (38.9%) and 33 females (61.1%) ranging in age from 18 to 22 years old with an average age of 19. The sample was predominantly Caucasian (50 individuals, making up 92.6% of the sample) with four minorities (Hispanic, African American, Asian, and Native American) each of which represented by one individual. Eighty-three percent of the sample consisted of Freshman (24 individuals accounting for 44.4%) and Sophomores (21 individuals accounting for 38.9%).

Participation was voluntary in exchange for course credit. Participants signed up for the study using the university’s psychology experiment management system and received one credit for their participation. No other form of compensation was offered for participation in this study.

Design

This study was a within-subjects, exploratory design. All participants viewed the same tasks and corresponding previews. The primary dependent variables were task attractiveness and pair-wise task comparison rankings.

Materials/Stimuli

Task previews. Participants were exposed to five task previews containing information describing individual experimental tasks being used in current research. The information contained in the task previews was obtained through interviews with graduate students ($N = 6$) as subject matter experts (SMEs) familiar with the tasks who provided detailed information pertaining to performing the tasks. That information was screened for repeat details and compiled to create a short narrative that the participants
could read explaining the different experimental tasks (see Appendixes A – E for the task previews). Brief descriptions of each task follow.

The Scheduling RNs task is a managerial scheduling task previously published in studies by Vancouver and Putka (2000) and Vancouver, Putka, and Scherbaum (2005). During the task, participants adjust a weekly schedule of nurses with varying pay rates to stay under an assigned cost goal. Mid-way through the task, the ability to observe the real-time effects of the schedule adjustments will disappear, and the participants will have to develop a new strategy to meet their assigned goal (see Appendix A for the Scheduling RNs task preview).

The Hurricane Game task is a psychomotor task designed to investigate the effects of resource allocation on self-efficacy and performance (Vancouver, More, & Yoder, 2006). During this task, participants view a screen with moving boards of various sizes, and their goal is to nail the boards down by clicking on them with the mouse. Participants are then asked to choose a board size (large to small with varying difficulties) and indicate how much time they wish to allocate to completing the task. Feedback pertaining to their performance is measured and provided (see Appendix B for the Hurricane Game task preview).

The Mastermind task is a strategy/problem solving task previously published in studies by Vancouver, Thompson, and Williams (2001) and Vancouver, Thompson, Tischner, and Putka (2002). This task uses a computer based version of a common board game in which the participants must use a set of logic rules to decipher a coded message (see Appendix C for the Mastermind task preview).
The Anagram task is a word-based puzzle task (Vancouver, Scherbaum, Yoder, More, & Kendall, 2006). Participants are given a five-letter word and asked to find as many anagrams (words of three letters or more that can be made from the letters of the root word) as possible. Various measures regarding goal attainment and self-efficacy are given throughout the task (see Appendix D for the Anagram task preview).

Finally, the Military Mission task is a tracking task. In this task, participants are told they are aiming a listening device at moving targets in order to track potential communication signals emanating from the target (Vancouver, Morris, Morse, Smart, & Tamanini, 2006). This is accomplished by positioning the mouse pointer on the screen over the moving target and following it while performance feedback is provided. At a certain point in the task, the target object disappears and the participants have to use other contextual cues to complete their objectives (see Appendix E for the Military Mission task preview).

MediaLab. All stimulus materials were created and presented using the MediaLab v2004 software platform. All randomizing functions (within-subjects presentation order of materials) and data reporting were performed by the software.

Measures

Task attractiveness. Task attractiveness (expectations) was measured immediately following exposure to the task preview with three questions (How enjoyable do you think this task would be? How much satisfaction would you gain from participating in this task? How important do you think this task is with regards to psychological research?). Each question was assessed using a five item Likert-type scale with anchors at 1 = not
enjoyable/satisfying/important at all to 5 = extremely enjoyable/satisfying/important) (see Appendix F).

Task comparisons. Comparisons were made of all possible pairs of the tasks by presenting a task pair and asking the participants to pick which of the two they would rather choose if they had to choose one for participation. Participants viewed and made decisions on ten task pairs which accounted for all possible pairings of the five tasks.

Need for cognition. Participants completed the short form of the Need for Cognition scale (see Appendix G). Cacioppo, Petty, and Kao (1984) developed this 18-item cognitive motivation scale and reported that it had an internal consistency of $\alpha = .90$, and a single factor accounting for 37% of the variance.

Demographics. The demographics of sex, age, GPA, race, year in college, and major were also collected (see Appendix H).

Procedure

After signing up for a designated time, participants entered the lab where they were presented with an informed consent form (see Appendix I). Upon completing the informed consent forms, the participants were given instructions and a brief description of the study by the experimenter.

The participants were then seated at a computer and allowed to begin the experiment. Participants completed the entire study using a computer and interacting with the MediaLab software. Participants first read task previews and completed attractiveness ratings for the five tasks. Following this task, the participants were asked to rank order the five tasks using a rank ordering feature which allowed participants to drag the names
of the five tasks into a hierarchical order indicating task preference. Next, the participants viewed all ten possible pairings of the tasks and indicated which task of the two they would choose if they had to choose one for participation. Next, the participants completed the NFC short form, and finally, the participants completed the demographics questionnaire. After finishing the task, the participants were thanked for their participation and debriefed (see Appendix J).

Results

Task Attractiveness

Task attractiveness scores were computed for each task as a mean score of the three attractiveness rating items. The question of how difficult this task would be was removed due to poor reliability statistics and an inability to discern whether participants felt it was a positive rather than negative attribute. Results indicated that the Military Mission task was rated as the most attractive \(M = 3.15 \) followed by the Anagram task \(M = 3.02 \), the Hurricane Game task \(M = 2.91 \), the Mastermind task \(M = 2.86 \), and the Scheduling RNs task \(M = 2.63 \). Table 1 contains the descriptive statistics for the attractiveness ratings.

<table>
<thead>
<tr>
<th>Task</th>
<th>Mean</th>
<th>SD</th>
<th>Reliability (α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Mission</td>
<td>3.15</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Anagram</td>
<td>3.02</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Hurricane Game</td>
<td>2.91</td>
<td>0.80</td>
<td>.769</td>
</tr>
<tr>
<td>Mastermind</td>
<td>2.86</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Scheduling RNs</td>
<td>2.63</td>
<td>0.77</td>
<td></td>
</tr>
</tbody>
</table>
Task Comparisons

Pair-wise comparisons of every possible task pair were presented to the participants, and they were asked to indicate which task they would prefer to complete if they had to choose among the two. A Chi-Square analysis was conducted to determine if there were significant task preferences. Results indicated that four of the ten pairings produced significantly different choice behaviors. Specifically, the Scheduling RNs task was preferred significantly less than the anagram task, $\chi^2(1, N = 54) = 10.67, p < .01$, significantly less than the Hurricane Game task, $\chi^2(1, N = 54) = 14.52, p < .001$, significantly less than the Mastermind task, $\chi^2(1, N = 54) = 18.96, p < .001$, and significantly less than the Military Mission task, $\chi^2(1, N = 54) = 8.96, p < .01$. Table 2 contains the statistics for each task choice pairing.

Need for Cognition

The need for cognition was administered as an individual difference variable. Individual NFC scores were calculated as the mean score of the 18-item short form scale. The entire scale had a reliability of $\alpha = .851$ with an overall mean score of ($M = 3.14$), standard deviation of ($SD = 0.57$), a minimum score of 1.94, and a maximum score of 4.33.

Additional Analyses

In order to determine whether or not there were effects of individual difference variables on task attractiveness, independent samples t-tests were performed for sex and need for cognition, grouping participants into high vs. low NFC using a median split. In
Table 2

Expected frequencies, actual frequencies, degrees of freedom, and the chi-square statistic for the pair-wise comparisons of each task

<table>
<thead>
<tr>
<th>Task</th>
<th>(f_{\text{expected}})</th>
<th>(f_{\text{obtained}})</th>
<th>df</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anagram</td>
<td>27</td>
<td>27</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>Hurricane Game</td>
<td>27</td>
<td>27</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anagram</td>
<td>27</td>
<td>31</td>
<td>1</td>
<td>1.18</td>
</tr>
<tr>
<td>Mastermind</td>
<td>27</td>
<td>23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anagram</td>
<td>27</td>
<td>23</td>
<td>1</td>
<td>1.18</td>
</tr>
<tr>
<td>Military Mission</td>
<td>27</td>
<td>31</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Anagram</td>
<td>27</td>
<td>39</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scheduling RNs</td>
<td>27</td>
<td>15</td>
<td>1</td>
<td>10.67*</td>
</tr>
<tr>
<td>Hurricane Game</td>
<td>27</td>
<td>30</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mastermind</td>
<td>27</td>
<td>24</td>
<td>1</td>
<td>0.67</td>
</tr>
<tr>
<td>Hurricane Game</td>
<td>27</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Military Mission</td>
<td>27</td>
<td>33</td>
<td>1</td>
<td>2.67</td>
</tr>
<tr>
<td>Hurricane Game</td>
<td>27</td>
<td>41</td>
<td>1</td>
<td>14.52**</td>
</tr>
<tr>
<td>Scheduling RNs</td>
<td>27</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mastermind</td>
<td>27</td>
<td>24</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Military Mission</td>
<td>27</td>
<td>30</td>
<td>1</td>
<td>0.67</td>
</tr>
<tr>
<td>Mastermind</td>
<td>27</td>
<td>43</td>
<td>1</td>
<td>18.96**</td>
</tr>
<tr>
<td>Scheduling RNs</td>
<td>27</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Military Mission</td>
<td>27</td>
<td>38</td>
<td>1</td>
<td>8.96*</td>
</tr>
<tr>
<td>Scheduling RNs</td>
<td>27</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*p<.01, **p<.001

the NFC median split by attractiveness t-test, results indicated that only the Mastermind task was found to have significantly higher attractiveness ratings for those high in NFC than those low in NFC, \(t(52) = -2.67, p < .05 \). Full results for the NFC by attractiveness t-test can be found in Table 3.

In a test of sex differences, the only significant difference revealed in the sex by attractiveness t-test was for the Military Mission task. Specifically, the average attractiveness ratings of the males (\(M = 3.62 \)) were significantly higher than that of the
Table 3
NFC by attractiveness t-test

<table>
<thead>
<tr>
<th>NFC</th>
<th>Low</th>
<th>27</th>
<th>2.47</th>
<th>.823</th>
<th>-1.54</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling</td>
<td>High</td>
<td>27</td>
<td>2.79</td>
<td>.699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurricane</td>
<td>Low</td>
<td>27</td>
<td>2.84</td>
<td>.753</td>
<td>-1.54</td>
<td>52</td>
</tr>
<tr>
<td>Game</td>
<td>High</td>
<td>27</td>
<td>2.99</td>
<td>.859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military</td>
<td>Low</td>
<td>27</td>
<td>3.09</td>
<td>.954</td>
<td>-1.54</td>
<td>52</td>
</tr>
<tr>
<td>Mission</td>
<td>High</td>
<td>27</td>
<td>3.22</td>
<td>.915</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anagram</td>
<td>Low</td>
<td>27</td>
<td>2.85</td>
<td>.609</td>
<td>-1.91</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>27</td>
<td>3.19</td>
<td>.718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastermind</td>
<td>Low</td>
<td>27</td>
<td>2.59</td>
<td>.594</td>
<td>-2.67*</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>27</td>
<td>3.12</td>
<td>.843</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05

Females (M = 2.86), t(52) = 3.17, *p < .01*. Full results for the sex by attractiveness t-test can be found in Table 4.

Table 4
Sex by attractiveness t-test

<table>
<thead>
<tr>
<th>NFC</th>
<th>Male</th>
<th>21</th>
<th>2.52</th>
<th>0.79</th>
<th>-0.799</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling</td>
<td>Female</td>
<td>33</td>
<td>2.69</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurricane</td>
<td>Male</td>
<td>21</td>
<td>3.14</td>
<td>0.85</td>
<td>1.70</td>
<td>52</td>
</tr>
<tr>
<td>Game</td>
<td>Female</td>
<td>33</td>
<td>2.77</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military</td>
<td>Male</td>
<td>21</td>
<td>3.62</td>
<td>0.99</td>
<td>3.17**</td>
<td>52</td>
</tr>
<tr>
<td>Mission</td>
<td>Female</td>
<td>33</td>
<td>2.86</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anagram</td>
<td>Male</td>
<td>21</td>
<td>3.01</td>
<td>0.84</td>
<td>-0.075</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>33</td>
<td>3.03</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastermind</td>
<td>Male</td>
<td>21</td>
<td>2.86</td>
<td>0.84</td>
<td>-0.007</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>33</td>
<td>2.86</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p < .01
Discussion

The purpose of the pilot study was to identify two experimental tasks out of a set of five tasks that participants did not demonstrate a preference towards. This was done to ensure that the effects of the preview group manipulation in the main study could be isolated to the preview and not the task itself. A variety of analyses were conducted with the purpose of identifying potential task preferences. The results of the pilot study analyses suggest that the Anagram task and the Hurricane Game task would be the two most neutral tasks.

Task Choice

The results of the decision-making task where the participants were presented with all possible pair-wise comparisons of the tasks consistently revealed that the participants disliked the Scheduling RNs task. This was the only task in which the chi-square results were significant each time the task appeared, and a review of the actual frequencies reveals that the Scheduling RNs task was chosen significantly fewer times than any of the other tasks. No other decision preference was indicated for the other task pairs. This leads to the conclusion that the Scheduling RNs task should not be used per its low choice frequency.

NFC Effects

The need for cognition was used in this study as a measure of participant quality. The need for cognition is regarded as a cognitive motivation, and those individuals with higher levels of NFC would likely be attracted to tasks that require logical problem solving (Cacioppo & Petty, 1982). Past research has also demonstrated that NFC is a
viable indicator of cognitive engagement and motivation to perform in experimental tasks (Cacioppo, Petty, Feinstein, & Jarvis 1996). Therefore, it was important to identify any tasks that would likely be attractive to those with a higher NFC based on the content of the task. Results indicated that the Mastermind task was rated significantly higher by those with higher levels of NFC. All other tasks did not incur significant differences in attractiveness ratings by individuals with high vs. low NFC. This leads to the conclusion that the Mastermind task would also not be a good task to use in the main study.

Sex Effects

Because of the variety of content in the available experimental tasks, it was important to identify whether the sex of the participant would influence task choice. One task, the Military Mission task, was rated significantly higher in attractiveness by males. All other tasks did not return significant differences in attractiveness ratings between males and females. This signifies that the Military Mission task should be excluded from the main study due to significant sex preferences.

Overall, these results indicate the Scheduling RNs task, the Mastermind task, and the Military Mission task as having qualities that would predispose participants to choosing (or not choosing) them outside of the intended manipulations for the main study. Therefore, the two experimental tasks presented to participants in the main study will be the Anagram task and the Hurricane Game task.
Main Study

Method

Participants

The participants for this study consisted of 119 undergraduate students enrolled in introductory psychology courses at a large Midwestern university (one participant was removed from the sample for being less than 18 years old but failing to tell the experimenter). The sample was made up of 36 males (30.8%) and 83 females (69.2%) ranging in age from 18 to 48 years old with an average age of 19.51 years. The sample was predominantly Caucasian (107 individuals, making up 90.0% of the sample) with five minorities (Hispanic, African American, Aleut, Native American, and mixed race) representing the remaining ten percent. Eighty-five percent of the sample consisted of Freshman (62 individuals accounting for 52.1%) and Sophomores (39 individuals accounting for 32.8%) representing all of the seven major colleges in the university.

Participation was voluntary in exchange for course credit. Participants signed up for the study using the university’s psychology experiment management system and received one credit for their participation. No other form of compensation was offered for participation in this study.

Design

This study was a between-subjects design. The independent variable was the type of task preview. The type of task preview refers to a single RJP, multiple RJPs, or an ELP. A fourth group (control) was also used in which participants received traditional task previews (positive information only). Participant experience and participant quality
were used as predictor variables in regression analyses. Experience refers to the number of psychology studies previously completed by the participant. Participant quality was measured using the need for cognition (NFC), and was collected using the NFC short-form scale (Cacioppo, Petty, & Kao 1984). The primary dependent variable was task choice. Other dependent variables included expectations (measured as task attractiveness), perceptions of the other tasks, and actual task experience: All of which were measured using a five point Likert-type scale where higher scores indicated more positive attitudes towards the task.

Materials/Stimuli

Tasks. Participants were presented with two tasks (and a preview based on condition) of which they chose one to begin working on at the beginning of the experiment. The tasks used in this study were basic experimental tasks previously used for other, unrelated studies.

A Pilot Study was conducted to identify two tasks that were chosen based on their similarity in terms of attractiveness. The two tasks chosen were the Hurricane Game task and the Anagram task. The Hurricane Game task is a psychomotor task designed to investigate the effects of resource allocation on self-efficacy and performance (Vancouver, More, & Yoder, 2006). During this task, participants viewed a screen with boards of various sizes floating around and their goal was to nail the boards down by clicking on them with the mouse. Participants were then asked to choose a board size (large to small with varying difficulties) and indicate how much time they wish to
allocate to completing the task. Feedback was be provided and their performance was be measured.

The Anagram task is a word-based puzzle task (Vancouver, Scherbaum, Yoder, More, & Kendall, 2006). Participants were given a five-letter word and asked to find as many anagrams (words of three letters or more that can be made from the letters of the root word) as possible. Various measures regarding goal attainment and self-efficacy were given throughout the task.

Each task is similar such that they are typical of other tasks used in psychological experiments, they are presented over the computer, and they should require similar levels of cognitive complexity. Unbeknownst to the participants, the content of the tasks and the participants’ performance on the tasks are irrelevant.

Task previews. Participants were exposed to one of two task previews containing information regarding the task being offered. The ELP (see Appendix K) was adapted from Buckley et al. (2002) and altered to refer to experimental tasks rather than organizations. The RJP (see Appendixes L–M) contained a balanced amount of positive and negative information regarding the task. The information contained in the RJP was obtained through interviews with graduate students as subject matter experts (SMEs). These students were familiar with the tasks and were able to provide detailed information pertaining to performing the tasks. The final construction of the RJP was done following the guidelines of Breaugh and Billings (1988).

Breaugh and Billings (1988) laid out five important guidelines which was used to build this RJP: (1) Information must be specific, (2) All-encompassing, (3) Credible, (4)
Accurate, and (5) Important. SME interviews with graduate students familiar with the tasks were conducted to achieve the standards set by Breaugh and Billings. SMEs were asked to report both positive and negative aspects of their experience while performing the tasks. The items listed by the SMEs were then be compiled, screened for duplicate items, and formed into a narrative RJP-based preview for that particular task.

The traditional task previews were constructed from the same SME information as the RJP s, however, they will only highlight the positive aspects of the task (see Appendixes B & D).

MediaLab. All stimulus materials except for the tasks themselves were created and presented using the MediaLab v2004 software platform. The actual tasks that participants interacted with were created on the Microsoft Visual Basic platform. All randomizing functions and data reporting were performed by the software.

Measures

Quality. Participant quality was measured using the short form of the Need for Cognition Scale (see Appendix G). Cacioppo, Petty, and Kao (1984) developed this 18-item cognitive motivation scale and reported that it had an internal consistency of $\alpha = .90$, and a single factor accounting for 37% of the variance.

Experience. Experience was measured with four questions (see Appendix N). The primary measure of experience asked participants to report the number of psychology experiments in which they had previously participated. Participants were also asked how many of the previous experiments they had participated in were done using the computer.
Finally, participants were asked how much experience they previously had completing word puzzles and playing computer games.

Expectations/Actual task experience. Participants’ expectations regarding each task were measured prior to choosing a task with four questions (How enjoyable do you think this task would be? How challenging do you think this task would be? How much satisfaction would you gain from participating in this task? How important do you think this task is with regards to psychological research?) (See Appendix F).

After completing the task, the participants were asked each question again, but in the context of their actual experience (e.g., How enjoyable was this task?) (see Appendix O). Participants were also asked to rate the task they did not choose after completion of their chosen task (e.g., How enjoyable do you think the task you did not choose would have been?). Each question pertaining to the tasks was rated on a 5-point Likert-type scale ranging from 1 (more negative attitudes) to 5 (more positive attitudes).

Task choice. Participants viewed descriptions of the two tasks and their relevant previews based on condition. After reviewing the material and their respective preview(s), the participants were asked to choose a task by clicking on a button containing the task name.

Computer self-efficacy. Computer self-efficacy was measured using a four item, Likert-type scale (see Appendix P).

Demographics. Sex, age, GPA, race, year in college, and major/minor were collected at the end of the study for use in potential analyses (see Appendix H).
Procedure

After signing up for a designated time, participants arrived at the lab where they were greeted, given basic instructions, and asked to review and complete the informed consent agreement (see Appendix Q). Upon completing the informed consent forms, the participants were given instructions for the study by the experimenter. Participants were then seated at a computer in an adjacent room to complete the study. Participants were assigned into the single RJP-based preview condition, the multiple RJP-based preview condition, the ELP-based preview condition, or the control group using a block randomization script written into the MediaLab software. In the single RJP condition, participants received a traditional preview for one task and an RJP for the other task. The task that had the RJP associated with it was randomized throughout the study, as was the presentation order of the tasks. In the multiple RJP condition, participants received RJP for each task. In the ELP condition, participants received traditional previews for each task, and a general ELP for experimental tasks. Those individuals in the control group received traditional previews only for each task.

The participants first viewed preview information for both tasks based on their respective condition and answered the expectation questions following each task. The order in which the tasks were presented was randomized to control for order effects. After viewing all of the pertinent task information, participants were able to choose one of the tasks for participation. After completing the chosen task, the participants were presented with the actual task experience questionnaire for their chosen task and the hypothetical experience questionnaire pertaining to the task they did not choose. Finally,
participants answered the NFC scale, computer self-efficacy scale, and the demographic information including the experience questionnaire. Upon completion of the study, the participants were thanked for their participation and debriefed (see Appendix R).

Data Analysis Strategy

Three chi-square goodness-of-fit tests were used to analyze the choice behavior hypotheses (Hypotheses 1, 4, and 5) which were designed to evaluate the self-selection hypothesis of RJP's. The dependent variable measured was task preference indicated by the task chosen by the participant for their participation in the study. The first chi-square test was used to determine whether any task preference existed between a task with an RJP and a task without an RJP associated with it in Hypothesis 1. The second chi-square test was used to explore task preference in the multiple RJP condition where both tasks were previewed by their respective RJP in Hypothesis 4. Finally, the third chi-square test was used to explore task preference in the ELP condition where both tasks had traditional previews associated with them plus a single, general ELP in Hypothesis 5. For each hypothesis investigated using a chi-square test, participants’ expectations regarding the tasks were also analyzed using paired samples t-tests as supporting information for their task choice.

Following the results of the chi-square analyses, two binary logistic regressions were used to test the adverse self-selection hypothesis and determine whether or not participant experience and participant quality were significantly related to task choice. The first binary logistic regression was used to explore the relationship between participant experience and task choice in the single RJP condition in Hypothesis 2. The
second binary logistic regression was used to explore the relationship between participant quality and task choice in the single RJP condition in Hypothesis 3.

Two one-way ANOVAs with post-hoc tests and a single paired samples t-test were used to investigate the differences in expectations, the discrepancy between expectations and actual experience for a participant’s chosen task, and the differences in comparative expectation ratings of the task that was chosen to the task that was not chosen. The first one-way ANOVA was used to test the differences in the expectations of the chosen task in the multiple RJP, ELP, and control conditions prior to engaging in the task. This test was used to determine whether an omnibus effect existed for Hypothesis 6. Simple planned comparisons were performed to investigate the specific differences between the multiple-RJP and ELP conditions with the control condition.

The second one-way ANOVA was used to test the difference scores of expectations to actual experience for the chosen task in the multiple RJP, ELP, and control conditions. This test was used to determine whether an omnibus effect existed for Hypothesis 6a. Simple planned comparisons were performed to investigate the specific differences between the multiple-RJP and ELP conditions with the control condition.

Finally, the paired samples t-test was used to explore the differences between participant expectations for their chosen task and the task that was not chosen in the multiple RJP, ELP, and control conditions for the purposes of evaluating Hypothesis 6b.
Results

Descriptive Statistics and Data Coding

Each participant viewed a condition relevant preview for both tasks and indicated their expectations regarding each task immediately following the respective preview. Task expectation scores were created by computing a mean score of the three preview questions (see Appendix F). Participants also rated each task following their interaction with their chosen task. The actual experience score (for the task they chose) and a second expectation score (for the task they did not choose) was computed as a mean score of a set of the same three preview questions set in the past tense (see Appendix O). Task by condition descriptive statistics can be found in Table 5.

<table>
<thead>
<tr>
<th>Task by condition</th>
<th>Pre-task Expectation</th>
<th>Post-task Experience</th>
<th>Choice Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
<td>Mean</td>
</tr>
<tr>
<td>Anagram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-RJP</td>
<td>2.64</td>
<td>0.78</td>
<td>2.58</td>
</tr>
<tr>
<td>Multiple-RJP</td>
<td>2.67</td>
<td>0.54</td>
<td>2.61</td>
</tr>
<tr>
<td>ELP</td>
<td>2.97</td>
<td>0.64</td>
<td>2.72</td>
</tr>
<tr>
<td>Control</td>
<td>2.88</td>
<td>0.62</td>
<td>2.50</td>
</tr>
<tr>
<td>Hurricane Game</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-RJP</td>
<td>2.54</td>
<td>0.61</td>
<td>2.12</td>
</tr>
<tr>
<td>Multiple-RJP</td>
<td>2.52</td>
<td>0.52</td>
<td>2.18</td>
</tr>
<tr>
<td>ELP</td>
<td>2.77</td>
<td>0.54</td>
<td>2.37</td>
</tr>
<tr>
<td>Control</td>
<td>2.76</td>
<td>0.65</td>
<td>2.16</td>
</tr>
</tbody>
</table>

Task by task choice descriptive statistics can be found in Table 6.
Table 6

Summary of descriptive statistics by task choice

<table>
<thead>
<tr>
<th>Chosen task by condition</th>
<th>Pre-task Expectation</th>
<th>Post-task Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>Chosen Task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-RJP</td>
<td>2.73</td>
<td>0.75</td>
</tr>
<tr>
<td>Multiple-RJP</td>
<td>2.75</td>
<td>0.51</td>
</tr>
<tr>
<td>ELP</td>
<td>3.02</td>
<td>0.62</td>
</tr>
<tr>
<td>Control</td>
<td>3.00</td>
<td>0.57</td>
</tr>
<tr>
<td>Task Not Chosen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single-RJP</td>
<td>2.46</td>
<td>0.62</td>
</tr>
<tr>
<td>Multiple-RJP</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>ELP</td>
<td>2.71</td>
<td>0.54</td>
</tr>
<tr>
<td>Control</td>
<td>2.63</td>
<td>0.65</td>
</tr>
</tbody>
</table>

The NFC scale demonstrated good internal consistency with a Cronbach’s alpha estimate of $\alpha = .84$ and a mean score of ($M = 3.25$). The computer self-efficacy scale was analyzed with all four items and returned a good internal consistency with a Cronbach’s alpha estimate of $\alpha = .83$. However, further analyses revealed that if question 4 (How difficult is using a computer for you?) were omitted, the internal consistency of the scale would be $\alpha = .94$. The fourth item was removed from the scale, and a mean score was calculated as ($M = 3.78$). Participants indicated that they had participated in an average of ($M = 4.00$) studies prior to completing this study, with an average of ($M = 1.88$) of those studies being conducted over the computer.

Chi-Square Results

Chi-square goodness of fit tests were performed to determine overall task choice preferences. The expected proportion in all of the tests was left at .50 based on the results of the pilot test which identified a .50 split between tasks (see Table 2).
Hypothesis 1: Individuals in the single RJP condition will be less likely to choose the task with the RJP associated with it for participation. This hypothesis was not supported. A chi-square goodness of fit test was conducted to determine whether participants demonstrated a preference towards the RJP or non-RJP task. Results indicated that there was no preference of task based on preview ($f_{\text{expected}} = 15, f_{\text{non-RJP task}} = 17, f_{\text{RJP task}} = 13), \chi^2(1, n = 30) = 0.53, p = .465$.

Hypothesis 1a: Expectations will be significantly lower for the task with an associated RJP compared to the task without the associated RJP in the single-RJP condition. Hypothesis 1a was supported. A paired samples t-test on mean expectation scores for the RJP task ($M = 2.42$) vs. the non-RJP task ($M = 2.77$) revealed that there was a significant difference, $t(29) = -2.43, p < .05$. This finding is consistent with past research demonstrating that RJPs have the desired expectancy lowering effect. However, in this study, the lowered expectation was not sufficient to support the self-selection effect as measured by the participants’ task choice. Therefore, expectations regarding the RJP task were significantly lower than expectations for the non-RJP task, but the lowered expectations did not affect behavior in such a way that the RJP task was less preferred.

Hypothesis 4: Individuals in the multiple RJP condition will show no preference for a particular task when choosing their task for participation. Hypothesis 4 was supported. A chi-square goodness of fit test was conducted to determine whether participants demonstrated a task choice preference. Results indicated that there was no task preference in the multiple RJP condition ($f_{\text{expected}} = 14.5, f_{\text{Anagram}} = 13, f_{\text{Hurricane Game}} = 16), \chi^2(1, n = 29) = 0.31, p = .577$.
Hypothesis 4a: There will be no significant difference in expectations scores between the tasks in the multiple RJP condition. Hypothesis 4a was supported. There was no significant difference in expectation scores between the Anagram task ($M = 2.67$) and the Hurricane Game task ($M = 2.52$) for participants in the multiple RJP condition, $t(28) = 1.27, p = .215$. This indicated that receiving realistic information (RJPs) from all sources from which an individual will make a decision allows for expectations regarding similar tasks to be equally calibrated.

Hypothesis 5: Individuals in the ELP condition will show no preference for a particular task when choosing their first task. Hypothesis 5 was supported. A chi-square goodness of fit test was conducted to determine whether participants demonstrated a task choice preference. Results indicated that there was no task preference in the ELP condition ($f_{\text{expected}} = 15, f_{\text{Anagram}} = 14, f_{\text{Hurricane Game}} = 16$), $\chi^2(1, n = 30) = 0.13, p = .715$.

Hypothesis 5a: There will be no significant difference in expectations scores between the tasks in the ELP condition. Hypothesis 5a was supported. There was no significant difference in expectation scores between the Anagram task ($M = 2.97$) and the Hurricane Game task ($M = 2.77$) for participants in the ELP condition, $t(29) = 1.89, p = .068$. It was expected that the general nature of the ELP would allow for expectation calibration across multiple, similar tasks. These results indicate that the ELP did perform such a function, analogous to that in the multiple RJP condition in Hypothesis 4.

Binary Logistic Regression Results

A binary logistic regression analysis was conducted to determine whether participants’ NFC scores and their previous experience with psychology studies were
predictive of their task choice. Participants in the single RJP condition were classified as either having chosen the task with the RJP associated with it or having chosen the task without the RJP associated with it. The first block of variables entered into the model consisted of NFC mean scores and the number of psychology experiments previously participated in (see Table 5). No significant main effects were identified for NFC score or the experience.

Table 7
Summary of binary logistic regression analysis for predicting task choice (n = 30)

<table>
<thead>
<tr>
<th>Variable</th>
<th>β</th>
<th>SE β</th>
<th>Wald</th>
<th>OR</th>
<th>G²</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NFC score</td>
<td>1.28</td>
<td>0.85</td>
<td>0.38</td>
<td>3.60</td>
<td></td>
<td>0.11</td>
</tr>
<tr>
<td>Experience</td>
<td>0.05</td>
<td>0.09</td>
<td>2.26</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All predictors were non-significant

Hypothesis 2: In the single RJP condition, individuals with more previous experience will be less likely to choose the task with the RJP associated with it for participation than those individuals with less previous experience. Hypothesis 2 was not supported. A binary logistic regression was conducted to determine whether participants with more experience were significantly more likely to choose the RJP or non-RJP task. Results indicated that task choice was not significantly related to NFC score, $\beta = 0.05$, $Wald \chi^2(1) = 0.38, p = .538$.

Hypothesis 3: In the single RJP condition, individuals with a higher need for cognition will be less likely to choose the task with the RJP associated with it for
participation than those individuals with a lower need for cognition. Hypothesis 3 was not supported. A binary logistic regression was conducted to determine whether participants with higher NFC scores were significantly more likely to choose the RJP or non-RJP task. Results indicated that task choice was not related to NFC score, $\beta = 1.28$, $Wald \chi^2(1) = 2.26$, $p = .133$.

One-Way ANOVA and Paired Samples t-test Results

Hypothesis 6: There will be a significant difference in expectations for a chosen task in the multiple RJP, ELP, and control conditions prior to beginning the task. Specifically, individuals in the multiple RJP condition and individuals in the ELP condition will have lower expectations for their chosen task than those individuals in the control condition. Hypothesis 6 was not supported. A one-way ANOVA was conducted to determine whether there were significant differences in participants’ expectations between the multiple RJP, ELP, and control conditions. Results indicated that there was no omnibus difference in expectations between the groups, $F(2, 86) = 2.11$, $p = .127$. Despite the non-significant omnibus effect, the planned comparison was evaluated. The results of the simple planned comparison also revealed no significant difference between the multiple-RJP and ELP conditions with the control condition, $t(86) = -0.90$, $p = .369$.

Hypothesis 6a: There will be a significant difference in the discrepancy in expectations and actual experience for a chosen task in the multiple RJP, ELP, and control conditions after completing the task. Specifically, individuals in the control condition will report a greater discrepancy in expectation and actual experience for their chosen task than those individuals in the experimental conditions. Hypothesis 6a was not
supported. A one-way ANOVA was conducted to determine whether there was a significant difference in the discrepancy between participants’ expectations and actual experience in the multiple RJP, ELP, and control conditions (see Tables 5 and 6). Results indicated that the discrepancy in expectations and actual experience was not significantly different between the conditions, \(F(2, 86) = 1.95, p = .148 \). Despite the non-significant omnibus effect, the planned comparison was evaluated. The results of the simple planned comparison also revealed no significant difference between the multiple-RJP and ELP conditions with the control condition, \(t(86) = -1.34, p = .182 \).

Hypothesis 6b: In the multiple RJP and ELP conditions, there will be no difference in the comparative expectation ratings for the other tasks prior to beginning the chosen task. Hypothesis 6b was not supported. A paired samples t-test was conducted to determine whether participants’ expectations were significantly different for the chosen task compared to the non-chosen task. Results indicated a significant difference, \(t(58) = 4.39, p < .001 \), such that the participants had significantly higher expectations for their chosen task (\(M = 2.89 \)) than the task that was not chosen (\(M = 2.58 \)).

Discussion

There has been a wealth of RJP research over the past five decades. However, the results and interpretations of those studies have been mixed, and the results of the current study are reflective of this pattern. Much of the past research has focused on the outcomes of receiving realistic as opposed to overly positive information when applying for a new job. The outcome most associated with receiving overly positive information is
the generation of unrealistically high expectations. The consequences attributed to this outcome are a result of the mismatch between expectations and reality (Phillips, 1998).

The process of expectancy lowering, or more suitably, expectancy calibration through providing realistic information has been used as a means of dealing with this problem. However, researchers have proposed that the negative information contained in realistic previews has the potential to produce the undesired consequence of adverse self-selection for highly qualified or experienced applicants (Bretz and Judge, 1998; Meglino, Ravlin, & DeNisi, 2001; Rynes, Bretz, & Gerhart, 1991).

The purpose of this thesis was essentially two-fold. First, this study attempted to fill a gap in the realistic recruitment research by investigating the hypothesis that the process underlying adverse decision-making in the realistic preview domain was rooted in the reality that all information is not disseminated equally. Therefore the self-selection problem created by realistic previews is potentially a product of the content of the message when one source uses realistic information and another similar source uses overly positive information. Second, this study attempted to provide further support for a more generalized expectancy lowering tool in the context of the self-selection hypothesis. Specifically, if the adverse self-selection process was being driven by the inequity created by situation-specific previews, then would it be possible to demonstrate expectancy calibration and attenuation of self-selection effects using a single, more general procedure? The key findings in this study support the overall expectancy calibration result of realistic recruitment as well as the use of more general previews. However, these results do not support self-selection effects or the adverse self-selection hypothesis.
Key Findings: Expectations and Self-Selection

The pattern of results in this study was interesting in that no support was indicated for the self-selection effect that has recently been re-evaluated as a problem in the realistic recruitment literature. The results of Hypothesis 1 indicated that no choice preference was observed for individuals receiving different forms of preview information (realistic vs. traditional). However, this lack of effect for preference should not be taken as an indication that the manipulation of preview information failed to significantly affect expectations. Expectations were significantly lower for the task with the associated RJP when compared to the task with the associated traditional preview in the single-RJP condition. These findings are consistent with past research on RJP information (Buckley et al., 2002; Colarelli, 1984; Premack & Wanous, 1985; Wanous, 1973; Wanous, 1992; Weitz, 1956).

The results of Hypothesis 4 and Hypothesis 5 provide new evidence to suggest that when preview information is consistent across multiple sources (multiple-RJP or ELP), there was no significant choice preference. Also, there were no significant differences in task expectations in the multiple-RJP or ELP conditions, suggesting that when similar information (multiple-RJP) or general information (ELP) is provided, participants no longer viewed one task as more attractive than the other. These findings provide new evidence that decision preference can be mitigated, and expectations can be adequately calibrated both within and between tasks when the preview information is consistent across tasks. However, a possible post-choice dissonance reduction effect was
found when comparing participants’ expectations for their chosen task to their expectations for the task that was not chosen in the multiple-RJP and ELP conditions. Specifically, a significant difference in expectations was found, such that the chosen task was rated significantly higher than the task that was not chosen (see results for Hypothesis 6b). This finding indicates that the tasks were not rated so different as to produce an overall significant difference, but the chosen task was rated slightly higher. When the analysis specifically isolated task choice, those differences were enough to be significant.

Perhaps most critical to the arguments of the researchers supporting the adverse self-selection hypothesis was the failure to find any significant difference in choice preference based on participant experience or quality. Hypothesis 2 predicted that participant experience would be significantly related to a choice preference for the task without an RJP. However, results indicated no significant preference based on experience. These results are directly contrary to those found by Meglino, Ravlin, and DeNisi (2001). However, this particular finding may have been influenced by the laboratory setting of the study. Phillips (1998) outlines historical differences in RJP-related findings in laboratory and field settings. Specifically, the behavioral results (turnover, task choice, etc.) of RJP implementation seem to be differentially affected in different research settings. In this study, no behavioral effect of realistic preview information was observed which is consistent with previous findings for laboratory-based RJP research.
Expanding on the findings of Bretz and Judge (1998), Hypothesis 3 predicted that participant quality would also be significantly related to a choice preference for the task without an RJP. Again, results indicated that no significant task preference was observed based on participant quality. A closer look into the findings by Bretz and Judge indicate that their results were only marginally significant for the effect of participant quality on job preference. The results of this study, together with the marginal findings by Bretz and Judge, lend support to the historical trend that RJPs are not likely to stimulate a self-selection effect (Buckley et al., 2002; Colarelli, 1984; Premack & Wanous, 1985; Wanous, 1973; Wanous, 1992; Weitz, 1956).

An interesting series of findings was observed for Hypothesis 6 and Hypothesis 6a. Hypothesis 6 predicted that those individuals in the multiple-RJP and ELP conditions would have lower expectations for their chosen task than those individuals in the control condition. This prediction rested on the premise that individuals in the control condition would have inflated expectations due to receiving traditional previews with only positive information. The non-significant findings for this hypothesis indicate that individuals were not inflating their expectations regarding the tasks. This could be due to the participants’ previous knowledge regarding psychological tasks in general, or by a lack of experimental realism evoked in the laboratory setting. In a sense, they were not influenced by the overly positive previews.

Hypothesis 6a resulted in a similar finding, such that the discrepancy between expectation and actual experience scores for the chosen task were not significantly different between the multiple-RJP, ELP, and control conditions. It was predicted that
those individuals in the control condition would have a greater discrepancy in these scores than those in the multiple-RJP and ELP conditions due to inflated expectations. However, similar to the effects observed in Hypothesis 6, this did not occur. Together, these results indicate that the participants in the control condition may not have generated overly positive expectations regarding the task.

Overall, the results of this study support the prior claim that RJP s do not result in self-selection effects. The adverse self-selection effect, or the idea that individual difference variables such as experience and quality influence decision making, was also not supported by this data. Interestingly, the strongest proponents of the adverse self-selection effect found such an effect with only marginal results (c.f. Bretz & Judge, 1998). Together with the past history of research finding null results for this phenomenon, there seems to be mounting evidence against the self-selection effects of RJP s.

Caution should be exercised in interpreting the findings of the comparative expectations in this study. The non-significant differences in participant expectations between the control condition and the multiple RJP and ELP condition indicate that the traditional preview manipulation in the control condition did not generate overly positive expectations. However, within conditions, expectations were adequately calibrated in the multiple RJP and ELP conditions as well as significantly different in the single RJP condition.
Key Findings: ELP

Support was also identified for the use of the ELP such that the tool is much less laborious to create than a job- or organization-specific RJP, and can produce similar results as demonstrated by Buckley et al. (1998) and Buckley et al. (2002). In this study, further evidence supports that the ELP functions as an information equalizer, especially in situations where preview information may be inconsistent across sources. Thus, in the field of realistic recruitment, the ELP may be considered further as a promising new procedure. Despite claims that realistic recruitment research is falling out of favor (Rynes & Cable, 2003), new procedures have appeared and are being tested that offer promise for an area that still has practical and financial implications in organizational recruitment.

Limitations

A characteristic of RJP studies that was investigated in the most recent meta-analysis on the topic is that of the setting of investigation. The results of the Phillips (1998) study suggested that RJP s have differential effects in laboratory and field studies. A primary effect highlighted by this meta-analysis suggests that RJP studies conducted in the laboratory setting tend to demonstrate lowered instances of turnover (behavioral result of the preview information). Consistent with this finding, the current study failed to uncover a behavioral effect of RJP s, identified in this study as choice preference. Phillips (1998) posited that this could be due to differing levels of involvement and satisfaction, such that participants in laboratory studies know that they will only have to work in their chosen task for a short period of time. This leads to the conclusion that the consequences
of a poor decision are not fully realized in the laboratory setting. The findings of this study are consistent with this hypothesis.

Phillips (1998) goes on to suggest that behavioral results of RJP studies may be best studied in the field, although the control of the laboratory setting provides an excellent opportunity to investigate the processes underlying RJP functioning. Differences in initial expectations related to RJPs have been demonstrated to produce similar results in the laboratory and field settings. The results of this study are consistent with the finding that initial expectations can be lowered (calibrated) by RJP information in the laboratory context. Overall, the differences in laboratory and applied research on RJPs concerning the effects on expectations and resulting behavior appear to be relevant here.

Conclusions and Implications

Mounting evidence against the self-selection hypothesis does not fully eliminate it as a concern for future research with realistic recruitment procedures. Specifically, more research conducted in the field directed specifically at this effect would be of great interest. One cannot discredit the findings of Meglino, Ravlin, and Denisi (2001) who found this effect in the field based on applicant experience in a study of correctional officers. Future studies should attempt to study this phenomenon in the field setting where decision consequences have more of a lasting effect, or future laboratory studies should take steps to increase the levels of experimental realism in the study.

Phillips (1998) has identified the differential effect of moderators in RJP effectiveness in the past literature. Much of the past focus has been on contextual
moderators (i.e., time, setting, medium). A focus on other moderators, especially individual difference variables, would be of great value to future realistic recruitment research. The ELP would especially benefit from examining the effect of contextual as well as individual difference moderators to further its position as a useful realistic recruitment tool.

The use of the need for cognition individual difference variable in RJP research also raises an interesting tangent. In this study, NFC was utilized primarily as a predictor of participant quality, although, NFC has been used in the RJP literature as a primary focus in RJP functioning. Buda and Charnov (2003) used the need for cognition to specifically investigate the effects of information processing by individuals evaluating job choices. Specifically, the researchers constructed various RJP messages to test certain proposed differences in information processing between high and low NFC individuals. Their findings indicated that NFC could be a relevant individual difference variable in job applicants with regards to job preview information. Indeed, attention to the individual difference variables represented in various applicant pools is an under-researched aspect in the realistic recruitment literature. The primary impetus for the Bretz and Judge (1998) study was that differential effects may be present in realistic recruitment when the applicant pool is analyzed by individual difference variables. Future research on the relationship between individual difference variables that are represented in applicant pools and the effects of recruitment strategies would be highly valued in the recruitment literature.
Finally, future research evaluating the effects of the ELP is essential to its establishment as a viable recruitment tool. The ELP has been successfully demonstrated in a multitude of settings, and has properties which make it a valuable, low-cost recruitment tool. Integrating the use of an ELP into all aspects of future realistic recruitment literature will serve to provide valuable evidence for the first major step forward in contemporary realistic recruitment research.

It is clear that the effects of preview information can have a lasting impression on individuals who are applying for jobs. The need to investigate types of preview information is still important as the dissemination of overly positive information pertaining to a job or organization still has potentially detrimental effects for both the organization and the individual.

Appendix A

Scheduling RNs Traditional Preview

Scheduling RNs

During the course of this study, you will be asked to interact with computerized scheduling program for nurses working in an Intensive Care Unit (ICU). This program will evaluate you on a real-world task that is important in the everyday lives of many individuals in the health services professions. Many people who have already completed this task say that it is challenging and engaging making it a fun psychological study.

The general procedure for this study begins with you sitting down and interacting with the instructions on how to work with the schedules and the programs. You will be given a practice trial where each component of the system is demonstrated for you and you are able to try the system out before you actually begin. You will then go on to perform the regular trials. Finally you will be asked to provide some basic information about yourself before you leave.

During the actual study, you will be asked to look at a week-long schedule for a hospital with the shifts of a staff of nurses arranged to fill the week. Each nurse has to be paid for their shifts, therefore the weekly schedule has a cost. As the manager of all the nurses, the board of directors of the hospital wants you to keep their shifts under a certain budget. It will be your job to rearrange the schedules using a set of rules to try and meet that budget goal.

This study is being used in an ongoing research project in this lab. It is a crucial component of our understanding of how individuals interact with systems that have costs and constraints just like in the real-world. By participating in this study, you should be able to recognize how the components of this study have positive implications for understanding behavior in situations where the working lives of many individuals can be improved.
Appendix B

Hurricane Game Traditional Preview

The Hurricane Game

This study is considered a psychomotor task. This is because you will be interacting with a computer program that is similar to a video game. You will have a good deal of control over the tasks you will be asked to perform in this study. You will get to determine many of the settings in order to make your performance as enjoyable to you as possible. Many people who have already participated in this particular study have said that it is challenging, engaging, and exciting.

The general procedure for this study begins with you sitting down and interacting with the instructions on how to operate the program. You will be given a practice trial where each component of the system is demonstrated for you and you are able to try the system out before you actually begin. You will then go on to perform the regular trials. Finally you will be asked to provide some basic information about yourself before you leave.

During the actual study, you will see an interface with a variety of colored-in squares in an open space. These squares represent wooden boards. At the onset of each trial, the board(s) will begin to fly around the screen as if they are in the winds of a hurricane. Your job will be to click on the boards in order to nail them down so that they don’t damage anything around them.

This study is being used in an ongoing research project in this lab. It is a crucial component of our understanding of how individuals choose their options in a performance setting. This study will also help us understand the ways in which individuals evaluate and monitor themselves in different situations. The results of this study have important meaning for future psychological research on understanding human behavior.
Appendix C

Mastermind Traditional Preview

Mastermind

This study is what is considered a critical thinking/logic task. This means that you will be asked to use certain logical rules to decipher codes. As its name implies, this study uses the code-breaking game Mastermind to evaluate a variety of psychological concepts. Participants who have previously participated in this study have reported that it is mentally stimulating and enjoyable. Many people have also reported that they were familiar with the task, having played the Mastermind game before.

The general procedure for this study begins with you sitting down and interacting with the instructions on how to operate the program. You will be given a practice trial where each component of the system is demonstrated for you and you are able to try the system out before you actually begin. You will then go on to perform the regular trials. Finally you will be asked to provide some basic information about yourself before you leave.

During the actual task, you will have to decipher a code which is a sequence of colors that are randomly generated. You will have to use a series of logic rules and feedback to determine the correct sequence. This makes for a fun and involving study that is being used to investigate important research topics within psychology.
Anagram Traditional Preview

Anagram

This study is considered a critical thinking/problem solving task. You will be asked to descramble words in a way in order to create as many new words as possible from one root word. You will be given words that are all 5 letters in length and asked to create as many new words as possible that are at least 3 letters long and are not proper names or contractions. You will be able to monitor your progress throughout the task, and you will receive feedback on how to improve. You are not timed on this task, so there is no rush.

The general procedure for this study begins with you sitting down and interacting with the instructions on how to operate the program. You will be given a practice trial where each component of the system is demonstrated for you and you are able to try the system out before you actually begin. You will then go on to perform the regular trials. Finally you will be asked to provide some basic information about yourself before you leave.

This is a very popular study in our lab. Many people who have participated in this task have said that it is interesting, challenging, and fun. Also, many people have a familiarity with rearranging a set of letters to create words and find that it is easy to perform.

This task is being used as a follow-up study to be published in a very significant psychological debate. The results will help us solidify our side of the debate and it will serve to advance the field of psychology as a whole. Many participants in this task are happy to know that they are engaging in important research.
Appendix E

Military Mission Traditional Preview

Military Mission

This study is what is considered both a simulation and a psychomotor task. This study will use a computer-based program to see how you will act in a very realistic situation. This study functions similar to a video game where you are using computerized components (e.g., mouse) to interact with the program. The individuals who have already participated in this study have reported that it is realistic, interesting, and fun to interact with.

The general procedure for this study begins with you sitting down and interacting with the instructions on how to operate the program. You will be given a practice trial where each component of the system is demonstrated for you and you are able to try the system out before you actually begin. You will then go on to perform the regular trials. Finally you will be asked to provide some basic information about yourself before you leave.

During the actual study, you will be put into the scenario where you are a government operative spying on various vehicles in the desert. Inside these vehicles are enemy soldiers who are using cell phones to transmit various pieces of sensitive information. You will be pointing a sensitive microphone at the vehicles in hopes of catching some of the conversations so that our intelligence workers can decode their messages. You will have to track the movements of the vehicles to keep the range of the microphone up enough to get a good signal.

This study is a brand new study in our lab. It is on the cutting edge of psychological research on how individuals use information to perform a task. The data that is generated from this study will have high importance in the field of decision making.
Appendix F

Expectations (prior to task choice)

1. How enjoyable do you think this task would be? (please check one answer)

| Not enjoyable at all | Somewhat enjoyable | Enjoyable | Very enjoyable | Extremely enjoyable |

2. How challenging was the task that you chose? (please check one answer)*

| Not challenging at all | Somewhat challenging | Challenging | Very challenging | Extremely challenging |

3. How much satisfaction would you gain from participating in this task? (please check one answer)

| Not satisfying at all | Somewhat satisfying | Satisfying | Very satisfying | Extremely satisfying |

4. How important do you think this task is with regards to psychological research? (please check one answer)

| Not important at all | Somewhat important | Important | Very important | Extremely important |

* Based on the results of the pilot study on the ambiguity of this item, this question was removed in subsequent data collection.
Appendix G

Short Form of the Need For Cognition Scale

Instructions: For each of the statements below, please indicate to what extent the statement is characteristic of you. If the statement is extremely uncharacteristic of you (not at all like you) please write a “1” to the left of the question; if the statement is extremely characteristic of you (very much like you) please write a “5” next to the question. Of course, a statement may be neither extremely uncharacteristic nor extremely characteristic of you; if so, please use the number in the middle of the scale that describes the best fit. Please keep the following scale in mind as you rate each of the statements below: 1 = extremely uncharacteristic; 2 = somewhat uncharacteristic; 3 = uncertain; 4 = somewhat characteristic; 5 = extremely characteristic.

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Item Wording</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. _____</td>
<td>I would prefer complex to simple problems.</td>
</tr>
<tr>
<td>2. _____</td>
<td>I like to have the responsibility of handling a situation that requires a lot of thinking.</td>
</tr>
<tr>
<td>3. _____</td>
<td>Thinking is not my idea of fun.</td>
</tr>
<tr>
<td>4. _____</td>
<td>I would rather do something that requires little thought than something that is sure to challenge my thinking abilities.</td>
</tr>
<tr>
<td>5. _____</td>
<td>I try to anticipate and avoid situations where there is a likely chance I will have to think in depth about something.</td>
</tr>
<tr>
<td>6. _____</td>
<td>I find satisfaction in deliberating hard and for long hours.</td>
</tr>
<tr>
<td>7. _____</td>
<td>I only think as hard as I have to.</td>
</tr>
<tr>
<td>8. _____</td>
<td>I prefer to think about small, daily projects to long-term ones.</td>
</tr>
<tr>
<td>9. _____</td>
<td>I like tasks that require little thought once I have learned them.</td>
</tr>
<tr>
<td>10. _____</td>
<td>The idea of relying on thought to make it to the top appeals to me.</td>
</tr>
<tr>
<td>11. _____</td>
<td>I really enjoy a task that involves coming up with new solutions to problems.</td>
</tr>
<tr>
<td>12. _____</td>
<td>Learning new ways to think doesn’t excite me very much.</td>
</tr>
<tr>
<td>13. _____</td>
<td>I prefer my life to be filled with puzzles that I must solve.</td>
</tr>
<tr>
<td>14. _____</td>
<td>The notion of thinking abstractly is appealing to me.</td>
</tr>
<tr>
<td>15. _____</td>
<td>I would prefer a task that is intellectual, difficult, and important to one that is somewhat important but does not require much thought.</td>
</tr>
<tr>
<td>16. _____</td>
<td>I feel relief rather than satisfaction after completing a task that required a lot of mental effort.</td>
</tr>
<tr>
<td>17. _____</td>
<td>It’s enough for me that something gets the job done; I don’t care how or why it works.</td>
</tr>
<tr>
<td>18. _____</td>
<td>I usually end up deliberating about issues even when they do not affect me personally.</td>
</tr>
</tbody>
</table>

Appendix H

Demographics Questionnaire

1. Sex (check only one)
 Male ________
 Female ________

2. Age ____________

3. GPA ____________

4. Race (check only one)
 White _____ Hispanic/Latino _____ Native American _____
 Asian _____ Aleut/Pacific Islander _____ Other (Please Specify) _____
 Arabic _____ Black/African American _____

5. Year in college (check one only):
 Freshman ____________
 Sophomore ____________
 Junior ____________
 Senior ____________
 Other (Please Specify) ___________________

6. Major: ____________________
Appendix I

Pilot Study Consent Form

Ohio University Consent Form

Title of Research: Payback! Evaluating Psychology Experiments
Principal Investigator: Brendan Morse
Department: Psychology

Federal and university regulations require signed consent for participation in research involving human subjects. After reading the statements below, please indicate your consent by signing this form.

Explanation of Study
The purpose of this research is to investigate the ways in which individuals use provided information to evaluate choice options. During this session, you will be given information pertaining to a series of experimental tasks. You will be asked to evaluate the information given to you and provide your expectations about the tasks. You will not actually have to complete any of the tasks in this study. The duration of this study is expected to be 30 minutes.

Risks and Discomforts
There are no known risks or discomforts associated with this task.

Benefits
You will gain an educational experience with the processes involved in scientific research.

Confidentiality and Records
I understand that the results of my participation in the study and my responses to any questions during the study will be kept in the strictest of confidence. Any identifying information, such as this signed consent form, will be kept separate from the data collected and locked in the investigator’s laboratory. The data may be shared with other investigators, but no identifying information will be included.

Compensation
Compensation for participation in this study will be one (1) experimental credit towards the fulfillment of the psychology experimental course credit requirement.

Contact Information
If you have any questions regarding this study, please contact:
Brendan Morse, Department of Psychology, 044S Porter Hall, bm123504@ohio.edu
If you have any questions regarding your rights as a research participant, please contact Jo Ellen Sherow, Director of Research Compliance, Ohio University, (740)593-0664.

I certify that I have read and understand this consent form and agree to participate as a subject in the research described. I agree that known risks to me have been explained to my satisfaction and I understand that no compensation is available from Ohio University and its employees for any injury resulting from
my participation in this research. I certify that I am 18 years of age or older. My participation in this research is given voluntarily. I understand that I may discontinue participation at any time without penalty or loss of any benefits to which I may otherwise be entitled. I certify that I have been given a copy of this consent form to take with me.

Signature___ Date________

Printed Name ______________________________
Appendix J

Pilot Study Debriefing

Debriefing

Thank you for your participation in this study. The specific purpose of this study was to investigate how individuals process information presented to them which may influence their expectations regarding a particular task. This particular study is a pilot test for an upcoming study regarding information processing when people are applying for new jobs. What you did today will help us determine the best way to present the stimulus materials for the main study. This is extremely important when designing experiments so that we are testing everything we want to test and nothing we do not want to test. Your involvement today will help in a broader research project that will help organizations determine how to present information about themselves when recruiting new employees. The results and implications of this series of studies could possibly have a benefit to you personally when you leave OU for your first job!

Please do not discuss the details of this study with other people who may be available to participate.

Thank you again.

If you have any questions regarding this study, please contact:

Brendan Morse
Department of Psychology, 044S Porter Hall
bm123504@ohio.edu
Appendix K

Expectancy Lowering Procedure

When a student chooses to participate in psychology experiments for course credit, he or she often has unrealistic expectations. This can be about the nature of the task, how fun the task will be, the time it will actually take to complete the task, or how important the task is to the lab’s research, just to name a few. Often, these expectations are unrealistically high as opposed to low. That is, participants will enter the lab with the impression that the study will be, overall, more enjoyable than it may actually be. To the extent that this happens, it may create an unpleasant experience for you as a research participant.

There is a “psychological contract” that is often agreed to between a research participant and the researchers. This basically is a set of mutual expectations; the participant has expectations about what the researcher will ask them to do, and the researcher has expectations about how the participants will respond and perform. Sometimes, these expectations do not match. We want your expectations about participating in this study to be realistic. We don’t want you to have “reality shock” when you discover this study isn’t everything you might have expected it to be. When you read the titles and descriptions, or you see someone doing the task, it may not seem that bad. But once you are the one performing the task, your perspective may be quite different. The difficulties and frustrations encountered during participation are usually greater than you realize they are.

You need to develop realistic expectations about participating in this study (and all other studies for that matter). If you begin this study with high expectations and are sorely disappointed and experience “reality shock,” this can have a negative impact on your overall experience, performance, and attitude towards this study and psychological studies in the future. This will also increase the likelihood that you will not give your full attention to the tasks at hand and stop trying. As the mismatch between what you expect from participating in this study and what you receive from participating in this study grows, so does the chance you will become unsatisfied with experiment participation. So, I want you to examine your own expectations about the study. Consider the possibility that your expectations are unrealistic.

We want you to have the best experience possible when participating in psychological research. Please be aware of your expectations going into this study and others in which you choose to participate. The best way to maximize your experience is to have the most accurate idea of what everything will really be like before you start, so that you are not disappointed in any way. Hopefully, being aware of this information will help you throughout your experiences with psychological research.
Appendix L

Anagram Realistic Job Preview

This study is considered a critical thinking/problem solving task. During this task, you will sit at a computer for approximately 40 minutes. You will begin by going through a detailed set of instructions which will explain exactly how to interact with the program and perform the task. You will be given one practice trial before you begin the actual study so that you can familiarize yourself with the task. You will be presented with 5-letter words with which you are to use the letters of the root word to form as many other anagram words as possible. There are several rules in this task as well. The words you form must be at least 3 letters long, and you cannot use proper names or contractions. You will be asked to find as many of the anagram words as possible, and some trials will set specific performance goals for you. The task itself is not timed, therefore you are not rushed to finish. You will receive feedback about your performance as you progress through the experiment. During the task, you will also be asked questions periodically about how well you think you are doing as well as how well you think you did on the word you just completed. Finally, you will be asked to fill out basic demographic information.

This task requires certain knowledge, skills, and abilities to complete. These include a basic understanding of how to use a computer especially keyboarding ability, reading comprehension, good spelling ability, critical thinking skills, writing and analytical skills, as well as a diverse vocabulary. Other participants who have engaged in this task have reported both positive and negative reactions to the task. We would like to share those with you so that you have a good idea of what to expect from this task.

- Many participants find this task to be familiar such that they have done something similar in the past, however there has been some frustration over the fact that it requires a decent spelling ability.
- This task is challenging (in a good way) and many find that they like how it makes them think to come up with words.
- This task has also been described as fun and engaging. However, it can become difficult as some words have fewer possible answers than others.
- This task is goal oriented. This means that you have specific performance goals to try to reach and self-set goals, and ways to monitor your actions and improve your performance. Previous participants have indicated that it is satisfying to see their improvement as they progress through the task.
- During the course of this study you will be asked to attempt several trials. As was mentioned before, this allows you to get feedback and improve, however it can also make the entire experiment repetitive and long.

Some participants have indicated that the questionnaires you are asked to fill out can become tedious after a while.
Appendix M

Hurricane Game Realistic Job Preview

This study is considered a psychomotor task. This is because you will be using the computer to follow objects on the screen rather than engage in critical thinking. During this task, you will sit at a computer for approximately 30 to 45 minutes. You will begin by going through a detailed set of instructions which will explain exactly how to interact with the program and perform the task. You will be given one practice trial before you begin the actual study so that you can familiarize yourself with the task. You will be presented with an interface where “boards” float around the screen (seemingly flying around in hurricane winds) and your objective is to nail the boards down by clicking on them with the mouse. There will be boards of different sizes which move at different speeds thus making some more difficult and some less difficult. During the task, you will also be asked questions periodically about how well you think you are doing. At a certain point, you will also be able to choose which board you want to try to nail down and indicate how long it will take. This allows you to set challenges for yourself. Finally, you will be asked to fill out basic demographic information.

This task requires certain knowledge, skills, and abilities to complete. These include a basic understanding of mathematics, a basic understanding of how to use a computer, reading comprehension, good vision, manual dexterity, and stamina. Other participants who have engaged in this task have reported both positive and negative reactions to the task. We would like to share those with you so that you have a good idea of what to expect from this task.

- This task has been described as challenging (in a good way), making you think about your actions to make sure that you are acting efficiently.
- This task has also been described as fun and engaging. However, it can be frustrating as the boards get smaller and faster.
- This task is goal oriented and gives you a lot of control. This means that you have the ability to set specific performance goals to try to reach. Previous participants have indicated that it is satisfying to try to challenge themselves and get better at the more difficult boards.
- This task can be exciting at first but some people have indicated that it can become boring after a while.
- During the course of this study you will be asked to attempt several trials. As was mentioned before, this allows you to get feedback and improve, however it can also make the entire experiment repetitive and long. Some participants have also indicated that the repetitive clicking of the mouse became uncomfortable for their hands.
Appendix N

Experience Questionnaire

1. How many psychological experiments have you previously participated in (not including this one) ________

2. How many of the experiments that you participated in previously involved the use of a computer? ________

3. How much experience have you previously had doing word puzzles?

<table>
<thead>
<tr>
<th>No experience at all</th>
<th>Very little experience</th>
<th>Some experience</th>
<th>A good deal of experience</th>
<th>Very much experience</th>
</tr>
</thead>
</table>

4. How much experience have you previously had playing computer or video games?

<table>
<thead>
<tr>
<th>No experience at all</th>
<th>Very little experience</th>
<th>Some experience</th>
<th>A good deal of experience</th>
<th>Very much experience</th>
</tr>
</thead>
</table>
Appendix O

Actual task experience (post-task completion)

1. How enjoyable was the task that you chose? (please check one answer)

<table>
<thead>
<tr>
<th>Not enjoyable at all</th>
<th>Somewhat enjoyable</th>
<th>Enjoyable</th>
<th>Very enjoyable</th>
<th>Extremely enjoyable</th>
</tr>
</thead>
</table>

2. How much satisfaction did you gain from working on the task that you chose? (please check one answer)

<table>
<thead>
<tr>
<th>Not satisfying at all</th>
<th>Somewhat satisfying</th>
<th>Satisfying</th>
<th>Very satisfying</th>
<th>Extremely satisfying</th>
</tr>
</thead>
</table>

3. How important do you think this task was with regards to psychological research? (please check one answer)

<table>
<thead>
<tr>
<th>Not important at all</th>
<th>Somewhat important</th>
<th>Important</th>
<th>Very important</th>
<th>Extremely important</th>
</tr>
</thead>
</table>

4. How enjoyable do you think the other task you did not choose would have been? (please check one answer)

<table>
<thead>
<tr>
<th>Not enjoyable at all</th>
<th>Somewhat enjoyable</th>
<th>Enjoyable</th>
<th>Very enjoyable</th>
<th>Extremely enjoyable</th>
</tr>
</thead>
</table>

5. How much satisfaction do you think the other task you did not choose would have been? (please check one answer)

<table>
<thead>
<tr>
<th>No satisfaction at all</th>
<th>Some satisfaction</th>
<th>Satisfied</th>
<th>Very satisfied</th>
<th>Extremely satisfied</th>
</tr>
</thead>
</table>
6. How important do you think the other task you did not choose is with regards to psychological research? (please check one answer)

<table>
<thead>
<tr>
<th>Not important at all</th>
<th>Somewhat important</th>
<th>Important</th>
<th>Very important</th>
<th>Extremely important</th>
</tr>
</thead>
</table>

Appendix P

Computer Self-Efficacy Questionnaire

PLEASE ANSWER THE FOLLOWING QUESTIONS ABOUT YOUR FEELINGS TOWARDS *COMPUTERS*. ANSWER THE QUESTIONS BY PLACING A CHECK ON THE SPACE THAT BEST REPRESENTS YOUR ANSWER.

1. How confident are you in your abilities to use a computer?

<table>
<thead>
<tr>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td>Very</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confident</td>
<td>Confident</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. How comfortable do you feel when you use computers?

<table>
<thead>
<tr>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td>Very</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfortable</td>
<td>Comfortable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. How capable are you when it comes to using computers?

<table>
<thead>
<tr>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td>Very</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capable</td>
<td>Capable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. How difficult is using a computer for you?

<table>
<thead>
<tr>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
<th>______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all</td>
<td>Very</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficult</td>
<td>Difficult</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix Q

Main Study Consent Form

Ohio University Consent Form

Title of Research: Choose Your Own Adventure: Experiment Edition!
Principal Investigator: Brendan Morse
Department: Psychology

Federal and university regulations require signed consent for participation in research involving human subjects. After reading the statements below, please indicate your consent by signing this form.

Explanation of Study
The purpose of this research is to investigate the ways in which individuals use provided information to evaluate choice options. During this session, you will be given information pertaining to a series of experimental tasks. You will be asked to evaluate the information given to you, choose a task for completion, and answer a series of questions. The duration of this study is expected to be 45 to 50 minutes.

Risks and Discomforts
There are no known risks or discomforts associated with this task.

Benefits
You will gain an educational experience with the processes involved in scientific research.

Confidentiality and Records
I understand that the results of my participation in the study and my responses to any questions during the study will be kept in the strictest of confidence. Any identifying information, such as this signed consent form, will be kept separate from the data collected and locked in the investigator's laboratory. The data may be shared with other investigators, but no identifying information will be included.

Compensation
Compensation for participation in this study will be one (1) experimental credit towards the fulfillment of the psychology experimental course credit requirement.

Contact Information
If you have any questions regarding this study, please contact:
 Brendan Morse, Department of Psychology, 044S Porter Hall, bm123504@ohio.edu
If you have any questions regarding your rights as a research participant, please contact Jo Ellen Sherow, Director of Research Compliance, Ohio University, (740)593-0664.

I certify that I have read and understand this consent form and agree to participate as a subject in the research described. I agree that known risks to me have been explained to my satisfaction and I understand that no compensation is available from Ohio University and its employees for any injury resulting from my participation in this research. I certify that I am 18 years of age or older. My
participation in this research is given voluntarily. I understand that I may
discontinue participation at any time without penalty or loss of any benefits to
which I may otherwise be entitled. I certify that I have been given a copy of this
consent form to take with me.

Signature_______________________________ Date____________

Printed Name ________________________________
Appendix R

Main Study Debriefing Form

Debriefing

Title of Research: *Choose Your Own Adventure: Experiment Edition!*
Principal Investigator: Brendan Morse
Department: Psychology

Thank you for your participation in this study. The specific purpose of this study was to investigate how an individual processes information presented to them which may influence their expectations and behavior regarding a particular task. This particular study is investigating information processing when people are applying for new jobs. Past research has demonstrated that the information that organizations give out about themselves during the recruitment of new employees can have consequences (both good and bad) once that candidate decides to take a job. Specifically, many people generate unrealistically high expectations of a new job for various reasons, and organizations tend to only tell people positive information about the company which only enhances this problem. When those expectations are not met by reality on the job, the new employee is likely to be dissatisfied and quit early. This study will help us determine the best way to present information to people about a novel situation (i.e., a new job they are applying for). Your involvement today will help in a broader research project that will help organizations determine how to present information about themselves when recruiting new employees. The results and implications of this series of studies could possibly have a benefit to you personally when you leave OU for your first job!

Below, you will find contact information for the principal researcher for this study. If you have any questions or concerns regarding your participation, please do not hesitate to contact us.

Please do not discuss the details of this study with other people who may be available to participate.

Thank you again.

If you have any questions regarding this study, please contact:

Brendan Morse
Department of Psychology, 044S Porter Hall
bm123504@ohio.edu