Transportation planning is challenging given competing stakeholder interests, raising issues of fairness in mobility and access. This is the case with Bus Rapid Transit, a new way transit planners are seeking to expand the transit network and make the streets “complete” at the same time. While the existing literature on mobility, transport, and planning addresses issues of social justice, important questions remain unanswered: How might participants in mass transit planning process, especially of BRT, conceive and address issues of justice? The study uses discourse analysis of BRT planning documentation and policies and interviews with representatives of planning organizations to better understand how BRT planning balances access and mobility among diverse users. The case study is BRT on Ashland Avenue in Chicago, IL, where the CTA planned to build a 16-mile long corridor through areas with diverse ethnicities, income levels, and land uses. Results suggest planners may not use words “justice” and “fairness” explicitly, talking about the project, but frame the project in terms of balancing benefits and sacrifice between street users. While the project has recently been put on hold, the planning process reveals the ways planning participants debate the changing nature of access and mobility associated with BRT.
TRANSIT PLANNING, ACCESS, AND SOCIAL JUSTICE: COMPETING VISIONS OF BUS RAPID TRANSIT AND THE CHICAGO STREET

A Thesis

Submitted to the
Faculty of Miami University
in partial fulfillment of
the requirements for the degree of
Master of Arts
by
Elina Sukaryavichute
Miami University
Oxford, Ohio
2016

Advisor: Dr. David Prytherch
Reader: Dr. Marcia England
Reader: Dr. Damon Scott

©2016 Elina Sukaryavichute
This Thesis titled

TRANSIT PLANNING, ACCESS, AND SOCIAL JUSTICE: COMPETING VISIONS OF BUS RAPID TRANSIT AND THE CHICAGO STREET

by

Elina Sukaryavichute

has been approved for publication by

The College of Arts and Science

and

Department of Geography

David Prytherch

Marcia England

Damon Scott
Table of Contents

Introduction ... 1
Literature Review .. 5
Sources/Methods/Study Area ... 10
Results ... 18
Discussion .. 34
Conclusion .. 37
Bibliography ... 39
Appendix A: Interviews ... 43
Appendix B: Questions for Interviews ... 44
Appendix C: Sources for discourse analysis 44
List of Tables

TABLE 1. Organizations involved in the interview process and project related online publication sources.
TABLE 2. Issues emphasized by interviewees related to BRT planning on Ashland Avenue.
List of Figures

FIGURE 1. Proposed Western and Ashland BRT corridors.
FIGURE 2. Vision of Ashland BRT project.
FIGURE 3. Ashland BRT Corridor Zoning Map.
FIGURE 4. Diversity of the corridor in terms of a) land use b) ethnicity.
FIGURE 5. Diversity of the corridor in terms of household income in inflation adjusted dollars as per 2014.
FIGURE 6. Diversity of the corridor in terms of people per census block commuting to work by car/truck.
FIGURE 7. Right of Way and Street Width Extents.
FIGURE 8. Engineering Plan of Ashland Avenue Bus Rapid Transit Project.
FIGURE 9. Proposed street configuration as a result of BRT implementation.
FIGURE 10. Alternatives screening on the CTA website.
FIGURE 11. Northern part of Ashland Avenue during rush hour.
Acknowledgements

I would like to thank my adviser Dr. David Prytherch for his support with my study and his valuable advice and inspiration, and of course, patience with my progress that was sometimes slower than expected. Thank you for pushing me forward! I also thank my committee members Dr. Marcia England, Dr. Damon Scott, and my former committee member Dr. Amelie Davis for their feedback on my research and comments on how to make it better. Thank you Luci and Nilu for your positive attitude! I’m very grateful to have such a wonderful and supportive fellow graduate students. I thank the interviewees I talked with in summer 2015 for sharing their thoughts with me and making my project possible. I give thanks to my family back in Russia for being so supportive to my decision to go back to school and get Master’s degree so far away from home.
INTRODUCTION

A key goal of urban planning today is to address the needs of growing urban populations for mobility and access by providing environmentally and financially sustainable forms of alternative transportation. These goals parallel scholarly debates about new ways of thinking about transportation and mobility, which emphasize sustainability and social justice. Both are embodied in the emergence of Bus Rapid Transit (BRT) as technique to extend mass transit networks by reshaping existing streets with dedicated bus lines and intermodal infrastructure. As defined by the Institute for Transportation and Development Policy, BRT is a cost effective and high quality bus transit system with metro level capacity, which is designed on the dedicated lanes usually in the middle part of the road space and has specific features such as off board fare collection, limited bus stops, and quick operation. (Institute for Transportation & Development Policy, 2015)

BRT represents a new way transit planners are seeking to expand the transit network and make the streets “complete” at the same time for all types of street users: bus commuters, cyclists, pedestrians, motorists, including people of all ages and abilities (National Complete Streets Coalition 2015). However, it also means reordering of street spaces and social relations, and shifting the balance of access and mobility among diverse users. All this raises a question: How might public transit planning of BRT, and its reconfiguration of access to transport networks and street spaces, address issues of mobility justice? More specifically, I would ask the following subquestions: how does BRT planning reimagine transit networks and street spaces? How does BRT reallocate access to the street, and with what impact on diverse stakeholders? And what do such changes mean to the fair balance of access in transit spaces and mobility justice?

The issues surrounding BRT reflect broader contemporary debates about accessibility and mobility. Accessibility has long been a central concept within the traditionally quantitative and positivistic fields of transportation geography and engineering (Golub & Martens, 2014, Fransen et al. 2015; Vale 2015). Generally, accessibility means physical access to goods, services, and destinations, “which is what people usually mean by transportation” (Litman 2015, p. 5). In roadway engineering, it means “connections to adjacent properties” (ibid.). In the field of urban
geography and urban economics, it refers to the ease of people getting to the particular location, while in pedestrian planning it means how the design of the street is accessible for people with disabilities.

A more critical approach to transportation, which asks questions about access and mobility for whom, prompts consideration of justice and particularly environmental justice (Barrett 2013; Beyazit 2011; Bullard & Johnson 1997; Farrington and Farrington 2005, Harvey 1973; Martens 2006; Sen 2008, Hartman and Prytherch 2015). Since the car was invented and became available to millions of Americans, it has become a tool that facilitated (and still facilitates) inequality in terms of access to goods, education, decent health care services, and good air quality. The response to that challenge is a recently developed concept of Complete Streets, mentioned above, that suggests fair access to the street and facilities (McCann and Rynne, 2010; Peiser et al., 2014; Logan 2011; Litman, 2015).

There is also abundance of literature that talks about how certain projects might improve accessibility for certain streets users (Matas et al. (2015), Chowdhury et al. (2016), Rotger & Nielsen (2015). However, it is important to mention the lack of literature that discusses access to the street space and issues of justice that emerge as a result of street space reallocation, and the lack of literature that talks about BRT from mobility justice perspective. The issues surrounding BRT thus offer a unique window into conceptual questions about mobility and transport, since the design of the project requires the reallocation of the space in a particular way that might challenge the mobility patterns of certain groups of street users. BRT is a part of the Complete Streets concept, and if designed well, could provide a fair access to the street space to diverse street users.
As the case study for my research, I decided to focus on one particular BRT project on Ashland Avenue in Chicago, IL. (Figure 1). Chicago, like other large American cities, has a rich history of transport development, which came by the middle of the twentieth century to focus more on privatized transportation rather than public transit. Today, as the population of the city is growing, so too does the necessity and challenge for planners to accommodate various street users with adequate and equal transportation options. Ashland Avenue, Chicago, is a central north-south street where the CTA (Chicago Transit Authority) plans to build a sixteen-mile-long line that would go from intersection of with Irving Park Road in the North and 95th Street in the South. BRT on Ashland Avenue is designed to back up the existing Red “El” line (Figure 1) and move people from the North to the South and backwards at a relatively compatible speed and fare and without necessity to go to the downtown. Ashland had the highest annual CTA ridership in 2012, more than 232,000 Chicagoans live within walking distance (½ mile) of Ashland and one in four households within walking distance (½ mile) of Ashland do not have a car (CTA website). As of now, Ashland Avenue is mostly car oriented and though there are regular buses operating on the street, it still lacks access to traditional rail transit making neighborhoods along the corridor, which are predominantly low income minorities and transit
dependent. But efforts to expand neighborhood access to higher-speed mass transit implies the restructuring of Ashland Avenue itself, a reallocation of street spaces with different consequences for diverse roadway users.

![Image of Ashland Avenue]

Figure 2. Vision of Ashland BRT project. Source: CTA website

To better understand how the planning of BRT addresses the balance of access – to the mass transit system and roadway space – and thus issues of fairness or justice, my research employed a combination of documentary research and interviews with planning process participants. To explore how BRT planning reimagines transit networks and street spaces and reallocates access to the street, I reviewed project-related official documentation on the CTA website, such as detailed project description, documentation on environmental assessment and alternatives analysis, public opinion, and engineering plans. I also interviewed professionals involved in transit planning process in different roles, exploring the role these people play in transportation planning process, how they define the goals of BRT on Ashland, and what these changes might mean to diverse street users. Not just interviewing public planners or transit advocates, I also interviewed local business advocates, exploring how the proposed BRT project might negatively affect the access to the street for business-related activities like deliveries, and thus the ways reshaping of the street for some users can impact the needs of others. To understand how these proposed changes are debated publically, I reviewed online publications like the *Chicago Tribune, Chicago Streetsblog,* and *CityLab* to understand the how BRT is contested in public planning processes. And finally, in my analysis of all these sources, I sought to explore how these plans and debates frame issues of access and fairness among diverse transit
system and street users, thus how BRT planning addresses – directly, indirectly, or not at all – issues of mobility justice.

The results of this research suggest the opinion of interviewees on the project is quite diverse, and while respondents do not talk explicitly about justice they nonetheless frame it in the ideas of “access”, “benefit”, and “sacrifice.” Additionally, the research revealed that though the project might challenge street access and mobility patterns of certain groups of street users, it is perceived to be beneficial for the entire city/region BRT, so sacrifices are inevitable. Furthermore, this study emphasizes the importance of broadening of “access” concept in relation to Bus Rapid Transit, since proposed projects like Ashland Avenue BRT are not only about increasing access to the transit network, but also access to the street itself.

LITERATURE REVIEW

Planning for accessibility, mobility, and social justice.

Access has long been a key concept to how planners think about and approach mass transit. The concept of accessibility has evolved through the years being quantitative at first (Hansen, 1961) and now becoming a “more general concept, useful in a wide range of geographical contexts” (Farrington, 2007, p. 320). From the practical and policy point of view, as argued by Litman (2015), “accessibility (or just access) refers to the ease of reaching goods, services, activities and destinations, which together are called opportunities...accessibility can be defined in terms of potential (opportunities that could be reached) or in terms of activity (opportunities that are reached)” (p. 5). Litman (2015) also talks about how the definition of “accessibility” varies from the field in which it is used. Thus, generally, accessibility means physical access to goods, services, destinations, etc. “which is what people usually mean by transportation” (p. 5). In the roadway engineering it means “connections to adjacent properties” (p. 5). In the field of urban geography and urban economics, it refers to the ease of people getting to the particular location, while in pedestrian planning it means how the design of the street is accessible for people with disabilities.

Because access is itself a good, its social and spatial distribution implies issues of equity and fairness, particularly in public transit planning. Much of the literature on accessibility emphasizes the limits of transit services (complete absence or large distances, or the quality of
operation), and scholars who study access and social exclusion (Farrington and Farrington 2005; Preston and Raje 2007) and access and social justice (Bullard and Johnson 1997) focus on people who do not have access to the places they need due to limited transportation facilities. In their analysis of the criteria that could define quality in transportation planning, Manaugh et al. (2015) highlight the importance of accessibility as a criteria for determining whether a plan is successful or not in addressing issues of equality among different street users. Defining accessibility at “essentially the ease and convenience of reaching desired destinations,” they argue

...it is a good measure of a desired outcome, because it combines in itself a measure of how well essential services are spatially distributed, and how well people are located relative to those services, along with (in case of public transit and pedestrian commuting for example) the quality of transit service, the quality of the pedestrian environment, the effectiveness of traffic system management, the lack of physical barriers, and so on (p. 174).

Along with such understanding of “access” and “accessibility” to transit networks, there have emerged alternative understandings of accessibility in terms of access by diverse users to street spaces. The term “access” here refers not only to ability of residents to commute and physical presence of transit facilities, but the way the street space is allocated to provide these transit services (Agrawal et al. 2013).

While transportation geographers and planners have traditionally approached transit in terms of accessibility, a critical turn in transportation studies has come to focus on the broader notion of mobility. Hannam et al. (2006) state “the concept of mobility encompasses both the large-scale movements of people, objects, capital and information across the world, as well as the more local processes of daily transportation, movement through public space and the travel of material things within everyday life” (p. 1). There is evidence of growing interest sparked intensively after the launch of the journal *Mobilities* (Cresswell 2010, Bergman & Sager, 2012). Building on more positivistic understanding of accessibility and mobility as “ease of reaching” and “ease of moving” (Preston & Raje, 2007, p. 154), debates now explore a critical and compound definition of mobility that includes physical movement, the meaning of movement, and experience of moving (Cresswell, 2010, p. 19). Cresswell sees mobility as a chaotic thing in the sense that “moving things are often chaotic” (Bergmann and Sager, 2012, p. 130). Bergmann, as well as Bullard, agree “the sovereign freedom of mobility of a privileged elite generates
remade urban space (tied to larger scale corporate mobilities and new urban consumerism and tourism markets) which then limits the personal mobility of poorer people” (2012, p. 34). “New’ mobility scholars (Bergman and Sager, 2012) suggest that mobility should stand in urban planning agenda, but the focus should be not only on its “maximization” (for example new highways) but also “quality” in terms of diversity of means that facilitate the mobility. (p. 239).

The mobilities turn highlights the contested and thus political nature of access and mobility, how the mobility of one group of actors might be constrained by the demand for mobility of other actors, prompting what Henderson (2013) has called “street fights.”

Because urban and transit planning play a critical role in balancing competing demands by users, they play an important role in implementation of justice to streets. Issues of justice have been discussed by philosophers, such as Kant, Aristotle, Rousseau, but now these issues are probably especially relevant as never before. Amidst the hegemony of quantitative perspectives in human geography of the 1960s-1970s, Harvey (1973) developed important arguments about the nature of social justice in the city. Since that time, ideas of justice have been constantly developed and incorporated into various policies. However, in terms of transportation, several scholars (Bullard, 1997; Manaugh et al 2015) have argued that issues of justice and equity remain poorly addressed by transportation planners. While the American Institute of Certified Planners (AICP) has developed of code of ethics for planners that explicitly encouraged planners to incorporate justice into their projects, saying “we shall seek social justice” and “we shall always be conscious of rights of others” (Barrett, 2013, p. 32), Sen’s (2008) research on how transportation planning agencies think about the environmental justice highlights the obstacles to implementation of environmental justice, including “lack of standards and regulatory guidance”, “lack of data to identify groups that could benefit from environmental justice legislation”, “access to information…among community organizations and advocacy groups” (p. 133). Manaugh et al. (2015) have similarly concluded “social equity goals and objectives are in many cases not translated into clearly specified objectives” (p. 167).

Since transport has “an important role in distributing socio-economic benefits or losses created by different means or by transport itself,” Beyazit (2011, p. 117) argue “it has a crucial role in the discussion of social justice.” Because transport plays a fundamental role in economic and social welfare of residents (Lucas, 2011, p. 1321), its distribution in transit planning remains a key window on social justice in the city. These concerns naturally extend to the street itself,
where laws, regulation, and roadway design continue to prioritize private automobiles over the non-motorized, who often remain “marginalized, have little right, and shoulder a heavy burden of care” (Prytherch and Daly, 2014, p. 14). Understanding contested access and mobility on the street requires close attention to transit planning, as well as the urban spaces where such plans – like BRT – unfold.

Bus Rapid Transit and the Complete Street

BRT exemplifies two forms of access: access to transit network and facilities that could be reached by expanding the rapid transit network (through increased speed operation, signal priority and other attributes of BRT) and also access to the street space. Such street redesign expands access to street spaces for not only buses but often also pedestrians and bicyclists. Because BRT is an efficient method of improving transit access within existing street corridors, through reallocating street spaces and improving the transportation facilities, they are increasingly adopted in many cities all over the world. But the planning and adoption of BRT can be a lengthy process; “policy changes take far longer than usually assumed and that exchanges from bygone years can be fundamental in shaping ongoing mobilities” (Wood 2015, p. 569). Though the BRT is designed to make the street more inclusive and complete, the BRT planning process is not necessarily so (Casas and Delmelle 2014). Cervero and Dai (2014) talk about BRT bus stations and their contradictory and conflicting roles both as a logistical node and a spot that could potentially attract investment, a “tension of mediating between the logistical and place-making functions of BRT stations” (p. 127). Other research (Clifton et al. 2014) compares the existing BRT lane and potentially implemented railway in the suburbs of Sydney, Australia in terms of travel time, frequency, and fare suggest negative and positive consequences for different transit users at different parts of study area.

Because BRT reimagines existing roadways and tends to redistribute vehicular space to alternative modes, it has become strongly linked with the movement towards Complete Streets, defined by the National Complete Street Coalition to be “streets for everyone” designed to accommodate safe access needs of various street users, including pedestrians, motorists, transit riders, bicyclists of all ages and abilities.” The so-called “Complete Street approach” has only recently received scholarly attention (Peiser 2014 *et al*; Dodson 2014 *et al*; Logan 2011;
Hartman and Prytherch, 2015), and prompted various responses. Seeking to better define a more just roadway, Hartman and Prytherch (2015) talk about shalom street that achieves distributional justice among diverse roadway users and instills broader ethical values of welcoming and inclusiveness. They argue the complete street concept “does not exclude automobiles, but it does shift the balance of power….between cars and users moderating it toward equality” (p. 40, 42). However, there are scholars with a far less optimistic opinion about Complete Streets. McCann and Rynne (2010) suggests that among the constraints that prevent the Complete Streets implementation to real life is that the road space is controlled and managed by a “patchwork of state, county, and city agencies, with private developers often responsible for building roads in new developments. Typically, complete streets policies cover a single jurisdiction” (p. 27). Yet more critical are Agyeman and Zavetovski (2015), who argue physical changes of the street “can make certain street users and the dwellers in some neighborhoods, invisible, further diminishing their rights and roles in the community” and “people worry that such changes foster gentrification” (p. 7).

BRT not only restructures the transit network and access to it, but it is also designed to reshape the street and how different users and modes circulate upon it. BRT uses a “Complete Streets” approach that seeks to improve access for all types of street users: bus commuters, cyclists, pedestrians, motorists, including people of all ages and abilities. The project requires development of sidewalks and crosswalks, which makes the street more attractive for pedestrians, and contributes to thriving of businesses along the BRT corridor. It inevitably affects the balance in street usage among different stakeholders so, in this case, BRT is what Henderson (2013) calls a "street fight" over mobility. Transit projects like a BRT line on Ashland Avenue in Chicago brings the issues of justice in terms of who will use and have access to the street, and how BRT projects may affect their daily mobility experience. The importance of diverse needs and values of various street users in transport planning is recognized not only among scholars (Sen, 2008; Banister, 1994), but also among professional planners (Banister, 1994). Banister suggests that no matter what planning decision is taken, there are always winners and losers.

Research on BRT and Complete Streets therefore has the potential to bring into sharper focus vibrant debates about the nature of access, mobility, and justice, in terms of both transit systems and street spaces.
STUDY AREA, METHODS, AND SOURCES

Study Area

Ashland Avenue is the perfect place to study BRT and social justice given the complicated nature of the street in terms of demographics and potential uses of the corridor. In 2012 Chicago Transit Authority in partnership with Chicago Department of Transportation, Department of Housing and Economic Development, and Federal Transit Administration announced the beginning of work on the BRT alternative analyses to be implemented on Ashland and Western Avenues in Chicago, IL. That was followed by intensive public engagement events and communication with potential stakeholders. In April 2013 CTA and CDOT spread out the vision of the center running BRT on Ashland Avenue and after several additional public involving events CTA published an Environmental Assessment. Though the official information on the project is still in place on the CTA website and the project description still could be found under “Planning and Expansion” subsection of the CTA website menu, multiple media sources refer to the project being put on hold (chicago.suntimes.com, as of 08/18/2015). In the paper below, the project will be studied as the one on hold, with the potential to be implemented in future.

Chicago authorities are working to expand transit options for residents in various ways. CTA website contains information about new projects to extend elevated rail or “El” lines, including the Orange, Yellow, and Red. As well as extension, CTA has developed “El” lines modernization projects, such as Red & Purple line modernization. While “El” lines are relatively clean and allow for greater ridership with decent speed, it is really expensive to expand the existing line or build a new one. As for the infrastructure of the lines, Red line is “the backbone of the city’s transportation system.” (CTA website, Chicago Sun-Times). BRT on Ashland and Western is designed to backup existing Red “El” line with comparatively high speed and low fares, contributing to the existing Chicago hub and spoke transit system allowing for better access to socially important spots, but constructed at much less cost than elevated rail lines.

Ashland Ave. BRT represents a new way of how transit planners are seeking to expand the transit network and make the streets “complete” at the same time. The proposed Ashland Avenue BRT is a great example of these complex goals and planning. Ashland Avenue, Chicago, - the street where the CTA (Chicago Transit Authority) plans to build a sixteen mile long line
that would go from intersection of Ashland Avenue and Irvin Park Road in the North and intersection of Ashland Avenue and 95th Street in the South --intersects with seven Chicago Transit Authority stations “El” stations, two regional Metra stations, and 37 bus routes. The planned Ashland BRT would go through areas with diverse ethnicities, income level, and zoning types (retail, residential, and industrial). The map (Figure 3) represents the diversity of Ashland corridor in terms of zoning types. Such diversity of the corridor poses challenges for BRT planning process.

The map of zoning ordinances shows that while the most part of the adjacent areas one mile away from the corridor are predominantly residential, there is still a great amount of area is served for manufacturing purposes and development purposes. This means that with the implementation of the project, the interests of each of these stakeholders groups have to be taken into consideration. According to the CTA Environmental Assessment, the corridor itself is predominantly commercial, “with retail, business industrial, and institutional land uses lining the street” (p. 58). Residential areas are represented with single-family and mix-used development.

Figure 3. Ashland BRT Corridor Zoning Map (Metropolitan Planning Council, 2014)
Figure 4. Diversity of the corridor in terms of

a) land use

b) ethnicity. Source: Chicago Transit Authority, 2013
The map below (Figure 5) illustrates the diversity of the corridor in terms of household income in the past twelve months (in 2014 inflation adjusted dollars), based on the data taken from the United States Census Bureau. It is seen on this map that the Northern part of the corridor has a higher household income, than the Southern one. Since the project is designed to be implemented along the corridor with such diverse demographics that refers to the challenges for planning and potential effects of implementation.

Figure 5. Diversity of the corridor in terms of household income in inflation adjusted dollars as per 2014. Map by author, based on U.S. Census Bureau.
The map below (Figure 6) illustrates the diversity of the corridor in terms of people per census block commuting to work by Car/Truck. The census blocks in the northern and central parts of the corridor tend to have a greater number of people commuting to work by car, than those in the southern part of the corridor. It is important to keep this in mind in BRT planning process, since that would allow to imagine who would be the potential users of the BRT, where they are likely located, and what competing uses might emerge.

![Transportation to work by Car/Truck](image)

Figure 6. Diversity of the corridor in terms of people per census block commuting to work by car/truck. Map by author, based on U.S. Census Bureau.

The Environmental Assessment document published on the CTA website provides some project background that suggests that Ashland avenue corridor is represented by middle to high density neighborhoods, with 90,000 households and 232,000 people living within a half mile of Ashland avenue corridor (approximately nine percent of population of Chicago), with anticipated growth to reach 297,000 people living within half a mile of the corridor by 2040. The area is
characterized as even more dense (21.2 people per acre) than the city as a whole (17.1 people per acre). The corridor include major employment centers with around 133,000 jobs. The corridor intersects 33 of 228 Chicago neighborhoods. It also intersects 20 of 50’s Chicago Aldermanic wards.

Methods

Studies of mobility, and particularly from mobility and accessibility justice perspective, require a mixed methods approach. Here this included archival research of BRT related documentation on the CTA website and project-related online publications, as well as interviews with key Ashland BRT planning process stakeholders and practitioners. The example of the study that focuses around relatively the same issues and uses the same set of methods is the one by Sen (2008), who explored views on environmental justice in transportation planning from various stakeholders in Baltimore-Washington D.C. Metropolitan area and identified constraints they face attempting to implement environmental justice through policy. Interviews were employed not to quantify the positions of different stakeholders or for comparison, but rather for understanding the unique insights of various stakeholders including planners, policy makers, managers, and others in relation to key subquestions below.

How does BRT planning reimagine transit networks and street spaces?

This employed publicly available sources that illustrate the planning and public debate surrounding the project, including discourse analysis of the content on the project page on the CTA website, used online publications on the CTA website and some additional publications obtained through web searching. Speaking broadly, discourse analysis emerged primarily in linguistics to become adopted in other fields, including Geography, to better understand public debate and the context for it. Casas and Delmelle (2014) adopted discourse analysis of the blog initiated in the City of Cali, Colombia. Manaugh *et al.*, (2015), for example, did analysis of transportation plans of eighteen North American metropolitan areas, using a *keyword in context* strategy to assess how much emphasis (if any) is applied to the issue of equity in the plan.” For the analysis of the content I was not doing a keyword search but instead I specified the key
themes that I was specifically looking at, used grouping and coding by name method. The identification is one of the common techniques in qualitative research. (Ryan, Bernard, 2003). The themes listed below are in tune with the sub questions that were formulated earlier in this paper related to the purpose of BRT, likely winners/loser in project administration (Who this project is designed for?), effect (positive/negative) on the neighborhood/city, and access to transit network and street space. To process the analysis of the interview content, I voice recorded all the interviews, transcribed them, printed them out, and in order to track the themes identified above and put them in groups together.

Familiarizing myself with the online sources prior to interviewing the planning professionals helped to build a good background of the subject and make conversations more effective. To familiarize with debates around the project and identify stakeholders and organizations involved in the Ashland BRT planning process, I used the list of sources published on the CTA project related web page under “Appendix H: Public Involvement”. The list represents media sources that cover BRT planning project from April 2013 to October 2013.

It makes sense to get the insight right from the planners and those who facilitate the planning process, since planners are responsible for provision of transportation equality and fairness in outcomes of planning. Following Sen (2008), who incorporated interviews with key stakeholders of transportation planning process (planners, managers, governmental bodies), on their understanding of what the environmental justice is and how it should be incorporated, I used some of the questions that he asked his respondents in the interviews with key stakeholders. Rather than specifically ask participants about their conception of “justice,” open ended questions allowed respondents to articulate the purposes and impacts of proposed BRT projects in their own words.

Among people contacted for interview, thirteen agreed to participate in my research. Among those thirteen, twelve agreed to make phone and in person interview, while one respondent preferred to submit his responses in written form. Interviewees represented ten organizations. Table 1 represents the list of organizations that were involved during the interview process.
<table>
<thead>
<tr>
<th>Organization and types¹</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAP Chicago Metropolitan Agency for Planning; State and Local Government Agency</td>
<td>Selected articles from online sources, such as chi.streetsblog.org; www.citylab.com; transitfuture.org; chicagotribune.com; cnt.org; project related pages on the CTA website.</td>
</tr>
<tr>
<td>Sam Schwartz Engineering, D.P.C. - transportation engineering consulting firm</td>
<td></td>
</tr>
<tr>
<td>Streetsblog Chicago - nonprofit daily news platform</td>
<td></td>
</tr>
<tr>
<td>Metropolitan Planning Council- Non-profit</td>
<td></td>
</tr>
<tr>
<td>ITDP Institute for Transportation and Development Policy - nongovernmental, non profit</td>
<td></td>
</tr>
<tr>
<td>ICNC Industrial Council of Nearwest Chicago - Small business development center</td>
<td></td>
</tr>
<tr>
<td>METSI Metropolitan Transportation Support Initiative - research center</td>
<td></td>
</tr>
<tr>
<td>CDOT Chicago Department of Transportation - governmental</td>
<td></td>
</tr>
<tr>
<td>Chicago BRT non-profit</td>
<td></td>
</tr>
<tr>
<td>Chicago Community Trust - community foundation</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Organizations involved in the interview process and project related online publication sources.

How does BRT reallocate access to the street, and with what impact on diverse stakeholders?

Overall, the methods that I use to answer these questions are similar to those discussed earlier in this paper, and include discourse analysis and interviews. Following Manaugh *et al.* (2015), I studied the relevant chapters of the Chicago Regional comprehensive plan GOTO 2040 for goals of the city and understand whether they align with the project purposes. For the purposes of studying this question, my methods also included interviews with the professional involved in the planning process as well as the analysis of online publications discussing the challenges and benefits of the project. I contacted planning professionals representing various organizations,

¹ Footnote: It is also important to mention, that list is made based on the current affiliation of the respondents, which in some cases might be different from the affiliation several years ago when first active discussions about Ashland BRT project emerge
both governmental and non-governmental, policy consulting and engineering. For the list of planning related documentation and the list of interview questions, see appendix B and C. The description of the interview process and the analysis is presented in the subsection above. The interviews took place during one month period starting from the end of June and ending at the beginning of August 2015. As was mentioned earlier, the interviewees represented different types of organizations that are involved in BRT planning process in different ways.

What do such changes mean to the fair balance of access -- indeed mobility justice -- in transit spaces?

Interviews with planning/advocacy organizations representatives provided the primary source of data for this project. I used the list of articles from the CTA website under section Appendix H “Public Involvement” --> “Media Summary.” The articles mentioned in the list refer to the following newspapers/organizations: Streetsblog, ChicagoNow, Wired, Chicago Tribune, Forbes, Lincoln Square Patch, NorthCenter-RoscoeVillage Patch, Curbed Chicago, DNAinfo, Lake View Patch, The Gazette, Chicagoist, Scene Magazine, Human Transit blog, Redeye blog (Table 1). Interestingly, they cover the project both from positive and negative perspectives. For the purpose of getting a fuller picture on the project debates, some additional online sources were found by googling for “Ashland BRT,” for example online publications by City Lab, Streetsblog, and others. For the discourse analysis, I also studied CTA website project related documents and appendixes: Ashland BRT project overview, BRT fact sheets, Public Involvement, Environmental Assessment results, Video by CTA “See who supports Ashland BRT” and also relevant chapters of Comprehensive Plan GOTO 2040.

RESULTS

BRT would reimagine transit networks and street spaces

Content analysis of plans and related documents, together with interviews with planning participants, show how complicated (and sometimes) contradictory the goals of BRT planning on Ashland Avenue actually are. In the comprehensive plan GO TO 2040, there is a chapter that
discusses transportation goals for the region. One of the themes of this chapter is “increase commitment to public transit.” Among other things, the plan emphasizes the importance of expanding the existing transit network and increased mode choice. It also talks about the benefits of strong regional transit infrastructure, such as economic, environmental, and generally the quality of life. The interests of low income groups of population are definitely discussed in the comprehensive plan, so BRT has the potential to address the mobility needs of these groups along the corridor. To measure a success of transit improvements, CMAP suggests several indicators such as transit ridership and transit access. The region plans to increase its ridership by four million before 2040 (now it is 2.3) and transit access from 69% of residents living close to transit infrastructure to 75% of residents.

CTA (Chicago Transit Authority), the agency responsible for project implementation, claims the purpose of the project is to “expand connectivity to the region’s existing transit system by providing a new and upgraded high quality, high capacity and cost effective premium transit service—a service which provides faster, more reliable, and comfortable passenger experience” (CTA website). CTA also suggests that the project would potentially address the transportation needs of growing population outside the Center Business District and the “Loop.” According to CTA the project is designed to “strengthen north-south connections to CTA and Metra’s transit network,” “improve reliability, travel speed, and ease of use,” “meet city/regional livability and mobility goals,” and “support transportation, land use, and economic development goals in the city and the region” (p. 5 Environmental Assessment report). These imply that certain improvements that go with BRT implementation are expected to increase overall transit network accessibility (example “El” lines) and connectivity with existing infrastructure. It also directly refers to the social justice agenda, at least in its traditional understanding: people who have limited access to facilities (usually low-income) due to remoteness and/or absence of automobile will have a chance to improve their mobility and gain access to other part of the city. Though the documents on the CTA website could be considered a primary and most official BRT planning related source, since CTA is the agency that implements the project, so there might be some biases. To get an alternative opinion on the Ashland BRT, it was important to set up interviews with diverse group of stakeholders and planners, to supplement the official project vision on the CTA website.
The importance of BRT infrastructure expansion is recognized by non-governmental organizations like the Metropolitan Planning Council (MPC), a nonprofit community serving organization working toward sustainable growth. MPC issued a report in August 2011 that discusses the potential of BRT on both metropolitan and regional scale to “trigger private-sector development and provide rapid transit access in areas that need it most” and “complement and connect to existing rapid transit - making the entire transit system more attractive as a travel option - while spurring new construction, redevelopment and economic development throughout the city” (p. 1 of the report). MPC made the analysis to understand where BRT could be most feasible, where it would serve the existing community transit needs, and address the problems of transit gaps. Based on their analysis, “Western Avenue and Ashland Avenue have the highest potential ridership of the 10 BRT routes” (p. 2), and if implemented successfully could attract investments in housing, open spaces, boost the growth of local job market, expand the existing infrastructure, and improve quality of life. The authors of the report argue that “BRT is synonymous with livability” (p. 5). The project could be beneficial on different scales, both within the neighborhoods along the corridor, and for the entire city.

Besides the goals that are published on the CTA website, interviewees mentioned community building, stimulating economic development, rationalizing of the corridor, “improving mobility and make it in a lot of ways competitive to the automobile, as the alternative to the automobile” (P.S. Sriraj, Metropolitan Transportation Support Initiative - METSI). Additionally, they mentioned the goals such as improving foot traffic, attracting more riders and providing service to remote areas, serving significant employers, particularly to Ashland BRT. This could allow commuters to move between north and south without necessity to go through the Loop. Additionally, Annie Weinstock, the former director of Institute of Transportation and Development Policy, now owner of BRT Planning International LLC, noted “the goals are to move many people as efficiently as possible, to reduce travel time of existing public transport corridor, to reduce operating cost.” Other interviewees like Ben Spies, Director of Economic Development of ICNC, a nonprofit organization that supports and advocates for the businesses interests in the Kinzie Industrial Corridor area likely be impacted by the BRT infrastructure, emphasized such goals as “better transit access, shorter commutes, economic development along the bus corridors, in Chicago specifically - connecting the existing “El” lines.” Most of the respondents agreed that the main goal of BRT is to move people quickly at
reasonable cost. The goals that were discussed by the interviewees correspond with those officially posted on the project related CTA website page and focus mainly on a better transit service and benefits for current and future bus commuters.

As well as the goals, BRT itself could be defined in multiple ways. From the engineering perspective, “Bus Rapid Transit is sort of a preferential treatment of bus transit typically on surface streets in which there may be a designated lanes or traffic signal priority treatments given to the bus systems” (interview with Tom Kaeser - retired CDOT engineer). As mentioned on the webpage of CTA (Chicago Transit Authority), the proposed project goes in hand with GOTO 2010 Comprehensive Plan, decreasing congestion in the street, providing competitive levels of service in terms of price and time travel option, and encouraging a growth pattern outside the central loop. The CTA claims “specifically, the project will improve accessibility, mobility, transit travel times and reliability, and passenger facilities in this heavily transit reliant corridor.”

BRT reallocates access to the street with impact on diverse stakeholders

Table 2 represents the issues that emerged in interviews with planning professionals, in reference to imagined outcomes of the project implementation. The issues that were discussed during the interview have both positive and negative expectations towards the future outcomes of project implementation. Among the issues mentioned were efficient operation, balance among street users, possible adaptation of users towards new infrastructure, cost of operation and construction, urban revitalization both on street and city level, increased connectivity, and increased welfare.
<table>
<thead>
<tr>
<th>Organization</th>
<th>efficient operation</th>
<th>balance among users</th>
<th>social learning (street users will adapt)</th>
<th>cost of operation/construction</th>
<th>inclusive street spaces</th>
<th>urban revitalization</th>
<th>connectivity</th>
<th>general welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago Metropolitan Agency for Planning</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metropolitan Planning Council</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Streetsblog Chicago</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institute for Transportation and Development Policy (ITDP)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITDP</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Council of Nearwest Chicago, (ICNC)</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sam Schwarz Engineering, D.P.C.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Metropolitan Transportation Support Initiative (METSI)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chicago Department of Transportation (CDOT)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Transportation Alliance</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Chicago Community Trust</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago Department of Transportation (CDOT)</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Issues emphasized by interviewees related to BRT planning on Ashland Avenue
BRT, by definition, seeks to restructure how people travel along and across Ashland Avenue. Implementation of the project will mean reallocation of the street space, changing patterns of mobility and access to the street for multiple street users. According to CTA, Ashland Avenue hypothetically has a sufficient width for implementation of the project to include multiple modes and streets users within existing infrastructure, so hypothetically, should address the access to the street needs of all street users (Figure 7).

The notion that the project will alter the existing street infrastructure is confirmed by the engineering plans, published on the CTA website (Figure 8). They illustrate how the street space will be reallocated with the project implementation, and how much space will be given for specific purposes. It includes some sketches and footnotes that suggest that some parking spots, specifically those that are close to intersections, will be removed. In certain spots due to curb extensions (in some spaces width varies from three to six feet) some street spaces that were used for automobiles will be removed as well.

Figure 7. Right of Way and Street Width Extents. Source: Ashland Avenue Bus Rapid Transit Project - Environmental Assessment.
The changes that might affect current car drivers are reflected on the image published by the CTA (Figure 9). It represents how the street looks now, and how it can look with the project implementation. Based on these two pictures, one might notice that in the upper picture “before” there is an arrow allowing to turn left, while in the lower part “after” it is replaced by the median station location.
Figure 9. Proposed street configuration as a result of BRT implementation. Source: CTA website.

The project related documentation on the CTA website also discusses various alternatives (Figure 10) that were considered at some point before the planners and stakeholders agreed on the final project. Some of the alternatives of street configuration were cancelled almost at the very beginning, while others have gone through several rounds of open house meetings before they were eliminated. It is interesting how these alternatives change the street access patterns for different street users, and while most of the alternatives imply reduction of parking space and road space for the automobiles, reducing sidewalks was counted unacceptable.
Figure 10. Alternatives screening. Source: CTA website

The Comprehensive Plan GOTO 2040 talks about the benefits of transit improvements and priorities for development, such as access and increased ridership. The plan not only stresses the need for strategic investment in transportation and improvements to the freight network, but also emphasizes the importance for the region to focus on public transit. “Public transit should be improved through maintenance, modernization, and expansion” (p. 289). BRT project on Ashland Avenue lies within this scope of priorities discussed in the plan. CMAP also supports the Transit oriented development (TOD) that could potentially emerge around the bus stops along the BRT routes.

CTA project-related web pages and the Ashland BRT fact sheet suggest Ashland Avenue itself provides access to a great amount of jobs, services, and connection to certain highly visited
destinations, and the existing metropolitan infrastructure, such as existing bus routes, “El” lines and Metra Stations. Under the section “Project Benefits,” CTA suggests that “the corridor provides access to nearly 133,800 jobs, including large employment centers such as the Illinois Medical District, and serves popular destinations such as UIC, Malcolm X College, and the United Center. There are also 99 schools within walking distance of the proposed Ashland.” The project description suggests that most left turns will be removed, except left turns at highway access points. Environmental assessment has been processed in November 2013, and includes the summary of impacts of project implementation. Among those impacts that relate to access and mobility are minimum travel speed reduction for vehicular traffic, but increased bus speed with expected increase in ridership by 29%, minimum impact on the existing parking with preserving loading zones, expected improvement in bike and pedestrian infrastructure (Planned DIVVY bike share stations).

Online publications discuss the potential of the implemented project to affect current traffic circulation and accessibility. Thus, one of the articles published by Chi.Streetsblog.org (John Greenfield, 9 April 2014, “BRT Doubters Interested in Working with City to Tweak the Plan”) talks about people’s concerns that while the bus speed will be increased, the traffic speed would eventually decrease, and moreover, with elimination of most of the left turns the traffic has to be redistributed onto the side streets. In response to this, planners argue that it will not be challenging for drivers to get used to the changes and form new driving patterns. John Greenfield in his article (Chi.Streetsblog.org as of December 13, 2013 “Why the Left-Turn Ban for Bus Rapid Transit won’t Cause Carmaggedon”) confirms that elimination of left turns not only “won’t cause Carmageddon”, but it actually will allow for a safer mobility (fifteen percent of all collisions happening on Ashland Avenue come from the left turns). In another article (John Greenfield, January 27, 2014 “Daniel Hertz Sets the Record Straight on BRT”) Daniel Hertz, University of Chicago public policy grad student discussed speed changes in the bus services and automobiles to say “That’s not sticking it to motorists, it is leveling the playing field.” In this article the author also talks about the critics among some planners that the project will allocate more streets space to transit users, and responds that car will still use two existing lanes plus two parking lanes.
Other opposition arguments are focused around the constraints to the motorists. Gary Lucido in his article (4 October 2013, "In a Nutshell, Why The Ashland Bus Rapid Transit is Insane") argues that even preexisting BRT Ashland Avenue infrastructure causes “nightmare” at a rush hour (Figure 11), so cutting two more lanes would make the whole thing even worse. “The elimination of left turns is going to force people to go out of their way and make three turns instead of one. This will also increase total traffic and divert that traffic through neighborhoods.” The arguments concerning negative effect for some streets users’ mobility and accessibility patterns are pretty much in tune with those obtained through the interviews. Interestingly, most online articles that talk about Bus Rapid Transit represent either criticism of the project or “defense” of the advocates on the criticism or accusation of ignorance. Those who support the project argue that the BRT implementation would draw more transit riders to the facilities located along the corridor, such as Illinois Medical district, the University of Illinois at Chicago, Malcolm X college, as well as manufacturing plants making these spots more accessible (article by Jon Hilkevitch, Chicago Tribune).

Interviewees confirmed the diverse ways BRT is intended to change the mobility and access to street space, particularly for businesses. As said by Ben Spies - Director of Economic Development at ICNC, “access is a key”. Some interviewees admitted that changing street spaces will not change the nature of access on Ashland Avenue. For example, if we talk about the impacts for the existing businesses, one of the respondents suggested that removing parking

Figure 11. Northern part of Ashland Avenue during rush hour. Made by the author.
spaces is not going to have much impact on businesses, and its access to the street, while another respondent is worried that there might be negative impact for business owners along the corridor associated with the parking space removal from the areas along the corridor. However, the same interviewee agreed this loss of parking might be outweighed by the number of clients on foot, which means that the spot would still remain accessible. Another issue that might be damaging to businesses, especially those that are relying on the corridor for the freight deliveries, is limited left turns. Ben Spies of the ICNC argued that many of the businesses they are supporting are relying on large truck deliveries, so the changes in the traffic rules for the corridor could potentially challenge healthy business operation. He argues that for trucks it would be easier to make three right turns than one left turn, which means “increased difficulty and timing costs in freight mobility.” Dr. P.S. Sriraj - Director of Metropolitan Transportation Support Initiative (METSI) and Research Associate Professor of Urban Transportation Center at University of Illinois at Chicago agrees on the same concern over the potential threats that left turns might pose to the freight traffic and business that rely on it: “These left turns that are providing logistical challenges for the business and threatening the entire existence of the business.” The idea that the project might affect the access to the street for the businesses depending on the deliveries has also been discussed by Tom Kaeser, a retired engineer from CDOT. He suggested that certain merchants, certain commercial developers need a fairly high volume of traffic or at least certain amount of circulation access near their site to get people to come to their site. The community transit planning advocate said that “The kinds of businesses that there are now may not thrive as well in a new environment like that.” Not only business, but also car drivers could be disadvantaged. Jeffrey Shriver - Director of Transportation Planning and programming for the City of Chicago Department of Transportation argues that those car drivers that are now on the street, with the project implementation, might become disadvantaged.

While there are obvious negative impacts on businesses, at the same time, another interviewee (a BRT advocate that preferred confidentiality) suggests businesses might even win from the project implementation, since it would attract more foot traffic, thus more clients. Speaking about the positive effects of the project, many respondents agreed that with implementation of the project, the street could become more pedestrian friendly, and could attract those kind of business that would win from the increased foot traffic, such as retailers, coffee shops, to name few.
There is a lot of controversy involved in the discussion of possible negative and positive effects of the project on various groups of street users.

Improvement in mobility means you can transport more people in a given period of time over the same corridor. If you’re benefitting those that are travelling by the BRT and at mostly adversely affecting those that are travelling by car, then to what extend the BRT increases this compensating for the loss in the automobile traffic or increases travel time for the automobiles (Interview with Dr. P.S. Sriraj).

However, Peter Skosey - Executive Vice president of Metropolitan Planning Council, does not consider it a problem, arguing that negative impact on traffic is not huge and “30000 people are going to be moving twice as quick along the corridor.” Peter Skosey also argues that while the project would limit the access to the street for some businesses and limit the speed of car traffic, it makes the street more accessible for people on foot. The independent transit planning advocate argues that the project “significantly shifts the balance of the street towards access, access is going to be the priority, so it will be easier for people to walk on the street, you prioritize access to transit, getting to and from, public transportation station and making street more pedestrian friendly.”

Overall, BRT would change access to the mass transit network (bringing rapid transit closer to users in the corridor) as well as access to the street (for buses, for car drivers, and pedestrians). Limitation of access for one group of users would mean expansion of access for other. The same goes for mobility. While the speed of the bus service will increase, the speed of the traffic would decrease (whether intentionally for safety purposes or unintentionally through the loss of travel lanes).
Fair balance of access in transit spaces and mobility justice

It’s very democratic thing that BRT is doing (Interview with Joe Jacobucci, Director of Transit, Sam Schwarz Engineering D.P.C.)

BRT inevitably affects the balance in street usage among different stakeholders (business, car drivers, bus commuters, cyclists, etc.) and those who eventually have access to the street space. Basically, in this case BRT is what Henderson (2013) calls a "street fight" over mobility. According to the CTA Environmental Assessment analysis, approximately one in four households in Chicago does not have a car. While people are supposed to benefit from the project (current bus riders and pedestrians first of all), some other streets users might lose (drivers), prompting a group of residents to petition to stop BRT project and suggest alternative scenarios.

From the CTA planning perspective the project is expected to be beneficial for all the population groups along the corridor:

Operation of the Ashland Avenue BRT Project would result in transportation benefits to all populations within the project corridor, including minority and low-income populations. Benefits would take the form of faster bus service, new BRT stations, landscape and sidewalk enhancements, and associated quality of life improvements. (Environmental Assessment, p. 87).

While the expectations of the CTA officials sound quite optimistic, people who were interviewed came up with slightly different opinions. As confirmed by the CTA Environmental Assessment report the BRT infrastructure would mean positive impacts on bike facilities along the corridor. Chris Van Eyken, Urban Planner in the Institute of Transportation and Development Policy, argues the project might improve conditions for bicyclists and the independent community activist, who preferred to be unnamed agreed that it will be more bike friendly than it is now. Pedestrians are another group of street users that are supposed to be winners, according to the interviewees. John Greenfield, the writer of transportation column for the Reader and editor of the transportation news on the website publications of Chicago Streetsblog, suggests that the implementation of the project would mean better infrastructure and conditions for
pedestrians, wider sidewalks for example. Some other interviewees, who represent non-governmental BRT advocating organizations, also agree that since the project is likely to be followed by the pedestrian and bicycle infrastructure improvements, it would open access to street for people on foot. Tom Kaeser, retired engineer from CDOT, suggests that those people who do not have cars and do not have to walk far would definitely benefit from the project. But the impact of project implementation on drivers is generally negative. Even those organizations that advocate for BRT (Metropolitan Planning Council) admit that there might be negative consequences for existing car traffic. Ben Spies, Director of Economic Development at Industrial Council of Nearwest Chicago, is even more critical arguing that the project could “limit access to key parts of the city, like an industrial corridor, particularly if turns are affected, and if it increases traffic congestion.” Jeffrey Shriver, Director of Transportation and Planning Programming at CDOT, is also concerned about the potential harm of the project for the automobile users.

If that means that the sidewalk is made narrower in places then it would have an effect on the pedestrians, but if pedestrians are held harmless and the sidewalk is kept in desirable width, then the space is taken away from what? Is taken away from parking? Is it taken away from right turns or left turns? So then the motorists that are on the street right nor, they are in disadvantage (Interview with Jeffrey Shriver).

From the perspective of at least half of the interviewees, the “luckiest” group of users is (perhaps not surprisingly) bus riders. One of the respondents argues that if bus commuters don’t benefit, the project does not make any sense. Peter Skosey of MPC and Chris Van Eyken of ITDP point out that the bus riders will get many benefits from the project, including obvious benefits like access to greater and faster bus service, and thus to more facilities. From the engineering perspective, it will affect people who want to take bus transit for longer distances and they are likely to benefit but it may be at expense of those who wish to use Ashland Avenue for private vehicular travel (i.e. private automobiles and trucks). In his interview, Peter Skosey of the Metropolitan Planning Council points out that some of the stakeholders might be
disadvantaged with the project implementation, however, the bigger benefit for the city and the region outweighs those disadvantages: “Yes, there are some changes that people would have to get used to, but again, it’s all for the greater good for having a stronger, healthier city that’s going to grow and continue to be vibrant in the future.”

Justice is a multidimensional issue, and inclusion in the planning process is definitely a part of it. CTA has published the list of organizations and personalities that participated in the public meetings. Among those organizations on the list are community and neighborhood representatives, business representatives, some district representatives, colleges and schools. According to the Public Involvement section of the Environmental Assessment, planners came with a diverse pool of tools to get the public opinion from the diverse groups. They also provided materials in Spanish and hired English-Spanish interpreter to facilitate involvement of non-English speaking population. They contacted the organizations that represent the interests of low-income and ethnic minority populations along the corridor and provided them with the information on the project.

Among the key issues discussed was the comparative efficiencies of BRT versus vehicular traffic. Currently one lane of Ashland Avenue serves 1200 vehicles per hour, meaning that in each car there is at least one person. If the lane is allocated for the bus rapid service, it would be able to move only 600 people per hour. To make it compatible the city has to add additional buses, but the question is “where’s the money going to come from to pay for all these buses” (interview with Jeffrey Shriver). The interviewee does not give an answer to his own question, but I think he implied the money of taxpayers.
DISCUSSION

BRT and Access

The proposed Ashland Avenue BRT, which is planned to restructure patterns of access to the transit network and the local street itself, perhaps exemplifies both 'traditional' notions of accessibility and social justice in transit, as well as ideas of the contested rights to the urban space and the concept of “complete street.” The project is designed to make facilities along the corridor more accessible for people who are socially disadvantaged and would have constraints to access these facilities otherwise. While promoting a greater access to transit network to satisfy the mobility needs of disadvantaged populations, it could challenge the mobility patterns and access to the street of other groups.

Both the official project plan and planners emphasize the goal of the project as to move more people at a higher speed and relatively low cost. Speaking conceptually, it means increased mobility of those who are currently using the existing bus service, or might switch to this mode of transport from the automobile. Since with the project implementation the speed of bus service would increase, it has potential to compete with the personal automobile in terms of mobility. Project implementation would also provide access to some parts of the town that was challenging before, especially for those who do not have cars.

According to CTA, Ashland Avenue has a sufficient width for implementation of the project and include multiple modes and streets users, which can be integrated relatively easily into the existing infrastructure, so should hypothetically address issues of access to the needs of all street users. On the other hand, while the access to transit network would increase (for current and future bus users, pedestrians), it could potentially challenge access to the street for other street users. Other issue that emerged based on the result analysis is that the project is not designed to intentionally limit access by the car drivers (due to elimination of traffic lanes and parking spots), but limitation of access to the street for car drivers is unintended consequence.

Other unintended consequence relates to prohibition of left turns, which would force automobiles to search for alternatives to bypass. This might create “carmageddon” on the adjoining streets and challenge the air quality. Jeffrey Shriver argues that “if you are to take lane
away it implies that automobile traffic has to go someplace else, because you can’t carry that much traffic on just two through lanes.” Speaking about the benefits for businesses and their potential to lose or gain more access to the street, one might keep in mind the businesses one is talking about. Those businesses that are dependent on truck deliveries might suffer with project implementation, while other businesses might prosper and benefit from the increased foot traffic.

BRT and fairness

There is a variety of different ways to think about fairness/justice and BRT. There is fairness in terms of access to the transit network, access to street spaces, access to different types of transit, fairness in how costs are borne, fairness in the planning process. Manaugh et al. (2015) also suggest “while accessibility is a good measure of social equality in urban transport, there need to be others as well, since after all, as we discussed, social equity is a multi-dimensional issue” (p. 175). That is particularly true to BRT planning and the results of this research, since as mentioned earlier people frame social justice through “mobility”, “benefits”, “sacrifice” as well.

It is important to distinguish between physical completeness of the street and its social completeness. One of the sources of disadvantage and social justice concerns relating to the BRT project is that the street space is a fixed asset. Therefore, allocating the space for one group of street users, means removing this space from some other. Ideally, there should be space for everyone: for pedestrians, for drivers, and for business owners with their need for parking space. But in reality, it is hardly achievable. From the engineering perspective, the project ideally would allow to include various streets users, increase foot traffic, add a bike lane, and other features which define complete street; however, socially, it is still might be exclusive. This issue is in trend with the book “Incomplete Streets: Processes, Practices, and Possibilities” that talks about Complete Streets concept, that does not really make the streets complete and just and provide fair access to the streets for all streets users.

Implementation of complete streets policies cannot be processed without in depth analysis of what social implications it might bring to the neighborhood. From the traditional social justice perspective, the project will likely achieve the goal of providing a better transit service. People could move faster in comparison with the current bus service, they would save time, and they would be able to move from North to the South and backwards without need to go downtown,
like current “El” infrastructure suggests. And this is confirmed by the several respondents “This term (social justice) is a little bit misleading, because as you probably know, transit riders take a lot less space than car drivers, so calling it ‘social justice’ to make sure that the drivers have their space also is a little misleading (Annie Weinstock, ITDP).”

Fairness of costs and what sources are used to cover these costs is another question relevant to BRT planning. What if businesses that are along the corridor paying taxes to the city would have to move out because of new transit infrastructure that challenges business operation as a result of limitation of access to the street? That might add to Banister’s (1994) research, who is concerned about the social costs of transport projects, such as car accidents, noise, pollutions, congestions, consumption of land, but missing loss of revenue from the business due to project implementation.

Though planners do not talk explicitly about justice, it is still there implicitly in BRT planning. People talk about justice, through concepts like “access to the street” and “sacrifice” and “benefits.” While people did not mention the word justice and fairness, we still imply that the negative changes that happen as a result of the implementation might favor some groups of residents and ...disfavor others in the sense of access to the street space. For example, the fact that bus occupies far less space but contains more people than one car. It is fair that the bus will change the access to the street to favor more pedestrians and bus riders, since they are the largest group of people from this corridor area.

Talking about changes for diverse stakeholders, one should understand that we cannot clearly separate between car drivers, and pedestrians and bus riders, since one day you could go to see the doctor taking a bus, or commute to work on a bike, and drive a car when you do a shopping. Having a chance to choose what way to commute is also important. Another issue that emerged as result of analysis is that though the project implementation might pose difficulties for current street users, people can get used to changes that could be associated with the project implementation. It will not happen at once, it will take some time for people to adjust their commuting habits to changed street space, and while some of them will do have some inconveniences, overall the project is beneficial for the entire city.

Though the project might mean disadvantages for some groups of streets users, it still poses a greater benefits for the entire city/region. According to Peter Skosey, “yes, there are some changes that people would have to get used to, but again it is all for the greater good for
having a stronger, healthier city that’s going to grow and continue to be vibrant in the future.”

The benefits of the project (as well as negatives) expand far beyond the space of one single street. The project is beneficial for the entire city, so it is acceptable for some of the groups of stakeholders to lose certain benefits, such as parking, for example. Negatives are outweighed by positives.

CONCLUSIONS AND RECOMMENDATIONS

There is a debate right now what justice means in transportation. Reallocating street spaces adjusts patterns of access for all kind of different users. And it redistributes that access, so it could be perceived to be more or less fair. Transit planning is challenging, since no matter what decision is taking, there are always winners and losers. One of the positive outcomes of BRT implementation is not only that it allows to move people faster and cheaper, but it also spurs the development along the corridor and especially around the bus stops, increases the foot traffic brings new businesses, kind of revitalizes the area. At the same time, it might be challenging for other street participants to move around, since the project would mean street space reallocation, and thus removing space from one group of users and giving it to others. The fact that the project that has been already discussed three years ago, and has gone through the stages, such as public participation, environmental assessment, alternatives analysis, but now has been put on hold, has a lot to do with the diverse character of the street.

The planning of projects such as BRT requires a lot of discussions between those who facilitate the project - authorities and urban planners on the one side, and those who are supposed to benefit from the project. In case of BRT on a crowded surface street like Ashland Avenue, it is even more complicated, as there are diverse stakeholders with sometimes competing interests, so it is inevitably challenging to address all the interests equally. Streets cannot become wider, it is a fixed space that will remain fixed unless the adjacent buildings are torn down.

The study revealed that urban planners and those involved in the planning process may not necessarily frame the outcomes of project in the concept of “social justice,” but they all agree that it affects the balance of both access to transit services as well as access to the physical street itself. By impacting the balance of who could access the street, it necessarily creates certain ‘losers’ (e.g. on-street parking), but respondents indicated such negative impacts are either in a very small scale or the negative outcomes for one group are outweighed by the benefits of the
entire city/region. Everyone is expected to benefit from living in a vibrant city with diverse transportation modes (including transit) and a growing economy, so for the benefits of a larger group of people, it might be feasible to sacrifice the needs of smaller groups, and that might be a new way to think about BRT and social justice and might be added to the social justice discourse.

It is clear from this study that though people do not talk about BRT in frame of “social justice” concept, it is still a part of social justice agenda implicitly. Planners talk about justice through “access” to the street and mobility (Manaugh et al. 2015), and while the design of the project suggests equal share of the streets space, planners expect some constraints to some current and future street users. As defined by Forkenbrock and Sheeley 2004), environmental justice means “the fair treatment of all people in terms of the distribution of benefits and costs arising from transportation projects, programs, and policies.” (p. 2). While most research that discusses environmental justice usually refers to traditionally marginalized population such as low income and ethnic minorities, or disadvantaged and disabled considered victims of transportation projects, BRT planning might bring new insight to this conception in a sense that even those groups of streets users who are not considered victims of the planning process per se, could become the one, and it definitely should be considered in the planning process.

“Distribution of benefits” is another concern associated with BRT. Current and future bus riders are expected to be the “winners” from the project, while drivers would likely experience constraints in their daily mobility.

Transit projects like BRT, no matter where or how they are implemented, spur debates about the fairness of street space reallocation. The fact that the BRT project on Ashland Avenue has been placed on hold indicates the complicated nature of the planning process, and the often conflicting interests of diverse groups interests involved. Planners as well as scholars do not have a universal answer to the question how the street space should be reallocated, but BRT represents one attempt to expand access to both rapid transit networks and the physical space of the street itself. In that sense, it embodies the ongoing attempt by planners -- if not always explicit -- to make the city more fair and just.
BIBLIOGRAPHY

Incomplete Streets: Processes, practices, and possibilities (Paperback) - Routledge. (n.d.).

December 13, 2013 Chi.Streetsblog.org –“Why the Left-Turn Ban for Bus Rapid Transit won’t Cause Carmaggedon”), John Greenfield

April 9, 2014 Chi.Streetsblog.org - “BRT Doubters Interested in Working with City to Tweak the Plan,” John Greenfield
Appendix

Appendix A: Interviews

<table>
<thead>
<tr>
<th></th>
<th>Agency</th>
<th>Date of Interview</th>
<th>Interviewee(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chicago Metropolitan Agency for Planning, Chicago IL</td>
<td>June 25, 2015</td>
<td>Martin Menninger - Associate Planner</td>
</tr>
<tr>
<td>2</td>
<td>Metropolitan Planning Council, Chicago IL</td>
<td>June 25, 2015</td>
<td>Peter Skosey - Executive Vise President</td>
</tr>
<tr>
<td>3</td>
<td>Streetsblog Chicago</td>
<td>July 7, 2015</td>
<td>John Greenfield -</td>
</tr>
<tr>
<td>4</td>
<td>ITDP Institute for Transportation and Development Policy/ BRT Planning International</td>
<td>July 15, 2015</td>
<td>Annie Weinstock - regional director for US and Africa projects</td>
</tr>
<tr>
<td>5</td>
<td>ITDP Institute for Transportation and Development Policy</td>
<td>July 16, 2015</td>
<td>Chris Van Eyken - Senior Planner</td>
</tr>
<tr>
<td>6</td>
<td>ICNC - Industrial Council of Nearwest Chicago, Chicago IL</td>
<td>July 20, 2015</td>
<td>Ben Spies. Director of Economic Development</td>
</tr>
<tr>
<td>7</td>
<td>Sam Schwarz Engineering, D.P.C., Chicago IL</td>
<td>July 22, 2015</td>
<td>Joe Jacobucci - Director of Transit</td>
</tr>
<tr>
<td>8</td>
<td>Metropolitan Transportation Support Initiative (METSI),</td>
<td>July 23, 2015</td>
<td>Dr. P.S. Sriraj - Research Associate Professor</td>
</tr>
<tr>
<td>9</td>
<td>Chicago BRT, Chicago IL</td>
<td>July 29, 2015</td>
<td>Christopher Ziemann - project manager for Chicago BRT, Senior Transportation Planner</td>
</tr>
<tr>
<td>10</td>
<td>CDOT - Chicago Department of Transportation, Chicago IL</td>
<td>July 31, 2015</td>
<td>Jeffrey Sriver - Director of Transportation and Planning Programming</td>
</tr>
<tr>
<td>11</td>
<td>Active Transportation Alliance, Chicago IL</td>
<td>July 31, 2015</td>
<td>Anonymous</td>
</tr>
</tbody>
</table>
Appendix B: Questions for Interviewees

1. Can you define in your own words, what is BRT (Bus Rapid Transit)?
2. What do you think are the goals and objectives of BRT in general and on Ashland Avenue, if you are familiar with the project?
3. Who are the people involved in the BRT or any other transit planning process?
4. What positive changes might BRT bring to neighborhood overall and to some groups of stakeholders in particular? By stakeholders here, I mean the potential users of street with the BRT route, e.g. pedestrians, car drivers, bus commuters, etc. Are these changes positive or negative?
5. What negative changes might BRT bring to neighborhood overall and to some groups of stakeholders in particular?
6. Who do you think will likely benefit the most from the Ashland BRT?
7. Who do you think will likely be negatively affected by the project?
8. What actions could have been taken to assure that the outcomes of transit planning are distributed equally and fairly among various groups of stakeholders?
9. Do you think the project might affect the balance of who can access the street? If so, how?

Appendix C: Sources for discourse analysis

CTA website

- http://www.transitchicago.com/ashlandbrt Ashland BRT
- Public involvement related information - Appendix H - public involvement - http://www.transitchicago.com/assets/1/brt/AshlandBRTDraftEA_AppendixH_20131113.pdf
- Appendix G - Engineering plan http://www.transitchicago.com/assets/1/brt/AshlandBRTDraftEA_AppendixG_20131113.pdf
- Environmental Assessment (EA) results
- Video by CTA (interviews with commuters “See Who supports Ashland BRT”).
- BRT Fact sheet
 http://www.transitchicago.com/assets/1/brt/CTA_Ashland_BRT_Fact_sheet_English_FINAL.pdf