ABSTRACT

OPTIMIZING MULTI-STATION EARTHQUAKE TEMPLATE MATCHING THROUGH RE-EXAMINATION OF THE YOUNGSTOWN, OHIO SEQUENCE

by Robert J. Skoumal

A series of earthquakes in 2011 near Youngstown, OH has been a focal point for discussions of seismicity induced by nearby wastewater disposal wells. Utilizing an efficient waveform template matching procedure, the optimal correlation template to study the Youngstown sequence was identified by varying parameters such as the stations utilized, frequency passband, and seismogram length. A catalog composed of 566 events was identified between January 2011 and February 2014. Double-difference relocation refines seismicity to a ~800 m linear streak from the Northstar 1 injection well to the WSW along the same strike as the fault plane of the largest event. Our catalog suggests triggering caused by the 2011 M 9.0 Tohoku earthquake indicating that fluid injection brought the Precambrian basement to near-critical stress. Calculated Gutenberg-Richter b-values are consistent with trends observed in other regions with seismicity induced by fluid injection.
OPTIMIZING MULTI-STATION EARTHQUAKE TEMPLATE MATCHING THROUGH RE-EXAMINATION OF THE YOUNGSTOWN, OHIO SEQUENCE

A Thesis

Submitted to the

Faculty of Miami University

in partial fulfillment for the degree of

Master of Science

Department of Geology and Environmental Earth Science

by

Robert J. Skoumal

Miami University

Oxford, Ohio

2014

Advisor_____________________
 Michael R. Brudzinski

Reader_______________________
 Brian Currie

Reader_______________________
 Jonathan Levy
TABLE OF CONTENTS

1. Introduction ... 1
2. Data and Analysis ... 2
3. Results ... 4
4. Conclusions ... 7
5. References .. 9
LIST OF FIGURES

Figure 1: Regional map of Youngstown, OH and seismic stations .. 11
Figure 2: Matched event waveforms ... 12
Figure 3: Magnitude and timing of events relative to injection volume ... 13
Figure 4: Magnitude-occurrence relationships ... 14
Figure 5: Elocate and hypoDD locations .. 15
Figure 6: Cross-section of hypoDD locations ... 16
Figure 7: Estimation of fluid diffusion based on earthquake migration ... 17
Figure 8: Triggering by Tohoku 2011 and Virginia 2011 events .. 18
ACKNOWLEDGMENTS

Support for this work was provided by NSF grant EAR-0847688 (MB). This work builds directly on that of Steve Holtkamp so we are grateful for all of his advising in putting this study together. We benefitted from discussions with Danielle Sumy, Chad Trabant, Heather DeShon, Chris Grope, and many folks at the Ohio Geological Survey.
1. Introduction

Beginning in March 2011 a series of 10 small (M~2), shallow (~3 km depth) earthquakes were recorded and reported by the Ohio Department of Natural Resources (ODNR) in northeastern Ohio (Figure 1). The proximity of the events to the recently activated Northstar 1 wastewater disposal well near Youngstown, OH raised concerns of possible injection-induced seismicity. ODNR and Lamont (LDEO) deployed a local seismic network in December 2011 that more closely constrained the proximity of events to the injection well. Injection activities were ceased on 30 December 2011. On 31 December 2011 a M 4.0 earthquake occurred with an epicenter less than 1 km from the well. Several subsequent studies of this sequence have provided additional evidence that the earthquakes were induced by wastewater injection [ODNR, 2012; Kim, 2013; Holtkamp et al., in review]. Although uncommon, this finding is consistent with earlier cases where injection of fluids into underground formations have induced earthquakes [e.g., Evans et al., 2012; McGarr et al., 2002; Nicholson and Wesson, 1990]. However, earthquakes caused by injection have become an important topic, as new drilling and well-completion technologies that produce large volumes of wastewater enable the extraction of oil and gas from previously unproductive formations [e.g., NAS, 2012].

One of the key techniques utilized in previous studies of the Youngstown sequence is seismic waveform template matching, which involves cross-correlation of a set of seismograms from a known event with years of continuous data to detect similar signals. Template matching is known to lower the seismic event detection threshold by about 1.0 magnitude unit beyond what standard processing detects [e.g., Schaff, 2008; Schaff and Waldhauser, 2010]. The method is well suited for studies of potentially induced seismicity that have small, repeating earthquakes with similar waveforms because they are located within about a quarter wavelength from each other. Previous studies of the Youngstown sequence were able to identify ~100-300 events with this approach [Kim, 2013; Holtkamp et al., in review], but neither sought to optimize the technique to identify as many events as possible. Moreover, a more flexible tool is needed for the broader application of analyzing the significant increase in potentially induced earthquakes [Ellsworth, 2013]. Within the central and eastern United States, the earthquake count has increased dramatically over the past few years. More than 300 earthquakes with M ≥ 3 occurred in the 3 years from 2010 through 2012, compared with an average rate of 21 events/year observed from 1967 to 2000. Arkansas, Colorado, New Mexico, Ohio, Oklahoma, and Texas have recently experienced elevated levels of seismic activity near industrial activities, raising the likelihood that these events were induced by human activity [e.g., Frohlich, 2012; Horton, 2012; Kerenan et al., 2013; Kim, 2013; Rubinstein and Ellsworth, 2013]. With an optimized template matching tool, tens of millions of template correlations can be performed every second allowing better characterization of seismic sequences. The advent of IRIS Web Services facilitates the versatility of this tool, allowing datasets in new regions of interest to be scanned without requiring large amounts of locally available storage space to host the large volumes of data.

This study builds on the previous work by seeking to find the optimal template matching approach for the Youngstown earthquake sequence. We investigate variations in the seismic stations included, the total number of templates, the waveform passbands, the template seismogram lengths and start times, and the data request method. We use the
optimized template matching approach to construct an expanded event catalog, including Richter scale magnitudes referenced to ODNR reported events, which provides new opportunities to investigate the Gutenberg–Richter relationship and possible remote triggering. We use the multi-station cross-correlation matrix to perform double difference relocation on the expanded catalog. Ultimately, we intend the optimization procedure described here to help guide future efforts to investigate the growing number of potentially induced earthquakes.

2. Data and Analysis
2.1. Cross-Correlation and Processing Procedure

The cross-correlation coefficients (CCC) were calculated by cross-correlating the template through all available waveforms shifting one datum at a time. Cross-correlation is performed through parallelized instances of MATLAB utilizing C/C++ code compiled to run as binary MEX files. The sum of the normalized CCC values across the network for each time step was divided by the number of stations contributing to the sum, producing the network normalized CCC values (NNCCC). The daily median absolute deviation (MAD) of the NNCCC multiplied by 15 was used to set a threshold to limit the number of false positives. Since the MAD is the 75th percentile of a symmetric distribution with zero mean, we estimate that the 15×MAD threshold would result in ~1 false positive per year given the number of samples per year with a nominal 40 samples per second.

To determine the optimal template parameters, we construct a wide range of templates based on seismic arrivals from the first well-recorded and reported earthquake on 17 March 2011. We focus our template evaluations on correlations made during a month long time frame in March 2011, which encompassed a couple weeks before and after the template earthquake. The optimal target template sought is to maximize the number of detections that visually resemble the earthquake template while minimizing the number of false positives that have no visible hint of the earthquake template waveform features. In this process, we considered over 30 station combinations from the Ohio Seismic Network and the Transportable Array, with a primary focus on stations with high signal to noise ratio based on the amplitude of arrivals relative to that in the tens of seconds beforehand. We found the optimal station combination to be Transportable Array stations N54A, M54A, and 056A. This result is noteworthy because all 3 stations are located to the east in Pennsylvania at distances from 47 to 186 km, indicating the proximity and azimuthal coverage are not as important as high signal to noise ratios, station up-time (completeness of archive), and a lack of instrument glitches.

Since most stations in this region record at 40 samples per second, day long seismograms are downloaded and then interpolated to this sample rate if necessary before bandpass filtering. We investigate a variety of bandpass filter ranges, with a lower limit typically between 1 and 5 Hz and upper limit between 10 and 20 Hz (limited by the sample rate at most stations). We found the optimal bandpass filter for this region to be 5-15 Hz. We also test a wide variety of template durations for each station waveform from 5 to 60 seconds. Our results indicate that a template length of 37 sec is in an optimal choice for minimizing false positives and negatives, longer than the 20 sec template length used by Holtkamp et al. [2012]. Note that this length refers to the duration on a given seismogram but that the 37 sec window is earlier for close stations and later for
further stations. Our study also compares templates where the start time of those windows is 10 sec before the S wave arrival time on all channels with templates where the start time is 10 sec before the P wave arrival time on the vertical channel and 10 sec before the S wave arrival time on the horizontal channels. We found the latter to be slightly more effective.

Data was obtained via IRIS Web Services, initially through the irisFetch MATLAB function such that data from any archived station could be processed to maximize flexibility in the template analysis. However, limits on concurrent IRIS Web Services connections from a common IP prevented us from utilizing extensive parallelization. As a result, we shifted our processing to request data via the dataselect service that retrieves miniseed and created a local database of waveforms. Stations that were used less frequently were accessed from IRIS Web Services as needed due to local storage capacity limitations. Including the computational overhead, when ran in serial, the correlation procedure was capable of computing \(5 \times 10^6\) template correlations per second using locally stored data. When executed in parallel, this rate is multiplied by the number of workers, limited only by the hardware available. A peak usage of 72 workers \(3.8 \times 10^8\) corr/sec was used in this study. When data was accessed directly via IRIS Web Services in serial, this rate fell to \(4.5 \times 10^5\) corr/sec, depending on the network speed. Due to the concurrent IRIS Web Services connection limitations at the time of this study, correlating data directly from IRIS Web Services was limited to \(1.3 \times 10^6\) corr/sec.

2.2. Matched Earthquake Source Locations and Magnitudes

Template matching facilitates making a cross-correlation matrix between matched events that can serve as a powerful resource for obtaining precise relative arrival times that can be utilized for determining source locations of matched earthquakes. Our approach was to first carefully pick the P and S arrival times on all stations with clear records (N54A, M54A, O56A, MCWV, ACSO, PLIO) for the template events. We then use the correlation lag times between the template and each matched event to make appropriate pick times for each matched event. For events that match with more than one template, we use the template with the highest CCC. The arrival times for each event are used in an efficient absolute earthquake location routine (elocate [Hermann, 2004]) to serve as the "catalog" location for each matched event. Next, we use the full cross-correlation matrix between all events to establish refined relative P- and S-wave picks as input for double difference relocation. Lag time and correlation values were calculated using a 10 sec long window starting 4 sec prior to the arrival of the S-wave for horizontal components and 4 sec prior to the arrival of the P-wave for vertical components. The window was bandpass filtered between 5 and 15 Hz and then upsampled to 200 samples/sec by using FFT interpolation to improve lag time precision. The weighting in the location algorithms are set to be proportional to the correlation coefficients.

We refine the event locations in a relative sense with the hypoDD double-difference algorithm [Waldhauser and Ellsworth, 2000; Waldhauser, 2001]. The hypoDD algorithm iteratively solves for hypocentral variations, in a least-squares sense, by minimizing the residuals of travel-times between pairs of nearby events recorded on a common station, thus removing bias due to velocity model errors. The 1-D velocity model used for this processing is the same as that obtained by Holtkamp et al. [in review] for the same purpose, but it differs somewhat from Kim [2013] as the stations we use are
much farther from the source region. Considering the deployment of Kim [2013] did not begin until late November 2011 and only lasted a couple months, our long-term analysis did not utilize the local data and thus has difficulties determining accurate absolute locations. We address this by using the hypocentral location of the 24 December 2011 earthquake from the local deployment of Kim [2013] as the absolute reference point and shift all hypodd results by the difference between Kim's location and our hypodd location for this event (about 1 km).

We determined local magnitudes through a simple Richter scale approach. For each station and component in our final templates, we calculated the median scale factor (Ao) using the S waveform amplitudes and catalog magnitudes for all 12 events reported by ODNR. For each matched event, we calculated a magnitude from the scale factor and S waveform amplitude at each station and component, and took the median value as our final magnitude.

3. Results
3.1. Template Matching
We found the optimal template to be three EarthScope USArray stations (N54A, M54A, O56A), such that our results are based on scanning templates from the inception of recording in November 2010 to the end of this study in February 2014. Although increasing the number of template earthquakes produced a similar diminishing return in number of matched events to that seen in Holtkamp et al. [in review], we decided to utilize all 12 ODNR detected events as templates. The correlation procedure finds 566 unique events once the template results are merged and duplicate matches from different templates are discarded. On average, each template found 236 events, while the earliest template found as many as 337 events, and the results of each were combined to form a single catalog of unique events. The earliest matched event occurred on 11 January 2011, 13 days after sustained injection began. Remarkably, our technique found 56 matched events before the first ODNR reported earthquake (M 2.1, 17 March 2011) in the series. Figure 2a shows the similar S waveforms at N54A for these first 56 matched earthquakes. Nearly all of these events were matched by the first ODRN reported earthquake template (54 of 56). This result underscores the importance of optimizing the template matching procedure such that it can be run in realtime when new events are recorded in the central and eastern US to help determine if a reported earthquake is part of a growing sequence or an isolated event.

As in Holtkamp et al. [in review], the number of earthquakes over time closely follows the injection history (Figure 3), with a gradual rate increase at the beginning of the sequence and an abrupt reduction in earthquake rate after injection ceased. As described in several previous studies of injection related seismicity [NAS, 2012; Ellsworth, 2013; Kim et al., 2013; Holtkamp et al., in review], we interpret that the fluids were injected into basement rocks with pre-existing faults/fractures that are consistent with the regional maximum horizontal stress, and the pore fluid pressure in the fault/fracture zones reduced the effective normal stress and allowed fault slip to occur.

Our catalog is consistent with the four phases defined by Holtkamp et al. [in review] based on injection history, seismicity rate, earthquake magnitudes, and waveform similarity. The initial phase begins soon after the initiation of commercial injection operations (28 December 2010), the second phase begins soon after injection pressures
are approved to exceed 2500 psi (3 May 2011), and the third phase begins soon after sustained daily injection volumes in excess of 2000 BBL (3 August 2011), ending 2 weeks after injection ended. We refer to all earthquakes after shut in as phase four, but note that earthquakes originating at some distance from the injection point will not respond to this shut in until the pore pressure “back front” (analogous to the pore pressure triggering front), arrives some discrete time later [Shapiro and Dinske, 2009]. The waveform shapes of the best matched events in our catalog help illustrate the main phases of the sequence (Figure 2b), although there are several events at the beginning of phase three that are more similar to those in phase two. We infer that the waveforms change shape as the source is moving to new locations over time, as analyzed in Section 3.2.

We note that the magnitude distribution of larger earthquakes during the different phases remains consistent with earlier studies, but our catalog provides more information regarding the lower end of the magnitude scale. To help characterize the magnitude distribution, we investigate the b-values obtained from the Gutenberg-Richter relationship between seismicity amounts and magnitudes. In most cases, b-values are expected to be ~1 as scale-invariant relationships are common in nature, but seismicity associated with fluid injection often have b-values < 1 [Lei et al., 2008; Bachmann et al., 2014], with the lowest b-values often observed during the largest injection rates. Figure 4a shows the magnitude-occurrence relationships for our catalog, with the roll-off indication our magnitude of completeness is approximately 0.9. Using events at this magnitude and above, we linearly fit the events resulting in a b-value of 0.82, which is consistent with previous studies of potentially induced seismicity with b-values less than 1. However, the relationship is clearly not linear with an apparent high b-value for lower magnitudes and a lower b-value for higher magnitudes. When we separate the catalog into the four phases (Figure 4b-e), the b-values are 1.33, 1.92, 0.67, and 0.73. During phases 1 and 2, more events smaller than M 1.5 occurred than expected during periods of normal seismicity. During phase 3, a similar relationship can be identified in these small events in addition to a large number of M 2+ events. After injection had ceased during phase 4, only events less than M 2 were recorded, albeit at a very similar b-value identified in phase 3.

The identified b-values during each phase are similar to some aspects of previous induced seismicity studies on fluid injection. Phases 1 and 2 in Youngstown demonstrate an increasing b-value and event rate that is not a common feature of induced seismicity, but this trend has been observed in China and Switzerland during early stages of injection marked by lower but increasing injection rate and fluid pressure [Lei et al., 2013; Bachmann et al., 2012]. While the increase is uncommon, we note that our maximum b-values in phase 2 are near to 2.0, a value reported for hydraulic fracturing [Maxwell et al. 2009; Wessels et al. 2011] suggesting this may have occurred during this phase in Youngstown. Our phase 3 shows a period of high injection rate, high event rate, and low but variable b-value, which is similar to later stages of injection for the two cases in China [Lei et al., 2008; 2013]. Our phase 4 corresponds to the period after injection, marked by a decreasing event rate and low/decreasing b-value, also seen in several previous cases.
3.2. Double Difference Relocation

Our initial estimates of the hypocenters for all of our matched events utilizing P and S times based on correlations to the best matching template are shown in Figure 5a. The cloud of seismicity has a radius ~5 km wide, but there is some clustering in an east-west oriented rectangle that is 3-4 km long in the center of the cloud. Application of double difference relocation refines the dataset, initially discarding ~100 airquakes with large uncertainties. We further limit the results by focusing on events that have horizontal and depth uncertainties less than 2 km and RMS residuals less than 0.35 sec for catalog and cross-correlation data. Figure 5b shows the remaining ~150 best located events define a linear streak that extends from near the well to ~800 m WSW with a strike of 265°. This strike is identical to that of the fault plane solution and both are consistent with the regional stress field and well basement fracture orientation [Kim, 2013; Holtkamp et al., in review]. A cross-sectional view of our relocated hypocenters shows the depths our focused in the Precambrian basement in the 3.5-4.0 km range (Figure 6), consistent with that of Kim [2013]. While the events form a nearly vertical feature, our relocated events show a ~85° dip to the north that is slightly different than the fault plane solution dip of 72 degrees to the north. Nevertheless, the hypocentral distribution, correlated waveforms, and determined focal mechanism indicate the many if not all events in the sequence are a series of left-lateral slips along a near vertical east-west oriented basement fault (or faults).

Events early in the sequence located very close to the Northstar 1 injection well (<100 m) and then gradually extend further away over time (Figure 5). Figure 7a shows the distances of relocated epicenters away from the well over time. A simple line fit to the relocated events indicates a migration velocity of 0.69 m/d, but this line does not intersect the well at time zero (when sustained injection began on December 22, 2010), suggesting that this approximation is too simple. Based on work in previous induced seismicity studies, we next consider a diffusion approximation by considering a point source of pore pressure perturbation from the injection. In an infinite, hydraulically homogeneous, and isotropic fluid-saturated medium, the triggering front \(r(t) \) has the following form [Shapiro et al., 1997]:

\[
\sqrt{4\pi D t}
\]

where \(t \) is the time from the injection start and \(D \) is the hydraulic diffusivity. Using the apparent migration front defined by the best located seismicity (black dots, Figure 7a), we searched for the optimal D value to minimizethe difference between the difference between the apparent front and \(r \). The best fitting diffusivity is 0.012 m²/s but the constant diffusivity does a poor job of fitting the shape of the migration front over time.

In October 2011, 74 m of sediment fill-up was identified in the Northstar 1 injection well [ODNR, 2012]. To account for the sediment clogging of the fault, we suggest that the rate of sediment fill-up is proportional to the rate of injection:

\[
\frac{dD}{dt} = -kD
\]

The diffusivity can then be expressed as an exponential function with time:

\[
D = ae^{-kt} + b
\]

where:

\[
D_0 = a + b, \quad D_\infty = b
\]
Considering that injection of large volumes continued until shut-in, the constant \((b)\) is necessary to avoid the diffusivity function going to \(0 \text{ m}^2/\text{s}\). A grid-search approach was used to find the optimal values of \(a\), \(b\), and \(k\) to minimize the misfit between the migration front and \(r\) using the decay function for diffusivity (Figure 7a). This estimate of the diffusivity that approximates the clogging of the well provides a significantly better fit to our observations. We also find that the decaying diffusivity over time from matching the earthquake migration front has a similar trend to the increasing daily average injection pressure (Figure 7b). Although it is not a unique explanation, we would expect that if diffusivity was decreasing over time, it would increase the rate at which pressure builds up in the injection well with a similar trend.

3.3. Earthquake Triggering
A recent study found several areas in the Midwestern US with suspected induced seismicity are also more susceptible to earthquake-triggering from natural transient stresses generated by the seismic waves of large remote earthquakes [van der Elst et al., 2013]. This study concluded that enhanced triggering susceptibility suggests the presence of critically loaded faults and potentially high fluid pressures. However, they found that triggering of Youngstown seismicity from the surface waves of the 7 April 2011 M 9.0 Tohoku earthquake was inconclusive. Since their study only used a single station to do template matching, our catalog of Youngstown seismicity is more extensive and can better examine seismicity rates over time (Figure 8a). Our catalog has 10 events in the 10 days before the Tohoku event and 24 events in the 10 days after the Tohoku earthquake (Figure 8b), similar to other cases of triggered seismicity cases [van der Elst et al., 2013]. We checked for a similar triggering trend associated with the 23 August 2011 M 5.8 Virginia earthquake but found no significant increase in the 10 days following that event, although there may be a slight increase in seismicity ~20 days after the event (Figure 8c). We note that there are some larger earthquakes following the Virginia event, but this trend begins just before the potential trigger occurs. The lack of prominent triggering suggests this process is not linearly related to seismic wave displacement considering the surface wave displacements are a factor of 5 larger for that event when they reach the Youngstown area. The largest earthquake to occur after injection stopped was the 11 April 2012 Indian Ocean earthquake sequence (M 8.6 and 8.2). While not quite as large as the Tohoku event, we found no matched events within 30 days of 11 April 2012, such that it does not appear triggering occurs after injection stopped. Our findings support the initial study that suggested triggering in induced seismic zones can be an indicator that fluid injection has brought the fault system to a critical state, which may no longer exist after injection is halted.

4. Conclusions
Creating an optimized correlation procedure was important to provide a more detailed study of the Youngstown sequence that can also be applied to study the large increase in earthquake activity in the U.S. midcontinent identified by Ellsworth [2013]. The ideal template matching parameters for the Youngstown sequence were determined by modifying the stations used, bandpass filter range, template length, and template start time. The resulting catalog from this routine is consistent with the sequence determined by Holtkamp et al. [in review], while also identifying hundreds of additional events. The
hypoDD results located the start of Youngstown sequence within 100 m of the Northstar 1 injection well which then gradually extended 500 m westward during 2011. We suggest that the earthquake migration front, which was observed to have a similar trend to the daily average injection pressures, could be influenced by decaying diffusivity over time. Our catalog provides new evidence for triggering from both the 2011 M 9.0 Tohoku indicating that injection has brought the fault to critical stress. A b-value of < 1 was observed for the entire sequence, consistent with other fluid induced seismicity studies. We also note that the abnormally high b-value of 1.92 during phase 2 is comparable to b-values obtained during hydraulic fracturing.
5. References

Ohio Department of Natural Resources (ODNR) (March 2012). Preliminary report on the Northstar 1 class II injection well and the seismic events in the Youngstown, Ohio, area, report, 23 pp., Columbus.

Figure 1. Map of the Youngstown, OH (star) region showing seismic stations locations, with all triangles used for double difference relocation and black triangles used for template matching.
Figure 2. Waveforms from matched events for N54A-BHE. (a) All events found before the first reported earthquake on March 17, 2011 in chronological order (number indicates day of 2011). (b) Events from throughout the entire sequence with the highest NNCCC, in chronological order. Red lines divide phases of the injection and earthquake sequence as defined by Holtkamp et al. [in review].
Figure 3. Magnitudes of all matched events over time (black dots), compared with cumulative injection volume (blue). Red lines divide phases of the injection and earthquake sequence as defined by Holtkamp et al. [in review].
Figure 4. Magnitude-occurrence relationships for (a) all matched events and (b-e) separate phases of the sequence. N/Ntot is the number of events at or above a given magnitude divided by the total number of events. b indicates the Gutenberg-Richter b-value for the distribution, where 1 is commonly observed for natural seismicity.
Figure 5. Map of epicenters determined from our analysis, colored by month of 2011 (white indicates 2012-2014). Cross indicates Northstar #1 injection well. (a) Epicenters determined using P and S times based on correlations to the best matching template. (b) Double-difference relocated hypocenters using a full matrix of cross-correlations for all events. Only events with low location uncertainty and RMS error are plotted. Absolute locations are based on the 24 Dec. 2011 earthquake (star) located with local data [Kim, 2013]. Focal mechanism is from the 31 Dec. 31 2011 M 4 earthquake [Kim, 2013]. Arrows show maximum compressive stress orientation (S_{Hmax}) [Mazzotti & Townend, 2010].
Figure 6. East-west (a) and north-south (b) cross-sections of the double-difference relocated seismicity. Absolute depths are based on the Dec 24, 2011 earthquake (star) located with local data [Kim, 2013], placing the events within the Precambrian basement. Horizontal lines mark key strata and the vertical line is the Northstar 1 injection well. Back hemisphere projection of the focal mechanism for the 31 Dec. 2011 M 4 earthquake shows a similar near-vertical dip between the fault plane and the seismicity. Horizontal exaggeration is 6.5x in (a), no exaggeration in (b).
Figure 7. Estimation of fluid diffusion based on earthquake migration. (a) Distance of relocated epicenters (grey) from the injection well over time. We use the events with the smallest uncertainties (black) to investigate potential fluid diffusion. Diffusion curves that include the decaying diffusivity due to sediment fill up (red) match the migration front better than those with a constant diffusion (green). Blue line indicates best fitting linear migration velocity (v), although a physical basis for this is unclear since it does not intersect the well location. (b) Apparent diffusivity from matching the earthquake migration front (line) follows the trend of reported daily average injection pressure (crosses).
Figure 8. Examination of the enhanced Youngstown earthquake catalog for evidence of triggering due to remote earthquakes similar to the study of van der Elst et al. [2013]. (a) Detected events with symbol size proportional to magnitude. Vertical lines indicate M 9.0 Tohoku earthquake on 7 April 2011 and the M 5.8 Virginia earthquake on 23 August 2011. Cumulative event counts are shown around the (b) 2011 Tohoku and (c) 2011 Virginia earthquakes.