ABSTRACT

THE UNDERLYING PROCESSES AS TO WHY THE FUNDAMENTAL ATTRIBUTION ERROR IS REDUCED IN CLOSE RELATIONSHIPS

by Sharin Palladino Green

Three competing explanations (three-stage model of attribution, the use of relationship specific schemas, and other-serving bias) for why the fundamental attribution error (FAE) is reduced in close relationships were examined. Experiment 1 found some support consistent with the three-stage model and the other-serving bias as explanations for the reduction of the FAE in close relationships. Experiment 2 examined the same variables but addressed a confound resulting from the use of different scenarios for different targets. Relationship satisfaction was also assessed in Experiment 2. Similar to Experiment 1, Experiment 2 found support for the other-serving bias. In addition, for those high in relationship satisfaction, dispositional ratings made for negative scenarios were significantly greater when the target was a stranger than when the target was a significant other. Implications of these findings are discussed.
THE UNDERLYING PROCESSES AS TO WHY THE FUNDAMENTAL
ATTRIBUTION ERROR IS REDUCED IN CLOSE RELATIONSHIPS

A Thesis

Submitted to the
Faculty of Miami University
in partial fulfillment of
the requirements of the degree of
Master of Arts
Department of Psychology
by
Sharin Palladino Green
Miami University
Oxford, Ohio
2003

Advisor ______________________
(Dr. Allen R. McConnell)

Reader ______________________
(Dr. Arthur G. Miller)

Reader ______________________
(Dr. Gary L. Stasser)
CONTENTS

INTRODUCTION ...1

METHOD FOR EXPERIMENT 1 ..9

 Participants ..9
 Procedure ...9
 Main Experiment ...9

RESULTS ..10

DISCUSSION ...13

METHOD FOR EXPERIMENT 2 ..16

 Participants ..16
 Procedure ...16
 Pre-testing of Scenarios ..16
 Main Experiment ...17

RESULTS ..18

DISCUSSION ...21

GENERAL DISCUSSION ...22

REFERENCES ...27

APPENDIX A ...35

APPENDIX B ...38
LIST OF TABLES AND FIGURES

TABLE

1. Attributional Ratings as a Function of Target, Scenario, and Load in Experiment 1
 ...30

2. Attributional Ratings as a Function of Target, Rating, and Scenario in Experiment 1
 ...31

3. Attributional Ratings as a Function of Target, Scenario, and Relationship Satisfaction in Experiment 2
 ...32

4. Attributional Ratings as a Function of Scenario, Rating, and Target in Experiment 2
 ...33

5. Attributional Ratings as a Function of Relationship Satisfaction, Scenario, Rating, and Target in Experiment 2
 ...34
The Underlying Processes as to Why the Fundamental Attribution Error Is Reduced in Close Relationships

The fundamental attribution error (FAE; Ross, 1977) or correspondence bias as it is referred to by some researchers (Gilbert & Malone, 1995) is an observation that an individual’s behavior reflects the individual’s disposition (e.g., attitudes, personality traits) instead of it being a response to environmental or situational factors (Gilbert & Malone, 1995). Because one cannot observe others’ beliefs, qualities, or motivations, they must be inferred from their behaviors. As Gilbert and Malone (1995) point out, such inferences can lead to misattributions when people assume that there is a direct relation between behavior and disposition.

The finding that individuals make dispositional attributions in circumstances that could be explained by situational factors is well documented (e.g., Gilbert, Pelham, & Krull, 1988; Ross, Amabile, & Steinmetz, 1977). A classic example of the FAE was reported by Jones and Harris (1967). Those authors observed that participants who read other students' essays supporting Fidel Castro perceived that the essays reflected the writer's true beliefs. These perceptions persisted even when the participants were told that the authors had no choice in essay topics. It is reasonable to assume that essays written by choice based on one's beliefs would reflect the opinion of the writer. However, the essays written without choice should not necessarily reflect the writer’s opinion, yet evaluators still made strong dispositional attributions for the author's behavior, indicating a belief that the essay was more of an expression of the writer’s beliefs about Castro than a result of situational pressures.
In attempt to explain why the FAE occurs, Gilbert proposed a three-stage model of attribution that argues attribution occurs in three steps: categorization, characterization, and correction (Gilbert, 1998; Gilbert et al., 1988). Categorization involves identifying the behavior or action that occurs. It is argued that this stage is relatively automatic, requiring little effort or attention on the part of the perceiver (Gilbert et al., 1988). Characterization is the process of making a dispositional or trait inference about an individual’s behavior, and it too requires few cognitive resources from the perceiver (Gilbert et al., 1988; Johnson, Jemmott, & Pettigrew, 1984; McArthur & Baron, 1983; cf., Gilbert & Hixon, 1991). The controlled aspect of the individual perception process, correction, involves more substantial cognitive resources as perceivers attempt to adjust their initial dispositional inference in order to account for external factors that may influence the target’s behavior. Gilbert et al. (1988) found that when perceivers had reduced cognitive resources, information about situational influences was known but not applied because correction requires cognitive resources. This is one of the leading explanations for the FAE (Gilbert, 1998; Johnson et al., 1984).

Several studies have shown that the FAE occurs in a variety of situations (e.g., Jones & Harris, 1967; Ross et al., 1977), however few studies have explored situations in which this phenomenon may not occur or have identified what processes other than having increased cognitive resources available might reduce it. One study comparing short-term and long-term close relationships and the actor-observer bias found that dispositional attributions decrease as the length of the relationship increases (Fiedler, Semin, Finkenauer, & Berkel, 1995). Another study found that as the level of familiarity between individuals increases, there is an increase in using situational attributions in
describing others (Prager & Cutler, 1990). Thus, this research suggests that individuals tend to make fewer dispositional attributions to the extent that they are interpersonally closer to the target.

The actor-observer bias, which commonly occurs in interactions with strangers, is the tendency for an actor to attribute one’s own behavior to situational causes rather than to one's disposition, whereas observers are more likely to attribute the same behavior to the disposition of the actor. The lack of information the observer has regarding the actor can produce this bias (Taylor & Koivumaki, 1976). Accordingly, in close relationships, the actor-observer bias is less likely to occur (Fiedler et al., 1995), presumably because knowledge of the actor’s behavior across various situations allows the observer to note situational variation in behavior. Consistent with this explanation, Prager and Cutler (1990) found an increase in situational attributions when describing familiar others, consistent with the ideas of Jones and Nisbett (1971) and the cross-situational exposure hypothesis (Heider, 1958). The cross-situational exposure hypothesis states that actors have information about their own behavior across a variety of instances necessary to explain their behavior in relation to situational or dispositional factors. The observer, on the other hand, does not have this information available about the actor. It is assumed that increases in exposure to an individual should increase the use of situational attributions by observers because of knowledge of the actor’s behavior across various situations.

Again, in research on the actor-observer bias, Taylor and Koivumaki (1976) found that observers were more likely to attribute positive actions to an actor’s disposition and negative behaviors to situational factors. These effects were seen more
strongly in the perception of friends and spouses than for strangers. Taylor and Koivumaki (1976) suggested that as the level of acquaintance increases, positive attributional orientations toward the individual increase as well. This conclusion is somewhat different from the idea that increased knowledge about the actor contributes to an increase in situational attributions (Prager & Cutler, 1990). Taylor and Koivumaki (1976) suggested that this tendency to make situational attributions is a result of increasingly positive attitudes toward others. They also found a general tendency to make positive evaluations for negative behavior, even for disliked acquaintances. They suggested that in evaluating a negative behavior, the initial tendency is to look for a situational cause, and if one is not found, the behavior will be attributed to the individual’s disposition. In addition, there was little evidence in support of the actor-observer bias, in that actors did not attribute their own behaviors to situational causes more strongly than they did for others’ behavior.

In addition, research looking at affectionate behavior in friendships found that individuals do not make the FAE in response to unexpected decreases in affection (e.g., communicating messages of distance or disinterest). According to Floyd and Voloudakis (1999), external attributions are likely made for unexpected decreases rather than unexpected increases in affectionate behavior. When individuals realize that there is a decrease in affection from another, they justify the others' behavior by utilizing a situational explanation to avoid feeling personally responsible for the change. This is a self-protective strategy because decreases in relationship affection often indicate a lack of interest of the other, which can be considered a threat to the relationship as well as to the self. Floyd and Voloudakis (1999) found that those perceiving a decrease in affection
opted for the most relationship-maintaining attribution, which were those that were situational. In addition, the level of intimacy in the friendship moderated these situational attributions. As the closeness within the relationship increases, situational attributions were more likely to explain negative behavior, especially for closer relationships where changes in affection were very threatening to the relationship (Floyd & Voloudakis, 1999).

The search for situational causes when making attributions occurs not only in friendships, but also in close relationships, specifically those involving significant others. Consistent with Taylor and Koivumaki (1976), studies have shown that in closer relationships, individuals tend to have more positive attitudes toward each other and therefore see close others as more responsible for desirable behaviors but as less responsible for undesirable behaviors. This type of other-serving attribution style of evaluating one’s romantic partner as more responsible for positive behaviors than the self and equally as responsible for negative behaviors as the self protects one’s positive views of the partner and of the relationship (Hall & Taylor, 1976).

Based on the research regarding the FAE and close relationships, there appears to be no unequivocal explanation for why the FAE does not occur as strongly in close relationships as it does with acquaintances or strangers. In addition, the processes leading to these differences are unclear. The three-stage model (Gilbert, 1998) has been widely used as a model to explain the FAE. However, for close relationships, this model seems insufficient in accounting for these situations. The results of previous studies show that situational attributions are more likely in close relationships (e.g., Floyd & Voloudakis, 1999; Prager & Cutler, 1990). However, Gilbert et al. (1988) argue that it is
rare for perceivers to correct for their dispositional attributions. If one attempts to use the three-stage model, there should be some additional assumptions to account for why the situational attributions are more likely to be made in close relationships. For example, perhaps the importance of close others increases the attentional resources expended by perceivers when forming attributions about them, leading to more frequent correction. However, one might argue that it would be difficult for perceivers to devote such resources to their close others at all times, suggesting that other mechanisms may be involved that account for the lower frequency of the occurrence of the FAE for close others.

One unique aspect of close relationship interactions is that they are likely to involve multiple observations of an individual’s behavior. These interactions allow the perceiver to take into account the behavior of a close other and the situational context of that person's behavior. Cognitions that are initially an aspect of controlled processing may become automatic with frequency of use and are likely to become a part of a well-rehearsed script (Fletcher & Fincham, 1991). Andersen and Cole (1990) note that the significant-other representations used to process information develop as a result of interpersonal relations and regular interactions and are often rich and cognitively accessible. Moreover, Andersen and Cole (1990) suggest that because so much information is represented within a significant-other category and it is accessed often due to multiple interactions, it has to be well organized to allow for quick access to its information. Information is categorized such that it is likely that the process of making attributions about the behavior of close others over time will require fewer cognitive resources by becoming automatic. This explanation does not fit Gilbert’s three-stage
model. Gilbert’s model suggests a three-stage process requiring automatic processing to evaluate the behavior and to make a dispositional inference, and then controlled processing to incorporate situational factors. According to Andersen and Cole (1990), information associated with multiple interactions involving content within a significant-other category should be automatically brought to mind because of its familiarity. This process should only require identifying the behavior and then taking situational factors into account based on this easily accessible information, which is in contrast to Gilbert’s model.

In situations in which a relationship is enduring, it is likely that schemas regarding that particular individual will develop as well as a script for expected patterns of interaction developed by repeated experiences. These scripts serve to help individuals navigate interactions with a significant other (Baldwin, 1992). Thus, it is possible that the perceiver learns over time how a close other will act in response to a variety of situations as more episodes accrue, and this processing of situational information becomes automatic. The concept of a script regarding relationship interaction is similar to Andersen and Cole (1990) in that it addresses the quick retrieval and organized categorization that can occur in close relationships.

In sum, evidence suggests that the FAE does not occur as often with close others as it does with acquaintances or strangers. However, moderating factors and its underlying processes are unclear. Several different processes might account for this phenomenon, and the current research will examine these possibilities. The three-stage model (Gilbert, 1998) predicts that correction is the necessary mechanism for avoiding the FAE. Thus, individuals making attributions regarding close others in comparison to
strangers should use relatively greater cognitive resources because of their extensive use of the correction process. However, if individuals are under cognitive load and cannot put forth the effort required for the correction process, then these individuals should reveal the FAE for close others. In contrast, if situation-rich relationship specific schemas exist, cognitive load should not exacerbate the FAE. In this case, there should be little need to correct attributions because their schemas should incorporate a great deal of situational content, leading to attributions that are not strongly dispositional even under conditions where cognitive resources are low. In addition, if individuals are induced to use controlled thinking, they may be more likely to consider dispositional causes for behavior that require the consideration of information not contained in their schema. Therefore, if context-rich schemas do play a role (e.g., Baldwin, 1992), perceivers should automatically situationalize but if induced to expend more effort, they may consider more information and focus on dispositional factors in their attributions.

The other-serving attribution bias offers a different perspective for why the FAE may not occur in close relationships. When considering positive behaviors performed by a significant other, it is likely that the perceiver would be motivated to dispositionalize such behaviors in order to see significant others in a positive light. However, for negative behaviors, the perceiver would be motivated to take into account situational factors in order to maintain a positive view of the significant other. This would suggest that perceivers approach positive and negative behaviors differently for their close other. It could be that the FAE occurs only for positive events with close others, but that perceivers situationalize attributions for negative events. In sum, this study examined the three-stage model, the other-serving bias, and the use of significant other schemas to
determine which explanation or combination of explanations can account for decreases in
the FAE in close relationships.

Experiment 1: An Initial Demonstration

Method

Participants

Participants were 133 students enrolled in the introductory psychology courses at
Miami University. Participation was in partial fulfillment of a class requirement.

Procedure

After arriving at the lab, participants completed a consent form and were
randomly assigned to one of two experimental conditions. Each participant was seated at
a computer station and completed the tasks individually.

Main Experiment

Similar to Taylor and Koivumaki (1976), participants read 20 scenarios that
involved either positive (e.g., helping a classmate with a difficult assignment) or negative
(e.g., a stranger behaving in a rude manner) interactions that were established based on
pretesting either about a stranger or a significant other (see Appendix A for scenarios).
For each scenario, the participant rated how strongly the behavior reflected the situation
or characteristics of the individual on separate scales ranging from 1 (does not reflect) to
9 (entirely reflects). Before providing their ratings, the scenario was removed from the
computer screen so that it could not be used for reference during the attribution
judgments.

Gilbert (1998) suggested that the correction process requires cognitive resources.
In order to manipulate participant's cognitive resources, a cognitive load task similar to
Gilbert and Osborne (1989) was used, with half of the participants remembering a difficult number (e.g., 59107382) and the rest remembering an easy number (e.g., 17) to induce high and low cognitive load, respectively. After reading each scenario and providing attributional ratings, participants were asked to recall the number they had been asked to remember for that scenario. Participants were given a new number to remember for the next scenario to ensure that cognitive load was maintained throughout the experiment. Thus, the experimental design was a 2 (Cognitive load: low vs. high) X 2 (Scenario valence: positive vs. negative) X 2 (Target: stranger vs. significant other) X 2 (Rating: situational vs. dispositional) mixed factorial, with the latter three factors within subjects.

Results

If the three-stage model explains the FAE in close relationships, the importance of close others should increase the attentional resources expended by perceivers when forming attributions about them, leading to greater situationalization. Therefore, if Gilbert's model is correct, a target by load by rating effect should occur, showing a decrease in the FAE when making attributions about a significant other under low cognitive load but not under greater load. This result should occur regardless of whether the scenario involves a positive or negative event. The other-serving bias would suggest that perceivers approach positive and negative behaviors differently for close others relative to strangers. Thus, support for the other-serving bias would be evident in a valence by target by rating effect, showing a decrease in the FAE (i.e., relatively greater situationalization than dispositionalizing) when making attributions about negative events involving a significant other relative to strangers but showing the FAE when making
attributions about positive events involving a significant other. Finally, if context-rich schemas play a role, perceivers should automatically situationalize if given a scenario involving a significant other, and results should show a target by load by rating effect displaying a decrease in the FAE for those individuals under high cognitive load when making attributions about a significant other. In other words, these findings would run counter to what one would expect based upon the three-stage model, revealing that schemas automatically allow for situational attributions, but when other information is taken into account as it could be under low cognitive load, dispositional attributions may be relatively more likely for close relationships.

A manipulation check was conducted to determine if the high cognitive load task was more difficult than the low cognitive load task. The proportion of correct recall for the load digits reported by participants was calculated, and recall for participants in the high cognitive load condition ($M=0.38$) was significantly poorer than recall for participants in the low cognitive load condition ($M=0.90$), $t(132)=15.21$, $p<.0001$. Thus, it appears that the digit memory task was more difficult in the high load condition than in the low load condition, as expected.

A 2 (Cognitive load: low vs. high) X 2 (Scenario valence: positive vs. negative) X 2 (Target: stranger vs. significant other) X 2 (Rating: situational vs. dispositional) mixed factorial analysis of variance (ANOVA) examining attributional ratings revealed a significant main effect for valence, with mean attributional ratings overall being significantly greater for positive ($M=6.67$) than for negative scenarios ($M=6.16$), $F(1, 131)=65.42$, $p<.0001$. In addition, there was a significant main effect for rating, indicating greater dispositional ratings ($M=6.85$) than situational attribution ratings.
These data are consistent with the FAE (e.g., a stronger emphasis on dispositional factors than situational factors). However, the main effect for valence was qualified by an interaction with target, $F(1,131)=11.22, p<.005$. Further analyses examining the simple effect of target revealed significantly different attributional ratings only when the scenario was negative, $F(1,131)=13.57, p<.0001$, with greater overall attributional ratings for strangers ($M=6.28$) than for significant others ($M=6.04$). In addition, analyses revealed a significant target by rating interaction $F(1,131)=39.26, p<.0001$. A simple effect of target revealed a significant difference between situational ratings, $F(1,131)=14.82, p<.0001$, with ratings of significant others ($M=6.12$) being greater than those made about strangers ($M=5.84$). In addition, a significant difference was also evident between dispositional ratings, $F(1,131)=33.17, p<.0001$, with significantly greater dispositional ratings made about a stranger ($M=7.04$) than a significant other ($M=6.65$).

The target by rating interaction was qualified by a three-way interaction with load $F(1,131)=7.55, p<.01$, and these means are presented in Table 1. Thus, cognitive load by target ANOVAs were conducted separately for situational and dispositional ratings. For situational ratings, the target by load interaction was not significant, $F(1,131)=2.00, ns$. For dispositional ratings, the target by load interaction was significant, $F(1,131)=7.99, p<.005$. Simple main effect analyses revealed that dispositional ratings were greater for strangers than for significant others under low cognitive load $F(1,131)=37.14, p<.0001$, ($M_{\text{stranger}}=7.11$, $M_{\text{s.o}}=6.53$), and under high cognitive load, $F(1,131)=4.27, p<.05$ ($M_{\text{stranger}}=6.98$, $M_{\text{s.o}}=6.78$). However, the significant target by load interaction showed
that the effect of making greater dispositional attributions about a stranger compared to a
significant other was much stronger under low cognitive load.

Finally, the valence and rating main effects were qualified by a target by valence
by rating three-way interaction, $F(1, 131)=43.15, p < .0001$, and these means are reported
in Table 2. Follow-up analyses of the target by rating interaction were conducted
separately for positive and negative scenarios, respectively. The follow-up target by
rating ANOVA interaction for positive scenarios was not significant $F(1,132)=.84$, ns,
but it was significant for negative scenarios $F(1,132)=61.09$, $p < .0001$. Simple main
effect analyses revealed significantly greater situational ratings when the target was a
significant other ($M=6.02$) than a stranger ($M=5.51$), $F(1,132)=20.37$, $p < .0001$. Conversely, simple main effect analyses showed significantly greater dispositional
ratings when the target was a stranger ($M=7.04$) than a significant other ($M=6.06$),
$F(1,132)=71.04$, $p < .0001$.

Discussion

Three different explanations were compared to test accounts for why the FAE is reduced
in close relationships. In support of the three-stage model, the FAE was stronger under
low cognitive load than under high cognitive load, suggesting that available cognitive
resources allowed for some correction. Support for the other-serving bias was evident as
situational ratings for negative scenarios were significantly greater when a significant
other was the target, whereas dispositional ratings were greater for strangers, suggesting a
bias to see one's significant other in a relatively favorable light when associated with a
negative scenario. Finally, no support for the schema explanation was found, as
attributions were strongly dispositional, even under conditions of low cognitive
resources. Perceivers did not appear to automatically situationalize, as the schemas explanation would suggest. It is possible that participants in the current experiment did not already have schemas for the particular scenarios presented. However, development of the scenarios was based on the most frequently mentioned events from pretest participants, which would suggest that schemas might exist relating to such events. Although encouraging, the results of Experiment 1 should be interpreted with caution because one confound is that different scenarios were used for significant others and for strangers. The development of new scenarios is necessary because it is unclear whether the target effect is a result of actual target differences or of the different scenarios used for those targets. It should be noted, however, that interactions involving load indicate that the availability of processing resources did affect the nature of the attributions rendered by participants. The design of Experiment 2 replicated Experiment 1 featuring a 2 (Cognitive load: low vs. high) X 2 (Scenario valence: positive vs. negative) X 2 (Target: stranger vs. significant other) X 2 (Rating: situational vs. dispositional) mixed factorial, with the latter three factors being within-subjects. Again, a comparison of the three-stage model, the other serving bias, and relationship-specific schemas was conducted, with the focus of the experiment being to replicate the results of Experiment 1 utilizing scenarios presented for both target types while eliminating the confound that specific scenarios may have been responsible for the effects observed in Experiment 1.

Experiment 2 also explored an additional variable that could influence the types of attributions made about a significant other, satisfaction with the relationship. Therefore, in addition to the scenario modifications for Experiment 2, relationship satisfaction was assessed. Whereas the majority of research has focused on attributions
and relationship satisfaction in marriages, it may play a role in attributions of close relationships as well. Weiss (1980) suggested that spouses develop general feelings regarding a significant other and in turn utilize these feelings when evaluating marital events. Applying this concept to attributions suggests that individuals happy with their relationships will make attributions for negative events in the relationship to situational factors and attributions for positive events to the significant other's personal characteristics. Jacobson, McDonald, Follette, and Berley (1985) found that those in distressed marriages were likely to attribute a significant other's negative behavior more internally whereas those in non-distressed marriages would attribute positive behaviors internally. Finally, research examining attributions in dating relationships found that when couples had been dating for less time as well as during times of instability in the relationship, individuals devote more cognitive resources trying to analyze and or understand their relationships. (Fletcher, Fincham, Cramer, & Heron, 1987). Overall, this research suggests that relationship satisfaction could play a role in the types of attributions made in close relationships as well as the amount of cognitive processing utilized when making these attributions. Thus, it was predicted that greater relationship satisfaction could contribute to increases in the FAE. Specifically, those greater in relationship satisfaction should be more likely to commit the FAE when the scenario is positive because of a desire to view a significant other in a positive light. In sum, identical scenarios for each target and a relationship satisfaction questionnaire will be added to Experiment 2.
Experiment 2: Follow-up

Method

Participants

Participants were 95 students enrolled in the introductory psychology courses at Miami University. The data for 9 participants was discarded because they did not follow directions. Participation was in partial fulfillment of a class requirement.

Procedure

After arriving at the lab, participants completed a consent form and a relationship satisfaction questionnaire (Rusbult, Martz, & Agnew, 1998). The relationship satisfaction questionnaire included 5 statements (e.g., "My relationship is much better than others' relationships"). Participants responded indicating their agreement with each statement on a scale ranging from 0 (Don't Agree At All) to 8 (Agree Completely). The reliability for this scale was good (Cronbach’s alpha = .94). A median split was performed on the data in order to identify participants as relatively high or low in relationship satisfaction. Next, participants were randomly assigned within a 2 (Load: low vs. high) by 2 (Counterbalancing: participant completed attributions first for a significant other vs. completed attributions first for a stranger) factorial design. Each participant was seated at a separate computer station and completed the tasks individually.

Pre-testing of scenarios

In order to address the confound of different scenarios for significant others and strangers that existed in Experiment 1, new scenarios as well as modified scenarios used
in Experiment 1 were pre-tested with 37 undergraduates (none of whom participated in the primary session). In the first pre-testing session, participants read 10 scenarios visualizing either their significant other or a stranger (counterbalanced) as the target first. Participants completed a word search task as a filler activity before responding to the same scenarios for the second target. Participants rated how positive (1 = not positive at all; 9 = very positive) and how negative (1 = not negative at all; 9 = very negative) each scenario was. Paired t-tests were conducted to compare the responses as a function of target (i.e., significant other versus a stranger). Seven of the 10 scenarios did not reliably differ in their positivity or negativity as a function of target, and they were used in Experiment 2 (see Appendix B). Modifications were made to the three remaining scenarios and 25 additional participants completed the identical task using only the three scenarios that were significantly different. Two of the three scenarios were not significantly different, and they were used in Experiment 2. Thus, Experiment 2 consisted of 4 negative scenarios and 5 positive scenarios to be used twice (once associated with a significant other and once associated with a stranger target).

Main Experiment

As in Experiment 1, a method similar to Taylor and Koivumaki (1976) was used to examine the other-serving bias. In this instance, participants read 9 scenarios that involved either positive (e.g., getting assistance with a difficult assignment) or negative (e.g., target behaving in a rude manner) interactions. Participants read these scenarios and provided their ratings for two targets, a stranger or a significant other (at different times), with intervening tasks in between the two periods. Based on random assignment, they either first provided ratings on these scenarios for either a significant other or for a
stranger. Afterwards, they completed a 5-8 min word search task that served as a filler task so that responses for the second target (i.e., the one not rated initially) were not influenced by their responses for the previous target in these identical scenarios. The content of the word search involved a search for the names of the 50 U.S. states.

As in Experiment 1, for each scenario and target, the participant was asked to rate how strongly the behavior reflected the situation or characteristics of the individual on separate scales ranging from 1 (does not reflect) to 9 (entirely reflects). The order of questions was counterbalanced. Identical to Experiment 1, cognitive load was manipulated by having half of the participants remembering a difficult number (e.g., 59107382) to induce high cognitive load and the rest remembering an easy number (e.g., 17) to induce low cognitive load. The remainder of the procedure followed that of Experiment 1.

Results

A manipulation check was conducted to determine if the high cognitive load task was more difficult than the low cognitive load task. The proportion of correct recall for participants in the high cognitive load condition ($M=.68$) was significantly poorer than recall for participants in the low cognitive load condition ($M=.97$), $t(85)=10.33$, $p<.0001$. Thus, it appears that the digit memory task was more difficult in the high load condition than in the low load condition, as expected.

A 2 (Cognitive load: low vs. high) X 2 (Relationship satisfaction: high vs. low) X 2 (Scenario valence: positive vs. negative) X 2 (Target: stranger vs. significant other) X 2 (Rating: situational vs. dispositional) mixed factorial ANOVA was conducted on the data, with the latter three factors being within-subjects. The data revealed a significant
main effect for valence, with mean attributional ratings overall being significantly greater for positive ($M=6.78$) than for negative scenarios ($M=5.28$), $F(1,82)=88.87$, $p<.0001$. A significant main effect of target was also found, indicating significantly greater mean attributional ratings for strangers ($M=6.14$) than for significant others ($M=5.92$), $F(1,82)=4.23$, $p<.05$. In addition, there was a significant main effect for rating, indicating greater dispositional ratings ($M=6.66$) than situational attribution ratings ($M=5.40$), $F(1,82)=48.29$, $p<.0001$, which is consistent with the FAE (e.g., a stronger emphasis on dispositional factors than situational factors) and mirror Experiment 1.

The main effect for valence was qualified by an interaction with target, $F(1,82)=50.21$, $p<.0001$. Further analyses examining the simple effect of target revealed significantly different attributional ratings when the scenario was positive, $F(1,82)=8.13$, $p<.005$, with greater overall attributional ratings for significant others ($M=6.96$) than for strangers ($M=6.59$). However, when the scenario was negative, there were greater overall attributional ratings for strangers ($M=5.68$) than for significant others ($M=4.89$), $F(1,82)=32.76$, $p<.0001$. In addition, analyses revealed a significant target by rating interaction, $F(1,82)=21.38$, $p<.0001$. A simple effect of target revealed a significant difference between dispositional ratings, $F(1,82)=19.73$, $p<.0001$, with ratings of strangers ($M=6.96$) being greater than those made about significant others ($M=6.36$).

A three-way target by valence by relationship satisfaction interaction was also found, $F(1,82)=6.54$, $p<.05$, and the means are presented in Table 3. Follow-up analyses of the target by relationship satisfaction interaction were conducted separately for positive and negative scenarios. The follow-up target by relationship satisfaction ANOVA was not significant for negative scenarios, $F(1,82)=1.06$, ns, but was significant
for positive scenarios, $F(1,82)=4.68, p<.05$. Simple main effect analyses revealed significantly greater overall ratings for those high in relationship satisfaction when the target was a significant other ($M=7.13$) than a stranger ($M=6.49$), $F(1,82)=13.16$, $p<.0001$.

The valence and rating main effects were qualified by a target by valence by rating three-way interaction, $F(1,82)=7.66, p<.01$, and means are presented in Table 4. Follow-up analyses of the target by rating interaction were conducted separately for positive and negative scenarios. The target by rating ANOVA for positive scenarios was not significant, $F(1,82)=1.27$, ns, but it was significant for negative scenarios, $F(1,82)=20.70, p<.0001$. For negative scenarios, simple main effect analyses showed significantly greater dispositional ratings when the target was a stranger ($M=6.63$) than a significant other ($M=5.19$), $F(1,82)=41.74, p<.0001$.

One result to note in relation to relationship satisfaction was the marginal 4-way interaction between target, valence, rating, and relationship satisfaction $F(1,82)=3.37, p<.07$, and these means are presented in Table 5. Further analyses were conducted examining the valence by rating by target interaction separately for high and low relationship satisfaction. The three-way ANOVA for low relationship satisfaction was not significant $F(1,40)=.53, ns$, but was significant for high relationship satisfaction, $F(1,44)=8.78, p<.01$. Further analyses were conducted looking at the target by rating interaction separately for positive and negative scenarios. The two-way ANOVA was not significant for positive scenarios, $F(1,44)=.003, ns$, but it was significant for negative scenarios, $F(1,44)=15.39, p<.001$. Specifically for those high in relationship satisfaction, dispositional ratings made for negative scenarios when the target was a
stranger were significantly greater than dispositional ratings made for a significant other. Thus, the FAE was more prevalent for those high in relationship satisfaction when making attributions about a stranger than for a significant other.

Discussion

As with Experiment 1, three different explanations, the three-stage model, other-serving bias, and schemas were compared in order to determine which explanation best accounts for why the FAE is reduced in close relationships. In this study, the confound of different scenarios for each target was eliminated in order to determine that any target effects were the result of the actual target rather than of the scenarios themselves. Of the three explanations, the other-serving bias was the only one that received support. Specifically, for negative scenarios, dispositional ratings were greater for strangers, suggesting a bias to view a significant other in a more positive light than strangers, which replicated Experiment 1. In addition, the variable of relationship satisfaction offered clarification for the other-serving bias, with the data suggesting greater dispositional ratings for strangers than for significant others about negative events was made specifically by those satisfied with their relationship. These results indicate perceivers do approach positive and negative behaviors differently for close others than for strangers, specifically favoring close others. Thus, it appears that the FAE does not occur when it is advantageous to focus on situational factors, specifically when the event is negative, whereas the FAE does occur when it is advantageous to focus on dispositional factors as when the event is positive.
General Discussion

Experiment 1 revealed some support for the three-stage model, showing that the FAE was stronger under low cognitive load than under high cognitive load. The other-serving bias was also supported, showing greater situational ratings for significant others and greater dispositional ratings for strangers when events were negative. Although only one major modification was made for Experiment 2, namely using the same scenarios for both target types, Experiment 2 revealed no support for the three-stage model. In fact, the load effect was not observed. Manipulation checks indicated that the high load condition was more difficult than the low load condition, suggesting the manipulation was effective. However, it did not play a role in the findings of Experiment 2.

However, similar to Experiment 1, Experiment 2 supported the other-serving bias. As with Experiment 1, it appears that when considering positive behaviors performed by a significant other or a stranger, perceivers were equally likely to dispositionalize such behaviors in order to see both targets in a positive light. In contrast, for negative behaviors, the perceiver seemed motivated to use situational explanations to maintain a positive view of the significant other. However, the FAE was quite strong for negative events involving strangers. In addition, relationship satisfaction played a moderating role in attributions made about one's significant other. Specifically for negative scenarios, greater dispositional ratings for strangers than for significant others were made for those higher in relationship satisfaction. The results of both studies suggest that the other-serving bias is a consistent explanation for why the FAE is less likely to occur in close relationships specifically for negative events.
The FAE suggests that behavior is attributed to one's disposition rather than to situational factors. It is interesting to see how these three explanations, the three-stage model, the other serving bias, and relationship schemas, might explain the existing data. Although Gilbert's three-stage model is the most widely used explanation for the FAE, this theory does not take into account two important factors that were addressed in this study, namely the valence of events and relationship status. Although Gilbert's suggestion that correction and available cognitive resources are critical in reducing to avoiding the FAE, these two experiments suggest that cognitive load was not a prominent determinant of whether the FAE occurred. Results from the current work suggest that the three-stage model does not adequately address the importance of the valence of behaviors. However, because load was a significant factor in Experiment 1, future research should examine why the load effect varied between experiments as well as whether load is in fact an important factor in the types of attributions made.

In contrast, the other-serving bias explanation suggesting that individuals are motivated to dispositionalize positive behaviors and to situationalize negative behaviors for important others was supported. Much of the research in support of this theory take into account the two factors that were important to this research, the valence of behavior and the importance of the relationship. The research supports Taylor and Koivumaki's (1976) suggestion that people attribute positive actions to dispositional factors and negative actions to situational factors, especially for people known to the perceiver. Similar to Hall and Taylor (1976), the current research supports the notion that for attributions made in close relationships, individuals tend to see close others as less responsible for undesirable behaviors. This research suggests that the FAE does in fact
occur for strangers for both positive and negative events, whereas for significant others, the FAE occurs for positive events, but is significantly reduced for negative events.

The current work also addressed a factor prevalent in research on married couples, relationship satisfaction (see Jacobson et al., 1985; Weiss, 1980). However, this current research emphasized the importance of relationship satisfaction in dating relationships. For example, Jacobson et al. (1985) found that individuals in distressed marriages were likely to attribute negative behaviors to dispositional factors, whereas those in non-distressed marriages attributed positive behaviors to dispositional factors. This pattern held for dating couples in the current study, specifically for those high in relationship satisfaction presumably because those individuals were motivated to maintain positive views in negative circumstances. It is likely that individuals satisfied with their relationships are motivated to maintain these positive views of their significant other in order to maintain relationship satisfaction as well as relationship stability, and to do so, the significant other must be portrayed in the most positive light possible. This being the case, Gilbert's three-stage model might suggest that cognitive resources used for correction of initially dispositional attributions do occur as the theory posits, but only for negative events. Correction might be distorted for positive events because the perceiver might devote cognitive resources to either devaluing any situational factors or focusing on other dispositional factors that might not immediately come to mind. Future research should continue to examine relationship satisfaction in populations other than married couples because it appears that the results of studies examining married couples can be generalized to other important populations.
There are some limitations to these studies that should be noted. Although the confound of different scenarios for different targets was removed from Experiment 2, the scenarios that were utilized in the experiments were events that could be applied to both targets. Thus, the scenarios involved day-to-day events that might occur rather than events specifically geared toward each type of individual. That might represent behaviors that are more common for each type of target. Future studies would benefit from methods that would allow for more detailed and ecological scenarios to be used. In addition, future research should examine other relationship factors that may play a role in attributions, such as length of relationship. Research in this area may determine at what stage in a relationship this other-serving bias towards a significant other develops. Also, with any study conducted using a college population, the generalizability of these findings may not apply to all romantic relationships (e.g., casual dating, long-term marriages). Future research should attempt to examine this issue in other populations. Finally, the current situations involved only judgments about the target in isolation from the self. For example, it is an open question as to whether a perceiver whose significant other performed a negative act that had serious implications for the perceiver would be afforded such positive biases in attributions. If one's romantic partner's negative behaviors had detrimental consequences for the self, self-serving attributions may dominate other-serving attributions.

In sum, research has devoted much attention to examining the occurrence of the FAE in a variety of situations. However, the current work offers an important contribution to our knowledge because it not only examines situations in which the FAE does not occur, but it also examines how one's relationship to an individual plays a
meaningful role in attributions, two areas not previously studied. It is clear from the current findings that taking into account factors that researchers have not extensively explored with the FAE such as valence and relationship satisfaction is very important. Future research can use these findings as a starting point from which to examine other factors that may play a role in the reduction of the FAE.
References

Ross, L. (1977). The intuitive psychologist and his shortcomings: Distortions in the

Table 1

Attributional Ratings as a Function of Target, Rating, and Load in Experiment 1

<table>
<thead>
<tr>
<th>Rating</th>
<th>Load</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stranger</td>
</tr>
<tr>
<td>Situational</td>
<td>High</td>
<td>5.95</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>5.72</td>
</tr>
<tr>
<td>Dispositional</td>
<td>High</td>
<td>6.98</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>7.11</td>
</tr>
</tbody>
</table>
Table 2

Attributional Ratings as a Function of Target, Rating, and Scenario in Experiment 1

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rating</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stranger</td>
</tr>
<tr>
<td>Positive</td>
<td>Situational</td>
<td>6.15</td>
</tr>
<tr>
<td></td>
<td>Dispositional</td>
<td>7.05</td>
</tr>
<tr>
<td>Negative</td>
<td>Situational</td>
<td>5.51</td>
</tr>
<tr>
<td></td>
<td>Dispositional</td>
<td>7.04</td>
</tr>
</tbody>
</table>
Table 3

Attributional Ratings as a Function of Target, Scenario, and Relationship Satisfaction in Experiment 2

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rel. Sat.</th>
<th>Target</th>
<th>Stranger</th>
<th>Significant Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>High</td>
<td>6.49</td>
<td>7.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>6.70</td>
<td>6.79</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>High</td>
<td>5.70</td>
<td>4.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>5.67</td>
<td>5.02</td>
<td></td>
</tr>
</tbody>
</table>
Table 4

Attributional Ratings as a Function of Scenario, Rating, and Target in Experiment 2

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rating</th>
<th>Target</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stranger</td>
<td>Significant Other</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>Situational</td>
<td>5.90</td>
<td>6.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispositional</td>
<td>7.29</td>
<td>7.53</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>Situational</td>
<td>4.73</td>
<td>4.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispositional</td>
<td>6.63</td>
<td>5.19</td>
<td></td>
</tr>
</tbody>
</table>
Table 5

Attributional Ratings as a Function of Relationship Satisfaction, Scenario, Rating, and Target in Experiment 2

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Rating</th>
<th>Target</th>
<th>Stranger</th>
<th>Significant Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Satisfaction</td>
<td></td>
<td>Stranger</td>
<td>5.67</td>
<td>6.31</td>
</tr>
<tr>
<td>Positive</td>
<td>Situational</td>
<td>6.14</td>
<td>6.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispositional</td>
<td>7.31</td>
<td>7.95</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>Situational</td>
<td>4.71</td>
<td>4.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispositional</td>
<td>6.67</td>
<td>4.87</td>
<td></td>
</tr>
<tr>
<td>Low Satisfaction</td>
<td></td>
<td>Stranger</td>
<td>4.75</td>
<td>4.52</td>
</tr>
<tr>
<td>Positive</td>
<td>Situational</td>
<td>4.75</td>
<td>4.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dispositional</td>
<td>6.59</td>
<td>5.52</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A

1) Typically you are just one of the gang when you are around ___________'s friends. On a weekend evening with the group, __________ acts affectionate towards you, even with friends around. __________ shows no signs of embarrassment in displaying this affection.

2) You and __________ are attending a formal dance. __________ is stunned at how nice you look and compliments you throughout the entire evening.

3) Both you and ______________ , extremely busy with school and extracurricular activities, rarely see each other. ______________ had plans with friends, but __________ cancelled them in order to spend some time with you.

4) It's cold and flu season again, and you cannot avoid it. ____________ comes to check on you, gets your assignments for class, and basically nurses you back to health. ____________ shows little concern about catching the illness while caring for you.

5) ____________ went out of town for the weekend with friends, but promised to call as soon as the group returned Sunday afternoon. Sunday afternoon turned to evening and then late night until you finally fall asleep wondering why __________ had not called as promised. __________ finally calls Monday.

6) You and ______________ plan to meet at your place at 7pm. 7, 7:15, and 7:30 pass and ______________ still has not shown up or called you to let you know about the delay. At 7:45 __________ finally arrives.
7) You have been looking forward to attending an event with _____________. Not realizing your interest in attending, _____________ makes plans to go with a friend instead of you.

8) You and _____________ spend the weekend together. _____________ seems unhappy and shows little interest in spending time with you. When you ask _____________ what is wrong, you get no information.

9) You and _____________ attend a party together. Later you see _____________ having a lively conversation with someone of the opposite sex whom you do not recognize.

10) You and _____________ cannot decide where to get a bite to eat. What starts out as a discussion turns into a petty argument over who makes the majority of the decisions in your relationship.

11) You are walking out of the library with a handful of books. The person in front of you holds the door open for you.

12) You have one class that has been a struggle for you all semester. Noticing that you are having difficulty with the latest homework assignment, a classmate whom you've never spoken with offers to assist. As a result, you end up with a much needed A on that particular assignment.

13) You need to catch a quick bite at the Bell Tower between classes, and apparently everyone else has the same idea because there is no place to sit. As you search for a seat, someone you've seen around campus but never spoken to motions you over to the table and offers you a seat.

14) As it starts to rain while you are walking to class, you realize that you forgot your umbrella and will be soaked by the time you get to your class across campus. A
person whom you've never met asks where you are headed and offers to share an umbrella with you.

15) You're taking a class outside you major and know no one in your classes. It appears that it will be a long semester. The person sitting next to you notices you and strikes up a conversation.

16) You and your friends are chatting with some people from school. Two individuals whom you have never seen before walk by you and begin whispering and laughing, pointing directly at you.

17) Attempting to get a decent parking space, you see a car backing out and race to that parking space. Another driver sees you racing towards the parking space and cuts you off, taking the parking space you felt was rightfully yours.

18) Your professor divides your class into groups for a discussion about the new material. Your group needs to think of ideas applying this new concept. Feeling as if you have some good suggestions, you share them with your group. One individual in the group insults your ideas.

19) You had what you thought was a good conversation with a person in one of your classes. The next day of class, you approach that individual and ask about the weekend. The person ignores you and walks away to go chat with another person.

20) You have to make a visit to the Campus Avenue Building to take care of a bill. The individual working the desk is rude to you and does not answer your questions.
Appendix B

1) Walking to class, you drop a folder full of papers and ______________ helps you pick them up.

2) You are walking out of the library with a handful of books and __________ holds the door open for you.

3) You have one class that has been a struggle for you all semester. Noticing you are having difficulty with the latest homework assignment, ______________ offers to assist.

4) As it starts to rain while you are walking to class, you realize that you forgot your umbrella and will be soaked by the time you get to your class across campus. You run into ____________, who offers to share an umbrella with you.

5) In need of a beverage before class, you put your money into the drink machine only to have the machine eat your money and give you nothing in return. __________ offers you money.

6) Your professor divides your class into groups for a discussion about the new material. Your group needs to think of ideas applying this new concept. You share some ideas with the group and ______________ insults them.

7) As you are walking to class, you trip and fall on an uneven part of the sidewalk, and ____________ laughs at you.

8) You are in the library trying to use some new equipment for a class presentation, and you are getting very frustrated with the equipment and ______________ laughs at your incompetence on the equipment.
9) After a lively discussion in one of your classes, you overhear _________ making a sarcastic remark about one of your clever comments in class.

10) You arrive to class just in time for your first exam only to realize you forgot your calculator. Noticing your distress, _________ laughs and jokes about how it will be next to impossible to pass the test without a calculator.