A Robust Numerical Method for a Singularly Perturbed Nonlinear Initial Value Problem

A thesis submitted to the
Kent State University Honors College
in partial fulfillment of the requirements
for University Honors

by
Jacob Adkins

December, 2017
Thesis written by

Jacob Adkins

Approved by

Advisor

Chair, Department of Mathematics

Accepted by

Dean, Honors College

ii
TABLE OF CONTENTS

LIST OF FIGURES..iv

LIST OF TABLES...v

PREFACE OR ACKNOWLEDGMENT..vi

THESIS

I. Introduction...1

II. Analysis of the Continuous Solution...3

 Definition 2.1...3

 Lemma 2.2...3

 Definition 2.3...4

 Lemma 2.4...4

 Lemma 2.5...4

 Lemma 2.6...5

 Lemma 2.7...5

 Lemma 2.8...5

 Lemma 2.9...6

 Theorem 2.10...8

III. Preliminary Numerical Experiments...9
IV. A Robust Numerical Method..11

Theorem 4.1...11

V. Final Numerical Experiments...12

References..15

APPENDIX

1. Python - Backward Euler on Shishkin Mesh :: $O(n)$..............16

2. C++ - Backward Euler on Uniform Mesh :: $O(n)$...................20
LIST OF FIGURES

Figure 1. Existence of x_0 Implies Existence of \tilde{x} ..3
LIST OF TABLES

Table 1. Linear Forward Euler Results ...10

Table 2. Linear Backward Euler Results Generated by the Code in Appendix B .10

Table 3. Backward Euler Results for (15) on Shishkin Mesh with Parameters
 \(w = a_* = \omega = 1, j = \frac{n}{2} \) ...11

Table 4. Backward Euler Results for (17) on Shishkin Mesh with Parameters
 \(w = \omega = 1, j = \frac{n}{2} \) ..12

Table 5. Backward Euler Results for (17) on Shishkin Mesh with Parameters
 \(w = a_* = \frac{1}{e}, j = \frac{n}{2} \) ..13

Table 6. Backward Euler Results for (17) on Shishkin Mesh with Parameters
 \(w = \omega = 1, j = \left\lfloor \frac{3n}{4} \right\rfloor \) ...13

Table 7. Backward Euler Results for (17) on Shishkin Mesh with Parameters
 \(w = a_* = \frac{1}{e}, j = \left\lfloor \frac{3n}{4} \right\rfloor \) ...13
ACKNOWLEDGMENTS

Thank you to the effort and coordination of Dr. Relja Vulanovic over the last year. This would not have come together without his help and guidance. I would also like to express my gratitude to the thesis defense committee, Dr. Heaphy, Dr. Guercio, Dr. Gro, and Dr. Vulanovic. Additional thanks to those whom have supported me in my undergraduate career, Dr. Guercio, Dr. Barb, and Dr. Ruff.
1 Introduction

Ordinary Differential Equations (ODEs) are used as mathematical models for many different phenomena in various fields of study. Civil engineers use them to describe the bending and reflection of beams. Nuclear engineers apply them when studying diffusion of neutrons in an atomic pile to produce nuclear energy [1].

Suppose we want to know how a quantity of some medium changes in relation to time (for example, the concentration of carbon dioxide in an enclosed space). This type of problem can be solved using an ODE, which allows us to predict the quantity in the future, knowing its value now and knowing that its rate of change depends on the current quantity. The present value of the quantity is also called an initial value and this is why the whole problem is an Initial Value Problem (IVP). An IVP consists of a differential equation and an initial value (the value of the quantity at the beginning of our observations). IVPs are commonly introduced in relation to simple harmonic motion or oscillation in physics. Moreover, the well-known Laplace’s Equation has applications in electricity, potential theory, gravitation, and aerodynamics - extending to rocket flight [2].

If the differential equation contains a small positive parameter, \(\varepsilon \ll 1 \), multiplying the highest derivative in the equation, it is known as a singularly perturbed differential equation. In this thesis, I consider a singularly perturbed IVP,

\[
\varepsilon u' + a(x, u) = 0, \quad x \in (0,1), \quad u(0) = u_0,
\]

where \(a \) is a sufficiently smooth function satisfying

\[
a_u(x, u) \geq a_* > 0, \quad x \in [0,1], \quad u \in \mathbb{R},
\]

with some constant \(a_* \). Singularly perturbed IVPs have applications in the study of vibrations, chemical reactions, and electrical circuits [3].

The problem in (1) is to find a \(C^1[0,1] \)-solution \(u \) which satisfies both the given ODE and initial value. Conventionally, there does not exist an analytic method to solve this problem due to the generality of \(a(x, u) \) [2]. In fact, only for specific functions will a deterministic algorithm exist. For this reason, a numerical method is required [3]. Moreover, solutions of singularly perturbed differential equations change abruptly on narrow intervals called layers. Because of layers, standard
numerical procedures are ineffective and special methods need to be used. The crucial result of the thesis is the construction of one such special numerical method, namely, the backward Euler scheme [4] on a modified Shishkin Mesh [5]. This will improve the result from [4] along the lines of [5].
2 Analysis of the Continuous Solution

We show that (1) satisfies the Maximum Principle [6] by first examining the linear case. Consider the linear differential operator
\[L[u] = \varepsilon u' + \tilde{a}(x)u. \]

Definition 2.1 We say that \(L \) satisfies the maximum principle if \(L[u] \geq 0 \) on \([0, 1]\) and \(u(0) \geq 0 \) imply that \(u \geq 0 \) on \([0, 1]\).

Lemma 2.2 If \(\tilde{a}(x) \geq 0 \) for \(x \in [0, 1] \), then \(L \) satisfies the maximum principle.

Proof: For \(u \in C^1[0, 1] \), assume \(L[u] \geq 0 \) on \((0, 1)\) and \(u(0) \geq 0 \), but there exists a point \(x_* \in [0, 1] \) such that \(u(x_*) < 0 \). This implies there exists a point \(\tilde{x} \) such that \(u'(\tilde{x}) < 0 \), and \(u(\tilde{x}) < 0 \). See Figure 1. Then
\[L[u](\tilde{x}) = \varepsilon u'(\tilde{x}) + \tilde{a}(\tilde{x})u(\tilde{x}) < 0, \]

which is a contradiction, and \(L \) satisfies the Maximum Principle.

![Figure 1: Existence of \(x_* \) implies existence of \(\tilde{x} \).](image)

Consider now the non-linear differential operator \(T[u] = \varepsilon u' + a(x, u) \).
Definition 2.3 We say that T satisfies the maximum principle if

\[T[u_1] \geq T[u_2] \text{ on } [0,1] \text{ and } u_1(0) \geq u_2(0) \]

imply $u_1 \geq u_2$ on $[0,1]$.

Lemma 2.4 If $a_u(x,u) \geq 0$ for $x \in [0,1]$ and $u \in \mathbb{R}$ then T satisfies the maximum principle.

Proof: Consider $T[u_1] - T[u_2]$. We have

\[T[u_1] - T[u_2] = \varepsilon u_1' + a(x,u_1) - \varepsilon u_2' - a(x,u_2) = \varepsilon(u_1 - u_2)' + a(x,u_1) - a(x,u_2). \]

Since

\[a(x,u_1) - a(x,u_2) = \left(\int_0^1 a_u(x, su_1(x) + (1-s)u_2(x)) ds \right) (u_1 - u_2) \]

by the integral form of the Mean Value Theorem, we define

\[y = u_1 - u_2 \text{ and } L[y] = \varepsilon y' + \left(\int_0^1 a_u(x, su_1(x) + (1-s)u_2(x)) ds \right) y. \]

Because of Lemma 2.2 we have that L satisfies the maximum principle and, moreover, $L[y] = T[u_1] - T[u_2]$. Therefore if we assume (3), we have

\[L[y] \geq 0, \text{ and } y(0) \geq 0, \]

which implies $y \geq 0$, that is, $u_1 \geq u_2$.

Lemma 2.5 Assume (2). Then there exists a constant C_1 such that $C_1 \geq u(x)$, $x \in [0,1]$.

Proof: By Lemma 2.2,

\[T[C_1] = \varepsilon C_1' + a(x,C_1) = a(x,C_1). \]

Assume $C_1 > 0$. Now there exists a point $\theta \in (0,C_1)$ such that

\[a(x,C_1) = a(x,0) + (C_1 - 0)a_u(x,\theta) \geq \alpha + C_1 \alpha. \]
where $\alpha = \min_{x \in [0, 1]} a(x, 0)$. Choosing C_1 sufficiently large, such that

$$T[C_1] \geq \alpha + C_1 a_* \geq T[u] = 0,$$

we have $C_1 \geq u(x)$ by Lemma 2.4.

Lemma 2.6 Assume (2). Then there exists a constant C_2 such that $C_2 \leq u(x)$, $x \in [0, 1]$.

Proof: By Lemma 2.2,

$$T[C_2] = \varepsilon C'_2 + a(x, C_2) = a(x, C_2).$$

Assume $C_2 \leq 0$. Now there exists a point $\theta \in (0, 1)$ such that

$$a(x, C_2) = a(x, 0) + (C_2 - 0)a_u(x, \theta) \leq \beta + C_2 a_*,$$

where $\beta = \max_{x \in [0, 1]} a(x, 0)$. Choosing C_2 sufficiently small, such that

$$T[C_2] \leq \beta + C_2 a_* \leq T[u] = 0,$$

we have $C_2 \leq u(x)$ by Lemma 2.4.

Lemma 2.7 Assume (2). There exists a C^* such that $|u(x)| \leq C^*$, $x \in [0, 1]$.

Proof: $C^* := \max \{-C_2, C_1\}$ with C_1 and C_2 like in Lemmas 2.5 and 2.6, respectively.

From now on, let C denote a generic positive constant which is independent of ε. Let also

$$A(x) := \int_0^x a_u(t, u(t)) \, dt.$$

Lemma 2.8 The solution u of the initial-value problem (2) satisfies

$$|u^{(i)}(x)| \leq C \left[1 + \varepsilon^{-i} e^{-A(x)/\varepsilon} \right], \quad i = 1, 2, \quad x \in [0, 1]. \quad (4)$$

Proof: We have from (1) that $u' = -\varepsilon^{-1} a(x, u)$ on $[0, 1]$. Then because of Lemma 2.7, it holds true
that $|u'(x)| \leq C\varepsilon^{-1}, x \in [0, 1]$. Also, on differentiating (1), we get

$$-\varepsilon u'' - a_u(x, u)u' = a_x(x, u).$$

(5)

When (5) is solved for u'', it follows that $|u''(x)| \leq C\varepsilon^{-2}, x \in [0, 1]$. In particular, we have

$$|u^{(i)}(0)| \leq C\varepsilon^{-i}, \ i = 1, 2.$$

(6)

Since $a_u(x, u) \geq a_* > 0$, the equation (5) has the same structure as the second-order problem considered in [7]. Because of this fact and the estimates in (6), the proof of (4) follows like in the proof of Theorem 1 in [7].

Since $A(x)$ depends on the unknown solution u, the estimates in (4) cannot be used in practice. Instead, the following can be derived from (4):

$$|u^{(i)}(x)| \leq C(1 + \varepsilon^{-i}e^{-a_*x/\varepsilon}), \ i = 1, 2, \ x \in [0, 1].$$

(7)

We now define

$$\tilde{\omega} = \min_{x \in [0, 1]} a_u(0, u(x)).$$

(8)

and prove the following lemma, which is a new result in this thesis. The proof technique is based on [5].

Lemma 2.9 The solution u of the initial-value problem (1) satisfies

$$|u^{(i)}(x)| \leq C\left[1 + \varepsilon^{-i}e^{-\tilde{\omega}x/\varepsilon}\right], \ i = 1, 2, \ x \in [0, 1].$$

(9)

Proof: Since in $[0, 1]$ there exists a point ξ such that

$$a_u(x, u(x)) = a_u(0, u(x)) + xa_{xu}(\xi, u(x))$$

we have,

$$a_u(x, u(x)) \geq \tilde{\omega} - \omega_1x, \ x \in [0, 1],$$

(10)
where ω_1 is a non-negative constant satisfying

$$a_{xu}(\xi, u(x)) \geq -\omega_1, \quad x \in [0, 1].$$

From (10) we get the following lower bound on A:

$$A(x) \geq \tilde{\omega} x - \frac{1}{2} \omega_1 x^2, \quad x \in [0, 1],$$

which implies that

$$A(x) \geq \tilde{\omega} x - \frac{1}{2} \omega_1 \varepsilon, \quad x \in [0, \sqrt{\varepsilon}].$$

This combined with (4) gives

$$|u^{(i)}(x)| \leq C(1 + \varepsilon^{-i} e^{-\tilde{\omega} x / \varepsilon + \omega_1 / 2}), \quad i = 1, 2, \quad x \in [0, \sqrt{\varepsilon}].$$

It follows from here that

$$|u^{(i)}(x)| \leq C(1 + \varepsilon^{-i} e^{-\tilde{\omega} x / \varepsilon}), \quad i = 1, 2, \quad x \in [0, \sqrt{\varepsilon}]. \quad (11)$$

When $x \in [\sqrt{\varepsilon}, 1]$ we get from (7) that

$$|u^{(i)}(x)| \leq C(1 + \varepsilon^{-i} e^{-a_x \varepsilon / \varepsilon}) \leq C, \quad i = 1, 2.$$

Thus,

$$|u^{(i)}(x)| \leq C \leq C(1 + \varepsilon^{-i} e^{-\tilde{\omega} x / \varepsilon}), \quad i = 1, 2, \quad x \in [\sqrt{\varepsilon}, 1].$$

Combining this with (11), we obtain (9).

Note that $\tilde{\omega}$ is defined in (8) in terms of a solution we do not know and as such, it is not known in general; therefore, it would be more practical to use (9) with ω replacing $\tilde{\omega}$, where

$$\omega := \min_{|y| \leq C^*} a_{u_0}(0, y). \quad (12)$$

However $\omega \leq \tilde{\omega} \Rightarrow -\tilde{\omega} \leq -\omega$, which leads to the following theorem.
Theorem 2.10 The solution u of the problem (1) satisfies the following estimates:

$$|u^{(i)}(x)| \leq C(1 + \varepsilon^{-i}e^{-\omega x/\varepsilon}), \quad i = 1, 2, \quad x \in [0, 1].$$ \hfill (13)

The estimates in (7) and (13) show that u has a layer of order $O(-\varepsilon \ln \varepsilon)$ at $x = 0$. In the layer, the derivatives of u grow without bounds as ε decreases. Since $\omega \geq a_*$, the estimates in (13) may be sharper than in (7). This will enable an improvement of the Shishkin mesh, resulting in a more accurate numerical solution.
3 Preliminary Numerical Experiments

Traditional numerical methods such as the Euler methods employ some step size used for iteration through the domain of the function. Here we use step size $h = \frac{1}{n}$ of a uniform mesh. Let $x_i = ih, i = 0, 1, ..., n$. Employing the Forward Euler Method for (1), we get

$$\varepsilon \frac{y_{i+1} - y_i}{h} + a(x_i, y_i) = 0, \quad i = 0, 1, ..., n - 1, \quad y_0 = u_0.$$

Solving for y_{i+1},

$$y_{i+1} = y_i - \frac{h}{\varepsilon} a(x_i, y_i).$$

Similarly, for the Backward Euler Method, (1) yields,

$$\varepsilon \frac{y_{i+1} - y_i}{h} + a(x_{i+1}, y_{i+1}) = 0, \quad i = 0, 1, ..., n - 1, \quad y_0 = u_0.$$

If linear, we have $a(x, u) = \tilde{a}(x)u + \tilde{b}(x)$. Then solving for y_{i+1} we get,

$$y_{i+1} = \frac{\varepsilon y_i - h\tilde{b}(x_{i+1})}{\varepsilon + h\tilde{a}(x_{i+1})}. \quad (14)$$

The above Forward and Backward Euler methods on a uniform mesh are traditional numerical methods for solving initial-value problems. We now illustrate that they are non-uniform in ε by applying them to the problem

$$\varepsilon u' + u + \tilde{b}(x) = 0, \quad x \in (0, 1), \quad u(0) = 10, \quad (15)$$

with solution

$$u = 10(1 + e^{-x/\varepsilon}) - (10 + x)e^{-x}, \quad (16)$$

which determines $\tilde{b}(x)$ as

$$\tilde{b}(x) = [10 + x - \varepsilon(9 + x)]e^{-x} - 10.$$

The results are given in Table 1 which shows the maximum absolute errors at the mesh points, x_i, calculated using the exact solution.

This shows the Forward Euler method cannot yield satisfactory results in ε because they are
not stable uniformly in \(\varepsilon \), [3]. Additionally, the Backward Euler method, while stable in \(\varepsilon \), has non-uniform errors on an equidistant mesh; see Table 2. Thus, a special discretization mesh, like Shishkin’s, is needed [4].
4 A Robust Numerical Method

To stabilize the results, and address the uniformity issues which arise when the Backward Euler formula to (15), we apply the Shishkin Mesh. The Shishkin Mesh is composed of two uniform meshes, a fine mesh in the layer between zero and the transition point, τ, and a crude mesh outside of the layer. We determine the step size in the fine mesh as τ/j, and as $H = \frac{1-\tau}{n-j}$ in the crude mesh. τ is determined by

$$\tau = \frac{1}{w} \varepsilon \ln(n),$$

where w is either a_ε, based on (7), or ω, based on (13). We assume that $\tau < \frac{1}{2}$ since otherwise, n is unreasonably large. Refer to (14): we use

$$h = \frac{\tau}{j} \text{ for } i = 0, 1, ..., j$$

and

$$h = H \text{ for } i = j, j + 1, ..., n.$$

The Shishkin mesh makes Backward Euler errors uniform in ε. The following can be proved.

Theorem 4.1 The Backward Euler method (14) on a Shishkin mesh gives errors

$$|u(x_i) - y_i| \leq C \frac{\ln(n)}{n}, \quad i = 1, 2, ..., n,$$

where the constant C is not only independent of ε, but also of n.

Proof: Refer to [4], [5], and [7].
5 Final Numerical Experiments

Remark, all tables in this section were generated using the code found in Appendix A. We first examine the method with the previous test problem (15) with parameters \(w = a_* = \omega = 1, j = \frac{n}{2} \).

Table 3: Backward Euler Results for (15) on Shishkin Mesh with parameters \(w = a_* = \omega = 1, j = \frac{n}{2} \)

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(n = 10)</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02725</td>
<td>0.01399</td>
<td>0.00709</td>
<td>0.00357</td>
<td>0.00179</td>
</tr>
<tr>
<td>0.1</td>
<td>0.69761</td>
<td>0.48149</td>
<td>0.31066</td>
<td>0.19016</td>
<td>0.11058</td>
</tr>
<tr>
<td>0.01</td>
<td>0.70682</td>
<td>0.48879</td>
<td>0.31505</td>
<td>0.19266</td>
<td>0.11369</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>0.70691</td>
<td>0.48879</td>
<td>0.31510</td>
<td>0.19269</td>
<td>0.11371</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>0.70691</td>
<td>0.48879</td>
<td>0.31510</td>
<td>0.19269</td>
<td>0.11371</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>0.70691</td>
<td>0.48879</td>
<td>0.31510</td>
<td>0.19269</td>
<td>0.11371</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>0.70691</td>
<td>0.48879</td>
<td>0.31510</td>
<td>0.19269</td>
<td>0.11371</td>
</tr>
</tbody>
</table>

We now examine the method with a new problem (17) in which \(\omega > a_* \).

\[\varepsilon u' + e^{-x} u = 0, \quad x \in (0,1), \quad u(0) = 1, \quad (17) \]

with solution

\[u = e^{\frac{1}{\varepsilon}(e^{-x} - 1)}. \]

Now \(\tilde{a}(x) = e^{1/x} \) and \(\tilde{b}(x) = 0 \) since (17) is linear, and we have \(a(x,u) = \tilde{a}(x)u \). Therefore, \(\omega = 1 \) by (12), and \(a_* = \frac{1}{\varepsilon} \) by (2). Table 2 shows the results with parameters \(w = \omega = 1, j = \frac{n}{2} \).

Table 4: Backward Euler Results for (17) on Shishkin Mesh with parameters \(w = \omega = 1, j = \frac{n}{2} \)

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(n = 10)</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02669</td>
<td>0.01375</td>
<td>0.00697</td>
<td>0.00351</td>
<td>0.00176</td>
</tr>
<tr>
<td>0.1</td>
<td>0.07428</td>
<td>0.05150</td>
<td>0.03315</td>
<td>0.02025</td>
<td>0.01177</td>
</tr>
<tr>
<td>0.01</td>
<td>0.07104</td>
<td>0.04913</td>
<td>0.03167</td>
<td>0.01936</td>
<td>0.01142</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>0.07072</td>
<td>0.04890</td>
<td>0.03152</td>
<td>0.01927</td>
<td>0.01137</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>0.07069</td>
<td>0.04888</td>
<td>0.03151</td>
<td>0.01927</td>
<td>0.01137</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>0.07069</td>
<td>0.04887</td>
<td>0.03151</td>
<td>0.01926</td>
<td>0.01137</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>0.07069</td>
<td>0.04887</td>
<td>0.03151</td>
<td>0.01926</td>
<td>0.01137</td>
</tr>
</tbody>
</table>

Juxtapose these results with the errors given by the same method on (17) with parameters \(w = a_* = \frac{1}{\varepsilon}, j = \frac{n}{2} \). See Table 5.
Table 5: Backward Euler Results for (17) on Shishkin Mesh with parameters \(w = a_* = 1, j = \frac{n}{2}\)

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(n = 10)</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.02669</td>
<td>.01375</td>
<td>.00697</td>
<td>.00351</td>
<td>.00176</td>
</tr>
<tr>
<td>.1</td>
<td>.13886</td>
<td>.08047</td>
<td>.04385</td>
<td>.02298</td>
<td>.01177</td>
</tr>
<tr>
<td>.01</td>
<td>.15895</td>
<td>.10877</td>
<td>.07714</td>
<td>.04890</td>
<td>.02979</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>.15818</td>
<td>.10828</td>
<td>.07679</td>
<td>.04867</td>
<td>.02965</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>.15810</td>
<td>.10823</td>
<td>.07676</td>
<td>.04865</td>
<td>.02964</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>.15810</td>
<td>.10823</td>
<td>.07676</td>
<td>.04865</td>
<td>.02964</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>.15810</td>
<td>.10823</td>
<td>.07676</td>
<td>.04865</td>
<td>.02964</td>
</tr>
</tbody>
</table>

Also, compare the results of Table 4 to those in Table 6 which were obtained by choosing \(j = \lceil \frac{3n}{4} \rceil\). This makes the mesh denser in the layer.

Table 6: Backward Euler Results for (17) on Shishkin Mesh with parameters \(w = \omega = 1, j = \lceil \frac{3n}{4} \rceil\)

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(n = 10)</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.02634</td>
<td>.01443</td>
<td>.00754</td>
<td>.00351</td>
<td>.00194</td>
</tr>
<tr>
<td>.1</td>
<td>.04983</td>
<td>.03568</td>
<td>.02261</td>
<td>.00385</td>
<td>.00791</td>
</tr>
<tr>
<td>.01</td>
<td>.04757</td>
<td>.03412</td>
<td>.02162</td>
<td>.01370</td>
<td>.00768</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>.04735</td>
<td>.03396</td>
<td>.02152</td>
<td>.01310</td>
<td>.00764</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>.04733</td>
<td>.03395</td>
<td>.02151</td>
<td>.01304</td>
<td>.00764</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>.04733</td>
<td>.03395</td>
<td>.02151</td>
<td>.01304</td>
<td>.00764</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>.04733</td>
<td>.03395</td>
<td>.02151</td>
<td>.01304</td>
<td>.00764</td>
</tr>
</tbody>
</table>

Finally, the results with parameters \(w = a_* = \frac{1}{\varepsilon}, j = \lceil \frac{3n}{4} \rceil\) See Table 7.

Table 7: Backward Euler Results for (17) on Shishkin Mesh with parameters \(w = a_* = \frac{1}{\varepsilon}, j = \lceil \frac{3n}{4} \rceil\)

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(n = 10)</th>
<th>20</th>
<th>40</th>
<th>80</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.02634</td>
<td>.01443</td>
<td>.00754</td>
<td>.00385</td>
<td>.00194</td>
</tr>
<tr>
<td>.1</td>
<td>.09727</td>
<td>.05675</td>
<td>.03015</td>
<td>.01557</td>
<td>.00194</td>
</tr>
<tr>
<td>.01</td>
<td>.10632</td>
<td>.08285</td>
<td>.05440</td>
<td>.03392</td>
<td>.00791</td>
</tr>
<tr>
<td>(10^{-3})</td>
<td>.10570</td>
<td>.08248</td>
<td>.05416</td>
<td>.03377</td>
<td>.02020</td>
</tr>
<tr>
<td>(10^{-4})</td>
<td>.10564</td>
<td>.08244</td>
<td>.05413</td>
<td>.03375</td>
<td>.02019</td>
</tr>
<tr>
<td>(10^{-5})</td>
<td>.10563</td>
<td>.08243</td>
<td>.05413</td>
<td>.03375</td>
<td>.02019</td>
</tr>
<tr>
<td>(10^{-6})</td>
<td>.10563</td>
<td>.08243</td>
<td>.05413</td>
<td>.03375</td>
<td>.02019</td>
</tr>
</tbody>
</table>
These results show that the error is uniform in ε for the Backward Euler method on a Shishkin mesh. This can be observed in the fact that as ε decreases, the errors remain the same. Remark this is not the case on the uniform mesh; see Table 2. At the same time, we can see that the errors decrease when n increases which agrees with Theorem 4.1.

To improve the results on the Shishkin mesh I changed the density of the mesh in the layer. I did this by increasing the number of mesh steps j in the layer, and by choosing the greater value for the parameter w. The latter was possible to do in the second test problem (17). In particular, Table 6 contains the smallest errors, and this is where the mesh is the most dense in the layer. Thus we have improvement of the result in [4] along the lines of [5].

The improvements of the Shishkin mesh were enabled by the results from Lemma 2.9 and Theorem 2.10. These results are the new contribution of the thesis.
References

Appendix A Python - Backward Euler on Shishkin Mesh ::

\[O(N) \]

```python
import sys
from math import log, exp, ceil

#Initialize Global Variables
eps = 10.0;
EPS_ORDER = 7;

#Lexical Function Declarations
def u(current_x):  #Continuous solution to the Problem
    return exp((1/eps)*(exp(-current_x) - 1));

def til_a(x):
    return exp(-x);

def til_b(x):
    return 0;
```

def main():
 #Declare Global Variables
 global eps;
 global EPS_ORDER;

 #Declare / Define local variables
 #N - total number of steps in the Shishkin Mesh
 x0 = 0.0; # initial x value
 y0 = 1.0; # initial y value
 x = 1.0; # width (x)
 err = 0.0; # measures Maximum Absolute Error for each iteration
 w = 1.0/exp(1);
 #J - Compare to j;
 #y - numerical solution
 #h - step size in the fine mesh
 #tau - Transition point
 #H - step size in the crude mesh

 N = int(input('N: '));

 J = ceil(3*N/4.0);

 for i in range(0, EPS_ORDER): # loop for modifying algorithm params
 eps = eps / 10.0;
 print("Epsillon: "+str(eps));

 tau = min(0.5, (1.0 * eps / w)*log(N));

 H = (1 - tau) / (N-J);
h = tau/J;

for j in range(1, N): # move through the mesh steps

 if j <= J: #if x0 <= tau: # determine which mesh we are in
 active_mesh_step = h;
 else:
 active_mesh_step = H;

 # calculate the numerical solution
 y = (eps * y0 - (active_mesh_step * til_b(x0 + active_mesh_step)))/(eps + (til_a(x0 + active_mesh_step)));

 # calculate the error
 err = max(err, abs(y - u(x0 + active_mesh_step)));

 y0 = y;
 x0 = x0 + active_mesh_step;

#Report Progress
if j == N - 1:
 print("Maximum Error: %.20f" % err);
 print('');

#Reset Parameters
err = 0.0;
x0 = 0.0;
y0 = 1.0;
return 0;

if __name__ == "__main__":
main()
Appendix B C++ - Backward Euler on a Uniform Mesh ::

\[O(N) \]

#include <iostream>
#include <iomanip>
#include <algorithm>
#include <fstream>
using namespace std;

double u(double x);

double eps = .1;
const int EPS_ORDER = 0;

int main()
{

 int n; //number of mesh steps
 double x0, y0, x, y, h; //variables used in calculation of numerical solution
 double error = 0;
 ofstream out;
 out.open("out.txt"); //output document

 //Fix output and report it to output document
 out.setf(ios::fixed);
 out << "Enter the initial values of x and y respectively: 0 10\n"; //Initial values
 x0 = 0; y0 = 10;
 out << "Width of interval: 1" << endl;
 x = 1;
 cout << "Enter the width of the sub-interval: ";
 cin >> h;
out << "x" << setw(19) << "y" << setw(19) << "Error" << endl;
out << "--\n";

//Loop to modify parameters
for (int i = 0; i <= EPS_ORDER; i++) {
 //Initalize epsilon
 eps /= 10;
 out << "Epsilon: " << eps << endl;

 //while(x0<x)
 while (fabs(x - x0) > 0.0000001) //move through algorithm
 {
 //calculate numerical solution
 y = (eps / (eps + h))*y0 - (h / (eps + h))*
 (-10 - exp(-(x0 + h))*(eps*(9 + (x0 + h))
 - (10 + (x0 + h))));

 //calculate error
 error = max(error, abs(y - u(x0+h)));

 y0 = y; //pass this new y as y0 in the next iteration.
 x0 = x0 + h; //calculate new x.

 //report progress
 out << u(x0 + h) << endl;
 }
}
out.precision(20);
out << "Error: " << error << endl;
out << "Step: " << h << endl << endl;

//reset
error = 0;
x0 = 0;
y0 = 10;
}
system("PAUSE");
return 0;
}
double u(double x)
{
 return 10 * (1 + exp(-x / eps)) - (10 + x)*exp(-x);
}