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Chapter 1

Introduction

In recent years, quantum phase transitions (QPTs) that occur at zero temper-

ature when a non-thermal parameter is varied, have become an attractive research

field in condensed matter physics [7]. In particular, the study of magnetic QPTs

in strongly correlated electron systems where a magnetic ordered phase can be con-

tinuously suppressed and finally destroyed at the quantum critical point (QCP) by

varying pressure, chemical compositions, or magnetic field has been recognized as

a promising route to unravel unconventional properties and find novel phases [7].

At low temperatures, quantum fluctuations accompanying magnetic QCPs compete

with thermal fluctuations, and these quantum critical fluctuations can explain the

unconventional properties in the neighborhood of conventional phases.

A normal metal can be described as a weakly interacting gas of Fermi particles

called quasiparticles with a finite lifetime close to the Fermi energy, commonly known

as Fermi liquid (FL) as first postulated by Landau [8]. Close to a magnetic QCP sig-

nificant deviations called Non-Fermi liquid (NFL) properties are expected. Landau’s

FL picture has been successful in describing a wide range of systems including heavy

fermion compounds (HFC), where the Coulomb interaction in the localized f-electron

shells leads to a large renormalized effective masses of 100− 1000 electron masses [9].

These HFCs show NFL signatures when driven to a magnetic instability. For exam-

ple, unusual power laws in resistivity have been seen in CePd2Si2, CeCu2Ge2, and

CeIn3 close to an antiferromagnetic (AFM) QCP when sufficiently high pressure is
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applied [10]. These systems also exhibit superconductivity at very low temperatures

close to magnetic QCP. New phases, such as superconductivity, avoiding a QCP with

diverging critical fluctuations are common in HFC. While quantum critical fluctua-

tions have been studied in antiferromagnetic systems [9], evidence for a ferromagnetic

(FM) QCP remains scarce [11,12]. The existence of a FM QCP was even questioned

since it is often avoided in clean materials by undergoing a first order transition. Since

most HFCs show AFM order, weak FM d-metals with low transition temperature TC

were studied. For example, clean ferromagnets like MnSi [13] and ZrZn2 [14] show

first order transition as the QCP is approached by pressure. It is now understood

that a “clean” FM QCP is unstable towards either a first order phase transition or

other inhomogeneous magnetic phases [12]. But any amount of disorder can change

the QPT and even lead to a stable FM QCP.

It is recognized that disorder plays a crucial role for QPT. Different theories clas-

sify the significance of disorder and predict the critical behavior [15]. Also a number of

theories with distinct origins have been proposed to explain the observed NFL behav-

ior in various systems [10]. Often the origin of NFL behavior is not straightforward

since a combination of mechanisms could be responsible for the unusual properties,

like a nearby magnetic phase, a local mechanism (such as multichannel Kondo ef-

fect) [16] or distribution of Kondo temperatures [17]. “Disorder” is unavoidable in

real samples. Some defects are always present and often inhomogeneities are intro-

duced through the convenient tuning parameter of chemical substitution to change

the relevant interaction. It is, therefore, vital to systematically study systems which

qualify for a disordered QPT to understand the origin of unconventional behavior [15].

A systematic study of d- and f-metals with controlled disorder is highly desirable
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to test simple models and to explore further the suppression of FM in a metal. While

FM d-metals are common (e.g. Ni, Fe, Co), FM f-metals in particular FM HFCs are

rather rare. Recently, more examples were found, also chemical dilution series that

show a QPT (e.g. URu2−xRexSi2 [18], CePt1−xRhx [19]) have been discovered.

FM alloys that are driven to a QPT by chemical substitution are good candidates

to probe a scenario of disordered QCP. Chemical substitution does not only change

the interaction among electrons, it also introduces inhomogeneities. But, it remains

often unclear how much “disorder” is present in the system and how it affects the

NFL behavior in the specific compound. In particular, the impact of the structural

defects on the magnetic inhomogeneity of a ferromagnetic alloy in the vicinity of a FM

QCP has not been tested systematically. Specific prediction for disordered QPT and

better experimental methods to investigate local inhomogeneities are now available.

In this dissertation, I chose two series of alloys (the d-metal alloy Ni1−xVx and the

f-metal Ce-alloys, CePd1−xRhx and CePt1−xRhx) with different magnetic properties

and origin. They show signs of a disordered ferromagnetic quantum phase transitions.

The main focus is to identify the local inhomogeneities and to reveal the impact of the

local structure on the magnetic disorder to understand the origin of “disorder” and

relevance for the QPT. Details about these systems and the methods are provided in

section 1.5.

1.1 Magnetic properties of d- and f-metals

In general, magnetism in metals can arise typically from elements that contain

incomplete shells of d- and f-electrons. Localized and itinerant electrons show a

different magnetic response, with different moment sizes and coupling strengths [20].

Localized electrons are bound to the parent atom, a magnetic moment results due
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to incomplete shells from orbital and spin contributions. But, the itinerant electrons

are not bound to a single atom, and the magnetic moment comes primarily from the

spin. In transition metals, the 3d electrons are often considered itinerant, and band

models are effective to describe magnetism [20, 21]. The elemental ferromagnets like

iron (Fe), cobalt (Co), and nickel (Ni) are examples of band magnets with fractional

spins where the ferromagnetism is stable at temperatures much higher than room

temperature.

The 4f-electrons, however, occupy an inner shell making them strongly localized

and direct interaction are usually not effective. In rare-earth based metallic systems,

the indirect exchange interactions between 4f-electrons are mediated by 5d and 6s

conduction electrons. Unlike in transition metals, the magnetic ordering tempera-

tures in rare-earth metals are usually lower than room temperature. This indicates

that the magnetic interactions in rare-earth based metallic systems (f-metals) are

much weaker than in transition based metallic systems (d-metals) [12, 20]. Since in

4f-electron systems the spin-orbit coupling is strong and the crystalline electric ef-

fects are weak, the magnetic ground state is often anisotropic. Therefore, a large

magnetocrystalline anisotropy, due to the interplay between exchange and crystalline

electric field interactions, is a unique property of rare-earth metals in the ordered

state [20].
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Figure 1.1: Doniach’s generic phase diagram for the phase transition between an

RKKY induced magnetically ordered phase and the Kondo screened, paramagnetic

phase as a function of the local exchange-coupling parameter J.

Tuning magnetic interactions in a metal with localized magnetic moments can lead

to a quantum phase transition. The Kondo effect plays an important role since it can

also serve as an indirect coupling mechanism of magnetic moments in a metal. The

Kondo effect is an unusual scattering mechanism of conduction electrons in a metal

due to magnetic impurities [22,23]. It is a process by which a free magnetic impurity

ion becomes screened by the spins of the Fermi sea at low temperatures. As the impu-

rity ion is screened, a portion of conduction electrons are bonded to it and hence the

conductivity decreases [23, 24]. Towards low temperatures, an increase in resistivity

due to the magnetic impurity is observed. As the dominant contribution to electrical
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resistivity in normal metals comes from phonon scattering decreasing for T → 0, the

Kondo anomaly is noticed as a minimum in resistivity. In 1964, Kondo showed using a

perturbation approach that a scattering process from magnetic impurities could give

rise to a logarithmic contribution to the resistivity as a function of temperature [23].

However, Kondo’s result is valid only for a temperature regime higher than a char-

acteristic temperature called Kondo temperature (TK ∼ e−1/|J |D(EF )), where J is the

coupling constant and D is the density of state at the Fermi level [23,24].

When there are several localized magnetic moments in a metal, for instance ar-

ranged on a lattice (Kondo lattice), the same local spin-exchange coupling J that

induces the Kondo effect, induces also a magnetic interaction between the localized

spins. The local moments can exchange their spins, mediated by the conduction

electrons [24, 25]. Since this effective, long-range spin-exchange coupling involves

two elementary scattering events between electron and impurity spins, it is of order

J2 [23,24]. It can be ferromagnetic or antiferromagnetic due to the long-range, spatial

oscillations of the conduction electron density correlations. This conduction-electron-

mediated spin interaction was first considered by Ruderman and Kittel, Kasuya and

Yosida and is therefore called RKKY interaction [25]. The RKKY interaction is

usually the leading interaction in Ce-alloys since direct exchange coupling between

neighboring local moments is weak due to the exponentially small overlap of the

localized wave functions [24].

Fig. 1.1 displays Doniach’s generic phase diagram for the phase transition between

an RKKY induced magnetically ordered phase and the Kondo screened paramagnetic

phase. The phase transition occurs when the RKKY interaction energy (TRKKY ∼ J2)

of a local moment to all surrounding moments exceeds the Kondo singlet binding
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energy (TK ∼ exp[−1
J

]). We see that the RKKY coupling always dominates for small

values of the exchange coupling, J [22,24]. The exchange coupling can be tuned using

external parameters such as pressure, chemical compositions, or magnetic field.

In a Kondo lattice, the local Kondo coupling and the RKKY interaction favor

different ground states. The Kondo coupling leads to a paramagnetic Fermi liquid

state without local moments [26,27]. In this state, the local orbitals, whose spectrum

has a Kondo resonance at the Fermi energy, hybridize with each other and eventually

become lattice coherent at low temperatures to form Bloch-like quasiparticle states

[26]. As a result, a narrow band crossing the Fermi energy is formed. Its bandwidth is

controlled by the Kondo resonance width TK [26]. It thus gives rise to an exponentially

strong effective mass enhancement (of roughly m∗/m ∼ 1
TK
∼ exp[1/(2JD(EF ))]),

which explains the name heavy fermions. This Doniach model explains why a QPT

can be observed in these materials, but does not predict more details of quantum

critical properties [22].

1.2 Quantum phase transitions

A phase transition, in general, is an abrupt change in a system that occurs upon

variation of a control parameter. The classical phase transitions (CPT) that occur at

finite temperatures are driven by thermal fluctuations, tuned by e.g. pressure or tem-

perature [7]. The melting of ice, the boiling of water, and the onset of ferromagnetic

order in Ni (at ∼ 630K) are some examples of classical phase transitions. Quantum

phase transitions (QPTs) are zero-temperature phase transitions which are accessed

by variation of non-thermal control parameters such as pressure, magnetic field, or

chemical compositions of materials. Although absolute zero is not experimentally

accessible, characteristics of the transition should be noticed in the critical regime at
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finite temperature [28].

Analogous to classical transitions, quantum phase transition can be of first or-

der or second order. At first order phase transitions, the two phases coexist at the

phase boundary. At continuous phase transitions, however, the two phases become

indistinguishable at the critical point. Since a new quantity, the order parameter

emerges continuously at the critical point, second order phase transitions are also

called continuous phase transition.

A phase transition can be described by introducing an order parameter which is

zero in the disordered and non-zero in the ordered phase. This was first introduced

by Landau based on the assumption that for a given phase transition, the free energy

(known as Landau free energy) can be written in powers of the order parameter m

as [15,29]

F = F0 − hm+ pm2 + vm3 + um4 + ... (1.1)

In a ferromagnetic phase transition, the order parameter m represents the sponta-

neous magnetization in zero field (h = 0). The coefficients, p, v, and u, are system

parameters that may depend on external parameters such as pressure, temperature,

or chemical composition. F0 represents the value of the free energy at m = 0. The

possible values of the order parameter can be determined by minimizing the free

energy. If v 6= 0, Landau predicts first order transitions. For a continuous phase

transition, v and all other odd terms must vanish due to symmetry reason [28,30].

Here, it is important to note that the Landau theory uses the mean value of

the order parameter only, neglecting the fluctuations of the order parameter about

the mean. Therefore, this theory can fail in the vicinity of a critical point where

fluctuations about the mean are very strong. Close to the critical point, e.g. for
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non-zero temperature phase transitions, the fluctuations become very strong and the

correlation length diverges as

ξ ∼ t−ν , (1.2)

where t = |T − TC |/TC is the reduced temperature and ν is the critical exponent of

the correlation length. In addition to the long-range correlations in space, there are

long-range correlations of the order parameter fluctuations in time. The characteristic

timescale for a decay of the fluctuations is the correlation time τc which diverges when

we approach the critical point as [15, 30]

τc ∼ ξz ∼ t−νz, (1.3)

where z is the dynamical critical exponent. Close to the critical point, ξ and τc are

the only time and length scales, respectively, and their divergence is responsible for

critical phenomena. At the critical point (ξc → ∞, τc → ∞), fluctuations occur at

all length and time scales thereby becoming time and space invariant. As a result,

all observables follow power laws with related critical exponents; (for details see e.g.

Ref. in [31], pp 44-45). The values of the critical exponents generally do not depend

on the microscopic details but only on the space dimensionality and the symmetries

of the system under consideration. For instance, all 3D Heisenberg magnets (FM or

AFM) with short range interaction have the same exponents. They belong to the

same universality class [28].

The generic phase diagram in Fig. 1.2 shows the critical regime of a classical phase

transition with TC > 0 and a quantum phase transition with a quantum critical point

at rc. The external tuning parameter is r; an example is pressure, magnetic field, or

concentration of materials.
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Figure 1.2: Generic phase diagram of a QPT in the vicinity of a quantum critical

point (QCP) located at rc, where r is a tuning parameter changing interaction. The

solid line marks the finite- temperature boundary between the ordered and disordered

phases and the dashed lines indicate the boundaries of the quantum critical region.

Thermal fluctuations (with energy scale ∼ kBT ) dominate the thermally disor-

dered regime whereas quantum fluctuations (with energy scale ∼ ~ω) dominate the

quantum disordered region. Both fluctuations become important in the quantum crit-

ical region with ~ωc ∼ kBT . Since the quantum critical fluctuations grow with dis-

tance from rc, ~ωc ∼ |r−rc|νz, the crossover lines between the quantum critical region

and the disordered regions are determined by kBT ' ~ωc ∼ |r − rc|νz [30]. The sys-

tem dimension and the number of components of the order parameter determine the
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strength of fluctuations. Usually, as the system dimension and the number of the or-

der parameter components increase, the significance of fluctuations decreases [28,30].

For classical phase transitions, in sufficiently low dimensions (d ≤ d−c ), fluctuations

are so strong that they completely destroy the ordered phase at all (nonzero) temper-

atures, where d−c is the lower critical dimension. Below an upper critical dimension

(d+
c ), an ordered phase and thus transition exists with specific critical exponents

that are influenced by fluctuations and depend on the dimensionality, d [28]. For

d ≥ d+
c , fluctuations are not important for the critical behavior. The exponents be-

come independent of d and take their mean-field values [28]. For example, for Ising

ferromagnets, the critical dimensions are d−c = 1 and d+
c = 4, whereas for Heisenberg

ferromagnets, d−c = 2 and d+
c = 4. For more details see e.g. [28] and the references

therein.

The dimensionality cases we considered above are for phase transitions that occur

at nonzero temperatures (classical phase transitions). For quantum phase transitions,

it was shown by Hertz that both temporal and spacial fluctuations are important to

determine quantum critical behavior. QPT can be described as phase transition with

an effective higher dimension deff = d + z, where z is the dynamical exponent and

d is the spatial dimension [28, 30]. Because of the higher “dimension”, mean field

models are expected to be more successful for QPT. However, since the dynamics is

a relevant critical quantity, QPTs are more diverse and complex. FM QPTs differ

from AFM QPTs [32].

1.3 Impact of disorder on quantum phase transition

Real materials always contain some disorder (randomness) in the form of vacan-

cies, impurities, and other defects. The terms “quenched” and “annealed” disorder
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indicate if the disorder is static or dynamic [28]. We focus on quenched disorder with

time independent defects.

A basis for the discussion of the effect of disorder on classical continuous transitions is

given by the Harris criterion [33], which states that if the correlation length exponent

ν of a given phase transition obeys the inequality [28,30]

ν ≥ 2/d, (1.4)

with the space dimensionality d of the system, then the critical behavior is unaffected

by quenched disorder. If a clean critical point violates this inequality, the disorder

modifies the critical point leading to three possibilities [30]:

(A) The system goes to a new critical point by changing the value of ν to meet the

criteria.

(B) The system will have an unconventional critical point. It leads to non-power

law scaling behavior of the critical exponents.

(C) The disorder can destroy the phase transition completely. The system has in-

dependent regions that undergo phase change at different critical temperatures

resulting in a smeared transition.

CPTs have been studied successfully, still new universality classes are discovered.

Often the range of the critical regime is not clear. Far less is known for the QPT.

The specific prediction of clean homogeneous QPT in strongly correlated electron

systems is already a challenge, to include the impact of disorder in QPT is even more

demanding. Disorder seems to have a stronger impact on QPT than CPT and seems

unavoidable using experimental tuning parameters to tune quantum fluctuations. In

recent years, significant progress has been made on prediction of disordered QPT [28].
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Figure 1.3: (a) Sketch of diluted magnet with rare region devoid of impurity. Differ-

ent schematic QPT scenario for quenched disorder showing (b) infinite randomness

critical point with a quantum Griffiths regime expected for Heisenberg symmetry and

(c) a cluster glass phase expected for Ising symmetry.

In a magnetic QPT, disorder can be introduced by diluting a magnetic system

with a nonmagnetic impurity. The dilution reduces the magnetic long-range order

and thus reduces Tc from its clean bulk value T0. Arbitrarily large spacial regions

(magnetic clusters) that are devoid of impurities will be formed. For temperatures

TC 6 T 6 T0, these regions will locally order even though the bulk is globally in

the paramagnetic phase [15]. Griffiths was the first to show that these rare regions

can lead to a singularity in the free energy, the Griffiths singularity, in the entire

temperature region TC < T < T0. This region in now known as the Griffiths region

or the Griffiths phase [34,35], where TC is the critical temperature for the clean sys-

tem and T0 is that of the impure system. While classical Griffiths phase singularities

are weak, quantum Griffiths phase singularities are expected to be much stronger.

Signatures of a quantum Griffiths phase are anomalous nonuniversal power-law de-

pendencies of the magnetization, susceptibility, and other thermodynamic quantities
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on temperature and magnetic field. Analogous singularities are also expected on the

ordered side of the phase transition [2, 34]. In recent years, rare regions have been

studied in many other disordered classical, quantum, and non-equilibrium systems.

The qualitative features of the resulting Griffiths phenomena can be classified ac-

cording to the effective dimensionality of the rare regions [28, 36]. Depending on

the effective dimensionality (dRR) of the rare regions, the following classes can be

distinguished [28]:

(A) If the rare regions are below the lower critical dimension of the system (dRR <

d−), exponentially weak Griffiths singularities and critical points with conven-

tional scaling are expected.

(B) If the rare regions are right at the lower critical dimension (dRR = d−), but still

cannot order independently, the Griffiths singularities are of power-law type and

the critical point is an exotic infinite-randomness critical point.

(C) If the rare regions are above the lower critical dimension (dRR > d−), they can

undergo the phase transition independently of the bulk system. The global

transition is thus smeared.

A quantum Griffiths phase is expected for itinerant Heisenberg magnets (class B) as

shown in Fig. 1.3(b), while a cluster glass phase is expected for itinerant Ising magnets

(class C) in Fig. 1.3(c). If “z” is temperature dependent both “phases” are predicted

at different temperatures [15]. For more detailed explanation, see reviews [28,30] and

references therein.
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1.4 Fermi liquid and non-Fermi liquid behavior

At the beginning of the 20th century, P. Drude formulated the free electron model

to describe the properties of metals whereby the valance electrons of the atoms in

the metal are regarded as a gas of non-interacting conduction electrons [37]. This

model essentially ignored the electron-electron Coulomb interaction and the electron-

lattice interaction. The Sommerfeld theory, the Drude’s model with the proper Fermi

statistics, was very successful in describing the properties of alkali metals at low

temperatures. For example, it accounts well for the low temperature specific heat

and the magnetic Pauli susceptibility of those metals. But, the Sommerfeld model

failed to describe transition metals like Fe and Mn, where the valence electrons are

more localized [38].

Landau postulated in his Fermi liquid theory that there would be a one-to-one

correspondence of the low energy eigenstates of the interacting electrons with those

of the non-interacting Fermi gas by switching on the interaction adiabatically [38,39].

The interacting electron, “dressed” by its interaction with a screening cloud of other

electrons, can be considered as non-interacting “quasiparticle” with an effective mass

m∗ > me, where me is free electron mass [39].

The Landau Fermi liquid theory predicts that the temperature dependence of the

specific heat (C), the Pauli susceptibility (χP ), and electric resistivity (ρ) at low

temperatures have the same form as their free electron model counter part except

that the interacting electrons become heavier ”quasiparticles” with an effective mass

m∗. This is because these properties only require the presence of a well defined Fermi

surface, and are not sensitive to what forms it (electrons or quasiparticles) [39]. These
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quantities at low temperatures (T < TF ) in the Fermi liquid scenario are given as

C = γ0T, γ0 ∼ m∗, (1.4)

χ = χ0, χ0 ∼ m∗, (1.5)

ρ(T ) = ρ0 + AT 2,
√
A ∼ m∗. (1.6)

In recent years, experiments performed on a new class of materials called heavy

fermions (HF) appeared to confirm the Fermi liquid theory. Heavy fermions are

metallic compounds that usually contain a rare earth or actinide atom (U, Ce, Yb)

with a partially filled 4f - or 5f - electron [40]. Among the first materials discovered

were UPt3, CeCu6, and UCd11 [40]. At low temperatures, the f-electrons strongly

couple to the conduction band which results in enhancements of the effective mass

m∗ to values 100-1000 times larger than the electron mass. This mass enhancement

is observed in high values of γ0(m∗), χ0(m∗), and A(m∗2) at low temperatures.

Most heavy-fermion materials are in good agreement with the Fermi-liquid expec-

tations. However, many HFs, transition metals, and intermetallic compounds have

emerged whose physical properties at low temperatures show remarkable deviations

from Fermi liquid theory [10]. Landau’s quasiparticle picture is often valid in the

limit of small energy transfer during scattering which is enforced by the Pauli prin-

ciple that confines all scattering particles to the vicinity of the Fermi surface. But

if electron interactions become long ranged due to slow propagation or diffusion,

leading to a singular energy dependence in the scattering matrix, the decay rate

reaches the energy of the excitation losing the particle properties. In this case, quasi-

pariticles and the Fermi surface are not defined and the Fermi liquid concept breaks

down [39]. Interacting electron systems violating Fermi liquid requirements are called
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non-Fermi-liquids (NFL). Typical thermodynamic properties indicate the “lack” of

the renormalized energy scale through weak power laws or logarithmic divergences at

low temperatures [10, 39], e.g.,

C/T ∼ −lnT or C/T ∼ T−α, (1.7)

ρ− ρ0 ∼ T n, with n < 2. (1.8)

Different models have been developed to explain the origin of NFL behavior. The

bases for these models, however, stem from one or the combination of concepts such as

single ion effect, disorder, and proximity to magnetic instability [10]. NFL behavior is

observed to occur at a second-order phase transition where the transition temperature

is suppressed to zero close to a quantum critical point.

1.5 Specifics of target systems

1.5.1 Ni1−xVx

The first part of the thesis focuses on the binary d-electron alloy Ni1−xVx. Nickel

is itinerant FM with high transition temperature TC ' 630K. Replacing nickel (Ni)

with nonmagnetic vanadium (V) suppresses the FM transition temperature down to

zero at a critical concentration xc ∼ 0.116 [1, 2]. This dilution of a magnetic system

with a nonmagnetic impurity e.g. Ni by V also introduces magnetic disorder. V

suppresses effectively the magnetic moment of the neighboring Ni atoms [41]. A

random location of V creates randomly distributed Ni-rich regions responsible for

the inhomogeneous magnetism. Even specific predictions for a disordered QCP [34]

could be confirmed in this system. For example, power laws in the magnetization and

susceptibility have been reported (see Fig. 1.4) with the exponents that are varying

with the distance from the critical point [1]. These are signatures of a quantum
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Griffiths phase.

Figure 1.4: (a) Low-field susceptibility of Ni1−xVx versus temperature T and (b)

low temperature magnetization versus magnetic field H. Dotted lines indicate power

laws for T > 10K and H > 3000G in (a) and (b), respectively. Solid lines (shown

for x > 0.12) represent fits to a model that includes fluctuating and frozen clusters.

From Ref. [1].

Ni-V is the system that shows the most convincing evidence of such a quan-

tum Griffiths phase. Also the phase boundary between FM and PM phase, TC(x),

shows the predicted behavior as it presents a “tail” shape [1] approaching the QCP

(see Fig. 1.5). Ni-V looks like an ideal model system displaying the properties of a

disordered magnetic QCP with Heisenberg symmetry [28]. Towards very low tem-

peratures, the phase diagram becomes more complex. A cluster glass (CG) phase

prevents further approach towards the QCP [2]. The origin of this CG phase is still

an open question signaling interacting clusters with different distribution or coupling
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as ideally assumed.

Figure 1.5: Phase diagram of Ni1−xVx showing paramagnetic (PM), ferromagnetic

(FM), and cluster glass (CG) phases. The ferromagnetic transition temperature, TC ,

is determined from different methods indicated.

It has been reported that the long-range but weak RKKY interaction can change

the condition towards low temperature so that the cluster dimension exceeds the lower

critical dimension and a cluster glass is expected [15]. RKKY interaction is feasible

in the Ni-V alloy, but chemical clusters or other crystalline defects in the samples can

modify the magnetic cluster distribution and contribute to CG freezing. To rule out

chemical clusters as the primary cause, a thorough structural analysis is important
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to identify the location of V and the quality of the structure. Previous experiments

have been performed on Ni-V pellets that revealed good structural quality [42]. These

pellets could not fill the sample holder uniformly increasing uncertainties in the anal-

ysis. To confirm the major results on ideal uniform samples, Ni-V powder samples

are selected for further structural investigation.

In this thesis, I aim to further investigate the Griffiths phase (beyond just power

laws observed in bulk measurements) by revealing the microscopic details of magnetic

clusters using neutron scattering and muon spin rotation (µSR) measurements. In

addition, I want to clarify the origin of the magnetic clusters and determine how the

chemical structure is responsible for the magnetic disorder. Chapter 2 introduces the

experimental methods. Chapter 3 presents the structural analysis of a selected Ni-V

powder sample. This structural powder data promises better resolution to resolve

the essential chemical and structural parameters of our samples. The structure and

chemical disorder in Ni-V are probed by a wide angle neutron diffraction experiment at

a Spallation Neutron Source (SNS) with a detailed pair distribution function analysis.

A µSR study and first magnetic neutron scattering data are presented in Chap-

ter 4. Due to muon’s large magnetic moment, polarization in zero field, and their

implantation on interstitial sites, µSR is sensitive enough to probe the very small

internal magnetic fields and the local distribution in our sample. It can also distin-

guish static moments from fluctuating ones and therefore is able to identify magnetic

clusters across the transition regime. First µSR data in Ni-V show that the FM

and PM response can be described by simple models. A detailed analysis close to

xc should reveal fluctuating magnetic clusters in Ni-V. Magnetic small angle neutron
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scattering (SANS) data gives direct information about the magnetic cluster size dis-

tribution. Early SANS measurements showed that the magnetic moments are too

small to see clusters in the paramagnetic regime. However, by focusing on samples

close to the critical concentration, an appropriate scattering vector regime, and with

a better statistics, a SANS measurement should become effective to reveal the missing

important length scales in the vicinity of a disordered quantum phase transition.

1.5.2 CePd1−xRhx and CePt1−xRhx

CePd1−xRhx and CePt1−xRhx are among the few FM Ce-alloys driven to a non-

magnetic state by doping Ce-ligands. Both systems evolve from a FM ordered state

with TC ∼ 6.6K to a nonmagnetic mixed-valent state as the concentration of Rh

increases from x = 0 to x = 1 [11, 19]. The competition between the indirect RKKY

interaction and the Kondo screening effect leads to a quantum phase transition [11,43].

The magnetic phase diagram of CePd1−xRhx and CePt1−xRhx are similar. The

transition temperature TC changes when sufficient Pd [11] or Pt [19] is replaced by

Rh, respectively. It is shown that the suppression of a FM phase in the Pd-system

varies more rapidly towards x∗ ' 0.67 and finally vanishes towards xcr ' 0.85 [11].

The details of the magnetic order at higher x > x∗ and the nature of the critical point

at xcr are not clear. The tail shape of TC(x) indicates that the system exhibits mag-

netic inhomogeneity towards higher concentration of Rh. Close to xcr, signs of NFL

behavior have been noticed for the Pd-system in heat capacity [44,45], magnetic sus-

ceptibility [46], and neutron scattering measurements [5]. Magnetization and specific

heat data for higher Rh concentrations present power laws with different exponents

in the magnetic susceptibility as typical signature of a quantum Griffiths phase, see

for example in [43].
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Less data are available for the Pt-system. Resistivity measurements under pressure

reveal a QPT of the pure CePt without chemical substitution [47]. For the Pt-system,

the available data of TC(x) are similar to the Pd-system [48]. Heat capacity and

magnetic susceptibility measurements indicate that the well defined FM transition in

CePt becomes less sharp with Rh substitution at x > 0.6 [48]. χac data support that

the long-range FM order is compromised by a cluster glass already at x ' 0.5 [19].

For example, the low temperature ac-susceptibility of the Pt-samples at x = 0.5 and

x = 0.6 measured at various frequencies shows a pronounced maximum at Tf which

shifts noticeably towards higher temperatures as the driving frequency increases [19].

A cluster glass phase and a quantum Griffiths phase are both signs of a disordered

QPT. Why the Pt-system enters a cluster glass already at x ' 0.5 and the Pd-

system only shows weak glassy properties for x > 0.7 with power laws and scaling

properties for x . xcr is not clear. Different structural properties of particular samples

especially the local symmetry of the Ce-environment can be responsible for such

different behavior. Magnetization data on single crystals show that the magnetic Ce-

environment of the Pd-system becomes effectively more isotropic for higher x [49],

while the anisotropy for the Pt-system has not been reported.

To figure out the main cause of these differences and the impact of structural

disorder on the magnetic inhomogeneity in both f-electron compounds, I chose to

study both systems at several Rh concentrations starting with a detailed structural

investigation. Collecting data at a wide angle neutron powder diffractometer allows an

investigation of the local Ce-environment using the pair distribution function (PDF)

analysis. I aim to reveal the origin of magnetic disorder and the difference between

the two systems.
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Chapter 2

Experimental methods

This chapter presents the experimental techniques and the instruments used in

my dissertation. Several experiments have been conducted in our laboratory at KSU,

at other laboratories in our Department, and at different National laboratories. Our

laboratory offers sample growth facilities and low temperature measurement systems

for magnetic susceptibility and resistivity.

The sample growth facility includes a clean sample preparation environment and

various important apparatus. A copper-beryllium cutter is used to cut our metals

into pieces of a desired mass. It is non-magnetic and hence does not compromise

the magnetic properties of our samples. A precision up to 10−5g is achieved using a

Fisher microbalance to weigh our samples and pieces of metals. A glove box offers an

almost oxygen free environment to cut and weigh cerium (Ce) metal since it oxidizes

easily in an open air environment.

Our samples are grown using a Mini Arc Melting System in an argon environment

and are annealed in vacuum to ensure uniform distribution of atoms. I grew several

polycrystalline samples of Ni1−xVx, CePd1−xRhx, and CePt1−xRhx at different vana-

dium (V) and rhodium (Rh) concentrations. The details of our sample preparation

process and the instruments used are discussed later.
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2.1 Sample growth

Several polycrystalline samples have been grown from pure elements. CeT1−xRhx

samples with T=Pd or Pt were made from Ce rod with purity (99.9%), palladium (Pd)

foil (99.99%), platinum (Pt) foil (99.997%), and rhodium (Rh) slugs (99.95%). The

Ni-V samples were prepared from nickel (Ni) slugs with 99.995% purity and vanadium

(V) with 99.8% purity, all purchased from Alfa Aesar. Ce-alloy sample preparation

is presented here since the Ni-V sample preparation process is similar and explained

elsewhere (see for example in [50]). We started by cutting a Rh slug into several

pieces using a rotating diamond saw with the weight of each piece estimated to be

enough to make a ∼ 250mg sample. According to the desired concentration, each

Rh piece is weighed using a very high precision scale. By taking the average of 3

measurements, the corresponding mass of Pd or Pt is calculated using the relation

mP = mRh

[
MP

MRh

] [
x

1− x

]
, (2.1)

where x is the Rh concentration, mRh is the measured mass of a Rh piece in grams,

and mp is the corresponding required mass of Pt or Pd in grams. MRh=102.9055

g/mol, MCe=140.12 g/mol, MPd=106.42 g/mol, and MPt=195.08 g/mol are the

atomic weight of Rh, Ce, Pd, and Pt, respectively. After calculating and measur-

ing the desired mass of Pd or Pt, the next step is to calculate and measure the mass

of Ce needed. We first calculate the number of moles of Ce (nCe = nRh + nP ) needed

by adding the number of moles of Rh and Pd/Pt. The product of the atomic weight

of Ce with the calculated number of moles (mCe = nCeMCe) gives the desired mass

of Ce. Because Ce oxidizes very easily, one has to cut and weight pieces of Ce rod

in an almost oxygen free environment. We used a glove box system which consists of

a vacuum pump, argon gas attachments, an oxygen trap, and a moisture trap. The
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oxygen level is monitored by an oxygen sensor placed in the glove box. All Ce-metal

pieces used for our samples were cut and weighed using a scale inside the glove box at

oxygen level below 150ppm. After cutting and weighing each piece of metals within

0.1% accuracy, they are transferred to an arc melting system where the metal pieces

are placed in a water-cooled copper plate and sealed in the melting chamber. The

growth of our samples is done by using a compact Arc Melting System (MAM-1) from

Edmund Buehler. This equipment is designed for melting metals by creating a high

voltage electric arc with temperature up to 35000C. An electric arc is a breakdown

of a low pressure gas (e.g. argon gas in between two electrodes) that produces a

continuous electrical discharge when a high voltage is applied between the two elec-

trodes made of tungsten. The ionized gas is then ignited when the movable conical

tip electrode at the top (serving as a cathode) nearly touches the second electrode

fixed in the copper plate at the bottom (anode). The luminous electrical discharge

produced between the two electrodes is hot enough to melt metallic materials placed

in a water-cooled copper plate.

The melting process begins by cleaning the tungsten electrode tips and the copper

plate using sand paper and acetone. The water-cooling system must be turned on at

the beginning of the process to cool down the copper plate where the samples and the

tungsten anode are situated. A batch of two alloys can be made in a single evacuation

as there are three notches on the copper plate. One is used for melting a tantalum slug

to make sure that any leftover oxygen is absorbed. Once the metals are put in place

and sealed to the melting chamber, the purging process begins. The existing oxygen is

evacuated using Leybold Trivac B oil-sealed rotary vane pump below 1mbar and then

back filled with argon gas so that the final atmosphere inside the chamber is argon at
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ambient pressure. This process should be repeated at least four times, and the screws

holding the copper plate need to be checked and tightened after each cycle of purging.

The argon gas used is 99.999% pure and gets further purified by a moisture and an

oxygen traps installed for this purpose. It is chosen for its purity and low thermal

conductivity. The melting process is initiated igniting the arc by pressing the top

conical tip (cathode) down so that it nearly touches the anode (tungsten embedded

in the copper plate) at the bottom. The intensity of the arc is proportional to the

strength of the current which can be controlled by a potentiometer. The compact arc

melting system in our laboratory gives a range of current varying from 5A to 200A.

Our samples usually melt at a low current ∼ 50A. Higher current could result in mass

loss due to overheating. Once the arc is ignited, the tantalum slug is melted for the

aforementioned purpose and then the two samples are melted. Each sample is turned

over and melted three times to improve the compositional homogeneity. The samples

are then taken out and weighed again to check for a possible mass loss during the

melting process. In general, a mass loss of less than 0.05% is acceptable.

After the samples are grown, they are annealed to improve the homogeneous atom

distribution. The samples are wrapped in a piece of tantalum foil (99.998% purity)

and labeled to identify them later during unwrapping. Quartz tubes of 10mm inner

diameter with one end open are used to seal one or more samples in vacuum. We

first clean the tubes using acetone and purge them with pure helium compressed

gas to replace some of the existing oxygen inside. The pumping system, consisting

of a roughing vacuum pump and a turbo pump, is checked regularly for possible

leaks at different junctions using a helium leak detector. The O-rings are checked

and replaced if necessary. The tube is then pumped until the vacuum pressure at
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the pump reads ∼ 10−5mbar. The high temperature flame produced by mixing a

compressed hydrogen and oxygen gas is hot enough to melt and seal the quartz

tube. Two heat sinks made of aluminum metal are clamped onto the tube to protect

the samples from the heat generated during the sealing process. The sealed quartz

tube can then be transferred to the tube furnace (Lindberg/Blue Mini-Mite). Two

samples can be annealed at the same time. Our Ce-alloy samples are annealed at

900◦C for seven days. The quartz tubes are then taken out for further cool down

after the temperature in the furnace is lowered to 350◦C. The samples are weighed

and compared with their weight before annealing to check for any mass loss due to

vaporization. Selected samples were crushed to powder by using a mortar and pestle

for X-ray and neutron powder diffraction experiments.

2.2 X-ray powder diffraction

X-rays were discovered by Wilhelm Roentgen in 1885, and Max von Laue (1912)

was the first to realize that they might have the right wavelengths to diffract from

crystal lattices [51]. This is possible because their wavelength is in the same order

of magnitude (1-100Å) as the interplanar spacings (d) in crystals. When X-rays of

the right wavelength are scattered by a periodic array of atoms in a crystal with

a long-range order, they produce constructive interference peaks at specific angles.

Each peak in a diffraction pattern represents scattering from a specific set of parallel

plane of atoms identified by Miller indices (hkl) and their occurrence is governed by

Bragg’s law [51,52]

nλ = 2dhklsinθhkl, (2.2)
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where n is a positive integer representing the order of diffraction, λ is the X-ray

wavelength used, dhkl is separation of atomic planes identified by the Miller indices

(hkl), and θhkl the scattering angle specific to these planes. The interplanar spacings

are directly related to the lattice constants of a crystal lattice. For orthorhombic

crystals with lattice constants a 6= b 6= c, the interplanar spacings (dhkl) are given as

dhkl =
1√

(h
a
)2 + (k

b
)2 + ( l

c
)2

. (2.3)

Because X-rays are electromagnetic waves, they interact with electrons in each atom.

The diffraction pattern, therefore, contains important information about the atomic

arrangement in the crystal. For example, the positions of the diffraction peaks in-

dicate interatomic distances, and the diffraction peak intensities contain information

about the atom types and their positions. The widths and shapes of the peaks are

related to short range order structures and some instrumental parameters.

Using a simple X-ray tube with a specific metal target, e.g. copper (Cu) and an

area detector to locate the diffracted beam, two different methods are effective. The

diffraction pattern of polycrystalline samples are concentric rings using the strong

monochromatic source (Debye-Scherrer method). Lattice parameters can be deter-

mined. The diffraction pattern of single crystals requires the whole weaker continuous

spectrum (Laue method). It serves to align crystals. To check the structure of our

samples, we performed a powder X-ray diffraction experiment using an X-ray tube

with a Cu-Kα source (λ = 1.5418Å) and a 2D camera. Our samples are polycrys-

talline Ce-alloys with different Rh concentrations crushed to powder using a mortar

and pestle. Our setup includes an X-ray tube with a monochromator and a collimator

system, a sample holder, an area detector, and a signal processing interface to convert
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our data to a computer readable form for further data analysis. The powder sam-

ples were spread in a thin layer on a transparent tape and mounted onto the sample

holder. All our data were collected at an operating voltage of 40kV and current of

40A with an exposure time of 20 minutes.

The original two dimensional 2D data (Debye-Scherrer rings) were converted to

1D data as displayed in Fig. 2.1. The data conversion is performed by integrating the

intensity over the angle at constant radius using FIT2D, a 2D data reduction and

analysis program specializing in model fitting, detector calibration, and distortion

correction [53].

Fig. 2.1(a) shows the Bragg peaks for CePt sample at zero Rh concentration (x =

0). The (111) peak from silicon (black) is included for calibration. The peak heights

are very small to compared to the background signal, e.g. the strongest peak at ∼ 400

is about 5% of the total count. The Bragg peaks for the Pt-samples at the lowest and

the highest Rh concentrations at x = 0 and x = 0.8 are shown in Figs. 2.1(a) and (c),

respectively. We see that the two prominent peaks get broader as the concentration

of Rh increases. The Bragg peaks for the Pd-sample at x = 0.8 is shown in Fig. 2.1(d)

which resembles the result from the Pt-sample at the same concentration (x = 0.8).

These few peaks indicate crystalline samples, but do not allow a structure analysis.

We therefore employed a higher resolution wide angle scattering technique presented

next.
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Figure 2.1: Reduced X-ray powder diffraction data for (a) CePt, (b) CePt0.8Rh0.2,

(c) CePt0.2Rh0.8, and (d) CePd0.2Rh0.8. The black peak in (a) is the (111) peak

from silicon powder sample for calibration. Data collected using Cu-Kα source with

λ = 1.5418Å.

2.3 Neutron scattering

Neutron scattering is also an interference based technique that reveals the chem-

ical and magnetic structure of materials and their dynamics on a nanometer scale.

Although neutrons are particles, they behave like a wave (wave-particle duality) and

hence experience interference effects. With zero electric charge, neutrons barely in-

teract with matter and can easily penetrate deep into a sample and directly interact

with the nuclei of atoms. This makes them a suitable bulk probe unlike X-rays which

are scattered by electrons not penetrating far beyond the surface [54]. Although
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the neutron carries no net charge, it has a magnetic moment. The neutrons mag-

netic moment interacts with the unpaired electron spins of magnetic atoms through

a dipole-dipole interaction. The neutron is, therefore, a powerful probe of magnetic

properties of materials [52]. In a neutron scattering process, a beam of neutrons with

initial wave vector ~ki is scattered by a nucleus and emerges with a wave vector ~kf at

an angle 2θ relative to the initial direction of incidence. For an elastic collision, the

magnitude of the wave vectors before and after collision is equal. The Bragg condition

in reciprocal lattice is therefore [51]

Qhkl = |~kf − ~ki| = 2|~ki|sinθhkl, (2.4a)

with |~ki| = 2π/λ, where λ is the wavelength of the incident neutron beam. The

scattering vector Q, determined by the difference of kf and ki, has to match a re-

ciprocal lattice vector or the inverse interplanar spacing, dhkl, between the planes

(Qhkl = 2π/dhkl) to show a Bragg peak.

A small angle neutron scattering (SANS) experiment collects data at small angles

i.e. θ = 0.01o−10o to get the scattered intensity at small scattering vectors with high

resolution.

Q = |~kf − ~ki| = 2|~ki|θ. (2.4b)

SANS can therefore probe and resolve structures (magnetic or nuclear) of large length

scale (d ∼ 1
Q
' λ/2θ). Typically, structure features in materials ranging from roughly

1nm to over 500nm can be probed.

The intensity of the scattered neutrons is measured as a function of the scattering

vector (Q) in a neutron scattering experiment. The scattered intensity depends on the

interaction between the neutron and the nucleus which is known to be very short range
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∼ 10−13cm. Therefore, the scattering can be taken as point like or isotropic and can be

characterized by a single parameter called the scattering length b [52]. The scattering

cross section for a single nucleus is thus σ = 4πb2 which is independent of the atomic

number unlike X-rays and electrons diffraction [54]. Typically, b ∼ 10−13cm but

varies strongly across the different atoms. Incoherent contribution and absorption

have to be considered in planning a neutron scattering experiment. Different neutron

scattering instruments have been designed depending on the neutron source. The

neutrons used in a scattering experiment can be obtained from a nuclear reactor,

where the neutrons arise from the spontaneous fission of U235 in which neutrons are

produced continuously. Neutrons can be also produced when high energy protons

bombard a heavy target (e.g, U, W, Ta, Pb, or Hg) in a spallation source. This

typically results in pulsed neutron beams [52,54].

We performed neutron scattering experiments at different facilities. We used

SANS instruments, NG7 SANS at NCNR, NIST and GPSANS at HFIR, ORNL.

Both SANS are located at a reactor with a cold moderator.

We also performed a wide angle powder neutron diffraction experiment at the

Spallation Neutron Source (SNS), Oak Ridge National Lab (ORNL) on the Nanoscale

Ordered Materials Diffractometer (NOMAD). The SNS offers a wide range of neutron

energies essential for a wide angle diffraction instrument. The NOMAD is a neutron

time-of-flight (TOF) diffractometer designed to perform structural determinations of

local order in crystalline and amorphous materials with pair distribution function

analysis [4]. A large neutron flux is provided by the spallation neutron source and a

broad range of scattering angle detection is achieved by 6 banks each having specific

angular coverage. Although laboratory X-ray sources might give important PDF data,
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in many cases high energy epithermal neutrons are required to access high values of

Qmax [55]. A maximum momentum transfer of Qmax = 50Å−1 can be obtained

but typically Qmax = 30Å−1 is sufficient corresponding to a real space resolution

of ∆r = 0.1Å. However, due to the resonance absorption of Rh at λ ≈ 0.25Å, a

smaller cut off at Qmax = 24Å−1 is used to produce the PDF of the CeT1−xRhx data.

Comparison of the PDF data of CePt0.2Rh0.8 and fit results with different Qmax

confirmed that Qmax = 24Å−1 is the better choice. Qmax = 24Å−1 produces less

ripples in the data and the residual factor Rw of the fit is lower than Qmax = 30Å−1

(see Table 2.1).

Qmax 24Å−1 30Å−1

a(Å) 3.88 3.88

b(Å) 10.94 10.94

c(Å) 4.28 4.28

uCe(Å
2) 0.013 0.013

uRh(Å
2) 0.025 0.025

δ1(Å2) 1.82 1.82

scale 1.33 1.33

Rw(%) 0.21 0.24

Table 2.1: PDF refined fit parameters of CePt0.2Rh0.8 powder obtained on NOMAD

at 289K with fit range rmax = 20Å, results of Qmax = 24Å−1 compared with Qmax =

30Å−1.

We filled our powder CePd1−xRhx and CePt1−xRhx samples with different Rh con-

centrations (x = 0.2, 0.5, 0.6 and 0.8) in a 2mm quartz tube each. An identical empty
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quartz tube was included for background measurement. After labeling the tubes, we

mounted the samples on a multistage sample holder and placed them in a cryostat

with a liquid argon environment to reach temperatures down to 100K. We run the

first scan to find the exact position of each samples on the sample holder. We per-

formed several runs at temperatures 100K and 289K for 6 days in total. We have also

conducted a neutron powder diffraction experiment on Ni0.85V0.15 samples at room

temperature in a similar set up. The data reduction process is done automatically

and saved in different formats for further data analysis.

2.4 Atomic pair distribution function (PDF)

For about a century, crystallographic methods have allowed us to extract impor-

tant structural information based on Bragg reflections. The fast growing complexity

of materials has shown that this crystallographic approach is no longer sufficient to

study the structure of materials at atomic level as it only yields the average long

range structure [55]. However, deviations from the average structure bring about dif-

fuse scattering which contains information about local structure of the material. One

approach to uncover the local structure of a material is the atomic pair distribution

function (PDF) method. PDF is a powerful tool to study the local atomic structure

based on the total scattering, which includes the Bragg and the diffuse scattering.

The PDF presents directly the probability of finding two atoms at a inter-atomic

distance or the bond length distribution.
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Figure 2.2: PDF of a fcc-lattice.

Fig. 2.2 demonstrates the PDF of a fcc-lattice. Taking the black atom at (0,0,0) as

a reference atom, the first and the second nearest neighbor atoms are indicated by red

and blue colors, respectively, with inter-atomic distances causing peaks of different

height and width. The area below each peak is directly proportional to the number of

neighbors at that inter-atomic distance scaled by the scattering length of each atom.

The width of each peak corresponds to the distribution of bond lengths caused by

the atomic vibrations, correlation parameters, and the instrumental resolution.

The PDF, G(r), is obtained from a neutron or X-ray powder diffraction data

through a sine Fourier transform of the normalized total scattering intensity S(Q) [56]

G(r) =
2

π

∫ Qmax

Qmin

[S(Q)− 1] sin(Qr)dQ, (2.5)
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where S(Q) is the total structure function containing coherent scattering intensi-

ties collected from the material corrected for scattering from empty container, back-

ground, and self absorption. Q = 4πsin(θ)/λ is the magnitude of the scattering

vector, and 2θ is the scattering angle. Since the PDF is related to the bond length

distribution of the material weighted by the respective scattering lengths of the con-

stituent atoms, it can be calculated using the relation:

G(r) =
1

r

∑
i

∑
j

[
bibj

〈b〉2
δ(r − rij)

]
− 4πrρ0, (2.6)

where the sum is over all pairs of atoms i and j separated by a distance rij. The

scattering length of the ith atom is bi, 〈b〉 is the average scattering length of the

sample, and ρ0 is the average pair density function at large distance.

We used PDFgui, a program designed to allow users with a powerful interface for

fitting structure models to PDF data [57]. PDFgui is a graphical environment used

to refine structural parameters such as lattice constants, isotropic and anisotropic

displacement parameters, position and site occupancies. It makes use of a Python

package called Matplotlib to plot data from a fit so that the user can easily see the

results of the fitting. Since the structural model applies for the specific r-range used,

this allows us to study the local structure on different length scales by varying the

maximum value (rmax). We also used GSAS (General Structure Analysis System),

a comprehensive system for the refinement of structural models to both X-ray and

neutron diffraction data. The GSAS package can be used with both single-crystal

and powder diffraction data (Rietveld analysis), even both simultaneously [58]. We

mainly used EXPGUI, a graphical interface for GSAS package which can be used

to directly modify the GSAS experiment files with a graphical user interface (GUI)

and to invoke the programs inside the GSAS program such as GENLES, FOURIER,
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EXPEDT, etc [59].

Ideally, Q-range limits extend from Qmin → 0 to Qmax → ∞. However, due

to the finite value of the energy of neutrons produced, we can have only a finite

value of maximum momentum transfer Qmax. The termination at finite Qmax results

in a decrease in the real space resolution of the PDF and results in termination

ripples. The finite resolution of the instrument in reciprocal space (∆Q) gives rise to a

Gaussian dampening of the PDF peaks given by exp(−∆Q2r2/2), where ∆Q = Qdamp

is given as an instrument parameter in PDFgui to account for the dampening of peaks

as r increases. Another instrumental correction factor to account for changes in the

PDF peaks width is Qbroad. The PDF peak width stemming from atoms i and j

separated by a distance rij is calculated as [56]

σij = σ
′

ij

√
1− δ2

r2
ij

− δ1(T )

rij
+Q2

broadr
2
ij, (2.7)

where u = σ
′
ij

2
is an atomic displacement parameter. δ1 and δ2 determine the nar-

rowing of nearest neighbor PDF peaks due to correlated motion at high and low

temperatures, respectively. The last term containing the parameter Qbroad deter-

mines the broadening of PDF peaks at very large distances due to the instrument

resolution. A detailed description of the instrument is found in [4] and some of the

important instrument parameters are given in the Appendix.

2.5 Magnetic ac-susceptibility

AC magnetic susceptibility, χac, notices magnetic phase transitions in very small

magnetic fields. It gives information about slow magnetization dynamics that may

not be accessible in DC measurements, where the field is held constant during the

measurement time. χac measures the magnetization response, M, created through
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a small time dependent magnetic field, H, χ = dM
dH

. Varying the frequency of the

field, χac reveals slow magnetization dynamics. No time dependence is expected in

magnetic systems, e.g. in antiferromagnets. But, spin glass (SG) freezing and slow

motion of FM dynamics can be recognized at low frequencies. The AC magnetic

susceptibility is a complex quantity having an imaginary and real components. The

real part called the dispersion (χ
′

= χ cosϕ) is in phase with the driving field and

the imaginary component, called the absorption (χ” = χ sinϕ) is out-of-phase, where

χ =
√
χ′2 + χ”2 is the magnitude and ϕ is the phase shift relative to the driving field.

Here we measure χac through the induction method using a self made pick up coil

with a primary coil of Nb-Ti wire which becomes superconducting below 7K. Through

an ac-current in a primary coil, an alternating flux is picked up in a secondary coil

pair leading to an induction voltage at the end of the so called pick up coil. Ideally,

the voltage created in this secondary coil is zero since the two coils of the total coil

are wound in opposite direction and therefore compensate. The extra induced voltage

due to the sample located in one of the secondary coil is proportional to its magnetic

susceptibility

Vind = LpsI0ωχac. (2.8)

Lsp = µ0
NsNp
lslp

Asls ' 0.5H is the calculated mutual inductance for a long solenoid,

where Np = 10026 and Ns = 8850 are the number of turns for the primary and the

secondary coils, respectively. I0 is the initial input AC current amplitude, lp = 8.64cm

and ls = 2.16cm are the lengths of the primary and secondary coils, respectively, ω =

2πν the angular frequency of the driving field, µ0 = 4π × 10−7N/A2 is the magnetic

permeability, and As = 3.87cm2 is the area of the secondary coil. We calibrated the

coil with a superconductor Nb and compared also the signal of a Ni-V sample with
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the magnetization data of a SQUID magnetometer. We found consistently half of

the calculated value of Lsp. The voltage of 1mV indicates therefore χ ' 10memu,

for I = 0.1mA at ν = 400Hz with Bac = 0.01G. We use LockIn amplifier to pick up

phase sensitive the induction voltage of χ
′
. χ” signal is too small here to be resolved

from the background and is not presented.

2.6 Muon spin rotation (µSR)

A muon is a spin-1/2 particle with a positive or negative charge (±e) where e is

charge of an electron. Beams of polarized muons are produced at different experi-

mental facilities outside the US., e.g. at TRIUMF (Canada), PSI (Switzerland), and

ISIS (United Kingdom). The precession and relaxation of their spin can be utilized

to investigate the spatial and temporal distribution of magnetic fields in a sample of

interest. Since the negative muon µ− is attracted by the positive nuclei and becomes

much less sensitive to the magnetic field of the electron cloud, the positive muon µ+ is

typically used in a µSR experiment as it sits farther away from nuclei [60]. µSR is an

abbreviation for muon spin rotation, muon spin resonance, or muon spin relaxation.

Bulk measurements such as magnetization and magnetic susceptibility only probe

the uniform response with no spatial information, they can therefore only give first

indications of magnetic clusters in our sample. Complimentary techniques such as

µSR and neutron scattering should reveal more microscopic information such as the

length scales and dynamics of the magnetic clusters. Due to muon’s large magnetic

moment (µµ ' 3.2µp ' 8.9µn), polarization in zero field, and their implantation on

interstitial sites, µSR is sensitive enough to probe very small internal magnetic fields

(down to 10−5T) and their local distribution in a sample [60] [61]. It is an excellent

method to recognize small magnetic moments.
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2.6.1 Muon production, decay, and polarization

High energy proton beams (600-800MeV) of kinetic energy are fired into a target

(typically graphite) to produce pions (π+), and within very short lifetime (∼ 26ns),

pions decay into muons as [60]

π+ −→ µ+ + νµ, (2.9)

where νµ is a muon-neutrino. The pion is spinless and the neutrino helicity is (-1) i.e.

its spin and linear momentum are antiparallel. Conservation of linear and angular

momenta dictates that the muon is fully polarized. After successive inelastic scat-

tering (involving Coulomb interactions) and collisions with atoms in the sample, the

muons finally localize in interstitial sites and decays after some time t with probabil-

ity ∼ e−t/τµ , where τµ = 2.2µs is the lifetime of the muon. The muon decay process

involves the emission of a positron and two neutrinos

µ+ −→ e+ + νe + ν̄µ. (2.10)

The above decay process involves weak interaction and thus does not conserve parity.

In addition, momentum must be conserved which leads to the emission of a positron

predominantly along the direction of the muon spin when it decays [60].

2.6.2 Evolution of the muon spin and principles of the µSR experiment

The primary purpose of a µSR experiment is to determine the polarization of the

implanted muons and extract important information about the spatial and temporal

local magnetic field distribution of a sample.
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Figure 2.3: (a) Schematic diagram of a µSR experiment. A spin-polarized beam

of muons is implanted in a sample. After decay, positrons are detected in either a

forward (F) or backward (B) detector. (b) The asymmetry A(t) vs time for a uniform

magnetic field showing single frequency precession. (c) Muon spin precession in a local

magnetic field.

Fig. 2.3 demonstrates the schematic diagram of a typical µSR experiment. A muon

with its spin aligned antiparallel to its momentum is implanted in a sample (see for

example Fig. 2.3(a)). Depending on the local magnetic field of the muon location, the

muon spin starts precessing (see Fig. 2.3(c)) and decays with a lifetime (τ = 2.2µs)

by emitting a positron in the direction of its spin. The positron is then detected

by either the forward (F) or backward detector (B) and the respective number of

positrons are counted. The time evolution of the number of positrons detected in the

backward and forward detectors is given by exponential functions NB(t) and NF (t),

respectively. The difference is recorded as the asymmetry. The time evolution of the

muon’s polarization function is experimentally obtained by examining the asymmetry
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function given by [60,62]

A(t) = aPi(t) =
NF (t)− αNB(t)

NF (t) + αNB(t)
, (2.11)

where α is a calibration parameter correcting the asymmetry between the front and

back detectors due to differences in efficiency and other factors. It is one of the

adjustable parameters in a µSR data analysis using a program called WIMDA [63]

and its value is typically between 1 and 2 depending on the instrument used. a is

the initial asymmetry at t = 0, and Pi(t) is the normalized polarization function with

the label i denoting the direction in Cartesian coordinates along which the muon

polarization is measured. An example of an asymmetry spectrum as a function of

time for a ferromagnet (with single precession frequency) is shown in Fig. 2.3(b).

The polarization function Pi(t) of a muon implanted in a sample in a local mag-

netic field (Bloc) can be determined solving Larmor’s equation and certain local filed

distribution result in simple polarization functions. If all the muon spins precess in

the same magnetic field oriented at an angle θ from the initial muon spin (Sµ(0)), the

projection of the muon spin along its initial direction (the normalized polarization

function) produces [60,61]

Pi(t) =
Sµ(t).Sµ(0)

S2
µ(0)

=
[
cos2θ + sin2θ cos(ωµt)

]
, (2.12)

where ωµ = 2πνµ = γµ|Bloc| is the Larmor frequency, γµ = 851.6 Mrad s−1T−1 is

the muon gyromagnetic ratio. Pi(t) displays the properties of the magnetic field at

the muon site and this is the result on which the entire µSR experiment is based.

The polarization function in Eq. 2.12 depends on the size and orientation of the local

magnetic field, that can be applied externally or present internally. The simplest case

is a constant field with all muons submitted to the same local field on average. If
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the initial muon spin is perpendicular to the direction of the local field, the first term

in Eq. 2.12 vanishes and the polarization function reduces to Pi(t) = cos(ωµt). This

indicates that the muons precess with an angular frequency (ωµ = γµ|Bloc|) and the

local field can be easily obtained experimentally from the precession frequency. For a

general distribution of local fields DV (Bloc), the polarization function becomes [60,61]

Pi(t) =

∫ [
cos2θ + sin2θ cos(ωµt)

]
DV (Bloc)d

3Bloc. (2.13)

If, for example, the local magnetic field follows a Gaussian distribution with width

(∆/γµ) centered around zero, the resulting polarization function reduces to

PZ(t) =
1

3
+

2

3
e−∆2t2/2

(
1−∆2t2

)
, (2.14)

where ∆2 gives the variance of the field distribution. Eq. 2.14 is commonly known

as the Kubo-Toyabe function [64]. In Chapter 4, we will see that this form is a

good description for the disordered ferromagnet and will discuss other distribution

functions. Our µSR experiments were performed on the DOLLY instrument at the

Swiss Muon Source (SµS), Paul Scherrer Institut and on the MuSR instrument at

the ISIS facility. We collected data of several Ni-V concentrations wrapped in silver

foil [2, 3].
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Chapter 3

Structural study of Ni-V using PDF method

Nickel (Ni) is one of the few elemental ferromagnets with a critical temperature

TC well above room temperature (Tc ' 627◦C) [65]. Substitution of Ni by an other

d-metal like vanadium (V) suppresses the magnetic order leading to a quantum phase

transition from a ferromagnetic (FM) ground state to a paramagnetic (PM) ground

state. The transition temperature (Tc) is reduced with increasing V concentration

down to zero at the quantum critical point (xc ' 0.116) [1]. V has less d-electrons than

Ni. This charge contrast creates magnetic inhomogeneities. Randomly distributed

Ni-rich regions form interrupted by V locations. Independent Ni-rich regions are

called here magnetic clusters.

Previous studies of bulk magnetization data revealed the existence of these mag-

netic clusters which are indications of a quantum Griffiths phase [1]. Since the distri-

bution of magnetic clusters is expected to depend strongly on the location of the V

atoms and the local Ni-environment, an investigation of the magnetic and chemical

structure of our samples is required to reveal the origin of magnetic clusters. This

chapter focuses on a detailed chemical structure investigation of Ni-V.

44



Figure 3.1: Chemical and magnetic phase diagram of Ni-V.

Ni1−xVx is expected to crystallize in the face-centered cubic (fcc) structure for

lower V concentration (x ≤ 0.15) where magnetic clusters are relevant (see the solid

yellow line in Fig. 3.1). Ordered structures in the binary Ni-V alloy are only present

at higher V concentrations. The Ni3V [66] superstructure forms at x = 0.25 (see

Fig. 3.1). Although the phase diagram of Ni-V shows that a fcc-lattice with random

occupation is very likely for x ≤ 0.15, it is impossible to rule out V clusters and short

range correlation in specific samples. It is known that the growth and annealing

conditions can modify the structure and local composition in Ni-alloys. To look at

the local environment of Ni, we use the PDF analysis, a powerful technique to study

the local structure of materials at various length scale. In the following sections, I

will present the experimental details and the results obtained from the PDF analysis.
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The data were collected on NOMAD, SNS at room temperature at a Ni-V powder

sample with x = 0.15. These results are also compared with the results obtained from

Ni0.85V0.15 pellets at low temperature, on NPDF [42,67].

Major results from this chapter are summarized in Ref. [42].

3.1 Random atomic distribution model

The pair distribution function G(r) of the Ni0.85V0.15 powder data at x = 0.15 is

shown in Fig. 3.2. A single phase fcc-lattice with random site occupation describes

the data very well within the fit range of 1.5Å < r < 20Å. The difference between

the data (blue dots) and the fit (orange line) is very small and shown by the red line

underneath with a weighted residual factor (Rw) of 8.42%.

Figure 3.2: PDF of Ni0.85V0.15 taken at 300K on NOMAD with random fit, the

difference ∆ = data-fit is shown shifted down by 6 units with Qdamp = 0.033Å−1 and

Qbroad = 0.04Å−1.
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The instrumental parameters were adjusted to improve the fit quality. The re-

fined parameters such as the lattice constant (a), the isotropic atomic displacement

parameter (u), the correlation parameter (δ1), and the corresponding weighted resid-

ual values (Rw) are shown in Table 3.1. The results obtained from a different Ni

powder data on NOMAD are included for comparison [4]. Here, we used higher Q-

values than their default values for a better fit, consistent with the expected strain

introduced in our sample during the fast cooling process (quenching).

x 0% 15%

a(Å) 3.5252 3.5608

u(Å2) 0.0011 0.0077

δ1(Å2) — 1.69

scale — 0.693

Rw(%) 6.2 8.4

Table 3.1: PDF refined fit parameters of Ni0.85V0.15 powder obtained on NOMAD

at 300K for fcc random model with fit range rmax = 20Å, Qdamp = 0.033Å−1, and

Qbroad = 0.040Å−1 compared with the results on pure Ni powder data with Qdamp =

0.018Å−1, and Qbroad = 0.036Å−1. The result for x = 0 is obtained from Ref. [4].

As can be seen in Table 3.1, Ni0.85V0.15 has larger lattice parameters a and u than

the pure Ni. This is expected and understood through the introduction of larger V

atoms with atomic radius rV compared to the smaller Ni atoms with radius rNi. The

isotropic ADP (u) is the mean square atomic displacement of atoms from equilibrium

position of one element averaged over time and site. It consists of both static part

and dynamic part, u =
〈
u2
dyn

〉
+ 〈u2

stat〉. Since the strongest scattering signal comes

47



from Ni, we consider only the isotropic ADP of Ni, u = uNi and we set uV = uNi

in all our models. The dynamic ADP dominates at high temperature as in our case

due to thermal motion while at low temperature, zero point motion and static defects

contribute significantly. Table 3.1 shows an increase of isotropic ADP as compared

to the result obtained from pure Ni data. The increase includes static defects due to

the introduction of the larger V atoms.

Previously, the x-dependence of the structural parameters was studied on several

pellets of Ni1−xVx at low T [42]. The low temperature data show that the lattice

constant (a) of the fcc-lattice increases linearly with V concentration x, a(x) = a0(1+

bx), with the fit parameters, a0 = 3.5153Å and b = (rV − rNi)/rV ≈ 0.05, consistent

with Vegard’s law. The atomic displacement parameter follows the expected bond

length variance of two neighbors with u(x) = 1
2
σ = u0 + 1

8
b2a2

0x(1 − x) for random

occupation with the same values of a0 and b obtained in fitting a(x) [42].

3.2 Alternative cluster and super structure models

In the previous section, we have seen that the PDF of our sample is well explained

by a fcc-lattice with random occupation of V and Ni as ideally expected in the con-

centration regime, x < 0.25. However, possible deviations such as the formation of

V-clusters in the fcc-lattice or a chemical ordered structure of V and Ni forming an

alternate pattern with isolated V sites should be considered and compared with the

random model. We note that the PDF is very sensitive to local correlations and can

discriminate between these different V and Ni environments. V-clusters and chemical

ordered structures lead to different local Ni-Ni coordination. In a random occupation,

the average nearest Ni-neighbors of a Ni-site are reduced from z = 12 at x = 0 to

z = 12(1 − x) = 10.2 at x = 0.15. We therefore test alternative Ni-environments
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caused by V-clusters or partial chemical structure formation by focusing on the PDF

of the same Ni0.85V0.15 sample in a narrow range of r ' 7Å.

For a V-cluster model, we constructed a supercell containing 256 atoms of which 38

V are placed together in a spherical arrangement on an expanded fcc-lattice (4×4×4

cubic unit cells). The V-clusters are about 7Å in size, 14Å apart center to center,

and 7Å apart edge to edge. By analyzing the short range correlation with rmax ' 7Å,

slightly below the distance between the clusters, allows us to study the effect of a

V-cluster without the cluster-cluster correlation introduced in this periodic model.

Fig. 3.3 shows both the random fit and the V38 model fit with reduced rmax ' 7Å

for Ni0.85V0.15. Both models do not show obvious deviations in peak intensity. A

change can be noticed in the difference between data and fit for the first peak. The

cluster model (green line) shows more deviations than the random model (red line).

The V-cluster model results in a higher Ni-Ni first neighbor coordination (z) than the

random model.

Model Rw(%)

fcc-random 6.93

V38 cluster 8.22

Ni8V 7.96

Ni3V 12.30

Table 3.2: Fit quality of different models describing the local pair correlations in

Ni0.85V0.15 powder data set at 300K. The weighted residual factor Rw is listed for a

fit range 1.75Å < r < 7.1Å.

However, the better fit with reduced Rw value (as shown in Table 3.2) and lower
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z is found to be the random fit compared to the cluster model. The instrumental pa-

rameters are kept the same for all models (Qdamp = 0.018Å−1 and Qbroad = 0.02Å−1),

and the fit regime is 1.75Å < r < 7.1Å. It is worth mentioning that other cluster

models with smaller cluster sizes give similar result (Rw∼ 8%).

Figure 3.3: Comparison of V-cluster model (green) with random model (red) of local

PDF. Ni0.85V0.15 data (open symbol), models and difference (solid line) are shown.

The upper right corner shows the V38 cluster model.

Other deviations from randomly occupied fcc-lattice are chemical ordered super

structures. According to the phase diagram, Ni3V is one of the possible ordered struc-

tures that forms from the disordered fcc phase below T0 = 1045◦C in a concentration

range x ' 0.25 depending on sample growth and annealing conditions [66]. It crystal-

lizes in the SO22 structure, a body centered tetragonal structure with 2 fcc unit cells

along the c-direction. V has only Ni neighbors and Ni has 4 V neighbors resulting
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in a very small coordination number, z = 8. We probed the short range correlation

preparing the Ni3V structure using a (1 × 1 × 2) fcc supercell with V-atoms at the

origin and body center. Fig. 3.4 shows the obvious deviations in G(r) at the first

peak (see for example the difference between data and fit presented by a black line)

resulting in the largest residual Rw shown in Table 3.2 (Rw = 12.3%).

Figure 3.4: Comparison of different ordered phases, Ni3V model (black) and Ni8V

model (orange) of local PDF. Ni0.85V0.15 powder data (open symbol), models, and

differences (solid lines) are shown. On the right side, the structure of Ni3V and Ni8V

are shown.

Another potential chemical ordered structure is Ni8V. A larger radius ratio be-

tween the two metallic elements is required to stabilize long range order, but short

range order could be relevant. Ni8V and Ni8Ta have a large enough radius ratio to

order in this “Ni8Nb” structure. Replacing Nb or Ta partially with V maintains the

ordered structure and a chemical disorder-order transition at T0 = 405◦C has been
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extrapolated for pure Ni8V [68]. The Ni8Nb-structure is a body centered tetragonal

structure with the Nb or V-site having no similar neighbors whereas the Ni-site has

1 or 2 Nb(V) neighbors resulting in an average Ni-Ni first neighbor count of z = 10.5

which is close to the Ni-Ni coordination z = 10.2 resulting from pure random dis-

tribution of atoms for x = 0.15. Once again, we probed the short range correlation

preparing the Ni8V structure using a (3×3×1) fcc-supercell with V at the origin and

face center. The PDF data of Ni0.85V0.15 is modeled for a short range (rmax ' 7Å)

in PDFgui under the same condition as the random model. The difference between

data and model is shown in Fig. 3.4 by an orange line. The residual Rw = 7.96% is

small but still larger than the residual Rw = 6.93% for the random model.

3.3 Discussion

We have demonstrated that the local PDF is a powerful method to probe the

local Ni-environment in the Ni0.85V0.15 sample. No secondary ordered phase beside

the fcc-lattice is found. The fcc-lattice with random occupation is the best model.

V-cluster models and ordered phases remain the worst description. These results do

not support phase segregation of V and Ni rich regions. Other ordered phases are not

observed, possible short range correlations must be weak for x = 0.15. These PDF

powder data strongly support the previous subtle results of the pellet samples that

Ni-V remains a solid solution with a random V distribution up to x = 0.15 and that

in particular V-cluster formation can be ruled out.
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Chapter 4

Magnetic clusters in Ni-V

As we discussed in the previous chapter, substitution of Ni by V leads to magnetic

inhomogeneities relevant to the quantum critical properties of Ni-V. It is expected

that V strongly suppresses the magnetic moment of the neighboring Ni atoms and

creates magnetic Ni-rich regions and large nonmagnetic regions. If the Ni-rich regions

are sufficiently separated, they remain independent magnetic clusters marked by the

green circle (as shown in Fig. 4.1).

Figure 4.1: Random model of Ni0.89V0.11 on fcc lattice with magnetic Ni (blue dots),

V (red dots), and “nonmagnetic” Ni if adjacent to V (white space). Green circle

marks a magnetic cluster.

The spatial distribution of these magnetic clusters and their fluctuations should
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be responsible for the unconventional properties close to the quantum critical point

(QCP) [1, 2]. Signs of non-Fermi liquid behavior were observed in this system [1].

In particular, a quantum Griffiths phase was recognized by anomalous nonuniversal

power-laws in the magnetization observed by varying temperature and magnetic fields

[1]. To explore further the range of the quantum Griffiths phase and more details of

the magnetic cluster, different complimentary bulk and local magnetic investigations

are necessary. First, I report the relevant magnetization and µSR results from our

group. Then, I focus on the specific µSR studies to reveal the fluctuating magnetic

clusters.

4.1 Magnetization study of quantum Griffiths phase

First signatures of fluctuating magnetic clusters in Ni-V were noticed above the

quantum critical concentration (x ≥ 11.6%) in the PM regime [1]. To follow the

notation of published results, the V concentration x is given here in percentage,

ranging from x = 0 to 15%. The dependence of the low-temperature magnetization

M on the magnetic field H is well described by anomalous power laws M ∼ Hα on the

paramagnetic side in a wide range of magnetic fields. The exponent α is strongly x

dependent, it increases with distance to the quantum critical point [1]. Similar power

laws (M −M0 ∼ Hα) successfully describe the low temperature magnetization data

on the ferromagnetic side (x < 11.6%), where M0 is the spontaneous magnetization.

α is strongly x dependent and decreases towards zero at the critical concentration

xc ' 11.6% (see Fig. 4.2) [2].

The difference ∆M = Mhigh −M0 indicates the contribution of magnetic clusters

to the ordered state at high field, where Mhigh is the magnetization at the highest
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magnetic field, H = 50kOe. This magnetic cluster contribution becomes more rele-

vant towards the critical concentration. The ratio, fcl = ∆M/Mhigh, gives the fraction

of the magnetic clusters in the ferromagnetic phase.

Figure 4.2: Red symbols represent exponents α obtained from low temperature mag-

netization in the FM phase. Green symbols show exponents α from power laws fit

using the magnetization data and open symbols indicate exponents obtained from sus-

ceptibility, both in the PM phase. Solid line indicates fit to model α(x) ∼ |x− xc|νψ,

with νψ = 0.34 and xc = 11.6%. From Ref. [2].

In the following sections, we will have a detailed microscopic insight into these

magnetic clusters in the ferromagnetic phase utilizing the advantage of µSR in ac-

cessing the distribution of local magnetic fields in the sample.

4.2 µSR study of quantum Griffiths phase

Fig. 4.3 presents an overview of the muon asymmetry data of Ni1−xVx for sev-

eral V concentrations x at low temperatures in zero-field. In pure Ni (x = 0), the
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asymmetry shows a nearly undamped single frequency precession verifying a uniform

ferromagnetic order.

Figure 4.3: Zero-field µSR asymmetry A(t) vs time of Ni1−xVx for several V concen-

trations x indicated. Symbols represent data taken at low temperatures (1.5K < T <

10K). Solid lines represent fits to selected models. Each data is shifted by a constant

C to avoid any overlap. From Ref. [3].

At the highest V concentration (x > xc), however, a very weak depolarization is

observed that can be modeled by a simple exponential decay as

A(t) = APMPPM = APMe
−λt, (4.1)

where APM is the amplitude of the asymmetry and λ ∼ 1/ν is the depolarization

rate, a measure of the fluctuation rate (ν) of magnetic clusters. As can be seen in
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Fig. 4.3, the other concentrations (0 < x < 12%) show a single dip without further

oscillations. The dip gets shallower towards higher concentrations and finally dis-

appears beyond the critical concentration. This can be understood as the effect of

multiple frequency oscillations with some distribution width(s), ∆i. Here, we mainly

focus on two concentrations (x = 10% and x = 11%) that are close to the quantum

critical point but on the ferromagnetic side of the phase transition.

4.2.1 Results of x = 10%

The asymmetry A(t) extracted from the µSR data for x = 10% is presented in

Fig. 4.4(a) at several temperatures. At low temperatures, it shows a single dip without

further oscillations revealing inhomogeneous ferromagnetic order. A Gaussian distri-

bution of local magnetic fields of width ∆ fits the asymmetry well at low temperature

with a form A(t) = AFMPFM with

PFM = PKT (t; ∆) =
1

3
+

2

3
e−∆2t2/2

(
1−∆2t2

)
. (4.2)

PKT is the well known Kubo-Toyabe (KT) depolarization function described in Eq. 2.14.

For all temperatures, A(t) can be modeled by two components and a small additional

constant background contribution (ABG) as

A(t) = APM(T )PPM + AFM(T )PFM + ABG, (4.3)

where APM(T ) and AFM(T ) are temperature dependent amplitudes of the param-

agnetic and the ferromagnetic components, respectively. The small temperature-

independent contribution (ABG) stems mainly from the silver sample holder.
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Figure 4.4: (a) Zero-field µSR asymmetry A(t) vs time of Ni1−xVx for x = 10%. Sym-

bols represent data taken at several temperatures. Solid lines represent fits to Eq. 4.2.

(b) Evolution of amplitudes of the FM component (AFM) and the PM component

(APM) as a function of temperature T . From Ref. [2].

The temperature dependence of the amplitudes AFM (blue symbols) and APM (red

symbols) are shown in Fig. 4.4(b). AFM > 0 marks the onset of the ferromagnetic

order at TC ' 47K. The FM order dominates the magnetic cluster contribution rep-

resented by APM at sufficiently low temperatures. The FM ordered fraction evaluated

by the ratio fFM = AFM/(AFM + APM) is close to 100% at low temperature.

4.2.2 Results of x = 11%

Approaching the quantum critical point from the FM side of the quantum phase

transition, we next focus on the x = 11% sample. Magnetization measurements

indicate that it is a ferromagnet and no indication of a cluster glass transition is

noticed in magnetic ac-susceptibility measurements [69]. The zero-field asymmetry is

plotted as a function of time for several temperatures in Fig. 4.5(a). It shows a strong
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depolarization with a shallow dip making the static Kubo-Toyabe fit impossible even

at the lowest temperature.

Figure 4.5: (a) Zero-field µSR asymmetry A(t) vs time of Ni1−xVx for x = 11%.

Symbols represent data taken at several temperatures. Solid lines represent fits of

the form in Eq. 4.4 (b) Evolution of amplitudes of the FM component AFM (blue

symbols) and the PM component APM (red symbols) as a function of temperature

T . From Ref. [2].

Data taken in longitudinal fields also exclude a dynamic KT form [2]. An alter-

native model that can describe multiple field distributions with different widths is

required to account for the fast time dependence of A(t). The Gaussian broadened

Gaussian model with

PGBG(t; ∆, R, ν) =
1

3
exp(−2

3
νt) +

2

3
((1 +R2)/N)3/2(1− (∆t)2/N)exp(− 1

2N
(∆t)2),

(4.4)

fits the data well [2](see Fig. 4.5(a) for R=0.8). N = 1 + R2 + R2∆2t2, where R =

∆w/∆0 gives the ratio of the widths of each Gaussian distributions (∆w) to the central
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width (∆0), ∆eff = ∆ =
√

∆2
w + ∆2

0 is the effective field distribution width, and ν

is the fluctuation rate. The temperature dependence of the amplitudes of the PM

(red symbols) and the FM (blue symbols) component is shown in Fig. 4.5(b). The

onset of AFM indicates ferromagnetic order at TC ' 6.5K which is in agreement

with the TC obtained from magnetic measurements [1]. AFM does not saturate and

remains reduced towards the lowest temperature. At the lowest temperatures, a

sizable paramagnetic contribution APM remains leading to a cluster fraction fcl =

1 − fFM of ∼ 20%. This is an indication of the existence of fluctuating magnetic

clusters that remain at low temperatures. The µSR-based cluster fraction (fcl =

APM/(APM+AFM)) is obtained for all x using Kubo-Toyabe and Gaussian broadened

Gaussian models of A(t) at the lowest temperature T .

Figure 4.6: (a) Cluster fraction fcl vs x from magnetization and µSR analysis. (b)

Relative width R vs x of the Gaussian-broadened Gaussian (GBG) model. From

Ref. [2].

As can be seen in Fig. 4.6(a), these cluster fractions (fcl) are consistent with the
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estimates obtained from magnetization data and show that clusters get more relevant

close to the critical concentration. For consistency, all FM samples have been fitted

with PFM = PGBG at the lowest temperature. The relative GBG width, R, remains

small for x ≤ 9% confirming the KT form (with R = 0), and then increases towards xc

as the cluster fraction rises, indicating an increased magnetic inhomogeneity towards

the quantum critical point (see Fig. 4.6(b)).

4.3 SANS results

Previous small angle neutron scattering (SANS) data have shown that the mag-

netic intensity seems to be too small to be measured in Ni-V with x = 12%, a PM

sample in the Griffiths phase regime. New SANS experiments at performed at a weak

FM sample with x = 11% were successful and could resolve magnetic intensity. To

extract the magnetic contribution (∆I), we subtracted data collected at high field

(B) or at high temperature (T ) as nuclear background estimate (BG) from the total

intensity (I). Fig. 4.7 shows the total intensity that is enhanced due to chemical dis-

order and the magnetic intensity with a fraction of about 1− 10%. Such differences

include large errors since the sample can move in between the two settings and the

background (BG) can be temperature and magnetic field dependent. We recognize

a clear temperature dependence in ∆I around Q ' 0.05Å−1 from TC = 7K to lower

temperatures. It looks promising that the remaining magnetic intensity at low tem-

peratures is related to the magnetic cluster distribution. But, whether the increasing

signal ∆I towards low Q is really magnetic or an artifact of the BG estimate has to

be investigated further in a future experiment.
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Figure 4.7: SANS intensity I of Ni-V for x = 11% as a function of scattering vector Q

measured at different temperatures TC = 7K and T = 1.5K. For ∆I, data at B = 5T

are subtracted as background. Data collected on GPSANS at HFIR, ORNL.

For comparison, we investigated x = 10% sample, a stronger FM with TC = 47K.

The data is presented in Fig. 4.8 for unpolarized neutron beam on NG7 (large cir-

cles) and GPSANS (small circles). We subtracted the higher field data to extract

the magnetic intensity. The magnetic intensity ∆I is reduced significantly for tem-

peratures below TC . Again, the steeper upturn of ∆I towards low Q remains to be

checked carefully. In addition, we also tested a full polarized set up that was fea-

sible and produced consistent data with sufficient statistics in the higher Q range

0.02Å−1 ≤ Q ≤ 0.1Å−1 (see Fig. 4.8). An estimate of spin flip data (SFc) (black

squares) matches the unpolarized ∆I data (blue circles) for T = 47K.
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Figure 4.8: SANS intensity of Ni1−xVx for x = 10% as a function of scattering vector

Q measured at several temperatures. The high field data is subtracted as background.

Data collected on GPSANS, ORNL (small circles) and on NG7 SANS, NIST (large

circles).

A detailed magnetic cluster analysis is not possible yet. But, these initial measure-

ments show that polarization analysis is feasible and can be extended towards lower

Q and lower temperatures with better statistics. Further improvements to reduce the

contribution of the sample holder are planned.

4.4 Discussion

In this chapter, I have presented evidence of fluctuating magnetic clusters in the

d-metal alloy Ni1−xVx on the ferromagnetic side of the quantum phase transition

through a thorough µSR analysis of two FM samples. The non-universal power laws

observed in the bulk magnetization data suggested a quantum Griffiths phase, that

extended into the FM phase. But, the direct evidence of fluctuating magnetic clusters
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was missing. µSR data could be modeled with simple fit-function in a wide concentra-

tion regime revealing an inhomogeneous FM ordered state. Analyzing the µSR data

of two FM samples close to xc revealed the coexistence of inhomogeneous magnetic

order and magnetic clusters. These fluctuating magnetic clusters were identified by

the PM contribution. While the asymmetry for x = 10% is well described by a static

KT distribution function, a modification is needed such as nearly static GBG model

to describe the field distribution at x = 11%. For samples sufficiently close to the crit-

ical concentration xc, the fluctuating clusters become more relevant consistent with

the magnetization data. This provides the first convincing evidence for a quantum

Griffiths phase on the FM ordered side of QPT. Resolving further details of the mag-

netic cluster distribution remains a challenge, but preliminary SANS measurements

indicate that resolving magnetic intensities in the FM phase is feasible.
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Chapter 5

Structural and magnetic study of CeRh-alloys

CePd and CePt are among the few ferromagnetic (FM) ordered Ce-alloys with a

magnetic moment stemming from the localized f-electron in Ce3+. The two binary

alloys exhibit FM order close to TC ' 6K [11, 27]. Chemical doping (replacing plat-

inum (Pt) or palladium (Pd) by rhodium (Rh)) reduces TC and leads finally to a

nonmagnetic mixed valence state in CeRh [11, 48]. These compounds show indica-

tions of disordered quantum phase transitions but different scenarios were reported

for the Pd- [11] and the Pt-systems [48].

To figure out the cause of these differences and the impact of disorder on the

quantum phase transition in both f-electron compounds, I chose to study both sys-

tems (CePd1−xRhx and CePt1−xRhx) at several Rh concentrations starting with a

detailed structural investigation. The major part of this work involves the growth

and characterization of several high quality polycrystalline samples at different Rh

concentrations. Also magnetic ac-susceptibility measurements have been performed

at a selected Rh concentration that are presented first before the major structure

study. Major parts of this chapter are summarized in Ref. [70].

5.1 Magnetic ac-susceptibility

To check the quality of our samples and compare the magnetic property of the Pt-

and the Pd-samples at low Rh concentration (x = 0.2), I performed ac- susceptibility

measurements down to 4.2K in a He4 cryostat (see Fig. 5.1). The FM transition is
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clearly noticed by a steep upturn in χ(T ) towards lower temperatures followed by a

reduction within the FM state. The sharp maximum occurs at the same temperature

(TC ' 6K) for both compounds. The sharpness of the anomaly at the transition

for both compounds shows that the substitution Pd/Rh or Pt/Rh does not affect

the ferromagnetic transition at x = 0.2. Both samples, at low Rh concentration,

show a similar response with almost the same transition temperatures that does not

depend on the frequency (ν) of the applied field. The observed frequency dependence

in the FM phase is not an indication of a spin glass or cluster glass phase since

the actual transition temperature (TC) does not change with ν. Here, we observe

∆TC/TC
∆logν

< 0.005. While for x ≥ 0.5, ∆TC/TC
∆logν

> 0.01 was reported [48] as indication of

a cluster glass transition.

Figure 5.1: Low temperature magnetic ac-susceptibility of (a) CePt0.8Rh0.2 and (b)

CePd0.8Rh0.2 for different frequencies of the driving field B < 0.01G.
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The main structure characterization is revealed by a wide angle neutron diffraction

experiment on NOMAD, at the SNS at 100K and 289K. In the following sections, I

first check the main structure of our the samples by using EXPGUI analysis. The

lattice constants and relevant parameters will be discussed and will be compared with

other available published results. The pair distribution function (PDF) analysis allows

a more detailed structural investigation since it is sensitive to short range correlations.

Not only the local Ce-bond lengths can be traced as a function of composition in

both compounds, but also the variance of bond lengths can be determined. In the

next chapter, I investigate how to extract information about disorder and magnetic

inhomogeneities from these structural studies using PDF analysis.

5.2 Structure analysis with EXPGUI

Rietveld analysis of the neutron powder diffraction data S(Q) using the EXPGUI

program [59] shows that both systems, CePd0.8Rh0.2 (Pd-samples) and CePt0.8Rh0.2

(Pt-samples), crystallize in the orthorhombic CrB-type structure with space group

Cmcm (#63) as expected. In this structure, the Ce atom is assigned to the “4c”

crystallographic site (0, yCe, 1/4) and the Rh and Pd/Pt atoms share the “4c” crys-

tallographic site (0, yRh, 1/4) with a given probability x according to the concentration

of Rh [5].

The main orthorhombic CrB-type structure is shown in Fig. 5.2 in different planes.

The blue spheres show the Ce-atoms and the red spheres show the Rh/Pt atoms in

the Pt-samples or the Rh/Pd atoms in the Pd-samples on the shared site.
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Figure 5.2: The CrB-type structure when viewed in different projections a) c-b plane

b) c-a plane, and c) a-b plane. The blue spheres represent the Ce-atoms and the red

spheres represent the Rh/Pt or Rh/Pd atoms on the shared sites.

Fig. 5.3 shows the structure function (S) plotted as a function of total time of

flight (TOF) of both compounds at 100K for the lowest (x = 0.2) and the highest

(x = 0.8) Rh concentrations. The difference between data (black symbol) and fit (red

line) is shown by a green line at the bottom. The blue line underneath the peaks is

the background fit function optimized for the lowest weighted profile R-factor (wRp)

values. Additional peaks which do not belong to the CrB-structure have been noticed

nearly for all concentrations in both compounds. Some of these additional peaks are

indicated by blue arrows in Fig. 5.3.
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Figure 5.3: Structure function S of CePd1−xRhx and CePt1−xRhx for selected Rh

concentrations, x = 0.2 and x = 0.8, at 100K as a function of total time of flight

(TOF) reduced with EXPGUI. The black symbols show data and the red line repre-

sents the Rietveld fit. The difference between data and fit is shown by a green solid

line at the bottom. Blue arrows show additional peaks from the identified minority

phases of Ce(Pt1−xRhx)2 and Ce3Pd4.

Similar additional reflections were also observed in the X-ray powder diffraction

pattern of CePt [71] but the origin was not explained. Gomez Sal et al. [6] suggested

a distorted CrB-structure as secondary phase. In this work, we have successfully

identified the additional structures for both the Pd- and the Pt-samples and details
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of the structural parameters will be discussed in the subsequent sections.

To check the quality of our samples, we compare the lattice parameters of the main

structure with other data. Table 5.1(a) presents our high temperature single-phase

Rietveld analysis results of CePd0.2Rh0.8 with the results of CePd0.15Rh0.85 reported

by Adroja et al. [5].

Table 5.1: Comparison of Rietveld analysis refined fit parameters of (a) single-phase

CePd0.15Rh0.85 powder data obtained on GEM at 300K at ISIS reported by Adroja

et. al [5] and our CePd0.2Rh0.8 powder data obtained on NOMAD at 289K at SNS

and (b) CePt powder data obtained at 15K reported by Gomez Sal et. al [6] and our

CePt0.8Rh0.2 powder data obtained on NOMAD at 100K at SNS.

(a)

CePd1−xRhx

x 0.85 [5] 0.80

T=300K

a(Å) 3.8801(8) 3.8902(9)

b(Å) 10.9666(3) 10.9678(1)

c(Å) 4.2381(1) 4.2696(1)

yCe 0.1376(1) 0.1368(4)

yRh 0.4091(1) 0.4118(4)

uCe(Å
2) 0.0075(2) 0.0054(6)

uRh(Å
2) 0.0176(3) 0.01727(8)

wRp(%) 4.8 7.33

(b)

CePt1−xRhx

x 0 [6] 0.20

T 15K 100K

a(Å) 3.884(2) 3.903(6)

b(Å) 10.845(5) 10.880(7)

c(Å) 4.517(3) 4.484(7)

yCe 0.1362(10) 0.1387(6)

yRh 0.4128(7) 0.4130(5)

uCe(Å
2) — 0.008(6)

uRh(Å
2) — 0.009(1)

wRp(%) — 5.97
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Similarly, Table 5.1(b) compares CePt0.8Rh0.2 data at 100K (the lowest Rhodium

concentration we have) with the refined lattice parameters obtained from CePt pow-

der data at 15K from Ref. [6]. Although the Rh concentrations, the experimental

settings, and the analysis methods are slightly different, it confirms that our samples

compare well with other samples presenting similar and reproducible parameters. In

Table 5.1(a), the slight increase in the lattice parameters of our Pd-sample is expected

since the Rh concentration in our sample is reduced by ∼ 5%. Nevertheless, the lat-

tice parameters of our Pt-sample in Table 5.1(b) are slightly bigger although the Rh

concentration is higher by a significant amount ∼ 20%. This could be attributed to

the fact that our measurement was taken at a higher temperature.

5.3 Structure of minority phases Ce(Pt1−xRhx)2 and Ce3Pd4

Both systems Ce-Pd and Ce-Pt can form a Ce3T4 phase (with T= Pd or Pt),

but only Ce-Pt and also Ce-Rh can crystallize in a CeT2 phase (with T= Pt or Rh).

Focusing on these crystal structures of the neighbor phases in the phase diagram of

Ce-Pt [71], Ce-Pd [72] and Ce-Rh [73] lead to a successful identification of the extra

peaks. In CePd1−xRhx, the best second phase is Ce3Pd4 for x ≤ 0.6, in CePt1−xRhx

the best second phase is Ce(Pt1−xRhx)2, that improves the fit of the data. The

Ce(Pt1−xRhx)2 structure identified by EXPGUI in the Pt-samples is isostructural

to the Cu2Mg-type structure with space group Fd3̄m shown in Fig. 5.4(a). The

blue spheres represent the Ce-atoms assigned to the “8b” and the red spheres show

the Rh/Pt atoms assigned to the “16c” site that is shared with the probability of

occupation given by the Rh concentration.

The structure of CePt2 (x = 0) was initially identified by Zachariasen et al. [74] with

a lattice constant a = 7.714Å and later confirmed by A. Janghorban et al. [71] based
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on X-ray diffraction with a resulting lattice constant, a = 7.741(4)Å. Our analysis

with 0.2 6 x 6 0.8 yield lattice constants that are smaller than CePt2 but larger than

CeR2 (a = 7.545Å) [73] consistent with the Rh concentration.

Figure 5.4: Structures of the minority phase (a) Ce(Pt1−xRhx)2 and (b) Ce3Pd4. Blue

spheres show the Ce-atoms and the red spheres show (a) the Pt/Rh atoms and (b)

the Pd/Rh atoms.

The Ce3Pd4 structure is identified in the Pd-samples. This phase is isostructural

to the Pu3Pd4-type structure with space group R3̄ as shown in Fig. 5.4(b). The blue

spheres represent the Ce-atoms assigned to the “18f” site and the red spheres show

the Pd-atoms assigned to “18f”, “3a”, and “3b” sites in the rhombohedral notation.

See specific values and detailed information about the second phase fit parameters in

the Appendix.
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5.4 PDF analysis of CePt1−xRhx using PDFgui

To study the local structure of our samples, we focus mainly on the PDF analysis

modeling the extracted PDF data using PDFgui [75]. As we discussed in Chapter 2,

G(r) allows us to study the local structure on different length scales by varying the

maximum range value (rmax). The extra phases identified from our EXPGUI analysis

are tested and verified by the results of our PDF analysis.

Figure 5.5: PDF of powder data of selected Pt-alloys at 100K on NOMAD with (a)

single-phase fit & (b) two-phase fit for CePt0.8Rh0.2 and (c) single-phase fit & (d)

two- phase fit for CePt0.2Rh0.8. The difference, ∆ = data(blue symbols)-fit(red line),

is shown by a wavy green line beneath the peaks with a black straight line showing

the offset by 6 units.
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Already, the single-phase fit modeling a CrB-structure describes the PDF data

well. But, the introduction of a second phase as identified by EXPGUI significantly

improves the weighted residual factor (Rw) for both the Pd- and the Pt-compounds for

all concentration of Rh. Fig. 5.5(a) shows the reduced G(r) data at 100K and a single-

phase fit of CrB-type structure for CePt0.8Rh0.2 within a fit range of 1.75Å ≤ r ≤ 20Å.

The instrumental parameters Qdamp ' 0.018Å−1 and Qbroad ' 0.02Å−1 are used

throughout our analysis and more details about the instrumental parameters are

available in the Appendix. The difference between data and fit results in a weighted

residual factor (Rw) of ∼ 0.14 with a single-phase fit. Fig. 5.5(b) demonstrates that

the fit quality is improved and that Rw is reduced to ∼ 0.10 by introducing a second

phase Ce(Pt1−xRhx)2 with a small phase fraction ∼ 5%. A single-phase fit with Rw

∼ 0.23 and a two-phase fit with a reduced Rw ∼ 0.15 for CePt0.2Rh0.8 are presented

in Figs. 5.5(c) and (d), respectively. We see that although the Rw value is improved

by the introduction of a second phase, its value still remains significantly high at

higher Rh concentration.

In Figs. 5.6(a) and (b), the red symbols indicate the Rw values based on the

main phase fit with P1 only, the blue symbols represent the reduced Rw values by

introducing additional second phase (P1+P2). The green symbols show the Rw of

the two-phase model introducing an additional parameter “spd” to model the effect

of the finite nanoparticle size with a spherical shape factor. Only a slight reduction

of Rw is noticed. Our results suggest that a finite nanoparticle size effect is negligible

and does not need to be considered further in our analysis. The open symbols in

Fig. 5.6(b) denote Rw for a two-phase model with a different second phase P2. Rw

for x = 0.8 is reduced if P2 is CeRh2, which is the same second phase the Rh-rich
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Pt-samples. Figs. 5.6(c) and (d) display the fraction of the second phase (f2) in the

Pt- and Pd-compounds for all concentrations, respectively. The fraction of the second

phase is defined as (f2 = s2
s1+s2

), where s1 and s2 are the amplitude parameter “scales”

for the main phase and the secondary phase in the PDFgui program, respectively.

Figure 5.6: The weighted residual factor (Rw) from PDF analysis of (a) CePt1−xRhx

and (b) CePd1−xRhx in fit range 1.75Å ≤ r ≤ 20Å at 100K. The red symbols show

single-phase fit with P1 only, blue symbols show two-phase fit with P1+P2, where P2

is CeRh2-type phase, and green symbols show two-phase fit with P2=Ce3Pd4. Open

symbols include additional parameter spd. The fraction of the second phase (f2) in

(c) CePt1−xRhx and (d) CePd1−xRhx as a function of Rh concentration x.
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Fig. 5.6 gives an overview of the fit quality Rw of the PDF analysis using a single-

phase or two-phase description as a function of Rh concentration x. Rw is reduced for

all samples introducing a second phase. From our results, we see that the reduced G(r)

data are well described with two phases with low weighted residual factors, Rw< 0.2.

For x = 0.2, the best Rw value is reduced to ∼ 0.10, indicating a good description.

Rw is limited here as a result of the short Qmax cutoff due to Rh absorption. But, at

the highest Rh concentration (x = 0.8), Rw remains higher (' 0.15) even for the best

two-phase fit indicating structural disorder. Before addressing the disorder in these

compounds, the next chapter reports the extracted lattice parameters of the Pt- and

Pd-alloy, respectively. The PDF analysis does not differ from the EXPGUI analysis.

Also the parameters of the second phase are consistent and agree with published

results [76]. More details are discussed in the next Chapters.

5.5 The lattice parameters of CePt1−xRhx

The lattice parameters of the unit cell and the specific atomic positions in the

main phase of CePt1−xRhx were determined consistently with PDFgui and EXPGUI.

Fig. 5.7 and Fig. 5.8 illustrate the systematic variation of the lattice parameters of the

main orthorhombic CrB-type structural phase of CePt1−xRhx with x at temperatures

100K and 289K. The lattice constant a slightly decreases and b does not change

significantly towards the higher concentration (see Figs. 5.7(a) and (b)).
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Figure 5.7: Refined lattice parameters of CePt1−xRhx vs x at T = 100K (blue circles)

and T = 259K (red circles) are shown. (a), (b), and (c) show the lattice constants a,

b, and c, respectively. (d) presents the unit cell volume, V .

However, the lattice constant c and, therefore, the unit cell volume decreases

significantly as the Rh concentration increases (see Figs. 5.7(c) and (d)).
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Figure 5.8: Refined parameters of CePt1−xRhx vs x at different temperatures, T =

100K (blue circles) and T= 259K (red circles): (a) and (b) show isotropic ADP of

Ce, uCe, and of Rh/Pt site, uRh, respectively. (c) and (d) present the atomic position

of Ce, yCe, and of the Rh/Pt site, yRh, respectively.

We note that the lattice constant c at 100K decreases with a rate (∆c/c∆x) of

∼ 12.5% as the Rh concentration increases (as estimated from x = 0.2 − 0.8) which

is significantly higher than the difference between the covalent radii of Rh and Pt

(∼ 3%) [37]. This indicates that the decrease in the lattice parameter c and hence the

unit cell volume cannot be explained by considering only the difference between the
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covalent radii of Rh and Pt. As expected, all the lattice constants increase with higher

temperature. Figs. 5.8(a) and (b) show the isotropic atomic displacement parameters

(ADP) of the Ce atom (uCe) and the Rh atom uRh, respectively. We see that both, uCe

and uRh, increase with temperature as the dynamic atomic displacement parameter

dominates at high temperature. On the other hand, uRh increases significantly with

concentration unlike uCe which does not increase much with Rh concentration. It is

worth noting that we considered the isotropic atomic displacement parameter (〈u2
iso〉)

only to limit the number of free parameters and avoid correlations. Although the

“isotropic” uCe does not appear to change much, our preliminary results show that

“anisotropic” uCe fit parameters change in specific directions employing single-phase

model (not included here). As depicted in Figs. 5.8(c) and (d), the positions of the Ce

atoms (yCe) and the Rh atoms (yRh) do not change notably with temperature and only

yRh slightly decreases towards higher Rh concentration (with a slope ∆y/y∆x < 1%).

5.6 PDF analysis of CePd1−xRhx using PDFgui

Fig. 5.9(a) demonstrates the reduced G(r) data at 100K and a single-phase fit of

CrB-type structure for CePd1−xRhx within a fit range 1.75Å ≤ r ≤ 20Å. The dif-

ference between data and fit results in a weighted residual factor (Rw) ∼ 0.15 with

a single-phase fit. Fig. 5.9(b) shows the reduced Rw ∼ 0.11 by introducing a sec-

ond phase Ce3Pd4 with a small phase fraction < 20% (see for example Fig. 5.6d).

Fig. 5.9(c) shows a single-phase fit for CePd0.2Rh0.8 resulting in Rw ∼ 0.20 and

Fig. 5.9(d) shows the improvement of the fit quality (Rw∼ 0.17) by introducing an

extra CeRh2 phase in a small fraction ∼ 6% (see Fig. 5.6(d)).
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Figure 5.9: PDF of CePd1−xRhx at 100K with (a) single-phase fit & (b) two-phase

fit of CePd0.8Rh0.2 and (c) single-phase fit & (d) two-phase fit of CePd0.2Rh0.8. The

difference, ∆ = data(blue symbols)-fit(red line), is shown by a wavy green line beneath

the peaks with a black straight line showing the offset by 6 units.

The lattice parameters of the main phase are within error bars as compared to the

results of a single-phase fit. Also the parameters of the second phase are consistent

with published results [72]. Details of the structure parameters of the second phase

will be given in the Appendix.
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5.7 The lattice parameters of CePd1−xRhx

Fig. 5.10 and Fig. 5.11 show the systematic variation of the lattice parameters

of the main orthorhombic CrB-type structural phase of CePd1−xRhx with the Rh

concentration at temperatures 100K and 289K. The lattice constant a of the Pd-

samples does not change much with the concentration x. However, the lattice constant

b slightly increases towards higher concentration (< 1.5%).

Figure 5.10: Refined lattice parameters of CePd1−xRhx vs x at T = 100K (blue

circles) and T = 259K (red circles). (a), (b), and (c) show the lattice parameters a,

b, and c, respectively. (d) presents the unit cell volume, V
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The lattice constant c and, therefore, the unit cell volume of the Pd-samples

decreases significantly as the Rh concentration increases. The lattice constant c at

100K decreases at a rate (∆c/c∆x ∼ 13%) as the Rh concentration increases which

is significantly higher than the difference between the covalent radii of Rh and Pd

(∼ 2%) [37].

Figure 5.11: Refined parameters of CePd1−xRhx vs x at different temperatures, T =

100K (blue circles) and T = 289K (red circles). (a) and (b) show isotropic ADP of

Ce, uCe, and of Rh/Pd site, uRh, respectively. (c) and (d) present the atomic position

of Ce, yCe, and of the Rh/Pd site, yRh, respectively.
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All the lattice constants except the atomic positions increase with temperature.

Figs. 5.11(a) and (b) show the isotropic atomic displacement parameters (ADP) of

the Ce atoms (uCe =< u2
iso >) and the Rh/Pd shared sites uRh of the Pd-samples,

respectively. We see that both uCe and uRh increase with temperature as the dynamic

ADP dominates at higher temperature. The isotropic ADP of the shared Rh/Pd site,

uRh, increases significantly with Rh concentration unlike the isotropic ADP of the Ce

atom uCe which does not change much with Rh concentration. Figs. 5.11(c) and (d)

show that the positions of the Ce atoms (yCe) and the Rh/Pd atoms (yRh) do not

change notably with temperature and only yRh slightly decreases towards higher Rh

concentration (with a slope ∆y/y∆x ∼ 1%).

5.8 Discussion

In this chapter, we have confirmed that all our samples crystallize in the or-

thorhombic CrB-type structure and that both samples with x = 0.2 show a FM

phase transition at TC ∼ 6K. A small fraction of additional phases have been iden-

tified. The Pd- and the Pt-samples, in general, look similar. They display similar

structural parameters of the main phase. The secondary phases are different for the

Pd-samples (Ce3Pd4) and for the Pt-samples (Ce(Pt1−xRhx)2). The lattice constants

a and b of the main phase as well as the atomic positions do not change much with con-

centration x for both compounds. Whereas, the lattice constant c and hence the unit

cell volume decreases significantly towards higher concentration. The lattice constant

c decreases at a rate of ∆c/c∆x ∼ 13% for the Pd-samples and at ∆c/c∆x ∼ 12.5%

for the Pt-samples. This rate of change cannot be explained by Vegard’s law,

c = c0(1− x∆r

r
), (5.1)
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where ∆r
r
' 0.02 (0.03) is the relative covalent radius difference between Pd (Pt)

and Rh atoms, respectively. Moreover, it is shown that while the isotropic ADP of

the Ce atom (uCe) does not change notably with concentration, the isotropic ADP

of the shared Rh/Pd or Rh/Pt site (uRh) increases significantly towards higher x.

With random occupation of two neighboring atoms with different sizes, we expect

the variance of the bond length to show a maximum at x = 0.5.

In the next chapter, we will have a close look at the local Ce-environment by

determining the different bond lengths and their variation with Rh concentration to

explain these observed anomalies and to get to the origin of disorder in these systems.
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Chapter 6

Origin of disorder in ferromagnetic CeRh-alloys

In the previous chapter, we have checked the structural quality of our samples

and the variation of important parameters such as the lattice constants, the atomic

positions, and the atomic displacement parameters with temperature and Rh concen-

tration in both compounds. We have seen that the decrease of the lattice constant c

with concentration could not be explained just by the introduction of a smaller Rh

atom. In addition, the fact that the isotropic ADP of the shared Rh/Pd or Rh/Pt

site increases beyond x = 0.5 requires a close look at specific bonds between different

pairs of atoms. In this chapter, we will present the bond lengths between different

pairs of atoms and their variance to probe the local Ce-environment and investigate

the main causes for the magnetic inhomogeneities in our systems.

6.1 Investigation of the local Ce-environment

Using PDFgui, we have determined the bond lengths between different pairs of

atoms from our PDF data taken at 100K for both the Pd- and the Pt-samples. In

particular, we are interested in the local Ce-environment and investigate the evolution

of the Ce-Rh and the Rh-Rh bond lengths with concentration in both the Pd- and

the Pt-compounds. “Rh” indicates the Rh-site, that is actually filled with Pd/Pt or

Rh atom depending on x. Figs. 6.1(a) & (b) present the evolution of specific bond

lengths with concentration x. We see that Ce has seven nearest Rh neighbors with

three different Ce-Rh bond lengths L ∼ 3Å. Also, the closest Rh-Rh bond length
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∼ 3Å contributes to the first peak in G(r).

Figure 6.1: Variation of bond lengths between different pairs of atoms at 100K in (a)

CePd1−xRhx and (b) CePt1−xRhx. (c) displays the Ce-atom (yellow) and its seven

nearest neighbors at different distances (different colors).

As can be seen in Figs. 6.1(a) & (b), the Rh-Rh bond length (black symbols)

slightly decreases with concentration in both the Pd-samples and the Pt-samples with

a relative slope ∆L/L∆x ∼ 3 − 4%. The Ce-Rh4 bond length (green symbols), the

distance between Ce and four Rh nearest neighbors, decreases strongly by ∼ 7% for

the Pd-samples and by ∼ 6.5% for the Pt-samples. However, the Ce-Rh2 bond length,

the distance between Ce and two Rh nearest neighbors (blue symbols), increases and

creates a spread of bond lengths at higher concentrations. This is mainly the reason

for the extra shoulder observed for x = 0.8 in the first peak of the PDF data (see
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Figs. 5.5(c) & (d) and 5.9(c) & (d). We note here that the weak reduction of the

Rh-Rh bond length and the larger reduction of the Ce-Rh4 bond length are the main

reason for the strong reduction of the lattice constant c. The strong increase of the

isotropic atomic displacement parameter uiso with x can be explained by considering

relevant bond lengths. As the bond length of a close atom pair is found through

the peak position in G(r), the bond length variance σ2
ij determines the peak width

(besides instrumental contribution). The thermal motion and static displacement of

both individual atoms contribute to the mean square relative displacement of atom

pairs [77]

σ2
ij = u2

i + u2
j + corr (6.1)

that are bond length variances for close neighbors. Using only isotropic ADP uiso

for each element and neglecting terms that are not simply x-dependent, such as the

correlation term and uCe, we see that changes in ADP can be related to changes in

bond lengths variance (∆u2
Rh ∼ ∆σ2

Ce−Rh and ∆u2
Rh ∼ 1

2
∆σ2

Rh−Rh).

To get ∆σ2
ij from the radius difference between Rh and Pd/Pt is straight forward.

Assuming the smaller atom Rh has radius r and probability of occupation x with

the larger atom, Pd/Pt, has radius R and probability of site occupation 1 − x, the

average bond length is given by

d̄ = 2[(1− x)R + (x)r]. (6.2)

The corresponding variance is

σ2
Rh−Rh = d̄2 − (d̄)2 = 2(R− r)2x(1− x). (6.3)

On the other hand, evaluating the variance of the Ce-Rh bond lengths is more com-

plicated. Locally, Ce can have a maximum of seven Rh nearest neighbors with similar
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distances with a probability of occupation x each, and hence the probability is x7 of

finding all the seven Rh nearest neighbors. We know that the bond length in CeRh

is very short (d). In the simplest model, we assign one long bond length (D) for all

Ce-Rh bonds, if Ce has at least one Pd/Pt neighbor. For example, for a Rh con-

centration x = 0.8, about 21% of the Ce-atoms have seven Rh neighbors with short

bond length (d), while ∼ 79% of the Ce-atoms should have at least one Pd/Pt nearest

neighbor with larger bond length (D). This mixture of two bond lengths creates a

variance of

σ2
Ce−Rh = (D − d)2x7(1− x7). (6.4)

The maximum value of σ2(x) is found at higher concentration, x ∼ 0.9 than x = 0.5.

If correlated motion is neglected, uiso from each element contributes to the variance of

bond lengths (see for example Eq. 2.7). Considering the contributions from atomic size

differences, the variance of Ce-Rh bond lengths, and crystal defects, the fit function

for the isotropic atomic displacement parameter uRh of the shared Rh/Pd or Rh/Pt-

site can be written as

uRh = u0 + u1x(1− x) + u2x
7(1− x7). (6.5)

u0, u1, and u2 are fit parameters proportional to the concentration independent crystal

defect and thermal motion contributions, the square of the radius difference between

Rh/Pd or Rh/Pt atoms, and the square of the difference between the shorter and the

larger bond lengths, respectively as extracted from data. The expected values of these

parameters are approximately u1 =
d20
2

(R−r
r

)2 ' 0.004Å2 and u2 = d2(D−d
d

)2 ' 0.04Å2.

Using the experimental data, d0 ' 2.9Å for the Rh-Rh bond length, R−r
r

= 0.03 for

the radius difference between Pt and Rh, d = 3Å for the Ce-Rh bond length, and

D−d
d

= 0.065 for the Ce-Rh bond length change.
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Figure 6.2: Isotropic ADP, uRh and uCe at 100K of CePd1−xRhx and CePt1−xRhx vs

x, red line shows fit of uRh(x) of Pt-samples.

Fig. 6.2 illustrates the evolution of the isotropic atomic displacement parameters

(uiso) with Rh concentration x for both CePd1−xRhx and CePt1−xRhx compounds.

The corresponding fit function (red line) for uRh(x) is included assuming seven Rh

nearest neighbors are relevant for the shorter bond length. Eq. 6.5 suggests that the

maximum isotropic ADP should occur at a higher concentration (x ∼ 0.9) consistent

with the results we obtained from our PDFgui analysis. The fit parameters u1 and u2

are also consistent with the expected values (within error bars). This confirms that

this simple model with just two different bond lengths explains the increase of uRh

beyond x = 0.5.

To investigate the local Ce-environment very closely, Figs. 6.3(a) and (b) com-

pare three different models for the PDF data of the Pt- and the Pd- samples at

the maximum Rh concentration (x = 0.8) at 100K within a very short fit range
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2Å 6 r 6 5.6Å, respectively. In both Figs. 6.3(a) and (b), the blue symbols repre-

sent the observed PDF data at 100K and the red line indicates the model with two

different Ce-environments P1(x)+P1(1). The phase, P1(1), is a pure CeRh phase with

a Ce-environment with 100% Rh neighbors. The other phase, P1(x), is a CeT0.2Rh0.8

phase with T=Pd or Pt and a Ce-environment with an average of 80% Rh neighbors.

This model results in the lowest weighted residual factor in both the Pt-compound

(Rw = 5.6%) and the Pd-compound (Rw = 5.4%). See for example the difference in

the data and fit indicated by a red line shifted down 4 units underneath the peaks

shown in Figs. 6.3(a) and (b). The green line in Fig. 6.3(a) indicates a two-phase fit

for the Pt-sample (with P1=CePt0.2Rh0.8 and P2=Ce(Pt0.2Rh0.8)2) resulting in Rw =

7.8%. In Fig. 6.3(b), the green line shows two-phase model (P1+P2) for the Pd-sample

with (P1=CePd0.2Rh0.8 and P2=CeRh2) with a residual weighted factor, Rw= 10.6%.

The difference between the data and the two-phase fit, in both compounds, is indi-

cated by a green wavy line shifted by 5 units below the peaks. A single-phase model

(P1) is also included for comparison indicated by a black line in both figures. The

difference between data and a single-phase fit are represented by a wavy black line

shifted down by 6 units resulting in a residual weighted factor values, Rw=11.3% for

the Pt-alloys and Rw=12.4% for the Pd-alloys, respectively.
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Figure 6.3: PDF of data (blue circles) at 100K of CeT0.2Rh0.8 for (a) T=Pt and (b)

T=Pd with fit range 2Å ≤ r ≤ 5.6Å. The red lines show a model with two different

Ce-environments (P1(x) +P1(1)) where P1(x) is CeT0.2Rh0.8 and P1(1) is CeRh. The

two-phase fit (P1 +P2) and the single-phase fit (P1) are marked by a green and black

lines, respectively, where P1 is CeT0.2Rh0.8 and P2 is Ce(Pt0.2Rh0.8)2 in (a) and CeRh2

in (b). The differences, ∆ = data-fit are shown below with the same color.

This is a clear indication of two different local Ce-environments (Ce with mixed Rh

and Pt/Pd neighbors with a probability given by the Rh concentration and another

environment where Ce is completely surrounded by seven Rh atoms). The expected

fraction of Ce atoms surrounded by seven Rh atoms at x = 0.8 is 0.87 ' 21%. The

observed fraction of Ce atoms with seven Rh nearest neighbors from our best fit in

Figs. 6.3(a) and (b) of ∼ 13%− 24% surprisingly matches the expected value.

6.2 Discussion

In this chapter, we have seen that the large reduction of the lattice parameter

c and the increase in the isotropic ADP with x are mainly due to the Ce-Rh bond

lengths variation in addition to the atomic size difference between Rh and Pd/Pt
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atoms.

Assuming a simple model of two different bond lengths in CePd1−xRhx and

CePt1−xRhx (short bond length d for Ce with seven Rh neighbors and longer bond

length D if one or more of the seven Rh atoms are replaced by Pt/Pd), our prediction

of the variation of the isotropic ADP (uRh) with the concentration of Rh matched the

observed results using PDF analysis. For example, we successfully showed that the

isotropic ADP of the Rh-site increases beyond (x = 0.5) and its maximum value is in

the same order of magnitude as the value obtained from our PDF analysis. Isotropic

atomic displacement parameter (uiso) from PDFgui reflects variance of bond lengths.

Sharp increase of uiso(x) for x > 0.7 signals that the number of nonmagnetic Ce atoms

with Rh neighbors with shorter bond lengths become more relevant as the main cause

for disorder.

By taking advantage of the power of the PDF analysis in controlling the length

scale of interest, we investigate the local Ce-environment of our samples at the max-

imum Rhodium concentration (x = 0.8) by comparing different models within fit

range 2Å 6 r 6 5.6Å. The model with Ce having two different local environments

(i.e. Ce completely surrounded by seven Rh atoms and Ce with 20% chance having

one or more Pt/Pd neighbors) gives superior result than even the two-phase model.

This indicates that at higher Rh concentration, Ce has different local environment

leading to substantial magnetic inhomogeneity and disorder.

In CeRh, strong hybridization makes Ce mixed valent (non-magnetic with effective

valence of 3.2 instead of 3.0) [78]. This is recognized by seven “short” Ce-Rh bonds

in our PDF analysis. Whereas, in CePt or CePd, weaker hybridization leaves the

local f-electron with its magnetic moment less affected. If one or more of the seven
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Rh neighbors of Ce is replaced by Pt/Pd, the bond lengths get longer and the Ce

regains its magnetic moment.

In both the Pd- and the Pt-systems, at higher Rh concentration, the magnetic dis-

order is manifested by having different local Ce-environment as shown in Figs. 6.3(a)

and (b). The tendency of the Pd-samples showing Griffiths phase [43] and the fact

that the Pt-samples show cluster glass phase [19] towards the higher Rh concentration

needs further magnetic and structural investigations.
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Chapter 7

Summary and outlook

This dissertation presents a detailed study of the structural and magnetic prop-

erties of selected ferromagnetic alloys which can be driven to a paramagnetic phase

by chemical substitution. The goal was to unravel the interplay between chemical

and magnetic disorder close to a ferromagnetic quantum phase transition. I chose

two series of alloys, the d-metal alloy Ni1−xVx and the f-metal alloys CePd1−xRhx

and CePt1−xRhx, that presents signs of a disordered ferromagnetic quantum phase

transitions.

In the first part of this thesis, I presented conclusive experimental evidence of a

quantum Griffiths phase, expected for “disordered” quantum phase transition, in the

d-metal alloy Ni-V. Such quantum Griffiths phase was recognized by magnetization

data first on the paramagnetic side, later on the ferromagnetic side of the quantum

phase transition. I applied the complementary method, µSR, and successfully ex-

tracted the relevant magnetic cluster contribution. This µSR analysis yields a similar

cluster fraction consistent with the magnetization data and confirms that dynamic

clusters are present close to the quantum critical point.

To trace the origin of these magnetic clusters and their distribution in Ni1−xVx, I

investigated the chemical structure in detail on a powder sample. The structure char-

acterization of our samples including the Ce-alloys was determined on data collected

on NOMAD, a high resolution neutron powder diffractometer at the Spallation Neu-

tron Source (SNS). I used in particular the local pair distribution function (PDF) as
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the powerful tool to probe local atomic environments and discriminate between short

range order and random displacements of the atoms. The PDF analysis confirmed

that our Ni-V powder sample crystallize in the expected fcc-phase with random occu-

pation of V and Ni. Comparison with alternative models (ordered phase models and

V-cluster model) show that fcc-lattice is the best model when V and Ni are occupying

the fcc-lattice sites at random. This indicates that the magnetic clusters we observed

in our magnetic and µSR measurements are not created due to chemical clustering.

Instead, they are formed from a random distribution of V atoms in the fcc-lattice.

The second part of my thesis focuses on the f-metal alloys CePd1−xRhx and

CePt1−xRhx. The ac-susceptibility and the structural data from the PDF analy-

sis do not show any significant differences between the Pd- and the Pt-samples. For

x = 0.2, they both show a sharp FM transition at TC ' 6K. They crystallize in the

same CrB-type structure with similar lattice parameters. However, small amount of

different additional phases have been identified for the Pd-samples (Ce3Pd4) and for

the Pt-samples (Ce(Pt1−xRhx)2).

Anomalies in the x-dependence of lattice parameters and atomic displacement

parameters (ADP) could be resolved that are signs of disorder. A simple model of

different bond lengths can explain the observed structural properties and the origin

of magnetic inhomogeneities. For both compounds, we observed that the unit cell

volume (in particular the c-axis) shrinks very rapidly towards higher Rh concentration

and the isotropic ADP of the shared Rh and Pd/Pt site (uRh) increases beyond x = 0.5

rather than showing a maximum in the middle (x = 0.5). These are clear indications

that the Ce-environment does not change homogeneously as the relevant coupling

of f -electrons with the conduction electron mediated by the hybridization with the
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direct neighbors might not result in the same Kondo temperatures for all Ce-atoms.

The steady increase of uRh(x) cannot be explained simply by the different Rh-Pd/Pt

bond lengths expected with random Rh distribution. These changes are directly

related to a strong variation in the bond lengths of the direct Ce-neighbors.

Like in CeRh, Ce with only Rh neighbors hybridizes strongly leading to a non-

magnetic mixed-valent Ce state with a very short bond length. Other Ce with at

least one Pt/Pd neighbor with a weaker hybridization are recognized with a longer

bond. A simple model assuming two different bond lengths explains the change of

variance with the given statistics assuming only random Rh occupation. We can even

fit directly a narrow local environment of a pure CeRh phase and a mixed CeT1−xRhx

(with T= Pd or Pt) with the expected statistics, confirming that local “impurities” of

nonmagnetic Ce are created through random Rh occupation. We see that the strong

bond lengths variation caused by random Rh occupation leads to a distribution of

local Kondo temperatures and different magnetic environments. The strong mag-

netic inhomogeneities are responsible for a disorder-driven quantum phase transition.

The tendency of the Pd-samples showing a Griffiths phase [43] and the fact that

Pt-samples show a cluster glass phase [19] towards higher Rh concentrations needs

further magnetic and structural investigation. We revealed that these magnetic im-

purities are related to stress and therefore responsible for further distortions. These

might differ from Pd to Pt-system. We successfully demonstrated that magnetic

disorder in CeRh-alloys can be accessed through local structural distortions.

However, there are still open questions that remain to be answered. The local

structure of the main phase remains similar in the Pd- and Pt-system. The PDF

analysis could be more sophisticated by comparing the evolution of “anisotropic”
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ADP parameters in both systems since it can shed light on the magnetic anisotropy

of the local Ce-sites. Magnetization M(T,H) and resistivity ρ(T,H) data on “sin-

gle” crystals in different magnetic field (H) directions (and current directions) along

crystallographic axes can also show global preferred spin directions and electronic

(coupling) anisotropies. A study of crystalline electric field (CEF) excitation through

neutron scattering could reveal the local anisotropy. A “magnetic” pair distribu-

tion function (mPDF) analysis would be the next challenge to investigate the local

magnetic structure of our samples.

Gaining the direct information about the cluster size distribution in our Ni-V sys-

tem was one of our goals in this project. We performed small angle neutron scattering

experiments on NG7 SANS at NIST (with polarized and unpolarized neutron beam)

and on GPSANS at HFIR, ORNL (with unpolarized neutron). Our preliminary re-

sults show that the small magnetic intensity can be resolved for samples on the FM

side and a polarization analysis is feasible. The high background signal remains a

major problem for low Q . Additional measurements with a broader scattering vector

(Q) range at lower temperature look promising to reveal more details of the magnetic

cluster distribution in Ni-V close to the quantum critical point.
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Appendix A

Important instrument and lattice parameters

A.1 NOMAD specifications

Beam line 1B

Moderator decoupled poisoned supercritical hydrogen

Moderator-to-sample distance 19.5 m

Sample-to-detector distance 0.5− 3m

Wavelength range 0.1− 3Å

Momentum transfer range 0.04− 100Å−1

Detector angular range 3− 1750 scattering angle

Initial range 4.0 steradian

Full detector complement 8.2 steradian

Flux on sample ∼ 1× 108 neutrons cm−2sec−1

Qbroad 0.0191822Å−1

Qdamp 0.017659Å−1

For more details see Ref. [4]
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A.2 Lattice parameters of second phase Ce(Pt1−xRhx)2

x a(Å) uCe(Å
2) uRh(Å

2) δ1 scale

0.2 7.62187 0.00440 0.00766 2.52 0.06

0.5 7.58643 0.00555 0.00744 2.40 0.10

0.6 7.56568 0.00623 0.00653 2.30 0.11

0.8 7.54369 0.00580 0.00697 2.00 0.10

Table A.1: PDF refined fit parameters of Ce(Pt1−xRhx)2 data obtained on NOMAD

at 100K with fit range rmax = 20Å, Qmax = 24Å−1, Qdamp ' 0.018Å−1, and Qbroad '

0.02Å−1

A.3 Lattice parameters of second phase Ce3Pd4

x a(Å) uCe(Å
2) uPd(Å

2) δ1 scale

0.2 8.08417 0.01335 0.00268 1.5 0.19

0.5 8.0391 0.02569 0.00433 1.5 0.34

0.6 7.9446 0.00738 0.00588 1.5 0.23

0.8 7.6087 0.02726 0.00724 1.5 0.07

Table A.2: PDF refined fit parameters of Ce3Pd4 data obtained on NOMAD at 100K

with fit range rmax = 20Å, Qmax = 24Å−1, Qdamp ' 0.018Å−1, and Qbroad ' 0.02Å−1.

The second phase used for x = 0.8 is CeRh2.
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A.4 Periodic table of selected metallic elements

Element Electronic configuration Atomic mass(g/mol)

Ni [Ar]3d84s2 58.69

V [Ar]3d34s2 51.94

Ce [Xe]4f 15d16s2 140.12

Pt [Xe]4f 145d96s1 195.08

Pd [Kr]4d10s1 106.42

Rh [Kr]4d8s1 102.91
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