Tree-Breadth of Graphs with Variants and Applications

A dissertation submitted to
Kent State University in partial
fulfilment of the requirements for the
degree of Doctor of Philosophy

by
Arne Leitert

August 2017
Dissertation written by

Arne Leitert

Diplom, University of Rostock, 2012
Ph.D., Kent State University, 2017

Approved by

Dr. Feodor F. Dragan, Chair, Doctoral Dissertation Committee
Dr. Ruoming Jin, Members, Doctoral Dissertation Committee
Dr. Ye Zhao
Dr. Artem Zvavitch
Dr. Lothar Reichel

Accepted by

Dr. Javed Khan, Chair, Department of Computer Science
Dr. James L. Blank, Dean, College of Arts and Sciences
Contents

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1
 1.1 Existing and Recent Results ... 2
 1.2 Outline ... 3

2 Preliminaries 4
 2.1 General Definitions ... 4
 2.2 Tree-Decompositions .. 6
 2.3 Layering Partitions .. 7
 2.4 Special Graph Classes ... 8

3 Computing Decompositions with Small Breadth 12
 3.1 Approximation Algorithms .. 12
 3.1.1 Layering Based Approaches 13
 3.1.2 Neighbourhood Based Approaches 15
 3.2 Strong Tree-Breadth ... 20
 3.2.1 NP-Completeness ... 20
 3.2.2 Polynomial Time Cases ... 26
 3.3 Computing Decompositions for Special Graph Classes 31
4 Connected r-Domination

4.1 Using a Layering Partition ... 39
4.2 Using a Tree-Decomposition ... 49
 4.2.1 Preprocessing ... 50
 4.2.2 r-Domination ... 53
 4.2.3 Connected r-Domination .. 55
4.3 Implications for the p-Center Problem 63

5 Bandwidth and Line-Distortion 65

5.1 Existing Results ... 66
5.2 k-Dominating Pairs .. 68
 5.2.1 Relation to Path-Length and Line-Distortion 69
 5.2.2 Determining a k-Dominating Pair 70
5.3 Bandwidth of Graphs with Bounded Path-Length 72
5.4 Path-Length and Line-Distortion 75
 5.4.1 Bound on Line-Distortion Implies Bound on Path-Length 75
 5.4.2 Line-Distortion of Graphs with Bounded Path-Length 77
5.5 Approximation for AT-Free Graphs 79

6 The Minimum Eccentricity Shortest Path Problem 83

6.1 Hardness ... 84
6.2 Computing an Optimal Solution 88
 6.2.1 General Graphs ... 88
 6.2.2 Distance-Hereditary Graphs 92
 6.2.3 A General Approach for Tree-Structured Graphs 94
6.3 Approximation Algorithms .. 103
 6.3.1 General Graphs ... 104
 6.3.2 Graphs with Bounded Tree-Length and Bounded Hyperbolicity . 107
 6.3.3 Using Layering Partition 111
6.4 Relation to Other Parameters ... 113
6.5 Solving k-Domination using a MESP ... 114
6.6 Open Questions .. 118

Bibliography ... 119
List of Figures

1. Example of a layering partition. ... 8
2. A graph G where a layering partition creates a cluster C with radius $3 \text{tb}(G)$ and diameter $3 \text{tl}(G)$. .. 16
3. Two extended C_5 of degree 1 and degree 3. 21
4. Illustration to the proof of Theorem 3.7. 23
5. Illustration for the graph G_ρ^\pm. .. 25
6. Example for the set \mathcal{P} for a subtree of a layering partition. 42
7. Construction of the set C_B for a branching bag B. 59
8. Illustration to the proof of Theorem 5.3. 73
9. Illustration to the proof of Theorem 5.6. 76
10. Illustration to the proof of Theorem 5.7. 78
11. Illustration to the proof of Theorem 5.9. 80
12. Reduction from Planar Monotone 3-SAT to k-ESP. 85
13. Reduction from Dominating Set to k-ESP. 87
15. Example for a possible tree-decomposition. 109
16. Example for Corollary 6.15. .. 111
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implications of our results for the p-Center problem.</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>Implications of our results for the Connected p-Center problem.</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Existing solutions for calculating bandwidth.</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Existing hardness results for calculating bandwidth.</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>Existing solutions for calculating the minimum distortion.</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>Existing hardness results for calculating the minimum distortion.</td>
<td>68</td>
</tr>
</tbody>
</table>
Decomposing a graph into a tree is an old concept. It is introduced already by Halin [59]. However, a more popular introduction is given by Robertson and Seymour [79, 80]. The idea is to decompose a graph into multiple induced subgraphs, usually called bags, where each vertex can be in multiple bags. These bags are combined to a tree or path in such a way that the following requirements are fulfilled: Each vertex is in at least one bag, each edge is in at least one bag, and, for each vertex, the bags containing it induce a subtree. We give formal definitions in Section 2.2 (page 6).

For a given graph, there can be up-to exponentially many different tree- or path-decompositions. The easiest is to have only one bag containing the whole graph. To make the concept more interesting, it is necessary to add additional restrictions. The most known is called tree-width. A decomposition has width ω if each bag contains at most $\omega + 1$ vertices. Then, a graph G has tree-width ω (written as $tw(G) = \omega$) if there is a tree-decomposition for G which has width ω and there is no tree-decomposition with smaller width.

Tree-width is well studied. Determining the minimal width ω for a given graph G is NP-complete [3]. However, if ω is fixed, it can be checked in linear time if $tw(G) \leq \omega$ [12]. The algorithm in [12] also creates a tree decomposition for G. For a graph class with bounded tree-width, many NP-complete problems can be solved in polynomial or even linear time.

In the last years, a new perspective on tree-decompositions was invested. Instead of limiting the number of vertices in each bag, the distance between vertices inside a bag is limited. There are two major variants: breadth and length.

The breadth of a decomposition is ρ, if, for each bag B, there is a vertex v such that each vertex
in B has distance at most ρ to v. Accordingly, we say the tree-breadth of a graph G is ρ (written as $\text{tb}(G) = \rho$) if there is a tree-decomposition for G with breadth ρ and there is no tree-decomposition with smaller breadth.

The length of a decomposition is λ, if the maximal distance of two vertices in each bag is at most λ. Accordingly, we say the tree-length of a graph G is λ (written as $\text{tl}(G) = \lambda$) if there is a tree-decomposition for G with length λ and there is no tree-decomposition with smaller length.

1.1 Existing and Recent Results

The first results on tree-breadth and -length were motivated by tree spanners. A tree spanner T of a graph G is a spanning tree for G such that the distance of two vertices in T approximates their distance in G. A natural applications for tree spanners is routing in networks. Routing messages directly over a tree can be done very efficiently [90]. Another option is to use the tree as orientation as shown in [44]. Next to routing, tree spanners are used for a protocol locating mobile objects in networks [78]. Other applications can be found for example in biology [5] and in approximating bandwidth [91].

To approximate tree spanners for general graphs, DRAGAN and KÖHLER introduce tree-breadth in [37]. As additional result, they show a simple algorithm for approximating tree-breadth. Later, ABU-ATA and DRAGAN [36] use tree-breadth to construct collective tree spanners for general graphs. In [2], they also analyse the tree-breadth of real world graph showing that many real world graphs have a small tree-breadth. The hardness of computing the tree-breadth of a graph is investigated by DUFOFFE et al. [48]. They show that it is NP-complete to determine, for a given graph G and any given integer $\rho \geq 1$, if $\text{tb}(G) \leq \rho$. Additionally, they present a polynomial-time algorithms to decide if $\text{tb}(G) = 1$ for the case that G is a bipartite or a planar graph.

Tree-length is first introduced by DOURISBOURE and GAVOILLE [33]. They investigate the connection to k-chordal graphs and present first approximation results. Later, DOURISBOURE et al. [32] use tree-length to investigate additive spanners. Additionally, DOURISBOURE [31] shows how to compute efficient routing schemes for graphs with bounded tree-length. An other application of tree-length is the Metric Dimension problem. It asks for the smallest set of vertices such that each
vertex in a given graph can be identified by its distances to the vertices in such a set. Belmonte et al. [7] show that the Metric Dimension problem is Fixed Parameter Tractable for graphs with bounded tree-length. In [72], Lokshtanov investigates the hardness of computing the tree-length of a given graph and shows that it is NP-complete to do so, even for length 2. A connection between tree-width and tree-length is presented by Coudert et al. [26]. They show that, for a given graph G, $\text{tl}(G) \leq \lfloor \ell(G)/2 \rfloor \cdot (\text{tw}(G) - 1)$ where $\ell(G)$ is the length of a longest isometric cycle in G.

1.2 Outline

In this dissertation, we further investigate tree-breadth. In Chapter 3, we present approaches to compute a tree-decomposition with small breadth for a given graph. This includes approximation algorithms for general graphs as well as optimal solutions for special graph classes. We also introduce a variant of tree-breadth called strong tree-breadth. Next, in Chapter 4, we present algorithms to approach the (Connected) r-Domination problem for graphs with bounded tree-breadth. Our results include (almost) linear time algorithms for the case that no tree-decomposition is given and polynomial time algorithms (with a better solution quality) for the case that a tree-decomposition is given. In Chapter 5, we use graphs with bounded path-breadth and -length to construct efficient constant-factor approximation algorithms for the bandwidth and line-distortion problems. Motivated by these results, we introduce and investigate the new Minimum Eccentricity Shortest Path problem in Chapter 6. We analyse the hardness of the problem, show algorithms to compute an optimal solution, and present various approximation algorithms differing in quality and runtime. This is done for general graphs as well as for special graph classes.

Note. Some of the results in this dissertation were obtained in collaborative work with Feodor F. Dragan1 and Ekkehard Köhler2. Results have been published partially at SWAT 2014, Copenhagen, Denmark [38], at WADS 2015, Victoria, Canada [41], at WG 2015, Munich, Germany [40], at COCOA 2016, Hong Kong, China [71], in the Journal of Graph Algorithms and Applications [42], and in Algorithmica [39].

1Kent State University, USA
2Brandenburgische Technische Universität Cottbus, Germany
2.1 General Definitions

If not stated or constructed otherwise, all graphs occurring in this dissertation are connected, finite, unweighted, undirected, without loops, and without multiple edges. For a graph $G = (V, E)$, we use $n = |V|$ and $m = |E|$ to denote the cardinality of the vertex set and the edge set of G.

The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance $d_G(u, v)$ in a graph G of two vertices u and v is the length of a shortest path connecting u and v. Let x and y be two vertices in a graph G such that x is most distant from some arbitrary vertex and y is most distant from x. Such a vertex pair x, y is called a spread pair and a shortest path from x to y is called a spread path.

The eccentricity $ecc_G(v)$ of a vertex v is $\max_{u \in V} d_G(u, v)$. For a set $S \subseteq V$, its eccentricity is $ecc_G(S) = \max_{u \in V} d_G(u, S)$. For a vertex pair s, t, a shortest (s, t)-path P has minimal eccentricity, if there is no shortest (s, t)-path Q with $ecc_G(Q) < ecc_G(P)$. Two vertices x and y are called mutually furthest if $d_G(x, y) = ecc_G(x) = ecc_G(y)$. A vertex u is k-dominated by a vertex v (by a set $S \subseteq V$), if $d_G(u, v) \leq k$ (if $d_G(u, S) \leq k$, respectively).

The diameter of a graph G is $\text{diam}(G) = \max_{u, v \in V} d_G(u, v)$. The diameter $\text{diam}_G(S)$ of a set $S \subseteq V$ is defined as $\max_{u, v \in S} d_G(u, v)$. The radius of a set $S \subseteq V$ is defined as $\min_{u \in V} \max_{v \in S} d_G(u, v)$. A pair of vertices x, y of G is called a diametral pair if $d_G(x, y) = \text{diam}(G)$. In this case, every shortest path connecting x and y is called a diametral path.

For a vertex v of G, $N_G(v) = \{ u \in V \mid uv \in E \}$ is called the open neighbourhood of v and
$N_G[v] = N_G(v) \cap \{v\}$ is called the closed neighbourhood of v. Similarly, for a set $S \subseteq V$, we define $N_G(S) = \{ u \in V \mid d_G(u, S) = 1 \}$. The l-neighbourhood of a vertex v in G is $N_G^l[v] = \{ u \mid d_G(u, v) \leq l \}$. The l-neighbourhood of a vertex v is also called l-disk of v. Two vertices u and v are true twins if $N_G[u] = N_G[v]$ and are false twins if they are non-adjacent and $N_G(u) = N_G(v)$.

The degree of a vertex v is the number of vertices adjacent to it. If a vertex has degree 1, it is called a pendant vertex. A graph G is called sparse, if the sum of all vertex degrees is in $O(n)$.

For some vertex v, $L_i^{(v)} = \{ u \in V \mid d_G(u, v) = i \}$ denotes the vertices with distance i from v. We will also refer to $L_i^{(v)}$ as the i-th layer. For two vertices u and v, $I_G(u, v) = \{ w \mid d_G(u, v) = d_G(u, w) + d_G(w, v) \}$ is the interval between u and v. The set $S_i(s, t) = L_i^{(s)} \cap I_G(s, u)$ is called a slice of the interval from u to v. For any set $S \subseteq V$ and a vertex v, $Pr_G(v, S) = \{ u \in S \mid d_G(u, v) = d_G(v, S) \}$ denotes the projection of v on S in G.

For a vertex set S, let $G[S]$ denote the subgraph of G induced by S. With $G - S$, we denote the graph $G[V \setminus S]$. A vertex set S is a separator for two vertices u and v in G if each path from u to v contains a vertex $s \in S$; in this case we say S separates u from v. If a separator S contains only one vertex s, i.e., $S = \{s\}$, then s is an articulation point. A block is a maximal subgraph without articulation points.

A chord in a cycle is an edge connecting two non-consecutive vertices of the cycle. A cycle is called induced if it has no chords. For each $k \geq 3$, an induced cycle of length k is called as C_k. A subgraph is called clique if all its vertices are pairwise adjacent. A maximal clique is a clique that cannot be extended by including any additional vertex.

If clear from context, graph identifying indices of notations may be omitted. For example, we may write $N[v]$ instead of $N_G[v]$.

One-Sided Binary Search. Consider a sorted sequence $\langle x_1, x_2, \ldots, x_n \rangle$ in which we search for a value x_p. We say the value x_i is at position i. For a one-sided binary search, instead of starting in the middle at position $n/2$, we start at position 1. We then processes position 2, then position 4, then position 8, and so on until we reach position $j = 2^t$ and, next, position $k = 2^{t+1}$ with $x_j < x_p \leq x_k$. Then, we perform a classical binary search on the sequence $\langle x_{j+1}, \ldots, x_k \rangle$. Note that, because
\[x_j < x_p \leq x_k, \quad 2^i < p \leq 2^{i+1} \] and, hence, \(j < p \leq k < 2p \). Therefore, a one-sided binary search requires at most \(\mathcal{O}(\log p) \) iterations to find \(x_p \).

2.2 Tree-Decompositions

A tree-decomposition for a graph \(G = (V, E) \) is a family \(\mathcal{T} = \{B_1, B_2, \ldots\} \) of subsets of \(V \), called bags, such that \(\mathcal{T} \) forms a tree with the bags in \(\mathcal{T} \) as nodes which satisfies the following conditions:

(i) Each vertex is contained in a bag, i.e., \(V = \bigcup_{B \in \mathcal{T}} B \),

(ii) for each edge \(uv \in E \), \(\mathcal{T} \) contains a bag \(B \) with \(u, v \in B \), and

(iii) for each vertex \(v \in V \), the bags containing \(v \) induce a subtree of \(\mathcal{T} \).

A path-decomposition of graph is a tree-decomposition with the restriction that the bags form a path instead of a tree with multiple branches.

Lemma 2.1 (Tarjan and Yannakakis [88]). Let \(\mathcal{F} \) be a set of bags for some graph \(G \). Determining if \(\mathcal{F} \) forms a tree-decomposition for \(G \) and, if this is the case, computing the corresponding tree can be done in linear time.

It follows from Lemma 2.1 that we can consider a tree-decomposition interchangeably either as family of bags or as structured tree of bags with defined edges and neighbourhoods.

Lemma 2.2 (Diestel [29]). Let \(K \) be a maximal clique in some graph \(G \). Then, each tree-decomposition for \(G \) contains a bag \(B \) such that \(K \subseteq B \).

Lemma 2.3. Let \(B \) be a bag of a tree-decomposition \(T \) for a graph \(G \) and let \(C \) be a connected component in \(G - B \). Then, \(T \) contains a bag \(B_C \) with \(B_C \supseteq N_G(C) \) and \(B_C \cap C \neq \emptyset \).

Proof. Let \(B_C \) be the bag in \(T \) for which \(B_C \cap C \neq \emptyset \) and the distance between \(B \) and \(B_C \) in \(T \) is minimal. Additionally, let \(B' \) be the bag in \(T \) adjacent to \(B_C \) which is closest to \(B \) and let \(S = B_C \cap B' \). Note that \(S \cap C = \emptyset \) and, by properties of tree-decompositions, \(S \) separates \(C \) from all vertices in \(B \setminus S \). Assume that there is a vertex \(u \in N_G(C) \setminus S \). Because \(u \in N_G(C) \), there is a vertex \(v \in C \) which is adjacent to \(u \). This contradicts with \(S \) being a separator for \(u \) and \(v \). Therefore, \(N_G(C) \subseteq S \subseteq B_C \). \(\square \)
A tree-decomposition T of G has breadth ρ if, for each bag B of T, there is a vertex v in G with $B \subseteq N^G_G[v]$. The tree-breadth of a graph G is ρ, written as $tb(G) = \rho$, if ρ is the minimal breadth of all tree-decomposition for G. Similarly, path-breadth of a graph G is ρ, written as $pb(G) = \rho$, if ρ is the minimal breadth of all path-decomposition for G.

A tree-decomposition T of G has length λ if, for each bag B of T, the diameter of B is at most λ, i.e., for all vertices $u,v \in B$, $d_G(u,v) \leq \lambda$. Accordingly, the tree-length of a graph G is λ, written as $tl(G) = \lambda$, if λ is the minimal breadth of all tree-decomposition for G. Similarly, path-length of a graph G is λ, written as $pl(G) = \lambda$, if λ is the minimal breadth of all path-decomposition for G.

Clearly, it follows from their definitions that, for any graph G, $tb(G) \leq tl(G) \leq 2tb(G)$, $pb(G) \leq pl(G) \leq 2pb(G)$, $tb(G) \leq pb(G)$, and $tl(G) \leq pl(G)$. Additionally, as shown in Lemma 2.4 below, non of these parameter increases when an edge of a graph is contracted.

Lemma 2.4 (Dragan and Köhler [37]). Let G be a graph and H be a graph created by contracting an edge of G. Then, for each $\phi \in \{tb, tl, pb, pl\}$, $\phi(H) \leq \phi(G)$.

2.3 Layering Partitions

Brandstädt et al. [15] and Chepoi, Dragan [19] introduced a method called *layering partition*. The idea is the following. First, partition the vertices of a given graph G in distance layers for a given vertex s. Second, partition each layer $L_i^{(s)}$ into *clusters* in such a way that two vertices u and v are in the same cluster if and only if they are connected by a path only using vertices in the same or upper layers. That is, u and v are in the same cluster if and only if, for some i, $\{u,v\} \subseteq L_i^{(s)}$ and there is a path P from u to v in G such that, for all $j < i$, $P \cap L_j^{(s)} = \emptyset$. Note that each cluster C is a set of vertices of G, i.e., $C \subseteq V$, and all clusters are pairwise disjoint. The created clusters form a rooted tree T with the cluster $\{s\}$ as root where each cluster is a node of T and two clusters C and C' are adjacent in T if and only if G contains an edge uv with $u \in C$ and $v \in C'$. Figure 1 gives an example for such a partition.

Lemma 2.5 (Chepoi and Dragan [19]). A layering partition of a given graph can be computed in linear time.
For a given graph $G = (V, E)$, let T be a layering partition of G and let Δ be the maximum cluster diameter of T. For two vertices u and v of G contained in the clusters C_u and C_v of T, respectively, we define $d_T(u, v) := d_T(C_u, C_v)$.

Lemma 2.6. For all vertices u and v of G, $d_T(u, v) \leq d_G(u, v) \leq d_T(u, v) + \Delta$.

Proof. Clearly, by construction of a layering partition, $d_T(u, v) \leq d_G(u, v)$ for all vertices u and v of G.

Next, let C_u and C_v be the clusters containing u and v, respectively. Note that T is a rooted tree. Let C' be the lowest common ancestor of C_u and C_v. Therefore, $d_T(u, v) = d_T(u, C') + d_T(C', v)$. By construction of a layering partition, C' contains a vertex u' and vertex v' such that $d_G(u, u') = d_T(u, u')$ and $d_G(v, v') = d_T(v, v')$. Since the diameter of each cluster is at most Δ, $d_G(u, v) \leq d_T(u, u') + \Delta + d_T(v, v') = d_T(u, v) + \Delta$. \qed

2.4 Special Graph Classes

Chordal Graphs. A graph is chordal if every cycle with at least four vertices has a chord. The class of chordal graphs is a well known class which can be recognised in linear time [88]. Due to the strong tree structure of chordal graphs, they have the following property known as m-convexity:
Lemma 2.7 (Faber and Jamison [49]). Let G be a chordal graph. If, for two distinct vertices u, v in a disk $N^r[x]$, there is a path P connecting them with $P \cap N^r[x] = \{u, v\}$, then u and v are adjacent.

It is well known [55] that a graph G is chordal if it admits a so-called clique tree. That is, G admits a tree-decomposition T such that each bag of T induces a clique. Such a tree-decomposition can be found in linear time [86].

Theorem 2.1 (Gavril [55]). A graph G is chordal if and only if $\text{tl}(G) \leq 1$.

A subclass of chordal graphs are interval graph. A graph is an interval graph if it is the intersection graphs of intervals on a line. It is known [56] that a graph G is an interval graph if and only if G admits a path-decomposition \mathcal{P} such that each bag of \mathcal{P} induces a clique. Such a decomposition \mathcal{P} can be computed in linear time.

Theorem 2.2 (Gilmore and Hoffman [56]). A graph G is an interval graph if and only if $\text{pl}(G) \leq 1$.

Dually Chordal Graphs. A graph is dually chordal if it is the intersection graph of maximal cliques of a chordal graph. In [16], Brandstädt et al. introduce dually chordal graphs and show that they can be recognised in linear time. It follows from Theorem 2.3 below that dually chordal graphs have tree-breadth 1.

Theorem 2.3 (Brandstädt et al. [16]). A graph $G = (V, E)$ is dually chordal if and only if the set $\{N[v] \mid v \in V\}$ forms a valid tree-decomposition for G.

Distance-Hereditary Graphs. A graph G is distance-hereditary if the distances in any connected induced subgraph of G are the same as in G.

Lemma 2.8 (Bandelt and Mulder [6]). Let G be a distance-hereditary graph, let x be an arbitrary vertex of G, and let $u, v \in L^{(x)}_k$ be in the same connected component of the graph $G - L^{(x)}_{k-1}$. Then, $N(v) \cap L^{(x)}_{k-1} = N(u) \cap L^{(x)}_{k-1}$.

9
Let $\sigma = (v_1, v_2, \ldots, v_n)$ be an ordering for the vertices of some graph G, let $V_i = \{v_1, v_2, \ldots, v_i\}$, and let G_i denote the graph $G[V_i]$. An ordering σ is called a pruning sequence for G if, for $1 \leq j < i \leq n$, each v_i satisfies one of the following conditions in G_i:

(i) v_i is a pendant vertex,

(ii) v_i is a true twin of some vertex v_j, or

(iii) v_i is a false twin of some vertex v_j.

Lemma 2.9 (Bandelt and Mulder [6]). A graph G is distance-hereditary if and only if there is a pruning sequence for G.

δ-Hyperbolic Graphs. A graph has hyperbolicity δ if, for any four vertices $u, v, w, and x$, the two larger of the sums $d(u, v) + d(w, x)$, $d(u, w) + d(v, x)$, and $d(u, x) + d(v, w)$ differ by at most 2δ.

Lemma 2.10 (Chepoi et al. [20]). Let $u, v, w, and x$ be four vertices in a δ-hyperbolic graph. If $d(u, w) > \max \{d(u, v), d(v, w)\} + 2\delta$, then $d(v, x) < \max \{d(x, u), d(x, w)\}$.

Theorem 2.4 (Chepoi et al. [20]). If a graph G has hyperbolicity δ, then $\delta \leq \text{tl}(G)$ and $\text{tl}(G) \in O(\delta \log n)$.

AT-Free Graphs. An asteroidal triple (AT for short) in a graph is a set of three vertices where every two of them are connected by a path avoiding the neighbourhood of the third. A graph is called AT-free if it does not contain an asteroidal triple.

A Lexicographic Breadth-First Search (LexBFS for short) is a refinement of a standard BFS which produces a vertex ordering $\sigma : V \rightarrow \{1, \ldots, n\}$. A LexBFS starts at some start vertex s, orders the vertices of a graph G by assigning numbers from n to 1 to the vertices in the order as they are discovered by the following search process. Each vertex v has a label consisting of a (reverse) ordered list of the numbers of those neighbours of v that were already visited by the LexBFS; initially this label is empty. The LexBFS starts with some vertex s, assigns the number n to s, and adds this number to the end of the label of all unnumbered neighbours of s. Then, in each step, the LexBFS selects the unnumbered vertex v with the lexicographically largest label, assigns the next available
number \(k \) to \(v \), and adds this number to the end of the labels of all unnumbered neighbours of \(v \).

An ordering \(\sigma \) of the vertex set of a graph generated by a LexBFS is called \textit{LexBFS-ordering}. Note that the closer a vertex is to the start vertex \(s \) in \(G \), the larger its number is in \(\sigma \). It is known that a LexBFS-ordering of an arbitrary graph can be generated in linear time [81].

For the two lemmas below, assume that we are given an AT-free graph \(G = (V,E) \), let \(s \) be an arbitrary vertex of \(G \), let \(x \) be the vertex last visited (numbered 1) by a LexBFS starting at \(s \), and let \(\sigma \) be the ordering obtained by a LexBFS starting at \(x \). Additionally, for some vertex \(v \in L_i^{(x)} \), let \(N_{G_i}^{\downarrow}(v) = N_G(v) \cap L_{i-1}^{(x)} \).

\textbf{Lemma 2.11 (Corneil et al. [25]).} Let \(y \) be a vertex of \(G \) and let \(P \) be a shortest path from \(x \) to \(y \). For each vertex \(z \) with \(\sigma(y) \leq \sigma(z) \leq \sigma(x) = n \), \(d_G(z,P) \leq 1 \).

\textbf{Lemma 2.12.} For every integer \(i \geq 1 \) and every two non-adjacent vertices \(u,v \in L_i^{(x)} \) of \(G \), \(\sigma(v) < \sigma(u) \) implies \(N_G^{\downarrow}(v) \subseteq N_G^{\downarrow}(u) \). In particular, \(d_G(v,u) \leq 2 \) holds for every \(u,v \in L_i^{(x)} \) and every \(i \).

\textbf{Proof.} Consider an arbitrary neighbour \(w \in L_{i-1}^{(x)} \) of \(v \) and a shortest path \(P \) from \(v \) to \(x \) in \(G \) containing \(w \). Since \(\sigma(v) < \sigma(u) \), by Lemma 2.11, path \(P \) must dominate vertex \(u \). Since \(u \) and \(v \) are not adjacent, \(u \) is in \(L_i \), and all vertices of \(P \setminus \{v,w\} \) belong to layers \(L_j^{(x)} \) with \(j < i - 1 \), vertex \(u \) must be adjacent to \(w \). Otherwise, \(u, v, \) and \(x \) form an asteroidal triple. \[\square \]
Chapter 3

Computing Decompositions with Small Breadth*

For each graph class \(C \), a central problem is its recognition. That is, given a graph \(G \), is \(G \) a member of \(C \)? In case of tree- and path-decompositions, we can define recognition as decision problem or as optimization problem. Using tree-breadth as example, the decision problem asks, for a given graph \(G \) and a given integer \(\rho \geq 1 \), if \(\text{tb}(G) \leq \rho \). The corresponding optimisation problem asks for a decomposition of \(G \) such that the breadth of this decomposition is minimal. In this chapter, we show approaches to determine a tree- or path-decomposition with small breadth (or length) for a given graph. We show results for general graphs as well as for special graph classes.

We know from Lokshtanov [72] and Ducoffe et al. [48] that it is NP-hard to determine any of the parameters tree-breadth, tree-length, path-breadth, and path-length for a given graph.

Theorem 3.1 (Lokshtanov [72]). For a given graph \(G \) and a fixed \(\lambda \geq 2 \), it is NP-complete to decide if \(\text{tl}(G) \leq \lambda \).

Theorem 3.2 (Ducoffe et al. [48]). Given a graph \(G \) and an integer \(k \), it is NP-complete to decide any of the following: Is \(\text{tb}(G) \leq k \)? Is \(\text{pb}(G) \leq k \)? Is \(\text{pl}(G) \leq k \)?

3.1 Approximation Algorithms

In this section, we present approaches to compute a decomposition for a given graph which approximates the graph’s tree-breadth, tree-length, path-breadth, or path-length. Additionally to showing that it is hard to compute any of these parameters optimally, Lokshtanov [72] and Ducoffe et al. [48] show that a certain approximation quality is hard, too.

Results from this chapter have been published partially at SWAT 2014, Copenhagen, Denmark [38], at COCOA 2016, Hong Kong, China [71], and in Algorithmica [39].
Theorem 3.3 (Lokshtanov [72]). If \(P \neq NP \), then there is no polynomial time algorithm to calculate a tree-decomposition, for a given graph \(G \), of length smaller than \(\frac{3}{2} \text{tl}(G) \).

Theorem 3.4 (Ducoffe et al. [48]). For any \(\epsilon > 0 \), it is NP-hard to approximate the tree-breadth of a given graph by a factor of \((2 - \epsilon) \).

3.1.1 Layering Based Approaches

One approach for computing a tree-decomposition for a given graph is to use a layering partition. Lemma 3.1 shows that the radius and diameter of the clusters of a layering partition are bounded by the tree-breadth and tree-length of the underlying graph.

Lemma 3.1 (Dourisboure et al. [32], Dragan and Köhler [37]). In a graph \(G \) with \(\text{tb}(G) = \rho \) and \(\text{tl}(G) = \lambda \), let \(C \) be a cluster of an arbitrary layering partition for \(G \). There is a vertex \(w \) with \(d_G(w, u) \leq 3\rho \) for each \(u \in C \). Also, \(d_G(u, v) \leq 3\lambda \) for all \(u, v \in C \).

Recall that the clusters created by a layering partition form a rooted tree. This tree can be transformed into a tree-decomposition by expanding its clusters as follows. For a cluster \(C \), add all vertices from the parent of \(C \) which are adjacent to a vertex in \(C \). That is, for each cluster \(C \subseteq L_i^{(s)} \), create a bag \(B_C = C \cup \left(N_G(C) \cap L_{i-1}^{(s)} \right) \). As shown in Lemma 3.1, the radius and diameter of a cluster are at most three times larger than the tree-breadth and -length of \(G \), respectively. Therefore, the created tree-decomposition has length at most \(3\lambda + 1 \) and breadth at most \(3\rho + 1 \). Abu-Ata and Dragan [2] slightly improve this observation and show that the breadth of such a tree-decomposition is indeed at most \(3\rho \).

Corollary 3.1 (Dourisboure et al. [32], Abu-Ata and Dragan [2]). For a given graph \(G \), a tree-decomposition with breadth \(3\text{tb}(G) \) and length \(3\text{tl}(G) + 1 \) can be computed in linear time.

A similar strategy as above can be used to approximate the path-breadth and -length of a graph. However, there are two major differences. First, a layering partition creates a tree and, second, can start at any vertex. The first difference can be addressed by using a simple BFS-layering. For the second, however, we need to find the right start vertex.
Consider a given start vertex s and the layers $L_i^{(s)}$. We define an extended layer $L_i^{(s)}$ as follows:

$$L_i^{(s)} = L_i^{(s)} \cup \{ u \mid uv \in E, u \in L_{i-1}^{(s)}, v \in L_i^{(s)} \}$$

Lemma 3.2. Let $\mathcal{P} = \{X_1, X_2, \ldots, X_p\}$ be a path-decomposition for G with length λ, breadth ρ, and $s \in X_1$. Then each extended layer $L_i^{(s)}$ has diameter at most 2λ and radius at most 3ρ.

Proof. Let x and y be two arbitrary vertices in $L_i^{(s)}$. Also let x' and y' be arbitrary vertices in $L_{i-1}^{(s)}$ with $xx', yy' \in E$.

First, we show that $\max \{d_G(x,y), d_G(x,y'), d_G(x',y)\} \leq 2\lambda$. By induction on i, we may assume that $d_G(y',x') \leq 2\lambda$ as $x', y' \in L_{i-1}^{(s)}$. If there is a bag in \mathcal{P} containing both vertices x and y, then $d_G(x,y) \leq \lambda$ and, therefore, $d_G(x,y') \leq \lambda + 1 \leq 2\lambda$ and $d_G(y,x') \leq \lambda + 1 \leq 2\lambda$. Assume now that all bags containing x are earlier in $\mathcal{P} = \{X_1, X_2, \ldots, X_p\}$ than the bags containing y. Let B be a bag of \mathcal{P} containing both ends of edge xx'. By the position of this bag B in \mathcal{P} and the fact that $s \in X_1$, any shortest path connecting s with y must have a vertex in B. Let w be a vertex of B that is on a shortest path of G connecting vertices s and y and containing edge yy'. Such a shortest path must exist because of the structure of the layering that starts at s and puts y' and y in consecutive layers. Since $x, x', w \in B$, we have $\max \{d_G(x,w), d_G(x',w)\} \leq \lambda$. If $w = y'$, we are done; $\max \{d_G(x,y), d_G(x,y'), d_G(x',y)\} \leq \lambda + 1 \leq 2\lambda$. So, assume that $w \neq y'$. Since $d_G(x,s) = d_G(s,y) = i$ (by the layering) and $d_G(x,w) \leq \lambda$, we must have $d_G(w,y') + 1 = d_G(w,y) = d_G(s,y) - d_G(s,w) = d_G(s,x) - d_G(s,w) \leq d_G(w,x) \leq \lambda$. Hence, $d_G(y,x) \leq d_G(y,w) + d_G(w,x) \leq 2\lambda$, $d_G(y,x') \leq d_G(y,w) + d_G(w,x') \leq 2\lambda$, and $d_G(y',x) \leq d_G(y',w) + d_G(w,x) \leq 2\lambda - 1$. Therefore, we conclude that the distance between any two vertices in $L_i^{(s)}$ is at most 2λ.

As shown above, the radius of each extended layer $L_i^{(s)}$ is at most 4ρ (because $\lambda \leq 2\rho$). Consider an extended layer $L_i^{(s)}$ and a family $\mathcal{F} = \{N_G^{2\rho}[u] \mid u \in L_i^{(s)}\}$ of disks of G. Since $d_G(u,v) \leq 4\rho$ for every pair $u, v \in L_i^{(s)}$, the disks of \mathcal{F} pairwise intersect. Note that each disk $N_G^{2\rho}[u] \in \mathcal{F}$ induces a subpath of \mathcal{P}. If subtrees of a tree T pairwise intersect, they have a common node in T [9]. Therefore, there is a bag $X_j \in \mathcal{P}$ such that each disk in \mathcal{F} intersects X_j. Let w be the center of X_j, i.e. $X_j \subseteq N_G[w]$. Hence, for each vertex u with $N_G^{2\rho}[u] \in \mathcal{F}$, $d_G(w,u) \leq 3\rho$. Thus, for each
i \in \{1, \ldots, \text{ecc}(s)\} \text{ there is a vertex } w_i \text{ with } L_i^{(s)} \subseteq N^{2\rho}_G[w_i]. \qed

Using Lemma 3.2, Algorithm 3.1 below computes a 3-approximation for the path-breadth and a 2-approximation for the path-length of a given graph.

Algorithm 3.1: A 2-approximation algorithm for computing the path-length of a graph (respectively, 3-approximation for path-breadth).

Input: A graph \(G = (V, E) \).

Output: A path-decomposition for \(G \).

1. Compute the pairwise distances of all vertices in \(G \).
2. For Each \(s \in V \)
 3. Calculate a decomposition \(\mathcal{L}(s) = \{L_i^{(s)} \mid 1 \leq i \leq \text{ecc}(s)\} \).
 4. Determine the length \(l(s) \) of \(\mathcal{L}(s) \) (breadth \(b(s) \), respectively).
5. Output a decomposition \(\mathcal{L}(s) \) for which \(l(s) \) (\(b(s) \), respectively) is minimal.

Theorem 3.5. Algorithm 3.1 computes a path-decomposition with length at most \(2 \text{pl}(G) \) (with breadth at most \(3 \text{pb}(G) \), respectively) of a given graph \(G \) in \(O(n^3) \) time.

Proof. Let \(\text{pb}(G) = \rho \) and \(\text{pl}(G) = \lambda \). By Lemma 3.2, there is a vertex \(s \) for which each extended layer \(L_i^{(s)} \) has diameter at most \(2\lambda \) (radius at most \(3\rho \), respectively). Thus, the algorithm creates and outputs a decomposition \(\mathcal{L}(s) \) with length at most \(2\lambda \) (breadth at most \(3\rho \), respectively).

Determining pairwise distances and creating the decomposition \(\mathcal{L}(s) \) for each vertex \(s \) can be done in \(O(nm) \) total time. Then, for a single vertex \(s \), the length and breadth of the decomposition \(\mathcal{L}(s) \) can be calculated in \(O(n^2) \) time. Thus, Algorithm 3.1 runs in \(O(n^3) \) total time. \(\square \)

3.1.2 Neighbourhood Based Approaches

In the previous subsection, we use distance layerings to construct a decomposition for a given graph. While this approach is simple, it has limitations. Consider the graph \(G \) in Figure 2. \(G \) has tree-breadth 1 and -length 2. However, a layering partition starting at \(s \) creates a cluster \(C \) with radius 3 and diameter 6. Now, one can create a graph \(H \) containing two copies of \(G \) such that the \(s \)-vertices are connected by a path. Therefore, any layering partition of \(H \) creates such a cluster \(C \).

An alternative approach to distance layers is to carefully create a bag from the neighbourhood of a vertex. Then add the bag to the tree-decomposition, pick a new vertex, and repeat the process.
This approach is clearly more complicated. However, it has a better chance to determine a good decomposition for a given graph.

In [33], Dourisboure and Gavoille present such an algorithm to compute a tree-decomposition which approximates the tree-length of a given graph. They show that, for a given graph G, their algorithm successfully computes a tree-decomposition with length at most $6 \operatorname{tl}(G) - 4$. Additionally, they conjecture that their algorithm can also find a tree-decomposition with length at most $2 \operatorname{tl}(G)$. However, Yancey [93] is able to construct a counter example for this conjecture.

In what follows, we present an algorithm which computes a tree-decomposition with breadth at most $3 \operatorname{tb}(G) - 1$ for a given graph G. To do so, assume for the remainder of this subsection that we are given a graph G with $\operatorname{tb}(G) = \rho$.

For some vertex u and some positive integer ϕ, let $C_G^\phi[u]$ denote the set of connected components in $G - N_G^\phi[u]$. We say that a vertex v is a ϕ-partner of u for some $C \in C_G^\phi[u]$ if $N_G^\phi[v] \supseteq N_G[C]$ and $N_G^\phi[v] \cap C \neq \emptyset$.

Lemma 3.3. Let u be an arbitrary vertex of G. If $\phi \geq 3\rho - 1$, then G contains, for each connected component $C \in C_G^\phi[u]$, a vertex v such that v is a ϕ-partner of u for C.

Proof. Let T be a tree-decomposition for G with breadth ρ and let B_u be a bag of T containing u. Without loss of generality, let T be rooted in B_u. Now, let B_C be the bag of T for which $B_C \cap C \neq \emptyset$ and which is closest to B_u in T. Additionally, let B_C' be the parent of B_C and let $S = B_C \cap B_C'$.
Note that, by definition of B_C, $S \subseteq N^\phi_G[u]$ and B_C contains a vertex x with $d_G(u, x) > \phi$. Recall that the distance between two vertices in a bag is at most 2ρ. Thus, $d_G(u, s) < \rho$ implies that $d_G(u, x) < 3\rho \leq \phi$. Therefore, for all $s \in S$, $d_G(u, s) \geq \rho$.

Let v be the center of B_C. Because B_C intersects C and T has breadth ρ, clearly, $d_G(v, C) \leq \rho < \phi$ and, hence, $C \cap N^\phi_G[v] \neq \emptyset$. Let x be a vertex of G in $N_G(C)$. By properties of tree-decompositions, each path from u to x intersect S. Thus, there is a vertex $s \in S$ with $d_G(u, x) = d_G(u, s) + d_G(s, x)$. Because $d_G(u, s) \geq \rho \geq d_G(v, s)$, it follows that $d_G(v, x) \leq d_G(u, x) \leq \phi$ and, thus, $N(C) \subseteq N^\phi_G[v]$. Therefore, v is a ϕ-partner of u for C.

\[\square\]

Lemma 3.4. Let C be a connected component in $G - B_u$ for some $B_u \subseteq N^\phi_G[u]$ and some positive ϕ. Also, let $C \in \mathcal{C}_G^\phi[u]$ and let v be a ϕ-partner of u for C. Then, for all connected components C_v in $G[C] - N^\phi_G[v]$, $C_v \in \mathcal{C}_G^\phi[v]$.

Proof. Consider a connected component C_v in $G[C] - N^\phi_G[v]$. Clearly, $C_v \subseteq C$ and there is a connected component $C' \in \mathcal{C}_G^\phi[v]$ such that $C' \supseteq C_v$.

Let x be an arbitrary vertex in C'. Then, there is a path $P \subseteq C'$ from x to C_v. Because $N_G(C) \subseteq B_u$ and v is a ϕ-partner of u for C, $N_G(C) \subseteq B_u \cap N^\phi_G[v]$. Also, $N_G(C)$ separates all vertices in C from all other vertices in G. Therefore, $x \in C$ and $C' \subseteq C$; otherwise, P would intersect $N^\phi_G[v]$. It follows that each vertex in P is in the same connected component of $G[C] - N^\phi_G[v]$ and, thus, $C_v = C'$.

\[\square\]

Based on Lemma 3.3 and Lemma 3.4, we can compute, for a given $\phi \geq 3\rho - 1$, a tree-decomposition with breadth ϕ as follows. Pick a vertex u and make it center of a bag $B_u = N^\phi_G$. By Lemma 3.3, u has a ϕ-partner v for each connected component $C_u \in \mathcal{C}_G^\phi[u]$. Then, $N^\phi_G[v]$ splits C_u in more connected components C_v. Due to Lemma 3.4, any of these components C_v is in $\mathcal{C}_G^\phi[v]$. Thus, v has a ϕ-partner w for C_v. Hence, create a bag $B_v = N^\phi_G[v] \cap (B_u \cup C_u)$ and continue this until the whole graph is covered. Algorithm 3.2 below implements this approach.

Theorem 3.6. Algorithm 3.2 successfully constructs, for a given graph G and a positive integer ϕ, a tree-decomposition T with breadth ϕ in $O(n^3)$ time if $\phi \geq 3\text{tb}(G) - 1$.

17
Algorithm 3.2: Constructs, for a given graph $G = (V, E)$ and a given positive integer ϕ, a tree-decomposition T with breadth ϕ.

Input: A graph $G = (V, E)$ and a positive integer ϕ.

Output: A tree-decomposition T for G if $\phi \geq 3\text{tb}(G) - 1$.

1. Determine the pairwise distances of all vertices and create an empty tree-decomposition T.
2. Initialise an empty queue Q of triples (v, B, C) where v is a vertex of G and B is a bag and C is a connected component, i.e., B and C are vertex sets.
3. Pick an arbitrary vertex u and insert (u, \emptyset, V) into Q.
4. While Q is non-empty.
 5. Remove a triple (v, B, C) from Q.
 6. Create a bag $B_v := N^\phi_G[v] \cap (B_u \cup C_u)$ and add B_v into T.
 7. For Each connected component C_v in $G[C_u] - B_v$
 8. Find a ϕ-partner w of v for C_v.
 9. If no such w exists, Stop. $\phi < 3\text{tb}(G) - 1$.
 10. Insert (w, B_v, C_v) into Q.
5. Output T.

Proof (Correctness). To show the correctness of the algorithm, we have to show that the created tree-decomposition T is a valid tree-decomposition for G if $\phi \geq 3\text{tb}(G) - 1$. To do so, we show the following invariant for the loop starting in line 4: (i) T is a valid tree-decomposition with breadth ϕ for the subgraph covered by T, (ii) for each connected component C in $G - T$, Q contains a triple (v, B, C), and (iii) for each triple (v, B_u, C_u) in Q, B_u is in T, $N_G(C_u) \subseteq B_u$, $C_u \in C_G[u]$, and v is a ϕ-partner of u for C_u.

Let u be the vertex of G selected in line 3. In the first iteration of the loop, the triple (u, \emptyset, V) is removed from Q. Then, the algorithm creates the bag $B_u = N^\phi_G[u] \cap (\emptyset \cup V) = N^\phi_G[u]$ (line 6) and adds it into T. Clearly, since B_u is the only bag of T at this point, condition (i) is satisfied. Additionally, each connected component C in $G - T$ is also in $C[u]$. Next, the algorithms determines a ϕ-partner v of u for each $C_u \in C[u]$ (line 8). Due to Lemma 3.3, such a v can be found for each such component C_u. Therefore, after inserting the triples (v, B_u, C_u) into Q (line 10), condition (ii) and condition (iii) are satisfied after the first iteration of the loop.

Now, assume by induction that the invariant holds each time line 4 is checked. If Q is empty, it follows from condition (ii) that T covers the whole graph and, thus, by condition (i), T is a valid tree-decomposition for G. If Q is not empty, it contains a triple (v, B_u, C_u) which is then removed.
by the algorithm. Because of condition (iii), it follows that B_v as created in line 6 contains $N_G(C_u)$ and, thus, $N_G(C_u) \subseteq B_u \cap B_v$. Therefore, because C_u is not covered by T, T remains a valid tree-decomposition after adding B_v, i.e., condition (i) is satisfied. The bag B_v splits C_u in a set C'_v of connected components such that, for each $C' \in C'_v$, $N_G(C') \subseteq B_v$ and, by Lemma 3.4, $C' \in \mathcal{C}[v]$. Therefore, due to Lemma 3.3, v has a ϕ-partner w for each $C' \in C'_v$. Thus, finding such a ϕ-partner (line 8) is successful and, after inserting the triples (w, B_v, C_v) into Q (line 10), condition (ii) and condition (iii) are satisfied. □

Proof (Complexity). Determining the pairwise distances of all vertices, initialising Q and T, as well as inserting the first triple (u, \emptyset, V) into Q (line 1 to line 3) can be clearly done in $O(nm)$ time.

In each iteration of the loop starting in line 4, the algorithm splits a connected component C_u into a set of connected components C_v. Because v is a ϕ-partner of u, it follows that $B_v \cap C_v \neq \emptyset$ and, hence, $C_v \subset C_u$. Note that the created components C_v are pairwise disjoint. Therefore, the algorithm creates at most n connected components C_v, the set of vertices covered by T strictly grows, and, thus, there are at most n iterations of the loop.

Because the pairwise distances are known, it takes at most $O(n)$ time to create the bag B_v and to add it into T (line 6). Determining the connected components C_v of $G[C_u] - B_v$ and determining $N_G(C_v)$ for each such C_v can be easily done in $O(m)$ time. Therefore, when excluding line 8, a single iteration of the loop starting in line 4 takes at most $O(m)$ time.

Let \mathbb{C} be the set of all connected components created by the algorithm. Clearly, for each connected component $C \in \mathbb{C}$, $|N_G(C)| \leq n$. Therefore, because at most n connected component C_v are created, $\sum_{C \in \mathbb{C}} |N_G(C)| \leq n^2$. Because distances can be checked in constant time, it follows that, for a single vertex w, it takes at most $O(n^2)$ total time to determine, for all $C \in \mathbb{C}$, if w is a ϕ-partner for C. Therefore, line 8 requires at most $O(n^3)$ total time over all iterations.

Hence, Algorithm 3.2 runs in total $O(n^3)$ time. □

If we want to use Algorithm 3.2 to find a decomposition with small breadth for a given graph G, we hav to try different values of ϕ. One way is to perform a one-sided binary search over ϕ: If Algorithm 3.2 creates a valid tree-decomposition, decrease ϕ. Otherwise, increase ϕ. Therefore:
Corollary 3.2. For a given graph G with tree-breadth ρ, one can compute a tree-decomposition with breadth $3\rho - 1$ in $O(n^3 \log \rho)$ time.

3.2 Strong Tree-Breadth

By definition, a tree-decomposition has breadth ρ if each bag B is the subset of the ρ-neighbourhood of some vertex v, i.e., the set of bags is the set of subsets of the ρ-neighbourhoods of some vertices. Recall that tree-breadth 1 graphs contain the class of dually chordal graphs which can be defined as follows: A graph G is dually chordal if it admits a tree-decomposition T such that, for each vertex v in G, T contains a bag $B = N_G[v]$ (see Theorem 2.3, page 9). That is, the set of bags in T is the set of complete neighbourhoods of all vertices.

In this chapter, we investigate the case which lays between dually chordal graphs and general tree-breadth ρ graphs. In particular, tree-decompositions are considered where the set of bags are the complete ρ-neighbourhoods of some vertices. We call this strong tree-breadth. The strong breadth of a tree-decomposition is ρ, if, for each bag B, there is a vertex v such that $B = N^\rho_G[v]$. Accordingly, a graph G has strong tree-breadth smaller than or equal to ρ (written as $\text{stb}(G) \leq \rho$) if there is a tree-decomposition for G with strong breadth at most ρ.

3.2.1 NP-Completeness

In this section, we show that it is NP-complete to determine if a given graph has strong tree-breadth ρ even if $\rho = 1$. To do so, we show first that, for some small graphs, the choice of possible centers is restricted. Then, we use these small graphs to construct a reduction.

Lemma 3.5. Let $C = \{v_1, v_2, v_3, v_4\}$ be an induced C_4 in a graph G with the edge set $\{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}$. If there is no vertex $w \notin C$ with $N_G[w] \supseteq C$, then $N_G[v_1]$ and $N_G[v_2]$ cannot both be bags in the same tree-decomposition with strong breadth 1.

Proof. Assume that there is a decomposition T with strong breadth 1 containing the bags $B_1 = N_G[v_1]$ and $B_2 = N_G[v_2]$. Because v_3 and v_4 are adjacent, there is a bag $B_3 \supseteq \{v_3, v_4\}$. Consider the subtrees $T_1, T_2, T_3,$ and T_4 of T induced by $v_1, v_2, v_3,$ and v_4, respectively. These subtrees
pairwise intersect in the bags B_1, B_2, and B_3. Because pairwise intersecting subtrees of a tree have a common vertex, T contains a bag $N_G[w] \supseteq C$. Note that there is no $v_i \in C$ with $N_G[v_i] \supseteq C$. Thus, $w \notin C$. This contradicts with the condition that there is no vertex $w \notin C$ with $N_G[w] \supseteq C$. \qed

Let $C = \{v_1, \ldots, v_5\}$ be a C_5 with the edges $E_5 = \{v_1v_2, v_2v_3, \ldots, v_5v_1\}$. We call the graph $H = \langle C \cup \{u\}, E_5 \cup \{uv_1, uv_3, uv_4\} \rangle$, with $u \notin C$, an extended C_5 of degree 1 and refer to the vertices u, v_1, v_2, and v_5 as middle, top, right, and left vertex of H, respectively. Based on $H = (V_H, E_H)$, we construct an extended C_5 of degree ρ (with $\rho > 1$) as follows. First, replace each edge $xy \in E_H$ by a path of length ρ. Second, for each vertex w on the shortest path from v_3 to v_4, connect u with w using a path of length ρ. Figure 3 gives an illustration.

![Figure 3](image)

Figure 3. Two extended C_5 of (a) degree 1 and (b) degree 3. We refer to the vertices u, v_1, v_2, and v_5 as middle, top, right, and left vertex, respectively.

Lemma 3.6. Let H be an extended C_5 of degree ρ in a graph G as defined above. Additionally, let H be a block of G and its top vertex v_1 be the only articulation point of G in H. Then, there is no vertex w in G with $d_G(w, v_1) < \rho$ which is the center of a bag in a tree-decomposition for G with strong breadth ρ.

Proof. Let T be a tree-decomposition for G with strong breadth ρ. Assume that T contains a bag $B_w = N_G^\rho[w]$ with $d_G(w, v_1) < \rho$. Note that the distance from v_1 to any vertex on the shortest path from v_3 to v_4 is 2ρ. Hence, $G - B_w$ has a connected component C containing the vertices v_3 and v_4. Then, by Lemma 2.3 (page 6), there has to be a vertex $w' \neq w$ in G and a bag $B_{w'} = N_G^\rho[w']$ in T such that (i) $B_{w'} \supseteq N_G(C)$ and (ii) $B_{w'} \cap C \neq \emptyset$. Thus, if we can show, for a given w, that there is no such w', then w cannot be center of a bag.
First, consider the case that \(w \) is in \(H \). We construct a set \(X = \{ x, y \} \subseteq N_G(C) \) such that there is a unique shortest path from \(x \) to \(y \) in \(G \) passing \(w \). If \(w = v_1 \), let \(x = v_2 \) and \(y = v_5 \). If \(w \) is on the shortest path from \(v_1 \) to \(u \), let \(x \) and \(y \) be on the shortest path from \(v_1 \) to \(v_2 \) and from \(v_4 \) to \(u \), respectively. If \(w \) is on the shortest path from \(v_1 \) to \(v_2 \), let \(x \) and \(y \) be on the shortest path from \(v_1 \) to \(v_5 \) and from \(v_2 \) to \(v_3 \), respectively. In each case, there is a unique shortest path from \(x \) to \(y \) passing \(w \). Note that, for all three cases, \(d_G(v_1, y) \geq \rho \). Therefore, each \(w' \) with \(d_G(w', y) \leq \rho \) is in \(H \). Therefore, \(w \) is the only vertex in \(G \) with \(X \subseteq N^\rho_G[w] \), i.e., there is no vertex \(w' \neq w \) satisfying condition (i). This implies that \(w \) cannot be center of a bag in \(T \).

Next, consider the case that \(w \) is not in \(H \). Without loss of generality, let \(w \) be a center for which \(d_G(v_1, w) \) is minimal. As shown above, there is no vertex \(w' \) in \(H \) with \(d_G(v_1, w') < \rho \) which is center of a bag. Hence, \(w' \) is not in \(H \) either. However, because \(v_1 \) is an articulation point, \(w' \) has to be closer to \(v_1 \) than \(w \) to satisfy condition (ii). This contradicts with \(d_G(v_1, w) \) being minimal. Therefore, there is no vertex \(w' \) satisfying condition (ii) and \(w \) cannot be center of a bag in \(T \). \(\square \)

Theorem 3.7. It is NP-complete to decide, for a given graph \(G \), if \(\text{stb}(G) = 1 \).

Proof. Clearly, the problem is in NP: Select non-deterministically a set \(S \) of vertices such that their neighbourhoods cover each vertex and each edge. Then, check deterministically if the neighbourhoods of the vertices in \(S \) give a valid tree-decomposition. This can be done in linear time (see Lemma 2.1, page 2.1).

To show that the problem is NP-hard, we make a reduction from 1-in-3-SAT [83]. That is, you are given a boolean formula in CNF with at most three literals per clause; find a satisfying assignment such that, in each clause, only one literal becomes true.

Let \(I \) be an instance of 1-in-3-SAT with the literals \(L = \{ p_1, \ldots, p_n \} \), the clauses \(C = \{ c_1, \ldots, c_m \} \), and, for each \(c \in C \), \(c \subseteq L \). We create a graph \(G = (V, E) \) as follows. Create a vertex for each literal \(p \in L \) and, for all literals \(p_i \) and \(p_j \) with \(p_i \equiv \neg p_j \), create an induced \(C_4 = \{ p_i, p_j, q_i, q_j \} \) with the edges \(p_i p_j, q_i q_j, p_i q_i, \) and \(p_j q_j \). For each clause \(c \in C \) with \(c = \{ p_i, p_j, p_k \} \), create an extended \(C_5 \) with \(c \) as top vertex, connect \(c \) with an edge to all literals it contains, and make all literals in \(c \) pairwise adjacent, i.e., the vertex set \(\{ c, p_i, p_j, p_k \} \) induces a maximal clique in \(G \).
Additionally, create a vertex \(v \) and make \(v \) adjacent to all literals. Figure 4a gives an illustration for the construction so far.

![Figure 4a](image1)

Figure 4. Illustration to the proof of Theorem 3.7. The graphs shown are subgraphs of \(G \) as created by a clause \(c = \{p_i, p_j, p_k\} \) and a literal \(p_l \) with \(p_i \equiv \neg q_l \).

Next, for each clause \(\{p_i, p_j, p_k\} \) and for each \((xy|z) \in \{(ij|k), (jk|i), (ki|j)\} \), create the vertices \(r_{(xy|z)} \) and \(s_{(xy|z)} \), make \(r_{(xy|z)} \) adjacent to \(s_{(xy|z)} \) and \(p_x \), and make \(s_{(xy|z)} \) adjacent to \(p_y \) and \(p_z \). See Figure 4b for an illustration. Note that \(r_{(ij|k)} \) and \(s_{(ij|k)} \) are specific for the clause \(\{p_i, p_j, p_k\} \). Thus, if \(p_i \) and \(p_j \) are additionally in a clause with \(p_l \), then we also create the vertices \(r_{(ij|l)} \) and \(s_{(ij|l)} \).

For the case that a clause only contains two literals \(p_i \) and \(p_j \), create the vertices \(r_{(ij)} \) and \(s_{(ij)} \), make \(r_{(ij)} \) adjacent to \(p_i \) and \(s_{(ij)} \), and make \(s_{(ij)} \) adjacent to \(p_j \), i.e., \(\{p_i, p_j, r_{(ij)}, s_{(ij)}\} \) induces a \(C_4 \) in \(G \).

For the reduction, first, consider the case that \(I \) is a yes-instance for 1-in-3-SAT. Let \(f : \mathcal{P} \to \{T, F\} \) be a satisfying assignment such that each clause contains only one literal \(p_i \) with \(f(p_i) = T \). Select the following vertices as centers of bags: \(v \), the middle, left and right vertex of each extended \(C_5 \), \(p_i \) if \(f(p_i) = T \), and \(q_j \) if \(f(p_j) = F \). Additionally, for each clause \(\{p_i, p_j, p_k\} \) with \(f(p_i) = T \), select the vertices \(s_{(ij|k)}, r_{(jk|i)} \), and \(r_{(ki|j)} \). The neighbourhoods of the selected vertices give a valid tree-decomposition for \(G \). Therefore, \(\text{stb}(G) = 1 \).

Next, assume that \(\text{stb}(G) = 1 \). Recall that, for a clause \(c = \{p_i, p_j, p_k\} \), the vertex set \(\{c, p_i, p_j, p_k\} \) induces a maximal clique \(K_c \) in \(G \). Because each maximal clique is contained completely in some bag (Lemma 2.2, page 6), some vertex in \(K_c \) is center of such a bag. By Lemma 3.6, \(c \) cannot be center of a bag because it is top of an extended \(C_5 \). Therefore, at least one vertex in
\{p_i, p_j, p_k\} must be center of a bag. Without loss of generality, let \(p_i\) be a center of a bag. By construction, \(p_i\) is adjacent to all \(p \in \{p_j, p_k, p_l\}\), where \(p_l \equiv -p_i\). Additionally, \(p\) and \(p_i\) are vertices in an induced \(C_4\), say \(C\), and there is no vertex \(w\) in \(G\) with \(N_G[w] \supseteq C\). Thus, by Lemma 3.5, at most one vertex in \(\{p_i, p_j, p_k\}\) can be center of a bag. Therefore, the function \(f: \mathcal{L} \to \{T, F\}\) defined as

\[
f(p_i) = \begin{cases}
T & \text{if } p_i \text{ is center of a bag}, \\
F & \text{else}
\end{cases}
\]

is a satisfying assignment for \(\mathcal{I}\).

In [48], Ducoffe et al. show how to construct a graph \(G'_\rho\) based on a given graph \(G\) such that \(tb(G'_\rho) = 1\) if and only if \(tb(G) \leq \rho\). We slightly extend their construction to achieve a similar result for strong tree-breadth.

Consider a given graph \(G = (V, E)\) with \(stb(G) = \rho\). We construct \(G'_\rho\) as follows. Let \(V = \{v_1, v_2, \ldots, v_n\}\). Add the vertices \(U = \{u_1, u_2, \ldots, u_n\}\) and make them pairwise adjacent. Additionally, make each vertex \(u_i\), with \(1 \leq i \leq n\), adjacent to all vertices in \(N_G^\rho[v_i]\). Last, for each \(v_i \in V\), add an extended \(C_5\) of degree 1 with \(v_i\) as top vertex.

Lemma 3.7. \(stb(G) \leq \rho\) if and only if \(stb(G'_\rho) = 1\).

Proof. First, consider a tree-decomposition \(T\) for \(G\) with strong breadth \(\rho\). Let \(T'_\rho\) be a tree-decomposition for \(G'_\rho\) created from \(T\) by adding all vertices in \(U\) into each bag of \(T\) and by making the center, left, and right vertices of each extended \(C_5\) centers of bags. Because the set \(U\) induces a clique in \(G'_\rho\) and \(N_G^\rho[v_i] = N_{G'_\rho}[u_i] \cap V\), each bag of \(T'_\rho\) is the complete neighbourhood of some vertex.

Next, consider a tree-decomposition \(T'_\rho\) for \(G'_\rho\) with strong breadth 1. Note that each vertex \(v_i\) is top vertex of some extended \(C_5\). Thus, \(v_i\) cannot be center of a bag. Therefore, each edge \(v_iv_j\) is in a bag \(B_k = N_G^\rho[u_k]\). By construction of \(G'_\rho\), \(B_k \cap V = N_G^\rho[v_k]\). Thus, we can construct a tree-decomposition \(T\) for \(G\) with strong breadth \(\rho\) by creating a bag \(B_i = N_G^\rho[v_i]\) for each bag \(N_{G'_\rho}[u_i]\) of \(T'_\rho\).

24
Next, consider a given graph $G = (V, E)$ with $V = \{v_1, v_2, \ldots, v_n\}$ and $\text{stb}(G) = 1$. For a given $\rho > 1$, we obtain the graph G^+_ρ by doing the following for each $v_i \in V$:

- Add the vertices $u_{i,1}, \ldots, u_{i,5}, x_i$, and y_i.
- Add an extended C_5 of degree ρ with the top vertex z_i.
- Connect
 - $u_{i,1}$ and x_i with a path of length $\lfloor \rho/2 \rfloor - 1$,
 - $u_{i,2}$ and y_i with a path of length $\lfloor \rho/2 \rfloor$,
 - $u_{i,3}$ and v_i with a path of length $\lfloor \rho/2 \rfloor - 1$,
 - $u_{i,4}$ and v_i with a path of length $\lfloor \rho/2 \rfloor$, and
 - $u_{i,4}$ and z_i with a path of length $\lceil \rho/2 \rceil - 1$.
- Add the edges $u_{i,1}u_{i,2}$, $u_{i,1}u_{i,3}$, $u_{i,2}u_{i,3}$, $u_{i,2}u_{i,4}$, and $u_{i,3}u_{i,4}$.

Note that, for small ρ, it can happen that $v_i = u_{i,4}$, $x_i = u_{i,1}$, $y_i = u_{i,2}$, or $z_i = u_{i,5}$. Figure 5 gives an illustration.

![Figure 5. Illustration for the graph G^+_ρ. The graph shown is a subgraph of G^+_ρ as constructed for each v_i in G.](image)

Lemma 3.8. $\text{stb}(G) = 1$ if and only if $\text{stb}(G^+_\rho) = \rho$.

Proof. First, assume that $\text{stb}(G) = 1$. Then, there is a tree-decomposition T for G with strong breadth 1. We construct a tree-decomposition T^+_ρ for G^+_ρ with strong breadth ρ. Make the middle, left, and right vertex of each extended C_5 center of a bag. For each $v_i \in V$, if v_i is center of a bag of T, make x_i a center of a bag of T^+_ρ. Otherwise, make y_i center of a bag of T^+_ρ. The distance in G^+_ρ from v_i to x_i is $\rho - 1$. The distances from v_i to y_i, from x_i to z_i, and from y_i to z_i are ρ. Thus,
$N_{G^{\rho}}[x_i] \cap V = N_G[v_i], N_{G^{\rho}}[y_i] \cap V = \{v_i\}$, and there is no conflict with Lemma 3.6. Therefore, the constructed T_{ρ}^+ is a valid tree-decomposition with strong breadth ρ for G_{ρ}^+.

Next, assume that $stb(G_{\rho}^+) = \rho$ and there is a tree-decomposition T_{ρ}^+ with strong breadth ρ for G_{ρ}^+. By Lemma 3.6, no vertex in distance less than ρ to any z_i can be a center of a bag in T_{ρ}^+. Therefore, because the distance from v_i to z_i in G_{ρ}^+ is $\rho - 1$, no $v_i \in V$ can be a center of a bag in T_{ρ}^+. The only vertices with a large enough distance to z_i to be a center of a bag are x_i and y_i. Therefore, either x_i or y_i is selected as center. To construct a tree-decomposition T with strong breadth 1 for G, select v_i as center if and only if x_i is a center of a bag in T_{ρ}^+. Because $N_{G_{\rho}^+}[x_i] \cap V = N_G[v_i]$ and $N_{G_{\rho}^+}[y_i] \cap V = \{v_i\}$, the constructed T is a valid tree-decomposition with strong breadth 1 for G. □

Constructing G'_ρ can be done in $O(n^2)$ time and constructing G^+_{ρ} can be done in $O(\rho \cdot n + m)$ time. Thus, combining Lemma 3.7 and Lemma 3.8 allows us, for a given graph G, some given ρ, and some given ρ', to construct a graph H in $O(\rho \cdot n^2)$ time such that $stb(G) \leq \rho$ if and only if $stb(H) \leq \rho'$. Additionally, by combining Theorem 3.7 and Lemma 5, we get:

Theorem 3.8. It is NP-complete to decide, for a graph G and a given ρ, if $stb(G) = \rho$.

3.2.2 Polynomial Time Cases

In the previous section, we have shown that, in general, it is NP-complete to determine the strong tree-breadth of a graph. In this section, we investigate cases for which a decomposition can be found in polynomial time.

Let G be a graph with strong tree-breadth ρ and let T be a corresponding tree-decomposition. For a given vertex u in G, we denote the set of connected components in $G - N_{G}^{\rho}[u]$ as $C_G[u]$. We say that a vertex v is a potential partner of u for some $C \in C_G[u]$ if $N_{G}^{\rho}[v] \supseteq N_G(C)$ and $N_{G}^{\rho}[v] \cap C \neq \emptyset$.

Lemma 3.9. Let C be a connected component in $G - B_u$ for some $B_u \subseteq N_{G}^{\rho}[u]$. Also, let $C \in C_G[u]$ and v be a potential partner of u for C. Then, for all connected components C_v in $G[C] - N_{G}^{\rho}[v]$, $C_v \in C_G[v]$.
Proof. Consider a connected component \(C_v \) in \(G[C] - N^\rho_G[v] \). Clearly, \(C_v \subseteq C \) and there is a connected component \(C' \in C_G[v] \) such that \(C' \supseteq C_v \).

Let \(x \) be an arbitrary vertex in \(C' \). Then, there is a path \(P \subseteq C' \) from \(x \) to \(C_v \). Because \(N_G(C) \subseteq B_u \) and \(v \) is a potential partner of \(u \) for \(C \), \(N_G(C) \subseteq B_u \cap N^\rho_G[v] \). Also, \(N_G(C) \) separates all vertices in \(C \) from all other vertices in \(G \). Therefore, \(x \in C \) and \(C' \subseteq C \); otherwise, \(P \) would intersect \(N^\rho_G[v] \). It follows that each vertex in \(P \) is in the same connected component of \(G[C] - N^\rho_G[v] \) and, thus, \(C_v = C' \). \(\square \)

From Lemma 2.3 (page 6), it directly follows:

Corollary 3.3. If \(N^\rho_G[u] \) is a bag in \(T \), then \(T \) contains a bag \(N^\rho_G[v] \) for each \(C \in C_G[u] \) such that \(v \) is a potential partner of \(u \) for \(C \).

Because of Corollary 3.3, there is a vertex set \(U \) such that each \(u \in U \) has a potential partner \(v \in U \) for each connected component \(C \in C_G[u] \). With such a set, we can construct a tree-decomposition for \(G \) with the following approach: Pick a vertex \(u \in U \) and make it center of a bag \(B_u \). For each connected component \(C \in C_G[u] \), \(u \) has a potential partner \(v \). \(N^\rho_G[v] \) splits \(C \) in more connected components and, because \(v \in U \), \(v \) has a potential partner \(w \in U \) for each of these components. Hence, create a bag \(B_v = N^\rho_G[v] \cap (B_u \cup C) \) and continue this until the whole graph is covered. Algorithm 3.3 below determines such a set of vertices with their potential partners (represented as a graph \(H \)) and then constructs a decomposition as described above.

Theorem 3.9. Algorithm 3.3 constructs, for a given graph \(G \) with strong tree-breadth \(\rho \), a tree-decomposition \(T \) with breadth \(\rho \) in \(O(n^2m) \) time.

Proof (Correctness). Algorithm 3.3 works in two parts. First, it creates a graph \(H \) with potential centers (line 1 to line 6). Second, it uses \(H \) to create a tree-decomposition for \(G \) (line 9 to line 15). To show the correctness of the algorithm, we show first that the centers of a tree-decomposition for \(G \) are vertices in \(H \) and, then, show that a tree-decomposition created based on \(H \) is a valid tree-decomposition for \(G \).

A vertex \(u \) is added to \(H \) (line 4) if, for at least one connected component \(C \in C_G[u] \), \(u \) has a potential partner \(v \). Later, \(u \) is kept in \(H \) (line 5 and line 6) if it has a potential partner \(v \) for all
Algorithm 3.3: Constructs, for a given graph $G = (V, E)$ with strong tree-breadth ρ, a tree-decomposition T with breadth ρ.

1. Create an empty directed graph $H = (V_H, E_H)$. Let ϕ be a function that maps each edge $(u, v) \in E_H$ to a connected component $C \in \mathcal{C}_G[u]$.

2. For each $u, v \in V$ and all $C \in \mathcal{C}_G[u]$

 3. If v is a potential partner of u for C

 4. Add the directed edge (u, v) to H and set $\phi(u, v) := C$. (Add u and v to H if necessary.)

5. While there is a vertex $u \in V_H$ and some $C \in \mathcal{C}_G[u]$ such that there is no $(u, v) \in E_H$ with $\phi(u, v) = C$

 6. Remove u from H.

7. If H is empty Then

 8. Stop. $\text{stb}(G) > \rho$.

10. Let $G - T$ be the subgraph of G that is not covered by T and let ψ be a function that maps each connected component in $G - T$ to a bag $B_u \subseteq N^\rho_G[u]$.

11. Pick an arbitrary vertex $u \in V_H$, add $B_u = N^\rho_G[u]$ as bag to T, and set $\psi(C) := B_u$ for each connected component C in $G - T$.

12. While $G - T$ is non-empty

 13. Pick a connected component C in $G - T$, determine the bag $B_v := \psi(C)$ and find an edge $(v, w) \in E_H$ with $\phi(v, w) = C$.

 14. Add $B_w = N^\rho_G[w] \cap (B_v \cup C)$ to T, and make B_v and B_w adjacent in T.

 15. For each new connected component C' in $G - T$ with $C' \subseteq C$, set $\psi(C'_w) := B_w$.

connected components in $C \in \mathcal{C}_G[u]$. By Corollary 3.3, each center of a bag in a tree-decomposition T with strong breadth ρ satisfies these conditions. Therefore, after line 6, H contains all centers of bags in T, i.e., if G has strong tree-breadth ρ, H is non-empty.

Next, we show that T created in the second part of the algorithm (line 9 to line 15) is a valid tree-decomposition for G with breadth ρ. To do so, we show the following invariant for the loop starting in line 12: (i) T is a valid tree-decomposition with breadth ρ for the subgraph covered by T and (ii) for each connected component C in $G - T$, the bag $B_v := \psi(C)$ is in T, $N_G(C) \subseteq B_v$, and $C \in \mathcal{C}_G[v]$. After line 11, the invariant clearly holds. Assume by induction that the invariant holds each time line 12 is checked. If T covers the whole graph, the check fails and the algorithm outputs T. If T does not cover G completely, there is a connected component C in $G - T$. By condition (ii), the bag $B_v := \psi(C)$ is in T, $N_G(C) \subseteq B_v$, and $C \in \mathcal{C}_G[v]$. Because of the way H is constructed and
$C \in C_G[v]$, there is an edge $(v, w) \in E_H$ with $\phi(v, w) = C$, i.e., w is a potential partner of v for C. Thus, line 13 is successful and the algorithm adds a new bag $B_w = N^\rho_G[w] \cap (B_v \cup C)$ (line 14). Because w is a potential partner of v for C, i.e., $N_G(C) \subseteq N^\rho_G[w]$, and $N_G(C) \subseteq B_v$, $B_w \supseteq N_G(C)$. Therefore, after adding B_w to T, T still satisfies condition (i). Additionally, B_w splits C in a set C' of connected components such that, for each $C' \in C'$, $N_G(C') \subseteq B_w$ and, by Lemma 3.9, $C' \in C_G[w]$. Thus, condition (ii) is also satisfied.

Proof (Complexity). First, determine the pairwise distance of all vertices. This can be done in $O(nm)$ time and allows to check the distance between vertices in constant time.

For a vertex u, let $N[u] = \{ N_G(C) \mid C \in C_G[u] \}$. Note that, for some $C \in C_G[u]$ and each vertex $x \in N_G(C)$, there is an edge xy with $y \in C$. Therefore, $|N[u]| = \sum_{C \in C_G[u]} |N_G(C)| \leq m$. To determine, for some vertex u, all its potential partners v, first, compute $N[u]$. This can be done in $O(m)$ time. Then, check, for each vertex v and each $N_G(C) \subseteq N[u]$, if $N_G(C) \subseteq N^\rho_G[v]$ and add the edge (u, v) to H if successful. For a single vertex v this requires $O(m)$ time because $|N[u]| \leq m$ and distances can be determined in constant time. Therefore, the total runtime for creating H (line 1 to line 4) is $O(n(m + nm)) = O(n^2m)$.

Assume that, for each $\phi(u, v) = C$, C is represented buy two values: (i) a characteristic vertex $x \in C$ (for example the vertex with the lowest index) and (ii) the index of C in $C_G[u]$. While creating H, count and store, for each vertex u and each connected component $C \in C_G[u]$, the number of edges $(u, v) \in E_H$ with $\phi(u, v) = C$. Note that there is a different counter for each $C \in C_G[u]$. With this information, we can implement line 5 and line 6 as follows. First check, for every vertex v in H, if one of its counters is 0. In this case, remove v from H and update the counters for all vertices u with $(u, v) \in E_H$ using value (ii) of $\phi(u, v)$. If this sets a counter for u to 0, add u to a queue Q of vertices to process. Continue this until each vertex is checked. Then, for each vertex u in Q, remove u from H and add its neighbours into Q if necessary until Q is empty. This way, a vertex is processed at most twice. A single iteration runs in at most $O(n)$ time. Therefore, line 5 and line 6 can be implemented in $O(n^2)$ time.

Assume that ψ uses the characteristic vertex x to represent a connected component, i.e., value (i) of ϕ. Then, finding an edge $(v, w) \in E_H$ (line 13) can be done in $O(m)$ time. Creating B_w (line 14),
splitting \(C \) into new connected components \(C' \), finding their characteristic vertex, and setting \(\psi(C') \) (line 15) takes \(\mathcal{O}(m) \) time, too. In each iteration, at least one more vertex of \(G \) is covered by \(T \). Hence, there are at most \(n \) iterations and, thus, the loop starting in line 12 runs in \(\mathcal{O}(mn) \) time.

Therefore, Algorithm 3.3 runs in total \(\mathcal{O}(n^2m) \) time. \(\square \)

Algorithm 3.3 creates, for each graph \(G \) with \(\text{stb}(G) \leq \rho \), a tree-decomposition \(T \) with breadth \(\rho \). Next, we invest a case where we can construct a tree-decomposition for \(G \) with strong breadth \(\rho \).

We say that two vertices \(u \) and \(v \) are perfect partners if (i) \(u \) and \(v \) are potential partners of each other for some \(C_u \in \mathcal{C}_G[u] \) and some \(C_v \in \mathcal{C}_G[v] \), (ii) \(C_u \) is the only connected component in \(\mathcal{C}_G[u] \) which is intersected by \(N^\rho_{\mathcal{G}}[v] \), and (iii) \(C_v \) is the only connected component in \(\mathcal{C}_G[v] \) which is intersected by \(N^\rho_{\mathcal{G}}[u] \). Accordingly, we say that a tree-decomposition \(T \) has perfect strong breadth \(\rho \) if it has strong breadth \(\rho \) and, for each center \(u \) of some bag and each connected component \(C \in \mathcal{C}_G[u] \), there is a center \(v \) such that \(v \) is a perfect partner of \(u \) for \(C \).

Theorem 3.10. A tree-decomposition with perfect strong breadth \(\rho \) can be constructed in polynomial time.

Proof. To construct such a tree-decomposition, we can modify Algorithm 3.3. Instead of checking if \(u \) has a potential partner \(v \) (line 3), check if \(u \) and \(v \) are perfect partners.

Assume by induction that, for each bag \(B_v \) in \(T \), \(B_v = N^\rho_{\mathcal{G}}[v] \). By definition of perfect partners \(v \) and \(w \), \(N^\rho_{\mathcal{G}}[w] \) intersects only one \(C \in \mathcal{C}_G[v] \), i.e., \(N^\rho_{\mathcal{G}}[w] \subseteq N^\rho_{\mathcal{G}}[v] \cup C \). Thus, when creating the bag \(B_w \) (line 14), \(B_w = N^\rho_{\mathcal{G}}[w] \cap (B_v \cup C) = N^\rho_{\mathcal{G}}[w] \cap (N^\rho_{\mathcal{G}}[v] \cup C) = N^\rho_{\mathcal{G}}[w] \). Therefore, the created tree-decomposition \(T \) has perfect strong tree-breadth \(\rho \). \(\square \)

We conjecture that there are weaker cases than perfect strong breadth which allow to construct a tree-decomposition with strong-breadth \(\rho \). For example, if the centers of two adjacent bags are perfect partners, but a center \(u \) does not need to have a perfect partner for each \(C \in \mathcal{C}_G[u] \). However, when using a similar approach as in Algorithm 3.3, this would require a more complex way of constructing \(H \).
3.3 Computing Decompositions for Special Graph Classes

In this section, we show how to find good decompositions for some special graph classes.

Theorem 3.11. Chordal graphs have strong tree-breadth 1. An according decomposition can be computed in linear time.

Proof. Let \(\sigma = \langle v_1, v_2, \ldots, v_n \rangle \) be an ordering for the vertices of a graph \(G, \ \mathcal{V}_i = \{v_1, v_2, \ldots, v_i\} \), \(G_i \) denote the graph \(G[\mathcal{V}_i] \), \(\mathcal{N}_i[v] = N_G[v] \cap \mathcal{V}_i \), and \(\mathcal{N}_i(v) = N_G(v) \cap \mathcal{V}_i \). The reverse of such an ordering \(\sigma \) is called a perfect elimination ordering for \(G \) if, for each \(i \), \(\mathcal{N}_i[v_i] \) induces a clique. It is well known that a graph is chordal if and only if it admits a perfect elimination ordering [30].

Assume that we are given such an ordering \(\sigma \), i.e., the reverse of a perfect elimination ordering. Additionally, assume by induction over \(i \) that \(G_{i-1} \) admits a tree-decomposition \(T_{i-1} \) with strong breadth 1 such that centers of bags are pairwise non-adjacent. This is clearly the case for \(G_1 \). We now show how to construct \(T_i \) from \(T_{i-1} \).

First, consider the case that \(v_i \) has a neighbour \(u \) in \(G_i \) which is center of some bag \(B \) in \(T_{i-1} \). Because \(u \in \mathcal{N}_i[v_i] \) and \(\mathcal{N}_i[v_i] \) induces a clique, \(\mathcal{N}_i[v_i] \subseteq \mathcal{N}_i[u] \) and, hence, \(\mathcal{N}_i[v_i] \) does not contain a center of any bag. Thus, adding \(v_i \) into \(B \) creates a valid tree-decomposition \(T_i \) for \(G_i \) with strong breadth 1 and pairwise non-adjacent centers.

Next, consider the case that \(v_i \) has no neighbour \(u \) in \(G_i \) that is center of some bag in \(T_{i-1} \). Note that \(\mathcal{N}_i(v_i) \) induces a clique in \(G_{i-1} \). It is well known that, for each tree-decomposition \(T \) and for each clique \(K \) of graph, \(T \) contains a bag \(B \) with \(K \subseteq B \). Thus, there is a bag \(B \) in \(T_{i-1} \) with \(\mathcal{N}_i(v_i) \subseteq B \). Therefore, we can create \(T_i \) by adding the bag \(B' = \mathcal{N}_i[v_i] \) to \(T_{i-1} \) and making \(B' \) adjacent to \(B \). This creates a valid tree-decomposition with strong breadth 1 and pairwise non-adjacent centers.

Based on the approach described above, we can construct a tree-decomposition with strong breadth 1 for a given chordal graph \(G \) as follows. First, compute the reverse of a perfect elimination ordering of \(G \). Such an ordering can be computed in linear time [81]. Observe that we can simplify the approach above with the following rule: If \(v_i \) has no neighbour in \(G_i \) which is center of a bag, make \(v_i \) center of a bag. Otherwise, proceed with \(v_{i+1} \). Therefore, by using a simple binary flag
for each vertex, one can compute a tree-decomposition with strong breadth 1 for a given chordal graph G in linear time. □

Theorem 3.12. Distance-hereditary graphs have strong tree-breadth 1. An according decomposition can be computed in linear time.

Proof. Recall that a graph is distance-hereditary if and only if it admits a pruning sequence σ (see Lemma 2.9, page 10). That is, a sequence $\sigma = (v_1, v_2, \ldots, v_n)$ such that, for each vertex v_i and some $j < i$, v_i is a pendant vertex, v_i is a true twin of v_j, or v_i is a false twin of v_j.

Assume that we are given such a pruning sequence. Additionally, assume by induction over i that G_i has a tree-decomposition T_i with strong breadth 1 where the centers of bags are pairwise non-adjacent. Then, there are three cases:

(i) v_{i+1} is a pendant vertex in G_{i+1}. If the neighbour u of v_{i+1} is a center of a bag B_u, add v_{i+1} to B_u. Thus, T_{i+1} is a valid decomposition for G_{i+1}. Otherwise, if u is not a center, make v_{i+1} center of a bag. Because u is an articulation point, $T_{i+1} = T_i + N_G[v]$ is a valid decomposition for G_{i+1}.

(ii) v_{i+1} is a true twin of a vertex u in G_{i+1}. Simply add v_{i+1} into any bag containing u. The resulting decomposition is a valid decomposition for G_{i+1}.

(iii) v_{i+1} is a false twin of a vertex u in G_{i+1}. If u is not center of a bag, add v_{i+1} into any bag u is in. Otherwise, make a new bag $B_{i+1} = N_G[v_{i+1}]$ and make it adjacent to the bag $N_G[u]$. Because no vertex in $N_G(u)$ is center of a bag, the resulting decomposition is a valid decomposition for G_{i+1}.

Therefore, distance-hereditary graphs have strong tree-breadth 1.

Next, we show how to compute an according tree-decomposition in linear time. The argument above already gives an algorithmic approach. First, we compute a pruning sequence for G. This can be done in linear time with an algorithm by DAMIAND et al. [27]. Then, we determine which vertex becomes a center of a bag. Note that we can simplify the three cases above with the following rule: If v_i has no neighbour in G_i which is center of a bag, make v_i center of a bag. Otherwise, proceed with v_{i+1}. This can be easily implemented in linear time with a binary flag for each vertex. □
Algorithm 3.4 formalizes the method described in the proof of Theorem 3.12.

Algorithm 3.4: Computes, for a given distance-hereditary graph G, a tree-decomposition T with strong breadth 1.

1. Compute a pruning sequence $\langle v_1, v_2, \ldots, v_n \rangle$ (see [27]).
2. Create a set $C := \emptyset$.
3. For $i := 1$ To n
 4. If $N_G[v_i] \cap V_i \cap C = \emptyset$ Then
 5. Add v_i to C.
6. Create a tree-decomposition T with the vertices in C as centers of its bags.

Theorem 3.13. If G is an AT-free graph, then $pl(G) \leq 2$. Furthermore, a path-decomposition of G with length at most 2 can be computed in $O(n^2)$ time.

Proof. Let s be an arbitrary vertex of G, let x be the vertex last visited (numbered 1) by a LexBFS starting at s, and let σ be the ordering obtained by a LexBFS starting at x. Clearly, σ can be generated in linear time. Note that the LexBFS which computes σ also computes all distance layers $L_i(x)$ of G with $0 \leq i \leq ecc(x)$. For some vertex $v \in L_i(x)$, let $N_G(v) = N_G(v) \cap L_i(x)$.

We can transform an AT-free graph $G = (V,E)$ into an interval graph $G^+ = (V,E^+)$ by applying the following two operations:

1. **Make layers complete graphs.** In each layer $L_i(x)$, make every two vertices $u, v \in L_i(x)$ adjacent to each other in G^+.

2. **Make down-neighbourhoods of adjacent vertices of a layer comparable.** For each i and every edge uv of G with $u, v \in L_i(x)$ and $\sigma(v) < \sigma(u)$, make every $w \in N_G^+(v) = N_G(v) \cap L_i(x)$ adjacent to u in G^+.

Claim 1. G^+ is a subgraph of G^2.

Proof (Claim). Clearly, for every edge uw of G^+ added by operation (2), $d_G(u, w) \leq 2$ holds. Also, for every edge uv of G^+ added by operation (1), $d_G(u, v) \leq 2$ holds by Lemma 2.12 (page 11).

Claim 2. G^+ is an interval graph.

Proof (Claim). It is known [77] that a graph is an interval graph if and only if its vertices admit an interval ordering. That is, an ordering $\tau : V \rightarrow \{1, \ldots, n\}$ such that, for any three vertices $a, b,$
and c with $\tau(a) < \tau(b) < \tau(c)$, $ac \in E$ implies $bc \in E$. We show here that the LexBFS-ordering σ of G is an interval ordering of G^+. Recall that, for each $v \in L_i^{(x)}$ and every $u \in L_j^{(x)}$ with $i > j$, it holds that $\sigma(v) < \sigma(u)$ since σ is a LexBFS-ordering. Consider three arbitrary vertices a, b, and c of G and assume that $\sigma(a) < \sigma(b) < \sigma(c)$ and $ac \in E^+$. Assume also that $a \in L_i^{(x)}$ for some i. If c belongs to $L_i^{(x)}$, then b must be in $L_i^{(x)}$ as well. Hence, $bc \in E^+$ due to operation (1). If both b and c are in $L_{i-1}^{(x)}$, then again $bc \in E^+$ due to operation (1). Consider now the remaining case that $a, b \in L_i^{(x)}$ and $c \in L_{i-1}^{(x)}$. If $ac \in E$, then $bc \in E^+$ because either $ab \in E$ and, thus, operation (2) applies, or $ab \notin E$ and, thus, Lemma 2.12 (page 11) implies $bc \in E^+$. If $ac \in E^+ \setminus E$ then, according to operation (2), edge ac was created in G^+ because some vertex $a' \in L_i^{(x)}$ existed such that $\sigma(a') < \sigma(a)$ and $a'a, a'c \in E$. Since $a'c \in E$ and $\sigma(a') < \sigma(b) < \sigma(c)$, as before, $bc \in E^+$ must hold.

To complete the proof, we recall that a graph is an interval graph if and only if it has a path-decomposition with each bag being a maximal clique (see Theorem 2.2, page 9). Furthermore, such a path-decomposition of an interval graph can easily be computed in linear time. Let $P^+ = \{X_1, \ldots, X_q\}$ be a path-decomposition of our interval graph G^+. Then, $P := P^+ = \{X_1, \ldots, X_q\}$ is a path-decomposition of G with length at most 2 since, for every edge uv of G^+, the distance in G between u and v is at most 2, as shown in Claim 1.

Algorithm 3.5 formalizes the steps described in the previous proof.

Because the class of cocomparability graphs is a proper subclass of AT-free graphs, we obtain the following corollary.

Corollary 3.4. If G is a cocomparability graph, then $pl(G) \leq 2$. Furthermore, a path-decomposition of G with length at most 2 can be computed in $O(n^2)$ time.

Note that the complement of an induced cycle on six vertices has path-breath 2 (see [39] for details). Thus, the bound 2 on the path-breadth of cocomparability graphs (and therefore, of AT-free graphs) is sharp.

Consider two parallel lines (upper and lower) in the plane. Assume that each line contains n points, labelled 1 to n. Each two points with the same label define a segment with that label. The
Algorithm 3.5: Computes a path-decomposition of length at most 2 for a given AT-free graph.

Input: An AT-free graph $G = (V, E)$.

Output: A path-decomposition of G.

1. Calculate a LexBFS-ordering σ of G with an arbitrary start vertex $s \in V$. Let x be the last visited vertex, i.e., $\sigma(x) = 1$.
2. Calculate a LexBFS-ordering σ' of G starting at x.
3. Set $E^+ := E$.
4. For each vertex pair u, v with $d_G(x, u) = d_G(x, v)$ and $\sigma'(u) < \sigma'(v)$
 - Add uv to E^+.
 - For each $w \in N_G(u)$ with $\sigma'(v) < \sigma'(w)$, add vw to E^+.
5. Calculate a path-decomposition P of the interval graph $G^+ = (V, E^+)$ by determining the maximal cliques of G^+.
6. Output P.

intersection graph of such a set of segments between two parallel lines is called a **permutation graph**.

Assume now that each of the two parallel lines contains n intervals, labelled 1 to n, and each two intervals with the same label define a trapezoid with that label (a trapezoid can degenerate to a triangle or to a segment). The intersection graph of such a set of trapezoids between two parallel lines is called a **trapezoid graph**. Clearly, every permutation graph is a trapezoid graph, but not vice versa.

Theorem 3.14. If G is a permutation graph, then $\text{spb}(G) = 1$. Furthermore, a path-decomposition of G with optimal breadth can be computed in linear time.

Proof. We assume that a permutation model of G is given in advance (if not, we can compute one for G in linear time [74]). That is, each vertex v of G is associated with a segment $s(v)$ such that $uv \in E$ if and only if segments $s(v)$ and $s(u)$ intersect. In what follows, “u.p.” and “l.p.” refer to a vertex’s point on the upper and lower, respectively, line of the permutation model.

First, we compute an (inclusion) maximal independent set M of G in linear time as follows. Put in M (which is initially empty) a vertex x_1 whose u.p. is leftmost. For each $i \geq 2$, select a vertex x_i whose u.p. is leftmost among all vertices whose segments do not intersect $s(x_1), \ldots, s(x_{i-1})$. In fact, it is enough to check intersection with $s(x_{i-1})$ only. If such a vertex exists, put it in M and continue. If no such vertex exists, $M = \{x_1, \ldots, x_k\}$ has been constructed.
Now, we claim that \(\{ N_G[x_1], \ldots, N_G[x_k] \} \) is a path-decomposition of \(G \) with strong breadth 1 and, hence, with length at most 2. Clearly, each vertex of \(G \) is in some bag since every vertex not in \(M \) is adjacent to a vertex in \(M \), by the maximality of \(M \). Consider an arbitrary edge \(uv \) of \(G \). Assume that neither \(u \) nor \(v \) is in \(M \) and that the u.p. of \(u \) is to the left of the u.p. of \(v \). Necessarily, the l.p. of \(v \) is to the left of the l.p. of \(u \), since the segments \(s(v) \) and \(s(u) \) intersect. Assume that the u.p. of \(u \) is between the u.p.s of \(x_i \) and \(x_{i+1} \). From the construction of \(M \), \(s(u) \) and \(s(x_i) \) must intersect, i.e., the l.p. of \(u \) is to the left of the l.p. of \(x_i \). But then, since the l.p. of \(v \) is to the left of the l.p. of \(x_i \), segments \(s(v) \) and \(s(x_i) \) must intersect, too. Thus, edge \(uv \) is in the bag \(N_G[x_i] \).

To show that all bags containing any particular vertex form a contiguous subsequence of the sequence \(\langle N_G[x_1], \ldots, N_G[x_k] \rangle \), consider an arbitrary vertex \(v \) of \(G \) and let \(v \in N_G[x_i] \cap N_G[x_j] \) for \(i < j \). Consider an arbitrary bag \(N_G[x_l] \) with \(i < l < j \). We know that the vertices \(x_i, x_l, x_j \in M \) are pairwise non-adjacent. Furthermore, the segment \(s(v) \) intersects the segments \(s(x_i) \) and \(s(x_j) \). As segment \(s(x_l) \) is between \(s(x_i) \) and \(s(x_j) \), necessarily, \(s(v) \) intersects \(s(x_l) \) as well.

Theorem 3.15. If \(G \) is a trapezoid graph, then \(\text{pb}(G) = 1 \). Furthermore, a path-decomposition of \(G \) with breadth 1 can be computed in \(O(n^2) \) time.

Proof. We show that every trapezoid graph \(G \) is a minor of a permutation graph.

First, we compute in \(O(n^2) \) time a trapezoid model for \(G \) \[73\]. Then, we replace each trapezoid \(T_i \) in this model with its two diagonals obtaining a permutation model with \(2n \) vertices. Let \(H \) be the permutation graph of this permutation model. It is easy to see that two trapezoids \(T_1 \) and \(T_2 \) intersect if and only if a diagonal of \(T_1 \) and a diagonal of \(T_2 \) intersect.

Now, \(G \) can be obtained back from \(H \) by a series of \(n \) edge contractions. For each trapezoid \(T_i \), contract the edge of \(H \) that corresponds to two diagonals of \(T_i \).

Since contracting edges does not increase the path-breadth (Lemma 2.3, page 6), we get \(\text{pb}(G) = \text{pb}(H) = 1 \) by Theorem 3.14. Any path-decomposition of \(H \) with breadth 1 is a path-decomposition of \(G \) with breadth 1.

A bipartite graph is **chordal bipartite** if each cycle of length at least 6 has a chord. To the best of our knowledge, there is no linear time algorithm known to recognise chordal bipartite graphs.
However, in [43], Dragan and Lomonosov show that any chordal bipartite graph $G = (X, Y, E)$ admits a tree-decomposition with the set of bags $B = \{B_1, B_2, \ldots, B_{|X|}\}$, where $B_i = N_G[x_i]$, $x_i \in X$. Therefore, we can still compute a tree-decomposition in linear time with three steps. First, compute a 2-colouring. Second, select a colour and make the neighbourhood of all vertices with this colour bags. Third, use the algorithm in [88] to check if the selected bags give a valid tree-decomposition. Thus, it follows:

Theorem 3.16 (Dragan and Lomonosov [43]). Each chordal bipartite graph has strong tree-breadth 1. An according tree-decomposition can be found in linear time.
The Domination problem is a classical problem in computer science. It is a variant of the Set Covering problem, one of Karp’s 21 NP-complete problems [65]. A generalisation of it is the r-Domination problem. Assume that we are given a graph $G = (V, E)$ and a function $r: V \rightarrow \mathbb{N}$. Then, we say a vertex set D is an r-dominating set for G if, for each vertex $u \in V$, $d(u, D) \leq r(u)$.

The r-Domination problem asks for the smallest r-dominating set D.

Clearly, the problem is NP-complete in general. Although it can be solved for dually chordal graphs in linear time [14], it remains NP-complete for chordal graphs [13]. Even more, under reasonable assumptions, the r-Domination problem cannot be approximated within a factor of $(1 - \varepsilon) \ln n$ in polynomial time for chordal graphs [22] and, thus, for graphs with bounded tree-breadth.

In this chapter, we use an approach presented by Chepoi and Estellon [21]. Assume that D_r is a minimum r-dominating set for some graph G. Instead of finding an r-dominating set which is slightly larger than D_r, we investigate how to determine a set D such that, for some factor $\phi \in \mathcal{O}(tb(G))$, D is an $(r + \phi)$-dominating set for G with $|D| \leq |D_r|$. That is, for each vertex v of G, $d(v, D) \leq r(v) + \phi$.

Chepoi and Estellon [21] present a polynomial time algorithm to compute an $(r + 2\delta)$-dominating set for δ-hyperbolic graphs. Due to Theorem 2.4 (page 2.4), their algorithm gives an $(r + 2\lambda)$-dominating set for graphs with tree-length λ. We slightly improve their result by constructing an $(r + \rho)$-dominating set for a graph G under the assumption that a tree-decomposition for G with breadth ρ is given. Additionally, we present algorithms to compute connected $(r + \phi)$-dominating sets for different values of ϕ and with different runtimes.

For this chapter, let $|T|$ denote the number of nodes and $\Lambda(T)$ denote the number of leaves of a
tree T. If T contains only one node, let $\Lambda(T) := 0$. With α, we denote the inverse Ackermann function (see, e.g., [23]).

4.1 Using a Layering Partition

For the remainder of this section, assume that we are given a graph $G = (V,E)$ and a layering partition T of G for an arbitrary start vertex. We denote the largest diameter of all clusters of T as Δ, i.e., $\Delta := \max \{ d_G(x,y) \mid x, y \text{ are in a cluster } C \text{ of } T \}$.

Theorem 4.1 below shows that we can use the layering partition T to compute an $(r + \Delta)$-dominating set for G in linear time which is not larger than a minimum r-dominating set for G. This is done by finding a minimum r-dominating set of T where, for each cluster C of T, $r(C)$ is defined as $\min_{v \in C} r(v)$.

Theorem 4.1. Let D be a minimum r-dominating set for a given graph G. An $(r + \Delta)$-dominating set D' for G with $|D'| \leq |D|$ can be computed in linear time.

Proof. First, create a layering partition T of G and, for each cluster C of T, set $r(C) := \min_{v \in C} r(v)$. Second, find a minimum r-dominating set S for T, i.e., a set S of clusters such that, for each cluster C of T, $d_T(C,S) \leq r(C)$. Third, create a set D' by picking an arbitrary vertex of G from each cluster in S. All three steps can be performed in linear time, including the computation of S (see [14]).

Next, we show that D' is an $(r + \Delta)$-dominating set for G. By construction of S, each cluster C of T has distance at most $r(C)$ to S in T. Thus, for each vertex u of G, S contains a cluster C_S with $d_T(u,C_S) \leq r(u)$. Additionally, by Lemma 2.6 (page 8), $d_G(u,v) \leq r(u) + \Delta$ for any vertex $v \in C_S$. Therefore, for any vertex u, $d_G(u,D') \leq r(u) + \Delta$, i.e., D' is an $(r + \Delta)$-dominating set for G.

It remains to show that $|D'| \leq |D|$. Let D be the set of clusters of T that contain a vertex of D. Because D is an r-dominating set for G, it follows from Lemma 2.6 (page 8) that D is an r-dominating set for T. Clearly, since clusters are pairwise disjoint, $|D| \leq |D|$. By minimality of S, $|S| \leq |D|$ and, by construction of D', $|D'| = |S|$. Therefore, $|D'| \leq |D|$.

\[\square\]
We now show how to construct a connected \((r + 2\Delta)\)-dominating set for \(G\) using \(T\) in such a way that the set created is not larger than a minimum connected \(r\)-dominating set for \(G\). For the remainder of this section, let \(D_r\) be a minimum connected \(r\)-dominating set of \(G\) and let, for each cluster \(C\) of \(T\), \(r(C)\) be defined as above. Additionally, we say that a subtree \(T'\) of some tree \(T\) is an \(r\)-dominating subtree of \(T\) if the nodes (clusters in case of a layering partition) of \(T'\) form a connected \(r\)-dominating set for \(T\).

The first step of our approach is to construct a minimum \(r\)-dominating subtree \(T_r\) of \(T\). Such a subtree \(T_r\) can be computed in linear time [35]. Lemma 4.1 below shows that \(T_r\) gives a lower bound for the cardinality of \(D_r\).

Lemma 4.1. If \(T_r\) contains more than one cluster, each connected \(r\)-dominating set of \(G\) intersects all clusters of \(T_r\). Therefore, \(|T_r| \leq |D_r|\).

Proof. Let \(D\) be an arbitrary connected \(r\)-dominating set of \(G\). Assume that \(T_r\) has a cluster \(C\) such that \(C \cap D = \emptyset\). Because \(D\) is connected, the subtree of \(T\) induced by the clusters intersecting \(D\) is connected, too. Thus, if \(D\) intersects all leaves of \(T_r\), then it intersects all clusters of \(T_r\). Hence, we can assume, without loss of generality, that \(C\) is a leaf of \(T_r\). Because \(T_r\) has at least two clusters and by minimality of \(T_r\), \(T\) contains a cluster \(C'\) such that \(d_T(C', C) = d_T(C', T_r) = r(C')\). Note that each path in \(G\) from a vertex in \(C'\) to a vertex in \(D\) intersects \(C\). Therefore, by Lemma 2.6 (page 8), there is a vertex \(u \in C'\) with \(r(u) = d_T(u, C) < d_T(u, D) \leq d_G(u, D)\). That contradicts with \(D\) being an \(r\)-dominating set.

Because any \(r\)-dominating set of \(G\) intersects each cluster of \(T_r\) and because these clusters are pairwise disjoint, it follows that \(|T_r| \leq |D_r|\). \(\square\)

As we show later in Corollary 4.1, each connected vertex set \(S \subseteq V\) that intersects each cluster of \(T_r\) gives an \((r + \Delta)\)-dominating set for \(G\). It follows from Lemma 4.1 that, if such a set \(S\) has minimum cardinality, \(|S| \leq |D_r|\). However, finding a minimum cardinality connected set intersecting each cluster of a layering partition (or of a subtree of it) is as hard as finding a minimum Steiner tree.

The main idea of our approach is to construct a minimum \((r + \delta)\)-dominating subtree \(T_\delta\) of \(T\) for
some integer δ. We then compute a small enough connected set S_δ that intersects all cluster of T_δ. By trying different values of δ, we eventually construct a connected set S_δ such that $|S_\delta| \leq |T_r|$ and, thus, $|S_\delta| \leq |D_r|$. Additionally, we show that S_δ is a connected $(r + 2\Delta)$-dominating set of G.

For some non-negative integer δ, let T_δ be a minimum $(r + \delta)$-dominating subtree of T. Clearly, $T_0 = T_r$. The following two lemmas set an upper bound for the maximum distance of a vertex of G to a vertex in a cluster of T_δ and for the size of T_δ compared to the size of T_r.

Lemma 4.2. For each vertex v of G, $d_T(v, T_\delta) \leq r(v) + \delta$.

Proof. Let C_v be the cluster of T containing v and let C be the cluster of T_δ closest to C_v in T. By construction of T_δ, $d_T(v, C) = d_T(C_v, C) \leq r(C_v) + \delta \leq r(v) + \delta$.

Because the diameter of each cluster is at most Δ, Lemma 2.6 (page 8) and Lemma 4.2 imply the following.

Corollary 4.1. If a vertex set intersects all clusters of T_δ, it is an $(r + (\delta + \Delta))$-dominating set of G.

Lemma 4.3. $|T_\delta| \leq |T_r| - \delta \cdot \Lambda(T_\delta)$.

Proof. First, consider the case when T_δ contains only one cluster, i.e., $|T_\delta| = 1$. Then, $\Lambda(T_\delta) = 0$ and, thus, the statement clearly holds. Next, let T_δ contain more than one cluster, let C_u be an arbitrary leaf of T_δ, and let C_v be a cluster of T_r with maximum distance to C_u such that C_u is the only cluster on the shortest path from C_u to C_v in T_r, i.e., C_v is not in T_δ. Due to the minimality of T_δ, $d_{T_r}(C_u, C_v) = \delta$. Thus, the shortest path from C_u to C_v in T_r contains δ clusters (including C_v) which are not in T_δ. Therefore, $|T_\delta| \leq |T_r| - \delta \cdot \Lambda(T_\delta)$.

Now that we have constructed and analysed T_δ, we show how to construct S_δ. First, we construct a set of shortest paths such that each cluster of T_δ is intersected by exactly one path. Second, we connect these paths with each other to from a connected set using an approach which is similar to Kruskal’s algorithm for minimum spanning trees.
Let $L = \{C_1, C_2, \ldots, C_\lambda\}$ be the leaf clusters of T_δ (excluding the root) with either $\lambda = \Lambda(T_\delta) - 1$ if the root of T_δ is a leaf, or with $\lambda = \Lambda(T_\delta)$ otherwise. We construct a set $P = \{P_1, P_2, \ldots, P_\lambda\}$ of paths as follows. Initially, P is empty. For each cluster $C_i \in L$, in turn, find the ancestor C'_i of C_i which is closest to the root of T_δ and does not intersect any path in P yet. If we assume that the indices of the clusters in L represent the order in which they are processed, then C'_1 is the root of T_δ. Then, select an arbitrary vertex v in C_i and find a shortest path P_i in G from v to C'_i. Add P_i to P and continue with the next cluster in L. Figure 6 gives an example.

Figure 6. Example for the set P for a subtree of a layering partition. Paths are shown in red. Each path P_i, with $1 \leq i \leq 5$, starts in the leaf C_i and ends in the cluster C'_i. For $i = 2$ and $i = 5$, P_i contains only one vertex.

Lemma 4.4. For each cluster C of T_δ, there is exactly one path $P_i \in P$ intersecting C. Additionally, C and P_i share exactly one vertex, i.e., $|C \cap P_i| = 1$.

Proof. Observe that, by construction of a layering partition, each vertex in a cluster C is adjacent to some vertex in the parent cluster of C. Therefore, a shortest path P in G from C to any of its ancestors C' only intersects clusters on the path from C to C' in T and each cluster shares only one vertex with P. It remains to show that each cluster intersects exactly one path.

Without loss of generality, assume that the indices of clusters in L and paths in P represent the order in which they are processed and created, i.e., assume that the algorithms first creates P_1 which starts in C_1, then P_2 which starts in C_2, and so on. Additionally, let $L_i = \{C_1, C_2, \ldots, C_i\}$ and $P_i = \{P_1, P_2, \ldots, P_i\}$.

To proof that each cluster intersects exactly one path, we show by induction over i that, if a cluster C_i of T_δ satisfies the statement, then all ancestors of C_i satisfy it, too. Thus, if C_λ satisfies the statement, each cluster satisfies it.
First, consider \(i = 1 \). Clearly, since \(P_1 \) is the first path, \(P_1 \) connects the leaf \(C_1 \) with the root of \(T_\delta \) and no cluster intersects more than one path at this point. Therefore, the statement is true for \(C_1 \) and each of its ancestors.

Next, assume that \(i > 1 \) and that the statement is true for each cluster in \(L_{i-1} \) and their respective ancestors. Then, the algorithm creates \(P_i \) which connects the leaf \(C_i \) with the cluster \(C_i' \). Assume that there is a cluster \(C \) on the path from \(C_i \) to \(C_i' \) in \(T \) such that \(C \) intersects a path \(P_j \) with \(j < i \). Clearly, \(C_i' \) is an ancestor of \(C \). Thus, by induction hypothesis, \(C_i' \) is also intersected by some path \(P \neq P_i \). This contradicts the way \(C_i' \) is selected by the algorithm. Therefore, each cluster on the path from \(C_i \) to \(C_i' \) in \(T \) only intersects \(P_i \) and \(P_i \) does not intersect any other clusters.

Because \(i > 1 \), \(C_i' \) has a parent cluster \(C'' \) in \(T_\delta \) that is intersected by a path \(P_j \) with \(j < i \). By induction hypothesis, each ancestor of \(C'' \) is intersected by a path in \(P_{i-1} \). Therefore, each ancestor of \(C_i \) is intersected by exactly one path in \(P_i \). \(\square \)

Next, we use the paths in \(\mathcal{P} \) to create the set \(S_\delta \). As first step, let \(S_\delta := \bigcup_{P_i \in \mathcal{P}} P_i \). Later, we add more vertices into \(S_\delta \) to ensure it is a connected set.

Now, create a partition \(\mathcal{V} = \{ V_1, V_2, \ldots, V_\lambda \} \) of \(V \) such that, for each \(i \), \(P_i \subseteq V_i \), \(V_i \) is connected, and \(d_G(v, P_i) = \min_{P \in \mathcal{P}} d_G(v, P) \) for each vertex \(v \in V_i \). That is, \(V_i \) contains the vertices of \(G \) which are not more distant to \(P_i \) in \(G \) than to any other path in \(\mathcal{P} \). Additionally, for each vertex \(v \in V \), set \(P(v) := P_i \) if and only if \(v \in V_i \) (i.e., \(P(v) \) is the path in \(\mathcal{P} \) which is closest to \(v \)) and set \(d(v) := d_G(v, P(v)) \). Such a partition as well as \(P(v) \) and \(d(v) \) can be computed by performing a BFS on \(G \) starting at all paths \(P_i \in \mathcal{P} \) simultaneously. Later, the BFS also allows us to easily determine the shortest path from \(v \) to \(P(v) \) for each vertex \(v \).

To manage the subsets of \(\mathcal{V} \), we use a Union-Find data structure such that, for two vertices \(u \) and \(v \), \(\text{Find}(u) = \text{Find}(v) \) if and only if \(u \) and \(v \) are in the same set of \(\mathcal{V} \). A Union-Find data structure additionally allows us to easily join two set of \(\mathcal{V} \) into one by performing a single Union operation. Note that, whenever we join two sets of \(\mathcal{V} \) into one, \(P(v) \) and \(d(v) \) remain unchanged for each vertex \(v \).

Next, create an edge set \(E' = \{ uv \mid \text{Find}(u) \neq \text{Find}(v) \} \), i.e., the set of edges \(uv \) such that \(u \)}
and \(v \) are in different sets of \(\mathcal{V} \). Sort \(E' \) in such a way that an edge \(uv \) precedes an edge \(xy \) only if
\[
 d(u) + d(v) \leq d(x) + d(y).
\]

The last step to create \(S_\delta \) is similar to Kruskal’s minimum spanning tree algorithm. Iterate over the edges in \(E' \) in increasing order. If, for an edge \(uv \), \(\text{Find}(u) \neq \text{Find}(v) \), i.e., if \(u \) and \(v \) are in different sets of \(\mathcal{V} \), then join these sets into one by performing \(\text{Union}(u, v) \), add the vertices on the shortest path from \(u \) to \(P(u) \) to \(S_\delta \), and add the vertices on the shortest path from \(v \) to \(P(v) \) to \(S_\delta \). Repeat this, until \(\mathcal{V} \) contains only one set, i.e., until \(\mathcal{V} = \{ V \} \).

Algorithm 4.1 below summarises the steps to create a set \(S_\delta \) for a given subtree of a layering partition subtree \(T_\delta \).

Lemma 4.5. For a given graph \(G \) and a given subtree \(T_\delta \) of some layering partition of \(G \), Algorithm 4.1 constructs, in \(O(m \alpha(n)) \) time, a connected set \(S_\delta \) with \(|S_\delta| \leq |T_\delta| + \Delta \cdot \Lambda(T_\delta) \) which intersects each cluster of \(T_\delta \).

Proof (Correctness). First, we show that \(S_\delta \) is connected at the end of the algorithm. To do so, we show by induction that, at any time, \(S_\delta \cap V' \) is a connected set for each set \(V' \in \mathcal{V} \). Clearly, when \(\mathcal{V} \) is created, for each set \(V_i \in \mathcal{V} \), \(S_\delta \cap V_i = P_i \). Now, assume that the algorithm joins the set \(V_u \) and \(V_v \) in \(\mathcal{V} \) into one set based on the edge \(uv \) with \(u \in V_u \) and \(v \in V_v \). Let \(S_u = S_\delta \cap V_u \) and \(S_v = S_\delta \cap V_v \). Note that \(P(u) \subseteq S_u \) and \(P(v) \subseteq S_v \). The algorithm now adds all vertices to \(S_\delta \) which are on a path from \(P(u) \) to \(P(v) \). Therefore, \(S_\delta \cap (V_u \cup V_v) \) is a connected set. Because \(\mathcal{V} = \{ V \} \) at the end of the algorithm, \(S_\delta \) is connected eventually. Additionally, since \(P_i \subseteq S_\delta \) for each \(P_i \in \mathcal{P} \), it follows that \(S_\delta \) intersects each cluster of \(T_\delta \).

Next, we show that the cardinality of \(S_\delta \) is at most \(|T_\delta| + \Delta \cdot \Lambda(T_\delta) \). When first created, the set \(S_\delta \) contains all vertices of all paths in \(\mathcal{P} \). Therefore, by Lemma 4.4, \(|S_\delta| = \sum_{P_i \in \mathcal{P}} |P_i| = |T_\delta| \). Then, each time two sets of \(\mathcal{V} \) are joined into one set based on an edge \(uv \), \(S_\delta \) is extended by the vertices on the shortest paths from \(u \) to \(P(u) \) and from \(v \) to \(P(v) \). Therefore, the size of \(S_\delta \) increases by \(d(u) + d(v) \), i.e., \(|S_\delta| := |S_\delta| + d(u) + d(v) \). Let \(X \) denote the set of all edges used to join two sets of \(\mathcal{V} \) into one at some point during the algorithm. Note that \(|X| = |\mathcal{P}| - 1 \leq \Lambda(T_\delta) \). Therefore,
Algorithm 4.1: Computes a connected vertex set that intersects each cluster of a given layering partition.

Input: A graph $G = (V, E)$ and a subtree T_{δ} of some layering partition of G.

Output: A connected set $S_{\delta} \subseteq V$ that intersects each cluster of T_{δ} and contains at most $|T_{\delta}| + (\Lambda(T_{\delta}) - 1) \cdot \Delta$ vertices.

1. Let $\mathcal{L} = \{C_1, C_2, \ldots, C_\lambda\}$ be the set of clusters excluding the root that are leaves of T_{δ}.
2. Create an empty set \mathcal{P}.
3. **For Each** cluster $C_i \in \mathcal{L}$
 4. Select an arbitrary vertex $v \in C_i$.
 5. Find the highest ancestor C'_i of C_i (i.e., the ancestor which is closest to the root of T_{δ}) that is not flagged.
 6. Find a shortest path P_i from v to an ancestor of v in C'_i (i.e., a shortest path from C_i to C'_i in G that contains exactly one vertex of each cluster of the corresponding path in T_{δ}).
 7. Add P_i to \mathcal{P}.
 8. Flag each cluster intersected by P_i.
9. Create a set $S_{\delta} := \bigcup_{P_i \in \mathcal{P}} P_i$.
10. Perform a BFS on G starting at all paths $P_i \in \mathcal{P}$ simultaneously. This results in a partition $V = \{V_1, V_2, \ldots, V_\lambda\}$ of V with $P_i \subseteq V_i$ for each $P_i \in \mathcal{P}$. For each vertex v, set $P(v) := P_i$ if and only if $v \in V_i$ and let $d(v) := d_G(v, P(v))$.
11. Create a Union-Find data structure and add all vertices of G such that $\text{Find}(v) = i$ if and only if $v \in V_i$.
12. Determine the edge set $E' = \{uv \mid \text{Find}(u) \neq \text{Find}(v)\}$.
13. Sort E' such that $uv \leq xy$ if and only if $d(u) + d(v) \leq d(x) + d(y)$. Let $\langle e_1, e_2, \ldots, e_{|E'|}\rangle$ be the resulting sequence.
14. **For** $i := 1$ **To** $|E'|$
 15. Let $uv = e_i$.
 16. **If** $\text{Find}(u) \neq \text{Find}(v)$ **Then**
 17. Add the shortest path from u to $P(u)$ to S_{δ}.
 18. Add the shortest path from v to $P(v)$ to S_{δ}.
 19. $\text{Union}(u, v)$
20. **Output** S_{δ}.

At the end of the algorithm,

$$|S_{\delta}| = \sum_{P_i \in \mathcal{P}} |P_i| + \sum_{uv \in X} (d(u) + d(v)) \leq |T_{\delta}| + \Lambda(T_{\delta}) \cdot \max_{uv \in X} (d(u) + d(v)).$$

Claim 1. For each edge $uv \in X$, $d(u) + d(v) \leq \Delta$.

Proof (Claim). To represent the relations between paths in \mathcal{P} and vertex sets in V, we define a function $f : \mathcal{P} \rightarrow V$ such that $f(P_i) = V_j$ if and only if $P_i \subseteq V_j$. Directly after constructing V, f
is a bijection with \(f(P_i) = V_i \). At the end of the algorithm, after all sets of \(V \) are joined into one, \(f(P_i) = V \) for all \(P_i \in \mathcal{P} \).

Recall the construction of \(\mathcal{P} \) and assume that the indices of the paths in \(\mathcal{P} \) represent the order in which they are created. Assume that \(i > 1 \). By construction, the path \(P_i \in \mathcal{P} \) connects the leaf \(C_i \) with the cluster \(C_i' \) in \(T_\delta \). Because \(i > 1 \), \(C_i' \) has a parent cluster in \(T_\delta \) that is intersected by a path \(P_j \in \mathcal{P} \) with \(j < i \). We define \(P_j \) as the parent of \(P_i \). By Lemma 4.4, this parent \(P_j \) is unique for each \(P_i \in \mathcal{P} \) with \(i > 1 \). Based on this relation between paths in \(\mathcal{P} \), we can construct a rooted tree \(T \) with the node set \(\{ x_i \mid P_i \in \mathcal{P} \} \) such that each node \(x_i \) represents the path \(P_i \) and \(x_j \) is the parent of \(x_i \) if and only if \(P_j \) is the parent of \(P_i \).

Because each node of \(T \) represents a path in \(\mathcal{P} \), \(f \) defines a colouring for the nodes of \(T \) such that \(x_i \) and \(x_j \) have different colours if and only if \(f(P_i) \neq f(P_j) \). As long as \(|V| > 1 \), \(T \) contains two adjacent nodes with different colours. Let \(x_i \) and \(x_j \) be these nodes with \(j < i \) and let \(P_i \) and \(P_j \) be the corresponding paths in \(\mathcal{P} \). Note that \(x_j \) is the parent of \(x_i \) in \(T \) and, hence, \(P_j \) is the parent of \(P_i \). Therefore, \(P_i \) ends in a cluster \(C_i' \) which has a parent cluster \(C \) that intersects \(P_j \). By properties of layering partitions, it follows that \(d_G(P_i, P_j) \leq \Delta + 1 \). Recall that, by construction, \(d(v) = \min_{P \in \mathcal{P}} d_G(v, P) \) for each vertex \(v \). Thus, for each edge \(uv \) on a shortest path from \(P_i \) to \(P_j \) in \(G \) (with \(u \) being closer to \(P_i \) than to \(P_j \)), \(d(u) + d(v) \leq d_G(u, P_i) + d_G(v, P_j) \leq \Delta \).

Therefore, because \(f(P_i) \neq f(P_j) \), there is an edge \(uv \) on a shortest path from \(P_i \) to \(P_j \) such that \(f(P(u)) \neq f(P(v)) \) and \(d(u) + d(v) \leq \Delta \).

\(\diamond \)

From the claim above, it follows that, as long as \(V \) contains multiple sets, there is an edge \(uv \in E' \) such that \(d(u) + d(v) \leq \Delta \) and \(\text{Find}(u) \neq \text{Find}(v) \). Therefore, \(\max_{uv \in X} (d(u) + d(v)) \leq \Delta \) and, hence, \(|S_\delta| \leq |T_\delta| + \Delta \cdot \Lambda(T_\delta) \).

\(\square \)

Proof (Complexity). First, the algorithm computes \(\mathcal{P} \) (line 2 to line 8). If the parent of each vertex from the original BFS that was used to construct \(T \) is still known, \(\mathcal{P} \) can be constructed in \(\mathcal{O}(n) \) total time. After picking a vertex \(v \) in \(C_i \), simply follow the parent pointers until a vertex in \(C_i' \) is reached. Computing \(V \) as well as \(P(v) \) and \(d(v) \) for each vertex \(v \) of \(G \) (line 10) can be done with single BFS and, thus, requires at most \(\mathcal{O}(n + m) \) time.
Recall that, for a Union-Find data structure storing \(n \) elements, each operation requires at most \(O(\alpha(n)) \) amortised time. Therefore, initialising such a data structure to store all vertices (line 11) and computing \(E' \) (line 12) requires at most \(O(m\alpha(n)) \) time. Note that, for each vertex \(v \), \(d(v) \leq |V| \). Thus, sorting \(E' \) (line 13) can be done in linear time using counting sort. When iterating over \(E' \) (line 14 to line 19), for each edge \(uv \in E' \), the Find-operation is called twice and the Union-operation is called at most once. Thus, the total runtime for all these operations is at most \(O(m\alpha(n)) \).

Let \(P_u = \{u, \ldots, x, y, \ldots, p\} \) be the shortest path in \(G \) from a vertex \(u \) to \(P(u) \). Assume that \(y \) has been added to \(S_\delta \) in a previous iteration. Thus, \(\{y, \ldots, p\} \subseteq S_\delta \) and, when adding \(P_u \) to \(S_\delta \), the algorithm only needs to add \(\{u, \ldots, x\} \). Therefore, by using a simple binary flag to determine if a vertex is contained in \(S_\delta \), constructing \(S_\delta \) (line 9, line 17, and line 18) requires at most \(O(n) \) time.

In total, Algorithm 4.1 runs in \(O(m\alpha(n)) \) time. \(\square\)

Because, for each integer \(\delta \geq 0 \), \(|S_\delta| \leq |T_\delta| + \Delta \cdot \Lambda(T_\delta) \) (Lemma 4.5) and \(|T_\delta| \leq |T_r| - \delta \cdot \Lambda(T_\delta) \) (Lemma 4.3), we have the following.

Corollary 4.2. For each \(\delta \geq \Delta \), \(|S_\delta| \leq |T_r| \) and, thus, \(|S_\delta| \leq |D_r| \).

To the best of our knowledge, there is no algorithm known that computes \(\Delta \) in less than \(O(nm) \) time. Additionally, under reasonable assumptions, computing the diameter or radius of a general graph requires \(\Omega(n^2) \) time [1]. We conjecture that the runtime for computing \(\Delta \) for a given graph has a similar lower bound.

To avoid the runtime required for computing \(\Delta \), we use the following approach shown in Algorithm 4.2 below. First, compute a layering partition \(\mathcal{T} \) and the subtree \(T_r \). Second, for a certain value of \(\delta \), compute \(T_\delta \) and perform Algorithm 4.1 on it. If the resulting set \(S_\delta \) is larger than \(T_r \) (i.e., \(|S_\delta| > |T_r| \)), increase \(\delta \); otherwise, if \(|S_\delta| \leq |T_r| \), decrease \(\delta \). Repeat the second step with the new value of \(\delta \).

One strategy to select values for \(\delta \) is a classical binary search over the number of vertices of \(G \). In this case, Algorithm 4.1 is called up-to \(O(\log n) \) times. Empirical analysis [2], however, have shown that \(\Delta \) is usually very small. Therefore, we use a one-sided binary search instead.
Because of Corollary 4.2, using a one-sided binary search allows us to find a value $\delta \leq \Delta$ for which $|S_\delta| \leq |T_r|$ by calling Algorithm 4.1 at most $O(\log \Delta)$ times. Algorithm 4.2 below implements this approach.

Algorithm 4.2: Computes a connected $(r + 2\Delta)$-dominating set for a given graph G.

1. Create a layering partition T of G.
2. For each cluster C of T, set $r(C) := \min_{v \in C} r(v)$.
3. Compute a minimum r-dominating subtree T_r for T (see [35]).
4. One-Sided Binary Search over δ, starting with $\delta = 0$
5. Create a minimum δ-dominating subtree T_δ of T_r (i.e., T_δ is a minimum $(r + \delta)$-dominating subtree for T).
6. Run Algorithm 4.1 on T_δ and let the set S_δ be the corresponding output.
7. If $|S_\delta| \leq |T_r|$ Then
 - Decrease δ.
8. Else
 - Increase δ.
9. Output S_δ with the smallest δ for which $|S_\delta| \leq |T_r|$.

Theorem 4.2. For a given graph G, Algorithm 4.2 computes a connected $(r + 2\Delta)$-dominating set D with $|D| \leq |D_r|$ in $O(m \alpha(n) \log \Delta)$ time.

Proof. Clearly, the set D is connected because $D = S_\delta$ for some δ and, by Lemma 4.5, the set S_δ is connected. By Corollary 4.2, for each $\delta \geq \Delta$, $|S_\delta| \leq |T_r|$. Thus, for each $\delta \geq \Delta$, the binary search decreases δ and, eventually, finds some $\delta \leq \Delta$ and $|S_\delta| \leq |T_r|$. Therefore, the algorithm finds a set D with $|D| \leq |D_r|$. Note that, because $D = S_\delta$ for some $\delta \leq \Delta$ and because S_δ intersects each cluster of T_δ (Lemma 4.5), it follows from Lemma 4.2 that, for each vertex v of G, $d_T(v, D) \leq r(v) + \Delta$ and, by Lemma 2.6, $d_G(v, D) \leq r(v) + 2\Delta$. Thus, D is an $(r + 2\Delta)$-dominating set for G.

Creating a layering partition for a given graph and computing a minimum connected r-dominating set of a tree can be done in linear time [35]. The one-sided binary search over δ has at most $O(\log \Delta)$ iterations. Each iteration of the binary search requires at most linear time to compute T_δ, $O(m \alpha(n))$ time to compute S_δ (Lemma 4.5), and constant time to decide whether to increase or decrease δ. 48
Therefore, Algorithm 4.2 runs in $O(m \alpha(n) \log \Delta)$ total time. □

4.2 Using a Tree-Decomposition

Theorem 4.1 and Theorem 4.2 respectively show how to compute an $(r + \Delta)$-dominating set in linear time and a connected $(r + 2\Delta)$-dominating set in $O(m \alpha(n) \log \Delta)$ time. It is known that the maximum diameter Δ of clusters of any layering partition of a graph approximates the tree-breadth and tree-length of this graph. Indeed, as shown in Lemma 3.1 (page 13), for a graph G with $\text{tl}(G) = \lambda$, $\Delta \leq 3\lambda$.

Corollary 4.3. Let D be a minimum r-dominating set for a given graph G with $\text{tl}(G) = \lambda$. An $(r + 3\lambda)$-dominating set D' for G with $|D'| \leq |D|$ can be computed in linear time.

Corollary 4.4. Let D be a minimum connected r-dominating set for a given graph G with $\text{tl}(G) = \lambda$. A connected $(r + 6\lambda)$-dominating set D' for G with $|D'| \leq |D|$ can be computed in $O(m \alpha(n) \log \lambda)$ time.

In this section, we consider the case when we are given a tree-decomposition with breadth ρ and length λ. We present algorithms to compute an $(r + \rho)$-dominating set as well as a connected $(r + \min(3\lambda, 5\rho))$-dominating set in $O(nm)$ time.

For the remainder of this section, assume that we are given a graph $G = (V, E)$ and a tree-decomposition \mathcal{T} of G with breadth ρ and length λ. We assume that ρ and λ are known and that, for each bag B of \mathcal{T}, we know a vertex $c(B)$ with $B \subseteq N_G[c(B)]$. Let \mathcal{T} be minimal, i.e., $B \not\subseteq B'$ for any two bags B and B'. Thus, the number of bags is not exceeding the number vertices of G. Additionally, let each vertex of G store a list of bags containing it and let each bag of \mathcal{T} store a list of vertices it contains. One can see this as a bipartite graph where one subset of vertices are the vertices of G and the other subset are the bags of \mathcal{T}. Therefore, the total input size is in $O(n + m + M)$ where $M \leq n^2$ is the sum of the cardinality of all bags of \mathcal{T}.

49
4.2.1 Preprocessing

Before approaching the (Connected) r-Domination problem, we compute a subtree T_r of \mathcal{T} such that, for each vertex v of G, T_r contains a bag B with $d_G(v, B) \leq r(v)$. We call such a (not necessarily minimal) subtree an r-covering subtree of \mathcal{T}.

We do not know how to compute a minimum r-covering subtree T_r directly. However, if we are given a bag B of \mathcal{T}, we can compute the smallest r-covering subtree T_B which contains B. Then, we can identify a bag B' in T_B for which we know it is a bag of T_r. Thus, we can compute T_r by computing the smallest r-covering subtree which contains B'.

The idea for computing T_B is to determine, for each vertex v of G, the bag B_v of \mathcal{T} for which $d_G(v, B_v) \leq r(v)$ and which is closet to B. Then, let T_B be the smallest tree that contains all these bags B_v. Algorithm 4.3 below implements this approach.

Additionally to computing the tree T_B, we make it a rooted tree with B as the root, give each vertex v a pointer $\beta(v)$ to a bag of T_B, and give each bag B' a counter $\sigma(B')$. The pointer $\beta(v)$ identifies the bag B_v which is closest to B in T_B and intersects the r-neighbourhood of v. The counter $\sigma(B')$ states the number of vertices v with $\beta(v) = B'$. Even though setting β and σ as well as rooting the tree are not necessary for computing T_B, we use it when computing an $(r + \rho)$-dominating set later.

Algorithm 4.3: Computes the smallest r-covering subtree T_B of a given tree-decomposition \mathcal{T} that contains a given bag B of \mathcal{T}.

1. Make \mathcal{T} a rooted tree with the bag B as the root.
2. Create a set \mathcal{B} of bags and initialise it with $\mathcal{B} := \{B\}$.
3. For each bag B' of \mathcal{T}, set $\sigma(B') := 0$ and determine $d_{\mathcal{T}}(B', B)$.
4. For each vertex u, determine the bag $B(u)$ which contains u and has minimal distance to B.
5. **For Each** $u \in V$
 6. Determine a vertex v such that $d_G(u, v) \leq r(u)$ and $d_{\mathcal{T}}(B(v), B)$ is minimal and let $B_u := B(v)$.
 7. Add B_u to \mathcal{B}, set $\beta(u) := B_u$, and increase $\sigma(B_u)$ by 1.
8. Output the smallest subtree T_B of \mathcal{T} that contains all bags in \mathcal{B}.

Lemma 4.6. For a given tree-decomposition \mathcal{T} and a given bag B of \mathcal{T}, Algorithm 4.3 computes an r-covering subtree T_B in $O(nm)$ time such that T_B contains B and has a minimal number of

50
Proof (Correctness). Note that, by construction of the set B (line 5 to line 7), B contains a bag B_u for each vertex u of G such that $d_G(u, B_u) \leq r(u)$. Thus, each subtree of T which contains all bags of B is an r-covering subtree. To show the correctness of the algorithm, it remains to show that the smallest r-covering subtree of T which contains B has to contain each bag from the set B. Then, the subtree T_B constructed in line 8 is the desired subtree.

Clearly, by properties of tree-decompositions, the set of bags which intersect the r-neighbourhood of some vertex u induces a subtree T_u of T. That is, T_u contains exactly the bags B' with $d_G(u, B') \leq r(u)$. Note that T is a rooted tree with B as the root. Clearly, the bag $B_u \in B$ (determined in line 6) is the root of T_u since it is the bag closest to B. Hence, each bag B' with $d_G(u, B') \leq r(u)$ is a descendant of B_u. Therefore, if a subtree of T contains B and does not contain B_u, then it also cannot contain any descendant of B_u and, thus, contains no bag intersecting the r-neighbourhood of u. □

Proof (Complexity). Recall that T has at most n bags and that the sum of the cardinality of all bags of T is $M \leq n^2$. Thus, line 3 and line 4 require at most $O(M)$ time. Using a BFS, it takes at most $O(m)$ time, for a given vertex u, to determine a vertex v such that $d_G(u, v) \leq r(u)$ and $d_T(B(v), B)$ is minimal (line 6). Therefore, the loop starting in line 5 and, thus, Algorithm 4.3 run in at most $O(nm)$ total time. □

Lemma 4.7 and Lemma 4.8 below show that each leaf $B' \neq B$ of T_B is a bag of a minimum r-covering subtree T_r of T. Note that both lemmas only apply if T_B has at least two bags. If T_B contains only one bag, it is clearly a minimum r-covering subtree.

Lemma 4.7. For each leaf $B' \neq B$ of T_B, there is a vertex v in G such that B' is the only bag of T_B with $d_G(v, B') \leq r(v)$.

Proof. Assume that Lemma 4.7 is false. Then, there is a leaf B' such that, for each vertex v with $d_G(v, B') \leq r(v)$, T_B contains a bag $B'' \neq B'$ with $d_G(v, B'') \leq r(v)$. Thus, for each vertex v, the r-neighbourhood of v is intersected by a bag of the tree-decomposition $T_B - B'$. This contradicts with the minimality of T_B. □
Lemma 4.8. For each leaf $B' \neq B$ of T_B, there is a minimum r-covering subtree T_r of \mathcal{T} which contains B'.

Proof. Assume that T_r is a minimum r-covering subtree which does not contain B'. Because of Lemma 4.7, there is a vertex v of G such that B' is the only bag of T_B which intersects the r-neighbourhood of v. Therefore, T_r contains only bags which are descendants of B'. Partition the vertices of G into the sets V^\uparrow and V^\downarrow such that V^\downarrow contains the vertices of G which are contained in B' or in a descendant of B'. Because T_r is an r-covering subtree and because T_r only contains descendants of B', it follows from properties of tree-decompositions that, for each vertex $v \in V^\uparrow$, there is a path of length at most $r(v)$ from v to a bag of T_r passing through B' and, thus, $d_G(v, B') \leq r(v)$. Similarly, since T_B is an r-covering subtree, it follows that, for each vertex $v \in V^\downarrow$, $d_G(v, B') \leq r(v)$. Therefore, for each vertex v of G, $d_G(v, B') \leq r(v)$ and, thus, B' induces an r-covering subtree T_r of \mathcal{T} with $|T_r| = 1$. □

Algorithm 4.4 below uses Lemma 4.8 to compute a minimum r-covering subtree T_r of \mathcal{T}.

Algorithm 4.4: Computes a minimum r-covering subtree T_r of a given tree-decomposition \mathcal{T}.

1. Pick an arbitrary bag B of \mathcal{T}.
2. Determine the subtree T_B of \mathcal{T} using Algorithm 4.3.
3. If $|T_B| = 1$ Then
 4. Output $T_r := T_B$.
5. Else
 6. Select an arbitrary leaf $B' \neq B$ of T_B.
 7. Determine the subtree $T_{B'}$ of \mathcal{T} using Algorithm 4.3.
 8. Output $T_r := T_{B'}$.

Lemma 4.9. Algorithm 4.4 computes a minimum r-covering subtree T_r of \mathcal{T} in $O(nm)$ time.

Proof. Algorithm 4.4 first picks an arbitrary bag B and then uses Algorithm 4.3 to compute the smallest r-covering subtree T_B of \mathcal{T} which contains B. By Lemma 4.8, for each leaf B' of T_B, there is a minimum r-covering subtree T_r which contains B'. Thus, performing Algorithm 4.3 again with B' as input creates such a subtree T_r. 52
Clearly, with exception of calling Algorithm 4.3, all steps of Algorithm 4.4 require only constant time. Because Algorithm 4.3 requires at most $O(nm)$ time (see Lemma 4.6) and is called at most two times, Algorithm 4.4 runs in at most $O(nm)$ total time. □

Algorithm 4.4 computes T_r by, first, computing T_B for some bag B and, second, computing $T_{B'} = T_r$ for some leaf B' of T_B. Note that, because both trees are computed using Algorithm 4.3, Lemma 4.7 applies to T_B and $T_{B'}$. Therefore, we can slightly generalise Lemma 4.7 as follows.

Corollary 4.5. For each leaf B of T_r, there is a vertex v in G such that B is the only bag of T_r with $d_G(v, B) \leq r(v)$.

4.2.2 r-Domination

In this subsection, we use the minimum r-covering subtree T_r to determine an $(r + \rho)$-dominating set S in $O(nm)$ time using the following approach. First, compute T_r. Second, pick a leaf B of T_r. If there is a vertex v such that v is not dominated and B is the only bag intersecting the r-neighbourhood of v, then add the center of B into S, flag all vertices u with $d_G(u, B) \leq r(u)$ as dominated, and remove B from T_r. Repeat the second step until T_r contains no more bags and each vertex is flagged as dominated. Algorithm 4.5 below implements this approach. Note that, instead of removing bags from T_r, we use a reversed BFS-order of the bags to ensure the algorithm processes bags in the correct order.

Theorem 4.3. Let D be a minimum r-dominating set for a given graph G. Given a tree-decomposition with breadth ρ for G, Algorithm 4.5 computes an $(r + \rho)$-dominating set S with $|S| \leq |D|$ in $O(nm)$ time.

Proof (Correctness). First, we show that S is an $(r + \rho)$-dominating set for G. Note that a vertex v is flagged as dominated only if S_i contains a vertex $c(B_j)$ with $d_G(v, B_j) \leq r(v)$ (see line 7 to line 9). Thus, v is flagged as dominated only if $d_G(v, S_i) \leq d_G(v, c(B_j)) \leq r(v) + \rho$. Additionally, by construction of T_r (see Algorithm 4.3), for each vertex v, T_r contains a bag B with $\beta(v) = B$, $\sigma(B)$ states the number of vertices v with $\beta(v) = B$, and $\sigma(B)$ is decreased by 1 only if such a vertex v
Algorithm 4.5: Computes an \((r + \rho)\)-dominating set \(S\) for a given graph \(G\) with a given tree-decomposition \(T\) with breadth \(\rho\).

1. Compute a minimum \(r\)-covering subtree \(T_r\) of \(T\) using Algorithm 4.4.
2. Give each vertex \(v\) a binary flag indicating if \(v\) is dominated. Initially, no vertex is dominated.
3. Create an empty vertex set \(S_0\).
4. Let \((B_1, B_2, \ldots, B_k)\) be the reverse of a BFS-order of \(T_r\) starting at its root.
5. For \(i = 1\) to \(k\):
 - If \(\sigma(B_i) > 0\) Then
 - Determine all vertices \(u\) such that \(u\) has not been flagged as dominated and that \(d_G(u, B_i) \leq r(u)\). Add all these vertices into a new set \(X_i\).
 - Let \(S_i = S_{i-1} \cup \{c(B_i)\}\).
 - For each vertex \(u \in X_i\), flag \(u\) as dominated, and decrease \(\sigma(\beta(u))\) by 1.
 - Else
 - Let \(S_i = S_{i-1}\).
6. Output \(S := S_k\).

is flagged as dominated (see line 9). Therefore, if \(G\) contains a vertex \(v\) with \(d_G(v, S_i) > r(v) + \rho\), then \(v\) is not flagged as dominated and \(T_r\) contains a bag \(B_i\) with \(\beta(v) = B_i\) and \(\sigma(B_i) > 0\). Thus, when \(B_i\) is processed by the algorithm, \(c(B_i)\) will be added to \(S_i\) and, hence, \(d_G(v, S_i) \leq r(v) + \rho\).

Let \(V_i^S = \{ u \mid d_G(u, B_j) \leq r(u), c(B_j) \in S_i \}\) be the set of vertices which are flagged as dominated after the algorithm processed \(B_i\), i.e., each vertex in \(V_i^S\) is \((r + \rho)\)-dominated by \(S_i\). Similarly, for some set \(D_i \subseteq D\), let \(V_i^D = \{ u \mid d_G(u, D_i) \leq r(u) \}\) be the set of vertices dominated by \(D_i\). To show that \(|S| \leq |D|\), we show by induction over \(i\) that, for each \(i\), (i) there is a set \(D_i \subseteq D\) such that \(V_i^D \subseteq V_i^S\), (ii) \(|S_i| = |D_i|\), and (iii) if, for some vertex \(v\), \(\beta(v) = B_j\) with \(j \leq i\), then \(v \in V_i^S\).

For the base case, let \(S_0 = D_0 = \emptyset\). Then, \(V_0^S = V_0^D = \emptyset\) and all three statements are satisfied.

For the inductive step, first, consider the case when \(\sigma(B_i) = 0\). Because \(\sigma(B_i) = 0\), each vertex \(v\) with \(\beta(v) = B_i\) is flagged as dominated, i.e., \(v \in V_{i-1}^S\). Thus, by setting \(S_i = S_{i-1}\) (line 11) and \(D_i = D_{i-1}\), all three statements are satisfied for \(i\). Next, consider the case when \(\sigma(B_i) > 0\). Therefore, \(G\) contains a vertex \(u\) with \(\beta(u) = B_i\) and \(u \notin V_{i-1}^S\). Then, the algorithm sets \(S_i = S_{i-1} \cup \{c(B_i)\}\) and flags all such \(u\) as dominated (see line 7 to line 9). Thus, \(u \in V_i^S\) and statement (iii) is satisfied. Let \(d_u\) be a vertex in \(D\) with minimal distance to \(u\). Thus, \(d_G(d_u, u) \leq r(u)\), i.e., \(d_u\) is in the \(r\)-neighbourhood of \(u\). Note that, because \(u \notin V_{i-1}^S\) and \(V_{i-1}^D \subseteq V_{i-1}^S\), \(d_u \notin D_{i-1}\). Therefore, by
setting $D_i = D_{i-1} \cup \{d_u\}$, $|S_i| = |S_{i-1}| + 1 = |D_{i-1}| + 1 = |D_i|$ and statement (ii) is satisfied. Recall that $\beta(u)$ points to the bag closest to the root of T_r which intersects the r-neighbourhood of u.

Thus, because $\beta(u) = B_i$, each bag $B \neq B_i$ with $d_G(u, B) \leq r(u)$ is a descendant of B_i. Therefore, d_u is in B_i or in a descendant of B_i. Let v be an arbitrary vertex of G such that $v \notin V_{i-1}^S$ and $d_G(v, d_u) \leq r(v)$, i.e., v is dominated by d_u but not by S_{i-1}. Due to statement (iii) of the induction hypothesis, $\beta(v) = B_j$ with $j \geq i$, i.e., B_j cannot be a descendant of B_i. Partition the vertices of G into the sets V_i^\uparrow and V_i^\downarrow such that V_i^\downarrow contains the vertices which are contained in B_i or in a descendant of B_i. If $v \in V_i^\downarrow$, then there is a path of length at most $r(v)$ from v to B_j passing through B_i. If $v \in V_i^\uparrow$, then, because $d_u \in V_i^\downarrow$, there is a path of length at most $r(v)$ from v to d_u passing through B_i. Therefore, $d_G(v, B_i) \leq r(v)$. That is, each vertex r-dominated by d_u, is $(r + \rho)$-dominated by some $c(B_j) \subseteq S_i$. Therefore, because $S_i = S_{i-1} \cup \{c(B_i)\}$ and $D_i = D_{i-1} \cup \{d_u\}$, $v \in V_i^S \cap V_i^D$ and, thus, statement (i) is satisfied.

Proof (Complexity). Computing T_r (line 1) takes at most $O(nm)$ time (see Lemma 4.9). Because T_r has at most n bags, computing a BFS-order of T_r (line 4) takes at most $O(n)$ time. For some bag B_i, determining all vertices u with $d_G(u, B_i) \leq r(u)$, flagging u as dominated, and decreasing $\sigma(\beta(u))$ (line 7 to line 9) can be done in $O(m)$ time by performing a BFS starting at all vertices of B_i simultaneously. Therefore, because T_r has at most n bags, Algorithm 4.5 requires at most $O(nm)$ total time.

4.2.3 Connected r-Domination

In this subsection, we show how to compute a connected $(r + 5\rho)$-dominating set and a connected $(r + 3\lambda)$-dominating set for G. For both results, we use almost the same algorithm. To identify and emphasise the differences, we use the label (⊔) for parts which are only relevant to determine a connected $(r + 5\rho)$-dominating set and use the label (◊) for parts which are only relevant to determine a connected $(r + 3\lambda)$-dominating set.

For the remainder of this subsection, let D_r be a minimum connected r-dominating set of G. For (⊔) $\phi = 3\rho$ or (◊) $\phi = 2\lambda$, let T_ϕ be a minimum $(r + \phi)$-covering subtree of T as computed by Algorithm 4.4.
The idea of our algorithm is to, first, compute T_ϕ and, second, compute a small enough connected set C_ϕ such that C_ϕ intersects each bag of T_ϕ. Lemma 4.10 below shows that such a set C_ϕ is an $(r + (\phi + \lambda))$-dominating set.

Lemma 4.10. Let C_ϕ be a connected set that contains at least one vertex of each leaf of T_ϕ. Then, C_ϕ is an $(r + (\phi + \lambda))$-dominating set.

Proof. Clearly, since C_ϕ is connected and contains a vertex of each leaf of T_ϕ, C_ϕ contains a vertex of every bag of T_ϕ. By construction of T_ϕ, for each vertex v of G, T_ϕ contains a bag B such that $d_G(v, B) \leq r(v) + \phi$. Therefore, $d_G(v, C_\phi) \leq r(v) + \phi + \lambda$, i.e., C_ϕ is an $(r + (\phi + \lambda))$-dominating set. □

To compute a connected set C_ϕ which intersects all leaves of T_ϕ, we first consider the case when T_ρ contains only one bag B. In this case, we can construct C_ϕ by simply picking an arbitrary vertex $v \in B$ and setting $C_\phi = \{v\}$. Similarly, if T_ρ contains exactly two bags B and B', pick a vertex $v \in B \cap B'$ and set $C_\phi = \{v\}$. In both cases, due to Lemma 4.10, C_ϕ is clearly an $(r + (\phi + \lambda))$-dominating set with $|C_\phi| \leq |D_r|$.

Now, consider the case when T_ϕ contains at least three bags. Additionally, assume that T_ϕ is a rooted tree such that its root R is a leaf.

Notation. Based on its degree in T_ϕ, we refer to each bag B of T_ϕ either as leaf, as path bag if B has degree 2, or as branching bag if B has a degree larger than 2. Additionally, we call a maximal connected set of path bags a path segment of T_ϕ. Let \mathbb{L} denote the set of leaves, \mathbb{P} denote the set of path segments, and \mathbb{B} denote the set of branching bags of T_ϕ. Clearly, for any given tree T, the sets \mathbb{L}, \mathbb{P}, and \mathbb{B} are pairwise disjoint and can be computed in linear time.

Let B and B' be two adjacent bags of T_ϕ such that B is the parent of B'. We call $S = B \cap B'$ the up-separator of B', denoted as $S^+(B')$, and a down-separator of B, denoted as $S^-(B)$, i.e., $S = S^+(B') = S^-(B)$. Note that a branching bag has multiple down-separators and that (with exception of R) each bag has exactly one up-separator. For each branching bag B, let $S^+(B)$ be the set of down-separators of B. Accordingly, for a path segment $P \in \mathbb{P}$, $S^+(P)$ is the up-separator of
the bag in \(P \) closest to the root and \(S^i(P) \) is the down separator of the bag in \(P \) furthest from the root. Let \(\nu \) be a function that assigns a vertex of \(G \) to a given separator. Initially, \(\nu(S) \) is undefined for each separator \(S \).

Algorithm. Now, we show how to compute \(C_\phi \). We, first, split \(T_\phi \) into the sets \(\mathbb{L}, \mathbb{P}, \) and \(\mathbb{B} \). Second, for each \(P \in \mathbb{P}, \) we create a small connected set \(C_P \), and, third, for each \(B \in \mathbb{B}, \) we create a small connected set \(C_B \). If this is done properly, the union \(C_\phi \) of all these sets forms a connect set which intersects each bag of \(T_\phi \).

Note that, due to properties of tree-decompositions, it can be the case that there are two bags \(B \) and \(B' \) which have a common vertex \(v \), even if \(B \) and \(B' \) are non-adjacent in \(T_\phi \). In such a case, either \(v \in S^i(B) \cap S^i(B') \) if \(B \) is an ancestor of \(B' \), or \(v \in S^i(B) \cap S^i(B') \) if neither is ancestor of the other. To avoid problems caused by this phenomena and to avoid counting vertices multiple times, we consider any vertex in an up-separator as part of the bag above. That is, whenever we process some segment or bag \(X \in \mathbb{L} \cup \mathbb{P} \cup \mathbb{B} \), even though we add a vertex \(v \in S^i(X) \) to \(C_\phi \), \(v \) is not contained in \(C_X \).

Processing Path Segments. First, after splitting \(T_\phi \), we create a set \(C_P \) for each path segment \(P \in \mathbb{P} \) as follows. We determine \(S^i(P) \) and \(S^i(P) \) and then find a shortest path \(Q_P \) from \(S^i(P) \) to \(S^i(P) \). Note that \(Q_P \) contains exactly one vertex from each separator. Let \(x \in S^i(P) \) and \(y \in S^i(P) \) be these vertices. Then, we set \(\nu(S^i(P)) = x \) and \(\nu(S^i(P)) = y \). Last, we add the vertices of \(Q_P \) into \(C_\phi \) and define \(C_P \) as \(Q_P \setminus S^i(P) \). Let \(C_\mathbb{P} \) be the union of all sets \(C_P \), i.e., \(C_\mathbb{P} = \bigcup_{P \in \mathbb{P}} C_P \).

Lemma 4.11. \(|C_\mathbb{P}| \leq |D_r| - \phi \cdot \Lambda(T_\phi) \).

Proof. Recall that \(T_\phi \) is a minimum \((r + \phi)\)-covering subtree of \(\mathcal{T} \). Thus, by Corollary 4.5, for each leaf \(B \in \mathbb{L} \) of \(T_\phi \), there is a vertex \(v \) in \(G \) such that \(B \) is the only bag of \(T_\phi \) with \(d_G(v, B) \leq r(v) + \phi \). Because \(D_r \) is a connected \(r \)-dominating set, \(D_r \) intersects the \(r \)-neighbourhood of each of these vertices \(v \). Thus, by properties of tree-decompositions, \(D_r \) intersects each bag of \(T_\phi \). Additionally, for each such \(v \), \(D_r \) contains a path \(D_v \) with \(|D_v| \geq \phi \) such that \(D_v \) intersects the \(r \)-neighbourhood of \(v \), intersects the corresponding leaf \(B \) of \(T_\phi \), and does not intersect \(S^i(B) \) \((S^i(B) \) if \(B = R) \). Let \(D_\mathbb{L} \) be the union of all such sets \(D_v \). Therefore, \(|D_\mathbb{L}| \geq \phi \cdot \Lambda(T_\phi) \).
Because D_r intersects each bag of T_ϕ, D_r also intersects the up- and down-separators of each path segment. For a path segment $P \in \mathbb{P}$, let x and y be two vertices of D_r such that $x \in S^r(P)$, $y \in S^i(P)$, and for which the distance in $G[D_r]$ is minimal. Let D_P be the set of vertices on the shortest path in $G[D_r]$ from x to y without x, i.e., $x \notin D_P$. Note that, by construction, for each $P \in \mathbb{P}$, D_P contains exactly one vertex in $S^i(P)$ and no vertex in $S^r(P)$. Thus, for all $P,P' \in \mathbb{P}$, $D_P \cap D_{P'} = \emptyset$. Let $D_\bar{x}$ be the union of all such sets D_P, i.e., $D_\bar{x} = \bigcup_{P \in \bar{x}} D_P$. By construction, $|D_\bar{x}| = \sum_{P \in \bar{x}} |D_P|$ and $D_L \cap D_\bar{x} = \emptyset$. Therefore, $|D_r| \geq |D_\bar{x}| + |D_L|$ and, hence,

$$\sum_{P \in \bar{x}} |D_P| \leq |D_r| - |D_L| \leq |D_r| - \phi \cdot \Lambda(T_\phi).$$

Recall that, for each $P \in \mathbb{P}$, the sets C_P and D_P are constructed based on a path from $S^i(P)$ to $S^i(P)$. Since C_P is based on a shortest path in G, it follows that $|C_P| = d_G(S^i(P), S^i(P)) \leq |D_P|$. Therefore,

$$|C_\bar{x}| \leq \sum_{P \in \bar{x}} |C_P| \leq \sum_{P \in \bar{x}} |D_P| \leq |D_r| - \phi \cdot \Lambda(T_\phi).$$

Processing Branching Bags. After processing path segments, we process the branching bags of T_ϕ. Similar to path segments, we have to ensure that all separators are connected. Branching bags, however, have multiple down-separators. To connect all separators of some bag B, we pick a vertex s in each separator $S \in S^i(B) \cup \{S^r(B)\}$. If $\nu(S)$ is defined, we set $s = \nu(S)$. Otherwise, we pick an arbitrary $s \in S$ and set $\nu(S) = s$. Let $S^i(B) = \{S_1, S_2, \ldots\}$, $s_i = \nu(S_i)$, and $t = \nu(S^r(B))$. We then connect these vertices as follows. (See Figure 7 for an illustration.)

(◊) Connect each vertex s_i via a shortest path Q_i (of length at most ρ) with the center $c(B)$ of B. Additionally, connect $c(B)$ via a shortest path Q_t (of length at most ρ) with t. Add all vertices from the paths Q_i and from the path Q_t into C_ϕ and let C_B be the union of these paths without t.

(⊗) Connect each vertex s_i via a shortest path Q_i (of length at most λ) with t. Add all vertices from the paths Q_i into C_ϕ and let C_B be the union of these paths without t.

Let C_B be the union of all created sets C_B, i.e., $C_B = \bigcup_{B \in \mathbb{B}} C_B$.

Before analysing the cardinality of C_B in Lemma 4.13 below, we need an auxiliary lemma.
Lemma 4.12. For a tree T which is rooted in one of its leaves, let b denote the number of branching nodes, c denote the total number of children of branching nodes, and l denote the number of leaves. Then, $c + b \leq 3l - 1$ and $c \leq 2l - 1$.

Proof. Assume that we construct T by starting with only the root and then step by step adding leaves to it. Let T_i be the subtree of T with i nodes during this construction. We define b_i, c_i, and l_i accordingly. Now, assume by induction over i that Lemma 4.12 is true for T_i. Let v be the leaf we add to construct T_{i+1} and let u be its neighbour.

First, consider the case when u is a leaf of T_i. Then, u becomes a path node of T_{i+1}. Therefore, $b_{i+1} = b_i$, $c_{i+1} = c_i$, and $l_{i+1} = l_i$. Next, assume that u is path node of T_i. Then, u is a branch node of T_{i+1}. Thus, $b_{i+1} = b_i + 1$, $c_{i+1} = c_i + 2$, and $l_{i+1} = l_i + 1$. Therefore, $c_{i+1} + b_{i+1} = c_i + b_i + 3 \leq 3(l_i + 1) - 1 = 3l_{i+1} - 1$ and $c_{i+1} = c_i + 2 \leq 2(l_i + 1) - 1 = 2l_{i+1} - 1$. It remains to check the case when u is a branch node of T_i. Then, $b_{i+1} = b_i$, $c_{i+1} = c_i + 1$, and $l_{i+1} = l_i + 1$. Thus, $c_{i+1} + b_{i+1} = c_i + b_i + 1 \leq 3l_i - 1 + 1 \leq 3l_{i+1} - 1$ and $c_{i+1} = c_i + 1 \leq 2l_i - 1 + 1 \leq 2l_{i+1} - 1$. Therefore, in all three cases, Lemma 4.12 is true for T_{i+1}. □

Lemma 4.13. $|C_B| \leq \phi \cdot \Lambda(T_\phi)$.

Proof. For some branching bag $B \in \mathbb{B}$, the set C_B contains (\heartsuit) a path of length at most ρ for each $S_i \in S^i(B)$ and a path of length at most ρ to $S^i(B)$, or (\diamondsuit) a path of length at most λ for each $S_i \in S^i(B)$. Thus, (\heartsuit) $|C_B| \leq \rho \cdot |S^i(B)| + \rho$ or (\diamondsuit) $|C_B| \leq \lambda \cdot |S^i(B)|$. Recall that $S^i(B)$ contains exactly one down-separator for each child of B in T_ϕ and that C_B is the union of all sets C_B. 59
Therefore, Lemma 4.12 implies the following.

\[|C_B| \leq \sum_{B \in \mathbb{B}} |C_B| \]

\[(\heartsuit) \quad \leq \rho \cdot \sum_{B \in \mathbb{B}} |S^i(B)| + \rho \cdot |\mathbb{B}| \leq 3\rho \cdot \Lambda(T_\phi) - 1 \]

\[(\diamondsuit) \quad \leq \lambda \cdot \sum_{B \in \mathbb{B}} |S^i(B)| \leq 2\lambda \cdot \Lambda(T_\phi) - 1 \]

\[\leq \phi \cdot \Lambda(T_\phi) - 1. \]

\[\square \]

Properties of C_ϕ. We now analyse the created set C_ϕ with the result that C_ϕ is a connected $(r + \phi)$-dominating set for G.

Lemma 4.14. C_ϕ contains a vertex in each bag of T_ϕ.

Proof. Clearly, by construction, C_ϕ contains a vertex in each path bag and in each branching bag. Now, consider a leaf L of T_ϕ. L is adjacent to a path segment or branching bag $X \in \mathbb{P} \cap \mathbb{B}$. Whenever such an X is processed, the algorithm ensures that all separators of X contain a vertex of C_ϕ. Since one of these separators is also the separator of L, it follows that each leaf L and, thus, each bag of T_ϕ contains a vertex of C_ϕ. \[\square \]

Lemma 4.15. $|C_\phi| \leq |D_r|$.

Proof. Note that, for each vertex u we add to C_ϕ, we also add u to a unique set C_X for some $X \in \mathbb{P} \cap \mathbb{B}$. The exception is the vertex v in $S^i(R)$ which is added to no such set C_X. It follows from our construction of the sets C_X that there is only one such vertex v and that $v = \nu(S^i(R))$. Thus, $|C_\phi| = |C_\mathbb{P}| + |C_\mathbb{B}| + 1$. Now, it follows from Lemma 4.11 and Lemma 4.13 that

\[|C_\phi| \leq |D_r| - \phi \cdot \Lambda(T_\phi) + \phi \cdot \Lambda(T_\phi) - 1 + 1 \leq |D_r|. \]

\[\square \]

Lemma 4.16. C_ϕ is connected.

Proof. First, note that, by maximality, two path segments of T_ϕ cannot share a common separator. Also, note that, when processing a branching bag B, the algorithm first checks if, for any separator S
of B, $\nu(S)$ is already defined; if this is the case, it will not be overwritten. Therefore, for each separator S in T_ϕ, $\nu(S)$ is defined and never overwritten.

Next, consider a path segment or branching bag $X \in P \cup B$ and let S and S' be two separators of X. Whenever such an X is processed, our approach ensures that C_ϕ connects $\nu(S)$ with $\nu(S')$. Additionally, observe that, when processing X, each vertex added to C_ϕ is connected via C_ϕ with $\nu(S)$ for some separator S of X.

Thus, for any two separators S and S' in T_ϕ, C_ϕ connects $\nu(S)$ with $\nu(S')$ and, additionally, each vertex $v \in C_\phi$ is connected via C_ϕ with $\nu(S)$ for some separator S in T_ϕ. Therefore, C_ϕ is connected. \hfill \square

From Lemma 4.14, Lemma 4.15, Lemma 4.16, and from applying Lemma 4.10 it follows:

Corollary 4.6. C_ϕ is a connected $(r + (\phi + \lambda))$-dominating set for G with $|C_\phi| \leq |D_r|$.

Implementation. Algorithm 4.6 below implements our approach described above. This also includes the case when T_ϕ contains at most two bags.

Theorem 4.4. Algorithm 4.6 computes a connected $(r + (\phi + \lambda))$-dominating set C_ϕ with $|C_\phi| \leq |D_r|$ in $O(nm)$ time.

Proof. Since Algorithm 4.6 constructs a set C_ϕ as described above, its correctness follows from Corollary 4.6. It remains to show that the algorithm runs in $O(nm)$ time.

Computing T_ϕ (line 2) can be done in $O(nm)$ time (see Lemma 4.9). Picking a vertex u in the case when T_ϕ contains at most two bags (line 3 to line 6) can be easily done in $O(n)$ time. Recall that T_ϕ has at most n bags. Thus, splitting T_ϕ in the sets \mathbb{L}, \mathbb{P}, and \mathbb{B} can be done in $O(n)$ time.

Determining all up-separators in T_ϕ can be done in $O(M)$ time as follows. Process all bags of T_ϕ in an order such that a bag is processed before its descendants, e.g., use a preorder or BFS-order. Whenever a bag B is processed, determine a set $S \subseteq B$ of flagged vertices, store S as up-separator of B, and, afterwards, flag all vertices in B. Clearly, S is empty for the root. Because a bag B is processed before its descendants, all flagged vertices in B also belong to its parent. Thus, by properties of tree-decompositions, these vertices are exactly the vertices in $S'(B)$. Clearly,
Algorithm 4.6: Computes (/rand) a connected \((r+5\rho)\)-dominating set or (/mm) a connected \((r+3\lambda)\)-dominating set for a given graph \(G\) with a given tree-decomposition \(T\) with breadth \(\rho\) and length \(\lambda\).

1. (rand) Set \(\phi := 3\rho\).
 (mm) Set \(\phi := 2\lambda\).
2. Compute a minimum \((r+\phi)\)-covering subtree \(T_\phi\) of \(T\) using Algorithm 4.4.
3. If \(T_\phi\) contains only one bag \(B\) Then
 Pick an arbitrary vertex \(u \in B\), output \(C_\phi := \{u\}\), and stop.
4. If \(T_\phi\) contains exactly two bags \(B\) and \(B'\) Then
 Pick an arbitrary vertex \(u \in B \cap B'\), output \(C_\phi := \{u\}\), and stop.
5. Pick a leaf of \(T_\phi\) and make it the root of \(T_\phi\).
6. Split \(T_\phi\) into a set \(L\) of leaves, a set \(P\) of path segments, and a set \(B\) of branching bags.
7. Create an empty set \(C_\phi\).
8. For Each \(P \in P\)
 Find a shortest path \(Q_P\) from \(S^+(P)\) to \(S^-(P)\) and add its vertices into \(C_\phi\).
 Let \(x \in S^+(P)\) be the start vertex and \(y \in S^-(P)\) be the end vertex of \(Q_P\). Set \(\nu(S^+(P)) := x\) and \(\nu(S^-(P)) := y\).
9. For Each \(B \in B\)
 If \(\nu(S^+(B))\) is defined, let \(u := \nu(S^+(B))\). Otherwise, let \(u\) be an arbitrary vertex in \(S^+(B)\) and set \(\nu(S^+(B)) := u\).
 (rand) Let \(v := c(B)\) be the center of \(B\).
 (mm) Let \(v := u\).
10. Find a shortest path from \(u\) to \(v\) and add its vertices into \(C_\phi\).
11. For Each \(S_i \in S^+(B)\)
 If \(\nu(S_i)\) is defined, let \(w_i := \nu(S_i)\). Otherwise, let \(w_i\) be an arbitrary vertex in \(S_i\) and set \(\nu(S_i) := w_i\).
12. Find a shortest path from \(w_i\) to \(v\) and add the vertices of this path into \(C_\phi\).
13. Output \(C_\phi\).

Processing a single bag \(B\) takes at most \(\mathcal{O}(|B|)\) time. Thus, processing all bags takes at most \(\mathcal{O}(M)\) time. Note that it is not necessary to determine the down-separators of a (branching) bag. They can easily be accessed via the children of a bag.

Processing a single path segment (line 11 and line 12) can be easily done in \(\mathcal{O}(m)\) time. Processing a branching bag \(B\) (line 13 to line 19) can be implemented to run in \(\mathcal{O}(m)\) time by, first, determining \(\nu(S)\) for each separator \(S\) of \(B\) and, second, running a BFS starting at \(v\) (defined in line 15) to connect \(v\) with each vertex \(\nu(S)\). Because \(T_\phi\) has at most \(n\) bags, it takes at most \(\mathcal{O}(nm)\) time to process all path segments and branching bags of \(T_\phi\). Therefore, Algorithm 4.6 runs in \(\mathcal{O}(nm)\) total
4.3 Implications for the p-Center Problem

The p-Center problem asks for a vertex set C such that $|C| \leq p$ and the eccentricity of C is minimal. It is known (see, e.g., [14]) that the p-Center problem and r-Domination problem are closely related. Indeed, one can solve each of these problems by solving the other problem a logarithmic number of times. Lemma 4.17 below generalises this observation. Informally, it states that we are able to find a $+\phi$-approximation for the p-Center problem if we can find a good $(r + \phi)$-dominating set.

Lemma 4.17. For a given graph G, let D_r be an optimal (connected) r-dominating set and C_p be an optimal (connected) p-center. If, for some non-negative integer ϕ, there is an algorithm to compute a (connected) $(r + \phi)$-dominating set D with $|D| \leq |D_r|$ in $O(T(G))$ time, then there is an algorithm to compute a (connected) p-center C with $\text{ecc}(C) \leq \text{ecc}(C_p) + \phi$ in $O(T(G) \log n)$ time.

Proof. Let A be an algorithm which computes a (connected) $(r + \phi)$ dominating set $D = A(G, r)$ for G with $|D| \leq |D_r|$ in $O(T(G))$ time. Then, we can compute a (connected) p-center for G as follows. Make a binary search over the integers $i \in [0, n]$. In each iteration, set $r_i(u) = i$ for each vertex u of G and compute the set $D_i = A(G, r_i)$. Then, increase i if $|D_i| > p$ and decrease i otherwise. Note that, by construction, $\text{ecc}(D_i) \leq i + \phi$. Let D be the resulting set, i.e., out of all computed sets D_i, D is the set with minimal i for which $|D_i| \leq p$. It is easy to see that finding D requires at most $O(T(G) \log n)$ time.

Clearly, C_p is a (connected) r-dominating set for G when setting $r(u) = \text{ecc}(C_p)$ for each vertex u of G. Thus, for each $i \geq \text{ecc}(C_p)$, $|D_i| \leq |C_p| \leq p$ and, hence, the binary search decreases i for next iteration. Therefore, there is an $i \leq \text{ecc}(C_p)$ such that $D = D_i$. Hence, $|D| \leq |C_p|$ and $\text{ecc}(D) \leq \text{ecc}(C_p) + \phi$.

From Lemma 4.17, the results in Table 1 and Table 2 follow immediately.

Theorem 4.5 below shows that we can slightly improve the result for the p-Center problem when using a layering partition.
Table 1. Implications of our results for the p-Center problem.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Approx.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layering Partition</td>
<td>$+\Delta$</td>
<td>$\mathcal{O}(m \log n)$</td>
</tr>
<tr>
<td>Tree-Decomposition</td>
<td>$+p$</td>
<td>$\mathcal{O}(nm \log n)$</td>
</tr>
</tbody>
</table>

Table 2. Implications of our results for the Connected p-Center problem.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Approx.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layering Partition</td>
<td>$+2\Delta$</td>
<td>$\mathcal{O}(m \alpha(n) \log \Delta \log n)$</td>
</tr>
<tr>
<td>Tree-Decomposition</td>
<td>$+\min(5\rho, 3\lambda)$</td>
<td>$\mathcal{O}(nm \log n)$</td>
</tr>
</tbody>
</table>

Theorem 4.5. For a given graph G, a $+\Delta$-approximation for the p-Center problem can be computed in linear time.

Proof. First, create a layering partition \mathcal{T} of G. Second, find an optimal p-center S for \mathcal{T}. Third, create a set S by picking an arbitrary vertex of G from each cluster in \mathcal{S}. All three steps can be performed in linear time, including the computation of S (see [54]).

Let C be an optimal p-center for G. Note that, by Lemma 2.6 (page 8), C also induces a p-center for \mathcal{T}. Therefore, because S induces an optimal p-center for \mathcal{T}, Lemma 2.6 (page 8) implies that, for each vertex u of G,

$$d_G(u, C) \leq d_G(u, S) \leq d_T(u, S) + \Delta \leq d_T(u, C) + \Delta \leq d_G(u, C) + \Delta.$$
Chapter 5

Bandwidth and Line-Distortion*

Consider a given graph $G = (V, E)$. Then, an injective function $f : V \rightarrow \mathbb{N}$ is called layout of G. The bandwidth of a layout f, denoted as $bw(f)$, is defined as maximum stretch of any edge, i.e., $bw(f) = \max_{uv \in E} |f(u) - f(v)|$. Additionally, the bandwidth of a graph G, denoted as $bw(G)$, is defined as the minimum bandwidth of all layouts of G. Accordingly, the bandwidth problem asks, for a given graph $G = (V, E)$, to find a layout f with minimum bandwidth.

A non-contractive embedding f of G is a layout f of G with the additional requirement that, for all vertices u and v, $d(u, v) \leq |f(u) - f(v)|$. The distortion of such an embedding f is the smallest integer k such that $|f(u) - f(v)| \leq k \cdot d(u, v)$ for all edges uv of G. The minimum line-distortion of a graph G, denoted as $ld(G)$, is defined as the minimum distortion of all non-contractive embeddings of G. Accordingly, the line-distortion problem asks, for a given graph G, to find an embedding f with minimum distortion.

Both problems may appear to be closely related to each other. The only difference between the two parameters is that a minimum distortion embedding has to be non-contractive whereas there is no such restriction for bandwidth. It is known that $bw(G) \leq ld(G)$ for every connected graph G [62]. However, the bandwidth and the minimum line-distortion of a graph can be very different. For example, a cycle of length n has bandwidth 2, whereas its minimum line-distortion is exactly $n - 1$ [62].

Computing a minimum distortion embedding of a given graph G into a line ℓ was recently identified as a fundamental algorithmic problem with important applications in various areas of

*Results from this chapter have been published partially at SWAT 2014, Copenhagen, Denmark [38], and in Algorithmica [39].
In this chapter, we investigate possible connections between the line-distortion, bandwidth, and the path-length of a graph. We show that, for every graph G, $\text{pl}(G) \leq \text{ld}(G)$ and $\text{pb}(G) \leq \lceil \text{ld}(G)/2 \rceil$ hold. Additionally, we show that, for every class of graphs with path-length bounded by a constant, there is an efficient constant-factor approximation algorithm for the minimum bandwidth problem. Furthermore, we demonstrate that, for graphs with path-length bounded by a constant, there is an efficient constant-factor approximation algorithm for the minimum line-distortion problem. In the last section of this chapter, we give a linear time 6-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem for AT-free graphs.

5.1 Existing Results

Bandwidth is known to be one of the hardest graph problems; it is NP-hard even for very simple graphs like caterpillars of hair-length at most 3 [75], and it is hard to approximate by a constant factor even for trees [11] and caterpillars with arbitrary hair-lengths [46]. Polynomial-time algorithms for the exact computation of bandwidth are known for very few graph classes, including bipartite permutation graphs [60] and interval graphs [66, 70, 87]. Constant-factor approximation algorithms are known for AT-free graphs [67] and convex bipartite graphs [84]. Recently, Golovach et al. [57] showed also that the bandwidth minimization problem is Fixed Parameter Tractable on AT-free graphs by presenting an $n2^{O(k\log k)}$ time algorithm. For general (unweighted) graphs, the minimum bandwidth can be approximated to within a factor of $O\left(\log^{3.5} n\right)$ [50]. For trees and chordal graphs, the minimum bandwidth can be approximated to within a factor of $O\left(\log^{2.5} n\right)$ [58]. For caterpillars, the minimum bandwidth can be approximated to within a factor of $O(\log n/\log\log n)$ [51].

Table 3 and Table 4 summarise the results mentioned above.

In [18], Bădoiu et al. showed that the line-distortion problem is hard to approximate within a constant factor. They gave an exponential-time exact algorithm and a polynomial-time $O\left(n^{1/2}\right)$-approximation algorithm for arbitrary unweighted input graphs, along with a polynomial-time
\[\mathcal{O}(n^{1/3}) \]-approximation algorithm for unweighted trees. In another paper, BĂDOIU et al. [17] showed that the problem is hard to \[\mathcal{O}(n^{1/12}) \]-approximate, even for weighted trees. They also gave a better polynomial-time approximation algorithm for general weighted graphs, along with a polynomial-time algorithm that approximates the minimum line-distortion \(k \) embedding of a weighted tree by a factor that is polynomial in \(k \).

Fast exponential-time exact algorithms for computing the line-distortion of a graph were proposed in [52, 53]. FOMIN et al. [53] showed that a minimum distortion embedding of an unweighted graph into a line can be found in time \(5^{n^2 + o(n)} \). FELLOWS et al. [52] gave an \(\mathcal{O}(nk^4(2k + 1)^{2k}) \) time algorithm that for an unweighted graph \(G \) and integer \(k \) either constructs an embedding of \(G \) into a line with distortion at most \(k \), or concludes that no such embedding exists. They extended their approach also to weighted graphs obtaining an \(\mathcal{O}(nk^4W(2k + 1)^{2kW}) \) time algorithm, where \(W \) is the largest edge weight. Thus, the problem of minimum distortion embedding of a given graph \(G \) into a line \(\ell \) is Fixed Parameter Tractable.
Recently, Heggernes et al. [61, 62] initiated the study of minimum distortion embeddings into a line of specific graph classes. In particular, they gave polynomial-time algorithms for the problem on bipartite permutation graphs and on threshold graphs [62]. Furthermore, Heggernes et al. [61] showed that the problem of computing a minimum distortion embedding of a given graph into a line remains NP-hard even when the input graph is restricted to a bipartite, cobipartite, or split graph, implying that it is NP-hard also on chordal, cocomparability, and AT-free graphs. They also gave polynomial-time constant-factor approximation algorithms for split and cocomparability graphs.

Table 5 and Table 6 summarise the results mentioned above.

<table>
<thead>
<tr>
<th>Graph Class</th>
<th>Solution Quality</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>trees (unweighted)</td>
<td>(O\left(\frac{n^{1/3}}{}\right))-approx.</td>
<td>polynomial [18]</td>
</tr>
<tr>
<td>trees (weighted)</td>
<td>(k^{O(1)})-approx.</td>
<td>polynomial [17]</td>
</tr>
<tr>
<td>general (unweighted)</td>
<td>optimal</td>
<td>(5^{n+o(n)}) [53]</td>
</tr>
<tr>
<td>general</td>
<td>optimal</td>
<td>(O\left(\frac{n^k(2k + 1)^{2k}}{}\right)) [52]</td>
</tr>
<tr>
<td>bipartite permutation</td>
<td>optimal</td>
<td>(O(n^2)) [62]</td>
</tr>
<tr>
<td>threshold graphs</td>
<td>optimal</td>
<td>linear [62]</td>
</tr>
<tr>
<td>split</td>
<td>6-approx.</td>
<td>linear [61]</td>
</tr>
<tr>
<td>cocomparability</td>
<td>6-approx.</td>
<td>(O\left(n \log^2 n + m\right)) [61]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graph Class</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>general</td>
<td>(O(1))-approximation is NP-hard [18]</td>
</tr>
<tr>
<td>trees (weighted)</td>
<td>Hard to (O\left(\frac{n^{1/12}}{}\right))-approximate [17]</td>
</tr>
<tr>
<td>bipartite</td>
<td>NP-hard [61]</td>
</tr>
<tr>
<td>cobipartite</td>
<td>NP-hard [61]</td>
</tr>
<tr>
<td>split</td>
<td>NP-hard [61]</td>
</tr>
</tbody>
</table>

5.2 \(k \)-Dominating Pairs

A pair of vertices \(x \) and \(y \) of a graph \(G \) is called a \(k \)-dominating pair if every path between \(x \) and \(y \) has eccentricity at most \(k \). It is known that every AT-free graph has a 1-dominating pair \[24\].
In this section, we investigate the relation of k-dominating pairs with the path-length and line-distortion of a graph. Additionally, we present approaches to determine if a given graph contains a k-domination pair.

5.2.1 Relation to Path-Length and Line-Distortion

Lemma 5.1. Every graph G with $\text{pl}(G) \leq \lambda$ has a λ-dominating pair.

Proof. Consider a path-decomposition $P = \{X_1, \ldots, X_q\}$ of length $\text{pl}(G) \leq \lambda$ of G. Consider any two vertices $x \in X_1$ and $y \in X_q$ and a path P between them in G. Necessarily, by properties of path decompositions, every path of G connecting the vertices x and y has a vertex in every bag of P. Hence, as each vertex v of G belongs to some bag X_i of P, there is a vertex $u \in P$ with $u \in X_i$ and, thus, $d(v,u) \leq \lambda$.

Next, we show that the line-distortion of a graph G gives an upper bound on the minimum k for which G contains a k-dominating pair.

Lemma 5.2. Every graph G with $\text{ld}(G) \leq \lambda$ has a $\left\lfloor \frac{\lambda}{2} \right\rfloor$-dominating pair.

Proof. Let f be an optimal line embedding for $G = (V,E)$. This embedding has a first vertex v_1 and a last vertex v_n, i.e., for all $u \in V$, $f(v_1) \leq f(u) \leq f(v_n)$. Let u be an arbitrary vertex of G and P an arbitrary path from v_1 to v_n in G. If u is not on this path, there is an edge v_iv_j of P with $f(v_i) < f(u) < f(v_j)$. Without loss of generality, let $f(u) - f(v_i) \leq f(v_j) - f(u)$. Thus, by definition of line-distortion, we can say that

$$f(u) - f(v_i) \leq \left\lfloor \frac{f(v_j) - f(v_i)}{2} \right\rfloor \leq \left\lfloor \frac{\lambda}{2} \right\rfloor.$$

Therefore, each vertex u of G is in distance at most $\left\lfloor \frac{\lambda}{2} \right\rfloor$ to each path from v_1 to v_n, i.e., (v_1,v_n) is a $\left\lfloor \frac{\lambda}{2} \right\rfloor$-dominating pair.

Note that the difference between both factors can be arbitrary large. The complete graph K_n has line-distortion $n - 1$. However, each vertex pair is a 1-dominating pair.
5.2.2 Determining a k-Dominating Pair

In this subsection, we present a polynomial time algorithm to determine if a given graph contains a k-dominating pair. Additionally, we show that, in a graph with path-length λ, one can find a 2λ-dominating pair in linear time.

Consider a k-dominating pair (x, y) and an arbitrary vertex w. By definition, each path P from x to y is in distance at most k to w, i.e., $P \cap N^k[w] \neq \emptyset$. Therefore, we get the following observation.

Observation 5.1. A pair of vertices x and y is a k-dominating pair if and only if, for every vertex $w \in V \setminus (N^k[x] \cup N^k[y])$, the disk $N^k[w]$ separates x and y.

Based on Observation 5.1, Algorithm 5.1 below determines if a given graph contains a k-dominating pair for a given k. The idea is to (i) compute the connected components of $G - N^k[v]$ for each v and (ii) iterate over all pairs (x, y) and check, for each vertex w with sufficiently large distance to x and y, if x and y are in different connected components of $G - N^k[w]$. If this is the case, x and y form a dominating pair.

Algorithm 5.1: Determines if a given graph contains a k-dominating pair.

- **Input:** A graph $G = (V, E)$ and a non-negative integer k.
- **Output:** A k-dominating pair (x, y) if such a pair exists in G.

1. Determine the pairwise distances of all vertices.
2. Create an empty $n \times n$ matrix M.
3. **For Each** $v \in V$
 5. Label each vertex x in $G - N^k[v]$ with its connected component and store this label in $M(v, x)$. (Thus, $M(v, x)$ is the label of the connected component of vertex x in $G - N^k[v]$.)
4. **For Each** vertex pair (x, y)
 5. If for each $w \in V$ with $\max \{d(x, w), d(y, w)\} > k$, $M(w, x) \neq M(w, y)$ **Then**
 6. Output (x, y) and **Stop**.

Theorem 5.1. Given a graph G and an integer k, Algorithm 5.1 determines if G contains a k-dominating pair (x, y) in $O(n^3)$ time.

Proof. By Observation 5.1, (x, y) is a k-dominating pair if, for each vertex $w \in V \setminus (N^k[x] \cup N^k[y])$, x and y are in different connected components of $G - N^k[w]$. That is, $M(w, x) \neq M(w, y)$. Clearly,
w \notin \left(N^k[x] \cup N^k[y]\right) \text{ if and only if the larger of } d(x, w) \text{ and } d(y, w) \text{ is strictly larger than } k. \text{ Therefore, line 7 is successful if and only if } (x, y) \text{ is a dominating pair.}

The pairwise distances of all vertices as well as the matrix } M \text{ can easily be computed in } O(n(n + m)) \text{ time by performing a BFS on each vertex. Because the pairwise distances are known, it can be checked in constant time for a vertex pair } (x, y) \text{ and a vertex } w \text{ if } \max\{d(x, w), d(y, w)\} > k \text{ and } M(w, x) \neq M(w, y). \text{ Therefore, the algorithm runs in total } O(n^3) \text{ time.} \quad \Box

By performing a binary search over } k, \text{ we get the following result:

Corollary 5.1. There is a } O(n^3 \log n) \text{ time algorithm that computes a } k\text{-dominating pair with minimum } k \text{ of a given graph.}

In [69], Kratsch and Spinrad show that finding a dominating pair is essentially as hard as finding a triangle in a graph. Thus, it is unlikely that there is a linear time algorithm to find a dominating pair if it exists. Yet, by Lemma 5.1, one can search for } k\text{-dominating pairs in dependence of the path-length of a graph. We do not know how to find a } k\text{-dominating pair with } k \leq \text{pl}(G) \text{ for an arbitrary graph } G \text{ in linear time. However, we can prove the following weaker result which is useful in later sections. For this, recall that a spread pair is a vertex pair } (x, y) \text{ such that, for some vertex } s, d(s, x) = \text{ecc}(s) \text{ and } d(x, y) = \text{ecc}(x).

Theorem 5.2. In a graph } G, \text{ any spread pair is a } 2\text{pl}(G)\text{-dominating pair.}

Proof. Consider a path-decomposition } \mathcal{P} = \{X_1, X_2, \ldots, X_q\} \text{ of } G \text{ with length } \text{pl}(G) = \lambda. \text{ Let } (x, y) \text{ be a spread pair and let } s \text{ be a vertex of } G \text{ such that } d(s, x) = \text{ecc}(s). \text{ We claim that } (x, y) \text{ is a } 2\lambda\text{-dominating pair of } G.

If there is a bag in } \mathcal{P} \text{ containing both } s \text{ and } x, \text{ then } d(s, x) \leq \lambda \text{ and, by the choice of } x, \text{ each vertex of } G \text{ is within distance at most } \lambda \text{ from } s \text{ and, hence, within distance at most } 2\lambda \text{ from } x. \text{ Evidently, in this case, } (x, y) \text{ is a } 2\lambda\text{-dominating pair of } G.

Assume now, without loss of generality, that } x \in X_i \text{ and } s \in X_l \text{ with } i < l. \text{ Consider an arbitrary vertex } v \text{ of } G \text{ that belongs to only bags with indices smaller than } i. \text{ We show that } d(x, v) \leq 2\lambda. \text{ As } X_i \text{ separates } v \text{ from } s, \text{ a shortest path } P \text{ of } G \text{ between } s \text{ and } v \text{ must have a vertex } u \text{ in } X_i. \text{ We
have \(d(s, x) \geq d(s, v) = d(s, u) + d(u, v)\) and, by the triangle inequality, \(d(s, x) \leq d(s, u) + d(u, x)\). Hence, \(d(u, v) \leq d(u, x)\) and, since both \(u\) and \(x\) belong to same bag \(X_i\), \(d(u, x) \leq \lambda\). That is, \(d(x, v) \leq d(x, u) + d(u, v) \leq 2d(u, x) \leq 2\lambda\).

If \(d(x, y) \leq 2\lambda\) then, by the choice of \(y\), each vertex of \(G\) is within distance at most \(2\lambda\) from \(x\) and, hence, \((x, y)\) is a \(2\lambda\)-dominating pair of \(G\). So, assume that \(d(x, y) > 2\lambda\), i.e., every bag of \(P\) that contains \(y\) has an index greater than \(i\). Consider a bag \(X_j\) containing \(y\). We have \(i < j\). Repeating the arguments of the previous paragraph, we can show that \(d(y, v) \leq 2\lambda\) for every vertex \(v\) that belongs to bags with indices greater than \(j\).

Consider now an arbitrary path \(P\) of \(G\) connecting vertices \(x\) and \(y\). By properties of path-decompositions, \(P\) has a vertex in every bag \(X_h\) of \(P\) with \(i \leq h \leq j\). Hence, for each vertex \(v\) of \(G\) that belongs to a bag \(X_h\) with \(i \leq h \leq j\), there is a vertex \(u \in P \cap X_h\) such that \(d(v, u) \leq \lambda\). As \(d(v, x) \leq 2\lambda\) for each vertex \(v\) from \(X_i'\) with \(i' < i\) and \(d(v, y) \leq 2\lambda\) for each vertex \(v\) from \(X_{j'}\) with \(j' > j\), we conclude that \(P\) has eccentricity at most \(2\lambda\) in \(G\). \(\square\)

5.3 Bandwidth of Graphs with Bounded Path-Length

In this section, we show that there is an efficient algorithm which, for any graph \(G\) with \(pl(G) = \lambda\), produces a layout \(f\) with bandwidth at most \(O(\lambda) \cdot bw(G)\). Moreover, this statement is true even for all graphs containing a shortest path with eccentricity \(\lambda\). Recall that a shortest path \(P\) of a graph \(G\) has eccentricity \(k\) in \(G\) if every vertex \(v\) of \(G\) is at distance at most \(k\) from a vertex of \(P\), i.e., \(d(v, P) \leq k\).

We need the following “local density” lemma.

Lemma 5.3 (Räcke [82]). For each vertex \(v\) of an arbitrary graph \(G\) and each positive integer \(r\),

\[
\frac{|N^r[v]| - 1}{2^r} \leq bw(G).
\]

The main result of this section is the following.

Theorem 5.3. For a given graph \(G\) and a given shortest path with eccentricity \(k\) in \(G\), a layout \(f\) with bandwidth at most \((4k + 2) \cdot bw(G)\) can be found in linear time.
Proof. Let \(P = \{x_0, x_1, \ldots, x_i, \ldots, x_j, \ldots, x_q\} \) be a given shortest path with eccentricity \(k \) in \(G = (V,E) \). Based on \(P \), determine a partition \(\mathcal{X} = \{X_1, X_2, \ldots\} \) of \(V \) such that each subset \(X_i \) induces a connected subgraph and \(v \in X_i \) implies \(d(v, x_i) = d(v, P) \). This can be done by running a single BFS starting at \(P \). Then, a vertex \(v \) is in the subset \(X_i \) if \(x_i \) is an ancestor of \(v \) in the resulting BFS-tree. Now, create a layout \(f \) of \(G \) by placing all the vertices of \(X_i \) before all vertices of \(X_j \), if \(i < j \), and by placing the vertices within each \(X_i \) in an arbitrary order. See Figure 8 for an illustration.

Clearly, computing \(\mathcal{X} \) and \(f \) can be done in linear time if \(P \) is given.

\[\text{Figure 8. Illustration to the proof of Theorem 5.3.} \]

We claim that this layout \(f \) has bandwidth at most \((4k+2) \text{ bw}(G)\). Consider any edge \(uv \) of \(G \) and assume \(u \in X_i \) and \(v \in X_j \) with \(i \leq j \). For this edge \(uv \), we have \(f(v) - f(u) \leq \left| \bigcup_{\ell=i}^{j} X_{\ell} \right| - 1 \). Since \(P \) is a shortest path with eccentricity \(k \), we also know that \(d(x_i, x_j) = j - i \leq d(x_i, u) + 1 + d(x_j, v) \leq 2k + 1 \). Consider a vertex \(x_c \) of \(P \) with \(c = \left\lfloor (i + j)/2 \right\rfloor \), i.e., a middle vertex of the subpath of \(P \) between \(x_i \) and \(x_j \). Consider an arbitrary vertex \(w \) in \(X_\ell \) for \(i \leq \ell \leq j \). We know that, by triangle inequality, \(d(x_c, w) \leq d(x_c, x_\ell) + d(x_\ell, w) \), by definition of \(x_c \), \(d(x_c, x_\ell) \leq \lceil 2k + 1 \rceil / 2 \), and, because \(\text{ecc}(P) \leq k \), \(d(x_\ell, w) \leq k \). Thus, we get \(d(x_c, w) \leq 2k + 1 \). In other words, for \(r := 2k + 1 \), the disk \(N^r[x_c] \) contains all vertices of \(\bigcup_{\ell=i}^{j} X_{\ell} \) and, hence, \(|N^r[x_c]| \geq \left| \bigcup_{\ell=i}^{j} X_{\ell} \right| \). Applying Lemma 5.3, we conclude \(f(v) - f(u) \leq \left| \bigcup_{\ell=i}^{j} X_{\ell} \right| - 1 \leq |N^r[x_c]| - 1 \leq 2(2k + 1) \text{ bw}(G) = (4k + 2) \text{ bw}(G) \). □

For a given graph \(G \), one can find a shortest path with eccentricity \(k \leq \text{pl}(G) \) in \(O(n^2 m) \) time.
in the following way. Iterate over all vertex pairs of G. For each vertex pair (x, y), pick a shortest (x, y)-path P and determine the eccentricity of P. Finally, output the path P for which $\text{ecc}(P)$ is minimal. By Lemma 5.1, this minimum is at most $\text{pl}(G)$.

Alternatively, using Theorem 5.2, one can find a shortest path with eccentricity at most $2\text{pl}(G)$ in linear time. Therefore, Theorem 5.3 implies:

Corollary 5.2. For every graph G, a layout with bandwidth at most $(4\text{pl}(G) + 2)\text{bw}(G)$ can be found in $O(n^2m)$ time and a layout with bandwidth at most $(8\text{pl}(G) + 2)\text{bw}(G)$ can be found in $O(n + m)$ time.

The above results did not require a path-decomposition of length $\text{pl}(G)$ of a graph G as input. We also avoided the construction of such a path-decomposition of G and just relied on the existence of a shortest path in G with eccentricity k. If, however, a path-decomposition with length λ of a graph G is given in advance together with G, then a better approximation ratio for the minimum bandwidth problem on G can be achieved.

Theorem 5.4. If a graph G is given together with a path-decomposition of G of length λ, then a layout f with bandwidth at most $\lambda\text{bw}(G)$ can be found in $O(n^2 + n\log^2 n)$ time.

Proof. Let $\mathcal{P} = \{X_1, X_2, \ldots, X_q\}$ be a path-decomposition of length λ of $G = (V, E)$. We form a new graph $G^+ = (V, E^+)$ from G by adding an edge between a pair of vertices $u, v \in V$ if and only if u and v belong to a common bag in \mathcal{P}. From this construction, we conclude that G is a subgraph of G^+ and G^+ is a subgraph of G^λ. Note that G^+ is an interval graph: \mathcal{P} gives a path-decomposition of G^+ such that each bag X_i is a clique of G^+. In [87], an $O(n\log^2 n)$ time algorithm to compute a minimum bandwidth layout of a graph is given. Let f be an optimal layout produced by that algorithm for our interval graph G^+. We claim that this layout f, when considered for G, has bandwidth at most $\lambda\text{bw}(G)$. Indeed, following [67], we have $\max_{uv \in E}|f(u) - f(v)| \leq \max_{uv \in E^+}|f(u) - f(v)| = \text{bw} \left(G^+\right) \leq \text{bw} \left(G^\lambda\right) \leq \lambda\text{bw}(G)$. Clearly, raising a graph to the λ-th power can only increase its bandwidth by a factor of λ.

As shown in Lemma 3.2 (page 14), one can compute, for a given graph G, a path-decomposition with length at most $2\text{pl}(G)$ in $O(n^3)$ time. Combining this with Theorem 5.4, it follows:
Corollary 5.3. For a given graph G, a layout f with bandwidth at most $2 \text{pl}(G) \text{bw}(G)$ can be found in $O(n^3)$ time.

Summarising the results of this section, we have the following interesting conclusion.

Theorem 5.5. For every class of graphs with path-length bounded by a constant, there is an efficient constant-factor approximation algorithm for the minimum bandwidth problem.

In Section 5.5, using some additional structural properties of AT-free graphs, we give a linear time 4-approximation algorithm for the minimum bandwidth problem for AT-free graphs. This result reproduces an approximation result by Kloks et al. [67] with a better runtime.

5.4 Path-Length and Line-Distortion

In this section, we first show that the line-distortion of a graph gives an upper bound on its path-length and then demonstrate that, if the path-length of a graph G is bounded by a constant, there is an efficient constant-factor approximation algorithm for the minimum line-distortion problem on G.

5.4.1 Bound on Line-Distortion Implies Bound on Path-Length

In this subsection, we show that the path-length of an arbitrary graph never exceeds its line-distortion. The following inequalities are true.

Theorem 5.6. For an arbitrary graph G, \(\text{pl}(G) \leq \text{ld}(G) \), \(\text{pw}(G) \leq \text{ld}(G) \), and \(\text{pb}(G) \leq \lceil \text{ld}(G)/2 \rceil \).

Proof. It is known (see, e.g., [62]) that every connected graph G has a minimum distortion embedding f into a line ℓ (called a canonic embedding) such that $|f(x) - f(y)| = d(x,y)$ for every two vertices x and y of G that are placed next to each other in ℓ by f. Assume, in what follows, that f is such a canonic embedding and let $k := \text{ld}(G)$.

Consider the following path-decomposition of G created from f. For each vertex v, form a bag B_v consisting of all vertices of G which are placed by f in the interval $[f(v), f(v) + k]$ of a line ℓ. Order these bags with respect to the left ends of the corresponding intervals. Evidently,
for every vertex \(v \in V, v \in B_v \), i.e., each vertex belongs to a bag. More generally, a vertex \(u \) belongs to a bag \(B_v \) if and only if \(f(v) \leq f(u) \leq f(v) + k \). Since \(\text{ld}(G) = k \), for every edge \(uv \) of \(G \), \(|f(u) - f(v)| \leq k \) holds. Hence, both ends of the edge \(uv \) belong either to the bag \(B_u \) (if \(f(u) < f(v) \)) or to the bag \(B_v \) (if \(f(v) < f(u) \)). Now, consider three bags \(B_a, B_b, \) and \(B_c \) with \(f(a) < f(b) < f(c) \) and a vertex \(v \) of \(G \) that belongs to \(B_a \) and \(B_c \). We have \(f(a) < f(b) < f(c) \leq f(v) \leq f(a) + k < f(b) + k \). Hence, \(v \) belongs to \(B_b \) as well.

It remains to show that each bag \(B_v, v \in V \), has in \(G \) diameter at most \(k \), radius at most \(\lceil k/2 \rceil \), and cardinality at most \(k + 1 \). Indeed, for any two vertices \(x, y \in B_v \), we have \(|f(x) - f(y)| \leq k \), i.e., \(d(x, y) \leq |f(x) - f(y)| \leq k \). Furthermore, any interval \([f(v), f(v) + k] \) of length \(k \) can have at most \(k + 1 \) vertices of \(G \) as the distance between any two vertices placed by \(f \) to this interval is at least \(1 \) \((|f(x) - f(y)| \geq d(x, y) \geq 1) \). Thus, \(|B_v| \leq k + 1 \) for every \(v \in V \).

Now, consider the point \(p_v := f(v) + \lceil k/2 \rceil \) in the interval \([f(v), f(v) + k] \) of \(\ell \). Assume, without loss of generality, that \(p_v \) is between \(f(x) \) and \(f(y) \) which are the images of two vertices \(x \) and \(y \) of \(G \) placed next to each other in \(\ell \) by \(f \). Let \(f(x) \leq p_v < f(y) \). See Figure 9 for an illustration.

Since \(f \) is a canonic embedding of \(G \), there must exist a vertex \(c \) on a shortest path between \(x \) and \(y \) such that \(d(x, c) = p_v - f(x) \) and \(d(c, y) = f(y) - p_v = d(x, y) - d(x, c) \). We claim that, for every vertex \(w \in B_v \), \(d(c, w) \leq \lceil k/2 \rceil \) holds. Assume \(f(w) \geq f(y) \) (the case when \(f(w) \leq f(x) \) is similar). Then, we have \(d(c, w) \leq d(c, y) + d(y, w) \leq (f(y) - p_v) + (f(w) - f(y)) = f(w) - p_v = f(w) - f(v) - \lceil k/2 \rceil \leq k - \lceil k/2 \rceil \leq \lceil k/2 \rceil \).

![Figure 9. Illustration to the proof of Theorem 5.6.](image)

It should be noted that the difference between the path-length and the line-distortion of a graph can be very large. The graph \(K_n \) has path-length 1, whereas the line-distortion of \(K_n \) is \(n - 1 \). Note also that the bandwidth and the path-length of a graph do not bound each other. The bandwidth of \(K_n \) is \(n - 1 \) while its path-length is 1. On the other hand, the path-length of cycle \(C_{2n} \) is \(n \) while
its bandwidth is 2.

5.4.2 Line-Distortion of Graphs with Bounded Path-Length

In this subsection, we show that there is an efficient algorithm that, for any graph \(G \) with \(\text{pl}(G) \leq \lambda \), produces an embedding \(f \) of \(G \) into a line with distortion at most \((8\lambda + 2) \text{ld}(G)\). This statement is true even for all graphs with a shortest path with eccentricity \(\lambda \).

We need the following simple “local density” lemma.

Lemma 5.4. For every vertex set \(S \subseteq V \) of an arbitrary graph \(G = (V,E) \),

\[|S| - 1 \leq \text{diam}(S) \text{ld}(G). \]

Proof. Consider an embedding \(f^* \) of \(G \) into a line \(\ell \) with distortion \(\text{ld}(G) \). Let \(a \) and \(b \) be the leftmost and the rightmost, respectively, vertices of \(S \) in \(\ell \), i.e., \(f^*(a) \leq f^*(v) \leq f^*(b) \) for all \(v \in S \). Consider a shortest path \(P \) in \(G \) from \(a \) to \(b \). Since, for each edge \(xy \) of \(G \), \(|f^*(x) - f^*(y)| \leq \text{ld}(G) \) holds, we get \(f^*(b) - f^*(a) \leq d(a,b) \text{ld}(G) \leq \text{diam}(S) \text{ld}(G) \). On the other hand, since all vertices of \(S \) are mapped to points of \(\ell \) between \(f^*(a) \) and \(f^*(b) \), we have \(f^*(b) - f^*(a) \geq |S| - 1 \). \(\square \)

The main result of this section is the following.

Theorem 5.7. Every graph \(G \) with a shortest path of eccentricity \(k \) admits an embedding \(f \) of \(G \) into a line with distortion at most \((8k + 2) \text{ld}(G)\). If a shortest path of \(G \) of eccentricity \(k \) is given in advance, then such an embedding \(f \) can be found in linear time.

Proof. Let \(P = \{x_0, x_1, \ldots, x_i, \ldots, x_j, \ldots, x_q\} \) be a shortest path of \(G \) of eccentricity \(k \). Build a BFS\((P,G)\)-tree \(T \) of \(G \) (i.e., a Breadth-First-Search tree of \(G \) started at path \(P \)). Denote by \(\{X_0, X_1, \ldots, X_q\} \) the decomposition of the vertex set \(V \) of \(G \) obtained from \(T \) by removing the edges of \(P \). That is, \(X_i \) is the vertex set of a subtree (branch) of \(T \) growing from vertex \(x_i \) of \(P \). See Figure 10a for an illustration. Since the eccentricity of \(P \) is \(k \), we have \(d_G(v, x_i) \leq k \) for every \(i \in \{1, \ldots, q\} \) and every \(v \in X_i \).
We define an embedding \(f \) of \(G \) into a line \(\ell \) by performing a preorder traversal of the vertices of \(T \) starting at vertex \(x_0 \) and visiting first the vertices of \(X_i \) and then the vertices of \(X_{i+1} \) for each \(i \in \{0, \ldots, q-1\} \). We place the vertices of \(G \) on the line \(\ell \) in that order, and also, for each \(i \in \{0, \ldots, q-1\} \), we leave a space of length \(d_T(v_i, v_{i+1}) \) between any two vertices \(v_i \) and \(v_{i+1} \) placed next to each other (this can be done during the preorder traversal). Alternatively, \(f \) can be defined by creating a twice around tour of the tree \(T \), which visits vertices of \(X_i \) prior to vertices of \(X_{i+1} \), \(i = 0, \ldots, q-1 \), and then returns to \(x_0 \) from \(x_q \) along edges of \(P \). Following vertices of \(T \) from \(x_0 \) to \(x_q \) as shown in Figure 10b (i.e., using upper part of the twice around tour), \(f(v) \) can be defined as the first appearance of vertex \(v \) in that subtour.

\(\text{(a) The decomposition } \{X_0, X_1, \ldots, X_q\} \text{ of the vertex set } V \text{ of } G. \)

\(\text{(b) The upper part of the twice around tour and an embedding } f \text{ obtained from following the upper part of the twice around tour.} \)

Figure 10. Illustration to the proof of Theorem 5.7.

We claim that \(f \) is a (non-contractive) embedding with distortion at most \((8k + 2) \text{ld}(G) \). It is sufficient to show that \(d_G(x, y) \leq |f(x) - f(y)| \) for every two vertices of \(G \) that are placed by \(f \) next to each other in \(\ell \) and that \(|f(v) - f(u)| \leq (8k + 2) \text{ld}(G) \) for every edge \(uv \) of \(G \) (see, e.g., [18, 62]).

Let \(x \) and \(y \) be two arbitrary vertices of \(G \) that are placed by \(f \) next to each other in \(\ell \). By construction, we know that \(|f(x) - f(y)| = d_T(x, y) \). Since \(d_G(x, y) \leq d_T(x, y) \), we get also \(d_G(x, y) \leq |f(x) - f(y)| \), i.e., \(f \) is non-contractive.

Consider now an arbitrary edge \(uv \) of \(G \) and assume \(u \in X_i \) and \(v \in X_j \) \((i \leq j) \). Note that \(d_P(x_i, x_j) = j - i \leq 2k + 1 \), since \(P \) is a shortest path of \(G \) and \(d_P(x_i, x_j) = d_G(x_i, x_j) \leq d_G(x_i, u) + 1 + d_G(x_j, v) \leq 2k + 1 \). Set \(S = \bigcup_{h=i}^{j} X_h \). For any two vertices \(x, y \in S \), \(d_G(x, y) \leq \)
\[d_G(x, P) + 2k + 1 + d_G(y, P) \leq k + 2k + 1 + k = 4k + 1 \] holds. Hence, \(\text{diam}_G(S) \leq 4k + 1 \).

Consider subtree \(T_S \) of \(T \) induced by \(S \). Clearly, \(T_S \) is connected and has \(|S| - 1 \) edges. Therefore, \(f(v) - f(u) \leq 2(|S| - 1) \) since each edge of \(T_S \) contributes to \(f(v) - f(u) \) at most 2 units. Now, by Lemma 5.4, \(f(v) - f(u) \leq 2(|S| - 1) \leq 2 \text{diam}_G(S) \text{ld}(G) \leq (8k + 2) \text{ld}(G) \).

Recall that, by Lemma 5.1, each graph \(G \) with \(\text{pl}(G) \leq \lambda \) has a \(\lambda \)-dominating pair and, hence, a shortest path with eccentricity \(\lambda \). Such a path can easily be found in \(\mathcal{O}(n^2m) \) time by iterating over all vertex pairs. Additionally, by Theorem 5.2, one can find a shortest path with eccentricity at most \(2\lambda \) in linear time. Thus, Theorem 5.7 implies:

Corollary 5.4. For a given graph \(G \), one can compute an embedding of \(G \) into a line with distortion at most \((8 \text{pl}(G) + 2) \text{ld}(G) \) in \(\mathcal{O}(n^2m) \) time and with distortion at most \((16 \text{pl}(G) + 2) \text{ld}(G) \) in \(\mathcal{O}(n + m) \) time.

Thus, we have the following interesting conclusion.

Theorem 5.8. For every class of graphs with path-length bounded by a constant, there is an efficient constant-factor approximation algorithm for the minimum line-distortion problem.

Using the inequality \(\text{pl}(G) \leq \text{ld}(G) \) in Corollary 5.4 once more, we reproduce a result of [18].

Corollary 5.5 (Bădoiu et al. [18]). For every graph \(G \) with \(\text{ld}(G) = c \), an embedding into a line with distortion at most \(\mathcal{O}(c^2) \) can be found in polynomial time.

It should be noted that, since the difference between the minimum eccentricity of a shortest path and the line-distortion of a graph can be very large (close to \(n \)), the result in Theorem 5.7 seems to be stronger. In Chapter 6 (page 83), we investigate the problem of finding a shortest path with minimum eccentricity in a given graph.

5.5 Approximation for AT-Free Graphs

From Theorem 5.8 and results from Section 3.3 (page 31), it follows already that there is an efficient constant-factor approximation algorithm for the minimum line-distortion problem on such
particular graph classes as permutation graphs, trapezoid graphs, cocomparability graphs as well as AT-free graphs. Recall that, for arbitrary graphs, the minimum line-distortion problem is hard to approximate within a constant factor [18]. Furthermore, the problem remains NP-complete even when the input graph is restricted to a chordal, cocomparability, or AT-free graph [61]. Polynomial-time constant-factor approximation algorithms were known only for split and cocomparability graphs; Heggernes and Meister [61] gave efficient 6-approximation algorithms for both graph classes. As far as we know, for AT-free graphs (the class which contains all cocomparability graphs), no prior efficient approximation algorithm was known.

In this section, we give a better approximation algorithm for all AT-free graphs using additional structural properties of AT-free graphs; more precisely, we give a 6-approximation algorithm that runs in linear time.

Theorem 5.9. There is a linear time algorithm to compute an embedding with distortion at most $6 \log(G)$ for a given AT-free graph $G = (V, E)$.

Proof. Let s be an arbitrary vertex of G, let v be the vertex last visited (numbered 1) by a LexBFS starting at s, and let w be the vertex last visited by a LexBFS starting at v. One can compute, in linear time, a shortest path $P = \{v = v_0, v_1, \ldots, v_k = w\}$ from v to w such that, for all $u \in L_i^{(v)}$ with $i \geq 1$, $uw_i \in E$ or $uw_{i-1} \in E$ [67]. Based on P, we partition every layer $L_i^{(v)}$ in three sets: $\{v_i\}$, $X_i = \{x \in L_i^{(v)} \mid v_i x \in E\}$, and $\overline{X}_i = L_i^{(v)} \setminus (\{v_i\} \cup X_i)$. See Figure 11 for an illustration.

![Figure 11. Illustration to the proof of Theorem 5.9. Layering of an AT-free graph.](figure11.png)

Note that, due to Lemma 2.12 (page 11) the diameter of each layer $L_i^{(v)}$ is at most 2, i.e., for each $x, y \in L_i^{(v)}$, $d(x, y) \leq 2$. The embedding f places vertices of G into a line ℓ in the following
order: \(\langle v_0, \ldots, v_{i-1}, X_i, v_i, X_{i+1}, v_{i+1}, \ldots, v_k \rangle \). Between every two vertices \(x \) and \(y \) placed next to each other on the line \(\ell \), to guarantee non-contractiveness, \(f \) leaves a space of length \(d(x, y) \) (which is either 1, or 2).

Now, we show that \(f \) approximates the minimum line-distortion of \(G \). Since a layer \(L_i^{(v)} \) only contains vertices with distance \(i \) to \(v \), there is no edge \(xy \) with \(x \in L_i^{(v)} \) and \(y \in L_{i+1}^{(v)} \). Therefore, for all \(xy \in E \) with \(x, y \in L_i^{(v)} \cup L_{i+1}^{(v)} \), \(|f(x) - f(y)| < |f(v_{i-1}) - f(v_{i+1})| \). Let \(S = \{v_{i-1}, v_i, v_{i+1}\} \cup X_i \cup X_i \cup X_{i+1} \cup X_{i+1} \). Then, counting how many vertices are placed by \(f \) between \(f(v_{i-1}) \) and \(f(v_{i+1}) \) and the distance in \(G \) between vertices placed next to each other, we get \(|f(x) - f(y)| \leq 2|S| - 1 \).

Claim 1. \(\text{diam}(S) \leq 3 \)

Proof (Claim). Note that, by definition of \(S \), \(S = L_{i+1}^{(v)} \cup L_i^{(v)} \cup \{v_{i-1}\} \). Due to Lemma 2.12 (page 11), the diameter of \(L_{i+1}^{(v)} \) and \(L_i^{(v)} \) is at most 2. Also, each vertex \(x \in L_{i+1}^{(v)} \) is adjacent to a vertex \(y \in L_i^{(v)} \). Therefore, the diameter of \(L_{i+1}^{(v)} \cup L_i^{(v)} \) is at most 3. It remains to show that, for each \(x \in X_{i+1} \cup X_{i+1} \), \(d(v_{i-1}, x) \leq 3 \). If \(x \in X_{i+1} \), then there is a path \(\{x, v_{i+1}, v_i, v_{i-1}\} \). If \(x \in X_{i+1} \), then there is a path \(\{x, v_i, v_{i-1}\} \).

From Claim 1 and Lemma 5.4, it follows that \(|f(x) - f(y)| \leq 2|S| - 1 \leq 6 \text{ld}(G) \) for all \(xy \in E \). \(\square \)

Algorithm 5.2 formalises the method described above.

Algorithm 5.2: A 6-approximation algorithm for the minimum line-distortion of an AT-free graph.

Input:	An AT-free graph \(G = (V, E) \).
Output:	An embedding \(f \) of \(G \) into a line.
1	Compute the distance layers \(L_i^{(v)} \) a path \(P = \{v_0, \ldots, v_k\} \) such that, for all \(u \in L_i^{(v)} \) with \(i \geq 1 \), \(uv_i \in E \) or \(uv_{i-1} \in E \) (see [67]).
2	Partition each layer \(L_i \) into three sets: \(\{v_i\}, X_i = \{x \mid x \in L_i, v_i x \in E\} \), and \(\overline{X}_i = L_i \setminus \{\{v_i\} \cup X_i\} \).
3	Create an embedding \(f \) by placing the vertices of \(G \) into a line \(\ell \) in the order \(\langle v_0, \ldots, v_{i-1}, \overline{X}_i, X_i, v_i, \overline{X}_{i+1}, X_{i+1}, v_{i+1}, \ldots, v_k \rangle \).
4	Between every two consecutive vertices \(x \) and \(y \) on the line \(\ell \), leave a space of length \(d(x, y) \).
5	Output \(f \).
Note that $S \subseteq N^2[v_i]$. Therefore, it follows from Lemma 5.3 that the order in which the vertices of G are placed by f into the line ℓ gives also a layout of G with bandwidth at most $4\,bw(G)$. This reproduces an approximation result by Kloks et al.\cite{67}. Their algorithm has complexity $O(m + n \log n)$ for a graph, since it involves an $O(n \log n)$ time algorithm by Assmann et al.\cite{4} to find an optimal layout for a caterpillar with hair-length at most 1.

Corollary 5.6 (Kloks et al.\cite{67}). There is a linear time algorithm to compute a 4-approximation of the minimum bandwidth of an AT-free graph.

Combining Theorem 3.13 (page 33) and Theorem 5.4, we also obtain the following result by Kloks et al.\cite{67} as a corollary.

Corollary 5.7 (Kloks et al.\cite{67}). There is an $O(m + n \log^2 n)$ time algorithm to compute a 2-approximation of the minimum bandwidth of an AT-free graph.
Chapter 6

The Minimum Eccentricity Shortest Path Problem

In Section 5.3 (page 72) and Section 5.4 (page 75), we use the path-length of a graph to obtain a shortest path P with eccentricity λ and then use P to calculate approximations for the Bandwidth and Line-Distortion problems. However, after determining P, we do not use the bounded path-length again. This leads to the question if we can directly determine such a path. We call this the *Minimum Eccentricity Shortest Path* problem, MESP for short.

Definition 6.1. For a given a graph G, the Minimum Eccentricity Shortest Path problem asks to find a shortest path P such that, for each shortest path Q, $\text{ecc}(P) \leq \text{ecc}(Q)$.

Note that our Minimum Eccentricity Shortest Path problem is close but different from the Central Path problem in graphs introduced in [85]. It asks, for a given graph G, to find a not necessarily shortest path P such that any other path of G has eccentricity at least $\text{ecc}(P)$. The Central Path problem generalizes the Hamiltonian Path problem and, therefore, is NP-complete even for chordal graphs [76]. Our problem, however, is polynomial time solvable for chordal graphs (see Corollary 6.7).

In this chapter, we investigate the Minimum Eccentricity Shortest Path problem. We analyse the hardness of the problem, show algorithms to compute an optimal solution, and present approximation algorithms differing in quality and runtime. This is done for general graphs as well as for special graph classes. Additionally, we show that, if a shortest path with eccentricity k is given, a k-dominating set can be found in pseudo-polynomial time.

*Results from this chapter have been published partially at WADS 2015, Victoria, Canada [41], at WG 2015, Munich, Germany [40], and in the *Journal of Graph Algorithms and Applications* [42].*
6.1 Hardness

In this section, we show that finding a minimum eccentricity shortest path is NP-hard, even if restricted to planar bipartite graphs with maximum vertex-degree 3. Additionally, we show that the problem is \(W[2]\)-hard for sparse graphs. To do that, we define the decision version of the Minimum Eccentricity Shortest Path problem, named \(k\)-ESP, as follows: Given a graph \(G\) and an integer \(k\), does \(G\) contain a shortest path \(P\) with eccentricity at most \(k\)?

Theorem 6.1. The decision version of the Minimum Eccentricity Shortest Path problem is NP-complete.

Proof. To prove Theorem 6.1, we use a version of 3-SAT which is called *Planar Monotone 3-SAT*. It was introduced by de Berg and Khosravi in [8]. Consider an instance of 3-SAT given in CNF with the variables \(\mathcal{P} = \{p_1, \ldots, p_n\}\) and the clauses \(\mathcal{C} = \{c_1, \ldots, c_m\}\). A clause is called *positive* if it consists only of positive variables (i.e., \(p_a \lor p_b \lor p_c\)) and is called *negative* if it consists only of negative variables (i.e., \(\neg p_a \lor \neg p_b \lor \neg p_c\)). Consider the bipartite graph \(\mathcal{G} = (\mathcal{P}, \mathcal{C}, \mathcal{E})\) where \(p_ic_j \in \mathcal{E}\) if and only if \(c_j\) contains \(p_i\) or \(\neg p_i\). An instance of 3-SAT is *planar monotone* if each clause is either positive or negative and there is a planar embedding for \(\mathcal{G}\) such that all variables are on a (horizontal) line \(L\), all positive clauses are above \(L\), all negative clauses are below \(L\), and no edge is crossing \(L\). Planar Monotone 3-SAT is NP-complete [8].

Now, assume that we are given an instance \(\mathcal{I}\) of Planar Monotone 3-SAT with the variables \(\mathcal{P} = \{p_1, \ldots, p_n\}\) and the clauses \(\mathcal{C} = \{c_1, \ldots, c_m\}\). Also, let \(k = \max\{n, m\}\). We create a graph \(G\) as shown in Figure 12. For each variable \(p_i\) create two vertices, one representing \(p_i\) and one representing \(\neg p_i\). Create one vertex \(c_i\) for every clause \(c_i\). Additionally, create two vertices \(u_0, u_n\) and, for each \(i\) with \(0 \leq i \leq n\), a vertex \(v_i\). Connect each variable vertex \(p_i\) and \(\neg p_i\) with \(v_{i-1}\) and \(v_i\) directly with an edge. Connect each clause with the variables contained in it with a path of length \(k\). Also connect \(v_0\) with \(u_0\) and \(v_n\) with \(u_n\) with a path of length \(k\).

Recall that, by definition of \(\mathcal{I}\), the corresponding bipartite graph \(\mathcal{G}\) has a planar embedding where all variables are on a line. Therefore, we can clearly achieve a planar embedding for \(G\) when placing its vertices as shown in Figure 12.
Figure 12. Reduction from Planar Monotone 3-SAT to k-ESP. Illustration to the proof of Theorem 6.1.

Note that every shortest path in G not containing v_0 and v_n has an eccentricity larger than k. Also, a shortest path from v_0 to v_n has length $2n$ ($d(v_{i-1}, v_i) = 2$, passing through p_i or $\neg p_i$). Since $k \geq n$, no shortest path from v_0 to v_n is passing through a vertex c_i; in this case the minimal length would be $2k + 2$. Additionally, note that, for all vertices in G except the vertices which represent clauses, the distance to a vertex v_i with $0 \leq i \leq n$ is at most k.

We now show that I is satisfiable if and only if G has a shortest path with eccentricity k.

First, assume I is satisfiable. Let $f : \mathcal{P} \to \{T, F\}$ be a satisfying assignment for the variables. As shortest path P, we choose a shortest path from v_0 to v_n. Thus, we have to chose between p_i and $\neg p_i$. We chose p_i if and only if $f(p_i) = T$. Because I is satisfiable, there is a p_i for each c_j such that either $f(p_i) = T$ and $d(c_j, p_i) = k$, or $f(p_i) = F$ and $d(c_j, \neg p_i) = k$. Thus, P has eccentricity k.

Next, consider a shortest path P in G of eccentricity k. As mentioned above, P contains either p_i or $\neg p_i$. Now, we define $f : \mathcal{P} \to \{T, F\}$ as follows:

$$f(p_i) = \begin{cases} T & \text{if } p_i \in P, \\ F & \text{else, i.e. } \neg p_i \in P. \end{cases}$$

Because P has eccentricity k and only vertices representing a variable in the clause c_j are at distance k to vertex c_j, f is a satisfying assignment for I. \qed

While the reduction works in principle for any version of SAT (given as CNF), choosing Planar Monotone 3-SAT allows to construct a planar graph G.

Note that the created graph is bipartite. Set the colour of each vertex v_i to black and of each p_j
and \(\neg p_j\) to white. For some vertex \(x\) on the shortest path from \(c_i\) to \(p_j\) (or \(\neg p_j\)), set the colour of \(x\) based on its distance to \(p_j\) (or \(\neg p_j\)), i.e., \(x\) is white if \(d(x, p_i)\) is even and black otherwise.

Additionally, V. B. Le\(^1\) pointed out that, by slightly modifying the created graph as follows, it can be shown that the problem remains NP-complete even if the graph has the maximum vertex-degree 3. First, increase \(k\) to \(k = \max\{2n - 1, m\}\) and update all distances in the graph accordingly. Therefore, \(2k + 2 > 4n - 2\). Then, replace each vertex \(v_i\) where \(1 \leq i \leq n - 1\) with three vertices \(v_i^-, v_i', v_i^+\) such that \(N(v_i^-) = \{p_i, \neg p_i, v_i'\}\), \(N(v_i') = \{v_i^-, v_i^+\}\), and \(N(v_i^+) = \{p_{i+1}, \neg p_{i+1}, v_i'\}\). Note that a path from \(v_0\) to \(v_n\) which, for all \(i\), passes through \(p_i\) or \(\neg p_i\) has length \(4n - 2\). This is still a shortest path because each path from \(v_0\) to \(v_n\) passing through some \(c_i\) has length \(2k + 2 > 4n - 2\). Also, since \(d(p_i, p_{i+1}) = 4\), the graph remains bipartite. Next, to limit the degree of a vertex \(p_i\) (or \(\neg p_i\)), instead of connecting it directly to all clauses containing it, make \(p_i\) adjacent to the root of a binary tree \(T_i\) with height \(\lceil \log_2 k \rceil\). Then, connect each clause containing \(p_i\) to a leaf of \(T_i\) using a path with length \(k - \lceil \log_2 k \rceil - 1\) and, last, remove unused branches of \(T_i\). Because this does not effect planarity or colouring, we get:

Corollary 6.1. The decision version of the MESP problem remains NP-complete if restricted to planar bipartite graphs with maximum vertex-degree 3.

We can slightly modify the MESP problem such that a start vertex \(s\) and an end vertex \(t\) of the path are given. That is, for a given a graph \(G\) and two vertices \(s\) and \(t\), find a shortest \((s, t)\)-path \(P\) such that, for each shortest \((s, t)\)-path \(Q\), \(\text{ecc}(P) \leq \text{ecc}(Q)\). We call this the \((s, t)\)-MESP problem. From the reduction above, it follows that the decision version of this problem is NP-complete, too.

Corollary 6.2. The decision version of the \((s, t)\)-MESP problem is NP-complete, even if restricted to planar bipartite graphs with maximum vertex-degree 3.

Note that the factor \(k\) in the reduction above depends on the input size. In [68], it was already mentioned that, for \(k = 1\), the problem can be solved in \(O(n^3m)\) time by modifying an algorithm given in [28]. There, the problem was called Dominating Shortest Path problem. Therefore, it is an interesting question how hard MESP is if \(k\) is bounded by a constant.

\(^1\)University of Rostock, Germany
To answer this question, we show next that the problem is W[2]-hard in general and for sparse graphs. Therefore, we do not expect that MESP is Fixed Parameter Tractable, i.e., there is probably no algorithm that finds an optimal solution in $f(k)n^{O(1)}$ time. In Section 6.2, we generalise the result from [68] to show that MESP can be solved in pseudo-polynomial time.

Theorem 6.2. The Minimum Eccentricity Shortest Path problem is W[2]-hard.

Proof. To show W[2]-hardness, we make a parametrised reduction from the Dominating Set problem which is known to be W[2]-complete [34].

Consider a given graph $G = (V,E)$ with $V = \{v_1, v_2, \ldots, v_n\}$ and a given k. Based on G and k, we construct a graph H (containing G as subgraph) as follows. Start with G and add k sets of vertices U_1, U_2, \ldots, U_k with $U_i = \{u^i_1, u^i_2, \ldots, u^i_n\}$. For each j with $1 \leq j < k$, make a join between U_j and U_{j+1}. Add the vertices s, s', t, and t' and connect s with s' and t with t', respectively, with a path of length k. Additionally, make s adjacent to all vertices in U_1 and make t adjacent to all vertices in U_k. Connect each vertex $u^j_i \in U_j$ with each vertex in $N_G[v_i]$ with a path of length k for all j with $1 \leq j \leq k$. Figure 13 gives an illustration.

![Figure 13. Reduction from Dominating Set to k-ESP. Illustration to the graph H as constructed in the proof of Theorem 6.2.](image)

Because $d_H(s, s') = d_H(t, t') = k$, each shortest path in H not containing s and t has an eccentricity larger than k. Also, a shortest path from s to t has length $k + 1$, intersects all sets U_j, and does not intersect V.

First, assume that H has a shortest path P with eccentricity k. By definition of P and construction of H, for every $v \in V$, there is a vertex $u^j_i \in P$ such that $d_H(v, u^j_i) = d_H(v, P) = k$
and, hence, $v \in N_G[v_i]$. Therefore, the set $D = \{ v_i \in V \mid \text{there is a } j \text{ with } u^j_i \in P \}$ is a dominating set for G with cardinality at most k.

Next, assume there is a dominating set D for G with cardinality at most k. Without loss of generality, let $D = \{ v_1, v_2, \ldots, v_k \}$. Then, we define $P = \{ s, u^1_1, u^2_2, \ldots, u^k_k, t \}$. By construction of H, each vertex $v \in N_G[v_i]$ is at distance k to u^i_i. Thus, because D is a dominating set, there is a vertex $u^i_i \in P$ for each vertex $v \in V$ with $d_H(v, u^i_i) = k$. Therefore, P has eccentricity k in H. □

Note that the graph H constructed in the reduction above has at most $O(kn^2)$ edges. Thus, we can transform H into a sparse graph H' by simply adding $\Theta(kn^2)$ pendent vertices which are adjacent to s. Clearly, H' has a shortest path with eccentricity k if and only if H has a shortest path with eccentricity k. Thus, we get the following result.

Corollary 6.3. The Minimum Eccentricity Shortest Path problem remains W[2]-hard when restricted to sparse graphs.

Later, Corollary 6.5 shows that MESP is Fixed Parameter Tractable for graphs with bounded degree.

6.2 Computing an Optimal Solution

In this section, we investigate how to find an optimal solution for MESP. First, we present a pseudo-polynomial time algorithm to solve MESP on general graphs. Then, we analyse the problem for sparse graphs. Additionally, we present an approach to solve MESP for tree-structured graphs and show that, for some graph classes, the problem is solvable in polynomial time.

6.2.1 General Graphs

The next algorithm shows that the k-ESP problem remains polynomial for a fixed k. Our algorithm is a generalisation of the algorithm mentioned in [68]. It is based on Lemma 6.1 below. Informally, Lemma 6.1 states that, if a graph has a shortest path P with eccentricity k starting at s, each layer $L_i^{(s)}$ is dominated by a subpath of P of length at most $2k$.
Lemma 6.1. Let \(P = \{ s = v_0, v_1, \ldots, v_l \} \) be a shortest path with eccentricity \(k \), \(v_i \in L_i^{(s)} \), and \(P_{i,k} = \{ v_{\max\{0,i-k\}}, \ldots, v_{\min\{i+k,l\}} \} \). Then, \(L_i^{(s)} \subseteq N^k[P_{i,k}] \).

Proof. Assume there is a vertex \(u \in L_i^{(s)} \setminus N^k[P_{i,k}] \). Consider any vertex \(v_j \in P \setminus P_{i,k} \). By the definition of \(P_{i,k} \) it follows that \(|i-j| > k \). Thus, because \(u \in L_i^{(s)} \) and \(v_j \in L_j^{(s)} \), \(d(v_j, u) \geq |i-j| > k \). This contradicts with \(P \) having eccentricity \(k \).

For Algorithm 6.1 below, we say a shortest path \(\tau = \{ v_{i-k}, \ldots, v_j \} \) with \(i \leq j \leq i + k \) is a layer-dominating path for a layer \(L_i^{(s)} \) if
- \(v_l \in L_i^{(s)} \) for \(i - k \leq l \leq j \),
- \(j < i + k \) implies that there is no edge \(v_jw \in E \) with \(w \in L_{j+1}^{(s)} \), and
- \(N^k[\tau] \supseteq L_i^{(s)} \) with \(N^k[\tau] := \bigcup_{i=k}^{j} N^k[v_i] \).

We say that a layer-dominating path \(\sigma = \{ v_{i-k}, \ldots, v_{j} \} \) for layer \(L_i^{(s)} \) is compatible with a layer-dominating path \(\tau = \{ u_{i+1-k}, \ldots, u_{j} \} \) for layer \(L_i^{(s)} \) if \(j' - j \in \{0, 1\} \) and \(v_l = u_l \) for \(i+1-k \leq l \leq j \).

That is, \(\sigma \) and \(\tau \) share a path of length \(j - i - 1 + k \).

Algorithm 6.1: Determines if there is a shortest path of eccentricity at most \(k \) starting at a given vertex \(s \).

Input: A graph \(G = (V, E) \) and a positive integer \(k \).

Output: A shortest path with eccentricity at most \(k \) if existent in \(G \).

1. Calculate the layers \(L_i^{(s)} = \{ v \in V \mid d_G(s, v) = i \} \) with \(0 \leq i \leq \text{ecc}_G(s) \).
2. If \(\text{ecc}_G(s) \leq 2k \) Then
 3. For each shortest path \(P \) from \(s \), determine if \(\text{ecc}_G(P) \leq k \). In this case, Return \(P \). If there is no such \(P \), then \(G \) does not contain a shortest path of eccentricity at most \(k \) starting at \(s \).
4. For \(i = k \) To \(\text{ecc}_G(s) - k \)
 5. Create an empty vertex set \(V'_i \).
 6. For Each layer-dominating path \(\tau \) for layer \(L_i^{(s)} \)
 7. Add a vertex \(v_\tau \), representing the path \(\tau \), to \(V'_i \).
8. For Each \(v_\tau \in V'_{\text{ecc}_G(s) - k} \)
 9. If \(N^k[\tau] \not\supseteq \bigcup_{j=\text{ecc}_G(s) - k} L_j^{(s)} \), remove \(v_\tau \) from \(V'_{\text{ecc}_G(s) - k} \).
10. Create a graph \(G' = (V', E') \) with \(V' = V'_k \cup \cdots \cup V'_{\text{ecc}_G(s) - k} \) and \(E' = \{ v_\sigma v_\tau \mid \sigma \text{ is compatible with } \tau \} \).
11. \(G \) contains a shortest path of eccentricity at most \(k \) starting at \(s \) if and only if \(G' \) contains a path from a vertex \(v_\sigma \in V'_k \) to a vertex \(v_\tau \in V'_{\text{ecc}_G(s) - k} \).

89
Theorem 6.3. Algorithm 6.1 determines if there is a shortest path of eccentricity at most \(k \) starting from a given vertex \(s \) in \(\mathcal{O}(n^{2k+1}m) \) time.

Proof (Correctness). To show the correctness of the algorithm, we need to show that line 11 is correct. Without loss of generality, we can assume that \(\text{ecc}_G(s) > 2k \). Otherwise, the algorithm would have stopped in line 3.

First, assume that there is a shortest path \(P = \{ s = u_0, \ldots, u_l \} \) of length \(l \) in \(G \) with \(\text{ecc}_G(P) \leq k \). Note that \(\text{ecc}_G(s) - k \leq l \leq \text{ecc}_G(s) \). Then, by Lemma 6.1, each subpath \(\tau = \{ u_{i-k}, \ldots, u_j \} \) \((k \leq i \leq \text{ecc}_G(s) - k, j = \min\{l, i + k\})\) is a layer-dominating path for layer \(L_i^{(s)} \). Additionally, if \(j = l \), then \(N^k_G[\tau] \supseteq \bigcup_{j=\text{ecc}_G(s)-k}^{\text{ecc}_G(s)} L_j^{(s)} \). Thus, the algorithm creates a vertex \(v_\tau \in V'_i \) in line 7 which represents a subpath of \(P \) for each \(i \) with \(k \leq i \leq \text{ecc}_G(s) - k \). If \(v_\tau \in V'_i \) and \(v_\sigma \in V'_{i+1} \) represent subpaths of \(P \), \(v_\tau \) and \(v_\sigma \) are adjacent in \(G' \) because \(\tau \) and \(\sigma \) are compatible. Therefore, there is a path in \(G' \) from a vertex in \(V'_i \) to a vertex in \(V'_{\text{ecc}_G(s)-k} \).

Next, assume that \(G' \) contains a path \(P' \) from a vertex \(u \in V'_k \) to a vertex \(v \in V'_{\text{ecc}_G(s)-k} \). Each vertex \(v_\sigma \in V'_i \cap P' \) represents a layer-dominating path for layer \(L_i^{(s)} \) in \(G \). By definition of layer-dominating paths, if \(v_\sigma \in V'_i \) is adjacent to \(v_\tau \in V'_{i+1} \), the paths \(\sigma \) and \(\tau \) in \(G \) (of length \(2k \)) can be combined to a longer path (of length \(2k + 1 \)). If \(\tau \) has length less than \(2k \), it is a subpath of \(\sigma \). Thus, \(P' \) represents a path \(P \) in \(G \) from \(s \) to a vertex \(w \in L_q^{(s)} \) with \(\text{ecc}_G(s) - k \leq q \leq \text{ecc}_G(s) \).

Each vertex \(v_\tau \in V'_i \cap P' \) represents a layer-dominating path \(\tau \) for layer \(L_i^{(s)} \). Because of line 9, \(v_\tau \in V'_{\text{ecc}_G(s)-k} \) implies \(N^k_G[\tau] \supseteq \bigcup_{j=\text{ecc}_G(s)-k}^{\text{ecc}_G(s)} L_j^{(s)} \). Thus, \(P \) is a shortest path starting from \(s \) with \(\text{ecc}_G(P) \leq k \).

\(\square \)

Proof (Complexity). If \(\text{ecc}_G(s) \leq 2k \), the algorithm stops after line 3. In this case there are at most \(\mathcal{O}(n^{2k}) \) shortest paths starting from \(s \). Thus, finding a shortest path with eccentricity \(k \) can be done in \(\mathcal{O}(n^{2k}m) \) time by deciding in \(\mathcal{O}(m) \) time if a path has eccentricity \(k \).

Next, assume \(\text{ecc}_G(s) > 2k \). The graph can only contain \(\mathcal{O}(n^{2k+1}) \) layer-dominating paths because each such path has at most \(2k + 1 \) vertices in it. Therefore, creating the vertices of \(G' \) (line 4 to line 9) can be done in \(\mathcal{O}(n^{2k+1}m) \) time.

Store the found layer-dominating paths in a forest structure \(T \) as follows. For each vertex \(v \) of \(G \), \(T \) contains a tree \(T_v \) rooted at \(v \) of depth at most \(2k \). This tree \(T_v \) stores all layer-dominating
paths of G starting at v. Any node u in T_v (including the root v) at depth less than $2k$ has as the children all neighbours w of u in G such that $d_G(s, w) = d_G(s, v) + 1$. Every node of T_v represents a unique path of G corresponding to the path of T_v from the root v to this node. A leaf t of T_v has a pointer to a layer-dominating path τ (and, hence, to the corresponding vertex v_τ in G') if the path $\tau = \{v, \ldots, t\}$ from the root v to the leaf t forms a layer-dominating path τ in G.

Now, given a layer-dominating path $\sigma = \{v_{i-k}, v_{i-k+1}, \ldots, v_j\}$, we can determine all layer-dominating paths τ which σ is compatible with in $O(m)$ time as follows. Take the tree $T_{v_{i-k+1}}$ in T and, following path σ, decent to node v_j of $T_{v_{i-k+1}}$ representing path $\{v_{i-k+1}, \ldots, v_j\}$. Then, leaves of $T_{v_{i-k+1}}$ attached to v_j have pointer to all paths τ which σ is compatible with.

Since G' has at most $O(n^{2k+1})$ vertices, creating G' (in line 10) takes at most $O(n^{2k+1}m)$ time. Thus, the overall running time for Algorithm 6.1 is $O(n^{2k+1}m)$. □

Algorithm 6.1 determines if there is a shortest path of eccentricity at most k for a given vertex s. If a start vertex is not given, iterating Algorithm 6.1 over each vertex determines if there is a shortest path of eccentricity at most k in a given graph G in $O(n^{2k+2}m)$ time. If k is unknown, a path with minimum eccentricity can be found by trying different values for k starting with 1. Then, the runtime is $O(n^4m) + O(n^6m) + \cdots + O(n^{2k+2}m) = O(n^{2k+2}m)$.

Corollary 6.4. If a given graph G contains a shortest path with eccentricity k, the MESP problem can be solved for G in $O(n^{2k+2}m)$ time, even if k is unknown.

Algorithm 6.1 requires $O(n^{2k+1}m)$ time because there can be up-to $O(2k + 1)$ layer-dominating paths with length $2k$ (see complexity proof of Theorem 6.3). Now, consider the case that a given graph G has maximum vertex-degree Δ. Therefore, such a graph contains at most $O(\Delta^{2kn})$ layer-dominating paths of length $2k$ and, hence, Algorithm 6.1 requires at most $O(\Delta^{2kn}m)$ time. Thus:

Corollary 6.5. The Minimum Eccentricity Shortest Path problem is Fixed Parameter Tractable for graphs with maximum degree Δ. If such a graph G contains a shortest path with eccentricity k, the MESP problem can be solved for G in $O(\Delta^{2kn^2}m)$ time, even if k is unknown.
6.2.2 Distance-Hereditary Graphs

In this subsection, we present an algorithm that solves the Minimum Eccentricity Shortest Path problem for distance-hereditary graphs in linear time. Our algorithm is based on the following result.

Theorem 6.4 (Dragan and Leitert [42]). Let \(x, y \) be a diametral pair of vertices of a distance-hereditary graph \(G \), and \(k \) be the minimum eccentricity of a shortest path in \(G \). Then, there is a shortest path \(P \) between \(x \) and \(y \) with \(\text{ecc}(P) = k \).

Recall that a diametral path in a tree can be found as follows. Select an arbitrary vertex \(v \). Find a most distant vertex \(x \) from \(v \) and then a most distant vertex \(y \) from \(x \). The shortest path from \(x \) to \(y \) is a diametral path. Thus, it follows from Theorem 6.4:

Corollary 6.6. For a tree, a shortest path with minimum eccentricity can be computed in linear time by simply performing two BFS calls.

It is known [45] that a diametral pair of a distance-hereditary graph can be found in linear time. Hence, according to Theorem 6.4, to find a shortest path of minimum eccentricity in a distance-hereditary graph in linear time, one needs to efficiently extract a best eccentricity shortest path for a given pair of end-vertices. In what follows, we demonstrate that, for a distance-hereditary graph, such an extraction can be done in linear time as well.

We will need few auxiliary lemmas.

Lemma 6.2. In a distance-hereditary graph \(G \), for each pair of vertices \(s \) and \(t \), if \(x \) is a vertex on a shortest path from \(v \) to \(\Pi_v = \Pr(v, I(s, t)) \) with \(d(x, \Pi_v) = 1 \), then \(\Pi_v \subseteq N(x) \).

Proof. Let \(p \) and \(q \) be two vertices in \(\Pi_v \) and \(d(v, \Pi_v) = r \). By Lemma 2.8 (page 9), \(N(p) \cap L_{r-1}^{(v)} = N(q) \cap L_{r-1}^{(v)} \). Thus, each vertex \(x \) on a shortest path from \(v \) to \(\Pi_v \) with \(d(x, \Pi_v) = 1 \) (which is in \(N(p) \cap L_{r-1}^{(v)} \) by definition) is adjacent to all vertices in \(\Pi_v \), i.e., \(\Pi_v \subseteq N(x) \).

For an interval \(I(s, t) \) between two vertices \(s \) and \(t \), a slice \(S_i(s, t) \) is defined as the set of vertices in \(I(s, t) \) with distance \(i \) to \(s \), i.e., \(S_i(s, t) = L_i^{(s)} \cap I(s, t) \).
Lemma 6.3. In a distance-hereditary graph G, let $S_i(s,t)$ and $S_{i+1}(s,t)$ be two consecutive slices of an interval $I(s,t)$. Each vertex in $S_i(s,t)$ is adjacent to each vertex in $S_{i+1}(s,t)$.

Proof. Consider Lemma 2.8 (page 9) from perspective of t. Thus, $S_i(s,t) \subseteq N(v)$ for each vertex $v \in S_{i+1}(s,t)$. Additionally, from perspective of s, $S_{i+1}(s,t) \subseteq N(u)$ for each vertex $u \in S_i(s,t)$.

Lemma 6.4. In a distance-hereditary graph G, if a projection $\Pi_v = \Pr(v,I(s,t))$ intersects two slices of an interval $I(s,t)$, each shortest (s,t)-path intersects Π_v.

Proof. Because of Lemma 6.2, there is a vertex x with $N(x) \supseteq \Pi_v$ and $d(v,x) = d(v,\Pi_v) - 1$. Thus, Π_v intersects at most two slices of interval $I(s,t)$ and those slices have to be consecutive, otherwise x would be a part of the interval. Let $S_i(s,t)$ and $S_{i+1}(s,t)$ be these slices. Note that $d(s,x) = i + 1$. Thus, by Lemma 2.8 (page 9), $N(x) \cap S_i(s,t) = N(u) \cap S_i(s,t)$ for each $u \in S_{i+1}(s,t)$. Therefore, $S_i(s,t) \subseteq \Pi_v$, i.e., each shortest path from s to t intersects Π_v.

From the lemmas above, we can conclude that, for determining a shortest (s,t)-path with minimal eccentricity, a vertex v is only relevant if $d(v,I(s,t)) = \text{ecc}(I(s,t))$ and the projection of v on the interval $I(s,t)$ only intersects one slice. Algorithm 6.2 below uses this observation to find such a path in linear time.

Algorithm 6.2: Computes a shortest (s,t)-path P with minimal eccentricity for a given distance-hereditary graph G and a vertex pair s,t.

Input: A distance-hereditary graph $G = (V,E)$ and two distinct vertices s and t.

Output: A shortest path P from s to t with minimal eccentricity.

1. Compute the sets $V_i = \{ v \mid d(v,I(s,t)) = i \}$ for $1 \leq i \leq \text{ecc}(I(s,t))$.
2. Each vertex $v \notin I(s,t)$ gets a pointer $g(v)$ initialised with $g(v) := v$ if $v \in V_1$, and $g(v) := \emptyset$ otherwise.
3. For $i := 2$ To $\text{ecc}(I(s,t))$
 - For each $v \in V_i$, select a vertex $u \in V_{i-1} \cap N(v)$ and set $g(v) := g(u)$.
4. For Each $v \in V_{\text{ecc}(I(s,t))}$
 - If $N(g(v))$ intersects only one slice of $I(s,t)$, flag $g(v)$ as relevant.
5. Set $P := \{ s,t \}$.
6. For $i := 1$ To $d(s,t) - 1$
 - Find a vertex $v \in S_i(s,t)$ for which the number of relevant vertices in $N(v)$ is maximal.
 - Add v to P.

93
Lemma 6.5. For a distance-hereditary graph G and an arbitrary vertex pair s, t, Algorithm 6.2 computes a shortest (s, t)-path with minimal eccentricity in linear time.

Proof. The loop in line 3 determines for each vertex v outside of the interval $I(s, t)$ a gate vertex $g(v)$ such that $N(g(v)) \supseteq \Pr(v, I(s, t))$ and $d(v, I(s, t)) = d(v, g(v)) + 1$ (see Lemma 6.2). From Lemma 6.4 and Lemma 6.3, it follows that for a vertex v which is not in $V_{\text{ecc}(I(s, t))}$ or its projection to $I(s, t)$ is intersecting two slices of $I(s, t)$, $d(v, P(s, t)) \leq \text{ecc}(I(s, t))$ for every shortest path $P(s, t)$ between s and t. Therefore, line 6 only marks $g(v)$ if $v \in V_{\text{ecc}(I(s, t))}$ and its projection $\Pr(v, I(s, t))$ intersects only one slice. Because only one slice is intersected and each vertex in a slice is adjacent to all vertices in the consecutive slice (see Lemma 6.3), in each slice the vertex of an optimal (of minimum eccentricity) path P can be selected independently from the preceding vertex. If a vertex x of a slice $S_i(s, t)$ has the maximum number of relevant vertices in $N(x)$, then x is good to put in P. Indeed, if x dominates all relevant vertices adjacent to vertices of $S_i(s, t)$, then x is a perfect choice to put in P. Else, any vertex y of a slice $S_i(s, t)$ is a good vertex to put in P. Hence, P is optimal if the number of relevant vertices adjacent to P is maximal. Thus, the path selected in line 8 to line 10 is optimal.

Running Algorithm 6.2 for a diametral pair of vertices of a distance-hereditary graph G, by Theorem 6.4, we get a shortest path of G with minimum eccentricity. Thus, we have proven the following result.

Theorem 6.5. A shortest path with minimum eccentricity of a distance-hereditary graph can be computed in linear time.

6.2.3 A General Approach for Tree-Structured Graphs

In a graph G, consider a shortest path P which starts at a vertex s. Each vertex x has a projection $\Pi_x = \Pr(x, P)$. In case of a tree this is a single vertex. However, in general, Π_x can contain multiple vertices and does not necessarily induce a connected subgraph. In this case, there are two vertices u and w in Π_x such that all vertices v in the subpath Q between u and w are not in Π_x. Formally, $u, w \in \Pi_x$, $Q = \{ v \in P \mid d(s, u) < d(s, v) < d(s, w) \}$, and $Q \cap \Pi_x = \emptyset$.

94
Now, assume the cardinality of Q is at most γ, i.e., $d(u, w) \leq \gamma + 1$ for each P, x, u and w. Then, we refer to γ as the *projection gap* of G.

Definition 6.2 (Projection Gap). In a graph G, let $P = \{v_0, \ldots, v_i\}$ be a shortest path with $d(v_0, v_i) = i$. The projection gap of G is γ, $pg(G) = \gamma$ for short, if, for every vertex x of G and every two vertices $v_i, v_k \in \Pr(x, P)$, $d(v_i, v_k) > \gamma + 1$ implies that there is a vertex $v_j \in \Pr(x, P)$ with $i < j < k$.

Based on this definition, we can make the following observation.

Lemma 6.6. In a graph G with $pg(G) = \gamma$, let P be a shortest path starting at s, Q be a subpath of P, $|Q| > \gamma$, u and w be two vertices in $P \setminus Q$ such that $d(s, u) < d(s, Q) < d(s, w)$, and x be an arbitrary vertex in G. If $d(x, u) < d(x, Q)$, then $d(x, w) \geq d(x, Q)$.

Proof. Assume that $d(x, u) < d(x, Q)$ and $d(x, w) < d(x, Q)$. Without loss of generality, let $d(x, u) = d(x, w) < d(x, v)$ for all $v \in P$ with $d(s, u) < d(s, v) < d(s, w)$. Let P' be the subpath of P from u to w. Note that $Pr(x, P') = \{u, w\}$ and $Q \subset P'$. Thus, $d(u, w) \geq |Q| + 1 > \gamma + 1$. This contradicts with $pg(G) = \gamma$. \square

Informally, Lemma 6.6 says that, when exploring a shortest path P, if the distance to a vertex x did not decrease during the last $\gamma + 1$ vertices of P, it will not decrease when exploring the remaining subpath. Based on this, we show that a minimum eccentricity shortest path can be found in polynomial time if $pg(G)$ is bounded by some constant. Additionally, we show that for some graph classes the projection gap has an upper bound leading to polynomial time algorithms for these classes.

Algorithm. For the remainder of this subsection, we assume that we are given a graph G with $pg(G) = \gamma$ containing a vertex s. We need the following notions and notations:

- Q_i and Q_j are subpaths of length γ of some shortest paths starting at s. They do not need to be subpath of the same shortest path. Let $v_i \in Q_i$ and $v_j \in Q_j$ be the two vertices such that $d(s, Q_i) = d(s, v_i)$ and $d(s, Q_j) = d(s, v_j)$. Without loss of generality, let $d(s, v_i) \leq d(s, v_j)$.
We say, Q_i is **compatible** with Q_j (with respect to s) if $|Q_i \cap Q_j| = \gamma - 1$, v_i is adjacent to v_j, and $d(s, v_i) < d(s, v_j)$. Let $C_s(Q_j)$ denote the set of subpaths compatible with Q_j.

- $R_s(Q_j) = \{ w \mid Q_j \subseteq I(s, w) \} \cup Q_j$ is the set of vertices w such that there is a shortest path from s to w containing Q_j (or $w \in Q_j$).
- $I_s(Q_j) = I(s, v_j) \cup Q_j$ are the vertices that are on a shortest path from s to Q_j (or in Q_j).
- $V_s^+(Q_j) = \{ x \mid d(x, Q_j) = d(x, R_s(Q_j)) \}$ is the set of vertices x which are closer to Q_j than to all other vertices in $R_s(Q_j)$. Thus, given a shortest path P containing Q_j and starting at s, expanding P beyond Q_j will not decrease the distance from x to P.

Note that $Q_j \subseteq V_s^+(Q_i)$ and $Q_j = I_s(Q_j) \cap R_s(Q_j)$.

Lemma 6.7. For each vertex x in G, $d(x, Q_j) = d(x, I_s(Q_j))$ or $d(x, Q_j) = d(x, R_s(Q_j))$.

Proof. Assume that $d(x, Q_j) > d(x, I_s(Q_j))$ and $d(x, Q_j) > d(x, R_s(Q_j))$. Then, there is a vertex $u_i \in I_s(Q_j)$ and a vertex $u_r \in R_s(Q_j)$ with $d(x, u_i) < d(x, Q_j)$ and $d(x, Q_j) > d(x, u_r)$. Because u_i, Q_j, and u_r are on a shortest path starting at s and $|Q_j| > \gamma$, this contradicts Lemma 6.6. \[\square\]

Lemma 6.8. If Q_i is compatible with Q_j, then $V_s^+(Q_i) \subseteq V_s^+(Q_j)$.

Proof. Assume that $V_s^+(Q_i) \not\subseteq V_s^+(Q_j)$, i.e., there is a vertex $x \in V_s^+(Q_i) \setminus V_s^+(Q_j)$. Then, $d(x, Q_j) > d(x, R_s(Q_j))$. Thus, by Lemma 6.7, $d(x, Q_j) = d(x, I_s(Q_j))$. Because $Q_i \subseteq I_s(Q_j)$, $d(x, Q_i) \geq d(x, I_s(Q_j)) = d(x, Q_j)$. Since $x \in V_s^+(Q_i)$, $d(x, Q_i) = d(x, R_s(Q_i))$. Also, because $x \notin V_s^+(Q_i)$, $d(x, Q_j) > d(x, R_s(Q_j))$. Thus, $d(x, R_s(Q_i)) > d(x, R_s(Q_j))$. On the other hand, because $R_s(Q_i) \supseteq R_s(Q_j)$, $d(x, R_s(Q_i)) \leq d(x, R_s(Q_j))$ and a contradiction arises. \[\square\]

For a subpath Q_j, let $P_s(Q_j)$ denote the set of shortest paths P which start at s such that $Q_j \subseteq P \subseteq I_s(Q_j)$. Then, we define $\varepsilon_s(Q_j)$ as follows:

$$\varepsilon_s(Q_j) = \min_{P \in P_s(Q_j)} \max_{x \in V_s^+(Q_j)} d(x, P)$$

Consider a subpath Q_j for which $R_s(Q_j) = Q_j$, i.e., a shortest path containing Q_j cannot be extended any more. Then, $V_s^+(Q_j) = V$. Therefore, for any path $P \in P_s(Q_j)$, $\max_{x \in V_s^+(Q_j)} d(x, P) = \text{ecc}(P)$. 96
Lemma 6.9. If $C_s(Q_j)$ is non-empty, then

$$\varepsilon_s(Q_j) = \min_{Q_i \in C_s(Q_j)} \max_{P \in P_s(Q_i)} \max_{x \in V^+_s(Q_j)} \min_{d \in V^+_s(Q_i)} \{ d(x, Q_i), d(x, Q_j) \},$$

Proof. By definition,

$$\varepsilon_s(Q_j) = \min_{P \in P_s(Q_j)} \max_{x \in V^+_s(Q_j)} d(x, P).$$

Let Q_i be compatible with Q_j. Because, by Lemma 6.8, $V^+_s(Q_i) \subseteq V^+_s(Q_j)$, we can partition $V^+_s(Q_j)$ into $V^+_s(Q_j) \setminus V^+_s(Q_i)$ and $V^+_s(Q_i)$. For simplicity, we write $V^+_s(Q_j) \setminus V^+_s(Q_i)$ as $V^+_s(Q_j|Q_i)$ and $V^+_s(Q_i)$ as $V^+_s(Q_i)$. Thus,

$$\varepsilon_s(Q_j) = \min_{Q_i \in C_s(Q_j)} \min_{P \in P_s(Q_i)} \max_{x \in V^+_s(Q_i)} \{ d(x, P \cup Q_i), d(x, P \cup Q_j) \}.$$

Note that we changed the definition of P from $P \in P_s(Q_j)$ to $P \in P_s(Q_i)$, i.e., P may not contain the last vertex of Q_j any more.

If $x \in V^+_s(Q_i|Q_j)$, then $d(x, Q_i) > d(x, R_s(Q_i))$. Thus, by Lemma 6.7, $d(x, Q_i) = d(x, I_s(Q_j))$. Note that, by definition of P, $d(x, Q_i) \geq d(x, P) \geq d(x, I_s(Q_i))$. Therefore, $d(x, P) = d(x, Q_i)$ and

$$\max_{x \in V^+_s(Q_i|Q_j)} d(x, P \cup Q_j) = \max_{x \in V^+_s(Q_i|Q_j)} \min_{d \in V^+_s(Q_i)} \{ d(x, Q_i), d(x, Q_j) \}.$$

For simplicity, we define

$$\varepsilon_s(Q_i, Q_j) := \max_{x \in V^+_s(Q_j|Q_i)} \min_{d \in V^+_s(Q_i)} \{ d(x, Q_i), d(x, Q_j) \}.$$

Note that $\varepsilon_s(Q_i, Q_j)$ does not depend on P. Thus, because $\min_u \max [c, f(u)] = \max [c, \min_u f(u)]$,

$$\varepsilon_s(Q_j) = \min_{Q_i \in C_s(Q_j)} \max_{P \in P_s(Q_i)} \min_{x \in V^+_s(Q_j)} \{ \varepsilon_s(Q_i, Q_j), d(x, P \cup Q_j) \}.$$

If $x \in V^+_s(Q_i)$, then $d(x, Q_i) = d(x, R_s(Q_i)) \leq d(x, R_s(Q_j)) = d(x, Q_j)$. Therefore,

$$\min_{P \in P_s(Q_j)} \max_{x \in V^+_s(Q_i)} d(x, P \cup Q_j) = \min_{P \in P_s(Q_j)} \max_{x \in V^+_s(Q_i)} d(x, P) = \varepsilon_s(Q_i).$$
Thus,
\[
\varepsilon_s(Q_j) = \min_{Q_i \in C_s(Q_j)} \max_{x \in V_s^+(Q_j) \setminus V_s^-(Q_i)} \min_{z \in V_s^+(Q_j) \setminus V_s^-(Q_i)} (d(x, Q_i), d(x, Q_j), \varepsilon_s(Q_i)).
\]

Based on Lemma 6.9, Algorithm 6.3 computes a shortest path starting at \(s \) with minimal eccentricity. The algorithm has two parts. First, it computes the pairwise distance of all vertices and \(d(x, R_s(v)) \) for each vertex pair \(x \) and \(v \) where, similarly to \(R_s(Q_j) \), \(R_s(v) = \{ z \in V \mid v \in I(s, z) \} \). This allows to easily determine if a vertex \(x \) is in \(V_s^+(Q_j) \). Second, it computes \(\varepsilon_s(Q_j) \) for each subpath \(Q_j \). For this, the algorithm uses dynamic programming. After calculating \(\varepsilon_s(Q_i) \) for all subpaths with distance \(i \) to \(s \), the algorithm uses Lemma 6.9 to calculate \(\varepsilon_s(Q_j) \) for all subpaths \(Q_j \) which \(Q_i \) is compatible with.

Theorem 6.6. For a given graph \(G \) with \(\text{pg}(G) = \gamma \) and a vertex \(s \), Algorithm 6.3 computes a shortest path starting at \(s \) with minimal eccentricity. It runs in \(O(n^{\gamma+3}) \) time if \(\gamma \geq 2 \), in \(O(n^2m) \) time if \(\gamma = 1 \), and in \(O(nm) \) time if \(\gamma = 0 \).

Proof (Correctness). The algorithm has two parts. The first part (line 1 to line 8) is a preprocessing which computes \(d(x, R_s(v)) \) for each vertex pair \(x \) and \(v \). The second part computes \(\varepsilon_s(Q_j) \) which is then used to determine a path with minimal eccentricity.

For the first part, without loss of generality, let \(d(s, v) = i, N_s^+(v) = N(v) \cap L_{i+1}^s \), and let \(x \) be an arbitrary vertex. By definition of \(R_s \), \(N_s^+(v) = \emptyset \) implies \(R_s(v) = \{ v \} \), i.e., \(d(x, R_s(v)) = d(x, v) \). Therefore, \(d(x, R_s(v)) \) is correct for all vertices \(v \) with \(N_s^+(v) = \emptyset \) after line 3. By induction, assume that \(d(x, R_s(w)) \) is correct for all vertices \(w \in N_s^+(v) \). Because \(R_s(v) = \bigcup_{w \in N_s^+(v)} R_s(w) \cup \{ v \} \), \(d(x, R_s(v)) = \min(\min_{w \in N_s^+(v)} d(x, R_s(w)), d(x, v)) \). Therefore, line 8 correctly computes \(d(x, R_s(v)) \).

The second part of Algorithm 6.3 iterates over all subpaths \(Q_j \) in increasing distance to \(s \). Line 12 checks if a given vertex \(x \) is in \(V_s^+(Q_j) \). By definition, \(R_s(Q_j) = Q_j \cup R_s(z_j) \) where \(z_j \) is the vertex in \(Q_j \) with the largest distance to \(s \). Thus, \(d(x, R_s(Q_j)) = \min(d(x, R_s(z_j)), d(x, Q_j)) \). By definition of \(V_s^+ \), \(x \in V_s^+(Q_j) \) if and only if \(d(x, Q_j) = d(x, R_s(Q_j)) \). Therefore, \(x \in V_s^+(Q_j) \) if and only if \(d(x, Q_j) \leq d(x, R_s(z_j)) \), i.e., line 12 computes \(V_s^+(Q_j) \) correctly.
Algorithm 6.3: Determines, for a given graph G with $pg(G) \leq \gamma$ and a vertex s, a minimal eccentricity shortest path starting at s.

Input: A graph $G = (V, E)$, an integer γ, and a vertex $s \in V$.

Output: A shortest path P starting at s with minimal eccentricity.

1. Determine the pairwise distances of all vertices.
2. For Each $v, x \in V$

 - Set $d(x, R_s(v)) := d(x, v)$.
3. For $i = ecc(s) - 1$ DownTo 0

 - For Each $v \in L_i^{(s)}$

 - For Each $w \in N(v) \cap L_{i+1}^{(s)}$

 - For Each $x \in V$

 - Set $d(x, R_s(v)) := \min\left[d(x, R_s(v)), d(x, R_s(w))\right]$.
4. For $j = 0$ To $ecc(s) - \gamma$

 - For Each Q_j with $d(s, Q_j) = j$

 - For Each $x \in V$

 - Let z_j be the vertex in Q_j with the largest distance to s. If $d(x, Q_j) \leq d(x, R_s(z_j))$, add x to $V_{z_j}^i(Q_j)$ and store $d(x, Q_j)$.

 - If $j = 0$ Then

 - $\varepsilon_s(Q_j) := \max_{x \in V_{z_j}^i(Q_j)} d(x, Q_j)$

 - Else

 - $\varepsilon_s(Q_j) := \infty$

 - For Each $Q_i \in C_s(Q_j)$

 - $\varepsilon'_s(Q_j) := \max_{x \in V_{z_j}^i(Q_j) \setminus V_{z_j}^i(Q_i)} \min_{x \in V_{z_j}^i(Q_j)} d(x, Q_i), d(x, Q_j), \varepsilon_s(Q_i)$

 - If $\varepsilon'_s(Q_j) < \varepsilon_s(Q_j)$ Then

 - Set $\varepsilon_s(Q_j) := \varepsilon'_s(Q_j)$ and $p(Q_j) := Q_i$.
5. Find a subpath Q_j such that a shortest path containing Q_j cannot be extended any more and for which $\varepsilon_s(Q_j)$ is minimal.

22. Construct a path P from Q_j to s using the $p()$-pointers and output it.

Recall the definition of $\varepsilon_s(Q_j)$:

$$\varepsilon_s(Q_j) = \min_{P \in \mathcal{P}_s(Q_j)} \max_{x \in V_{z_j}^i(Q_j)} d(x, P)$$

If $d(s, Q_j) = 0$, $d(x, P) = d(x, Q_j)$. Therefore, $\varepsilon_s(Q_j) = \max_{x \in V_{z_j}^i(Q_j)} d(x, Q_j)$ as computed in line 14. Note that there is no subpath Q_i which is compatible with Q_j, if $d(s, Q_j) = 0$. Therefore,
the loop starting in line 17 is skipped for these Q_j. Thus, the algorithm correctly computes $\varepsilon_s(Q_j)$, if $d(s, Q_j) = 0$.

By induction, assume that $\varepsilon_s(Q_i)$ is correct for each $Q_i \in \mathcal{C}(Q_j)$. Thus, Lemma 6.9 can be used to compute $\varepsilon_s(Q_j)$. This is done in the loop starting in line 17. Therefore, at the beginning of line 21, $\varepsilon_s(Q_j)$ is computed correctly for each subpath Q_j.

Recall that $V_s^+(Q_j) = V$ if $P \in \mathcal{P}(Q_j)$ and $R_s(Q_j) = Q_j$. Hence, $\max_{x \in V_s^+(Q_j)} d(x, P) = \text{ecc}(P)$. Thus, $R_s(Q_j) = Q_j$ implies that $\varepsilon_s(Q_j)$ is the minimal eccentricity of all shortest paths starting in s and containing Q_j. Therefore, if Q_j is picked by line 21, then $\varepsilon_s(Q_j)$ is the minimal eccentricity of all shortest paths starting in s.

\[\square\]

Proof (Complexity). First, we analyse line 1 to line 8. Line 1 runs in $O(nm)$ time. This allows to access the distance between two vertices in constant time. Thus, the total running time for line 3 is $O(n)$. Because line 8 is called at most once for each vertex x and edge vw, implementing line 4 to line 8 can be done in $O(nm)$ time.

For the second part of the algorithm (starting in line 9), if $\gamma \geq 2$, let all subpaths be stored in a trie as follows: There are $\gamma + 1$ layers of internal nodes. Each internal node is an array of size n (one entry for each vertex) and each entry points to an internal node of the next layer representing n subtrees. This requires $O(n^{\gamma+1})$ memory. Leafs are objects representing a subpath.

If $\gamma = 1$, a subpath is a single edge, and, if $\gamma = 0$, a subpath is a single vertex. Thus, no extra data structure is needed for these cases. In all three cases, a subpath can be accessed in $O(\gamma)$ time.

Next, we analyse the runtime of line 11 to line 16 for a single subpath Q_j. Accessing Q_j can be done in $O(\gamma)$ time. Line 12 requires at most $O(\gamma)$ time for a single call and is called at most $O(n)$ times. Line 14 requires $O(n\gamma)$ time and line 16 runs in constant time. Therefore, for a given subpath, line 11 to line 16 require $O(\gamma n + n)$ time.

For line 18 to line 20, consider a given pair of compatible subpaths Q_i and Q_j. Accessing both subpaths can be done in $O(\gamma)$ time. Assuming the vertices in $V_s^+(Q_i)$ and $V_s^+(Q_j)$ are sorted and stored with their distance to Q_i and Q_j, line 18 requires at most $O(n)$ time. Note that Q_i and Q_j intersect in $\gamma - 1$ vertices. Thus, $\min(d(x, Q_i), d(x, Q_j)) = \min(d(x, v_i), d(x, Q_j))$ where v_i is the vertex in Q_i closest to s. Line 19 and line 20 run in constant time. Therefore, for a given pair of
compatible subpaths, line 18 to line 20 require $O(n)$ time.

Let ϕ be the number of subpaths and ψ be the number of pairs of compatible subpaths. Then, the overall runtime for line 9 to line 20 is $O(\phi(\gamma n + n) + \psi n)$ time, $O(\phi)$ time for line 21, and $O(n)$ time for line 22. Together with the first part of the algorithm, the total runtime of Algorithm 6.3 is $O(m n + \phi(\gamma n + n) + \psi n)$.

Because a subpath contains $\gamma + 1$ vertices, there are up-to $O(n^{\gamma+1})$ subpaths and up-to $O(n^{\gamma+2})$ compatible pairs if $\gamma \geq 2$, i.e., $\phi \leq n^{\gamma+1}$ and $\psi \leq n^{\gamma+2}$. Therefore, if $\gamma \geq 2$, Algorithm 6.3 runs in $O(n^{\gamma+3})$ time.

If $\gamma = 1$, a subpath is a single edge and there are at most mn compatible pairs of subpaths, i.e., $\phi \leq m$ and $\psi \leq nm$. For the case when $\gamma = 0$, a subpath is a single vertex ($\phi \leq n$) and a pair of compatible subpaths is an edge ($\psi \leq m$). Therefore, Algorithm 6.3 runs in $O(n^2 m)$ time if $\gamma = 1$, and in $O(n m)$ time if $\gamma = 0$. □

Note that Algorithm 6.3 computes a shortest path starting in a given vertex s. Thus, a shortest path with minimum eccentricity among all shortest paths in G can be determined by running Algorithm 6.3 for all start vertices s, resulting in the following:

Theorem 6.7. For a given graph G with $\text{pg}(G) = \gamma$, a minimum eccentricity shortest path can be found in $O(n^{\gamma+4})$ time if $\gamma \geq 2$, in $O(n^3 m)$ time if $\gamma = 1$, and in $O(n^2 m)$ time if $\gamma = 0$.

Projection Gap for Some Special Graph Classes. Above, we show that a minimum eccentricity shortest path can be found in polynomial time if the projection gap is bounded by a constant. In what follows, we determine the projection gap for chordal graphs, dually chordal graphs, graphs with bounded tree-length or tree-breadth, and δ-hyperbolic graphs.

Chordal Graphs.

Lemma 6.10. If G is a chordal graph, then $\text{pg}(G) = 0$.

Proof. Assume that $\text{pg}(G) \geq 1$. Then, there is a shortest path $P = \{u, \ldots, w\}$ and a vertex x with $\text{Pr}(x, P) = \{u, w\}$ and $d(u, w) > 1$. By Lemma 2.7 (page 2.7), u and w are adjacent. This contradicts with $d(u, w) > 1$. □

101
Corollary 6.7. For chordal graphs, a minimum eccentricity shortest path can be found in \(O(n^2m)\) time.

Dually Chordal Graphs.

Lemma 6.11. If \(G\) is a dually chordal graph, then \(pg(G) \leq 1\).

Proof. Assume there is a shortest path \(P = \{u, v_1, \ldots, v_i, w\}\) and a vertex \(x\) with \(Pr(x, P) \supseteq \{u, w\}\). To show that \(pg(G) \leq 1\), we show that \(d(u, w) = i + 1 > 2\) implies there is a vertex \(v_k \in Pr(x, P)\) with \(1 \leq k \leq i\).

Consider a family of disks \(D = \{N[u], N[v_1], \ldots, N[v_i], N[w], N^r[x]\}\) where \(r = d(x, P) - 1\). Let \(H\) be the intersection graph of \(D\), \(a\) be the vertex in \(H\) representing \(N[u]\), \(b_k\) representing \(N[v_k]\) (for \(1 \leq k \leq i\)), \(c\) representing \(N[w]\), and \(z\) representing \(N^r[x]\). Because the intersection graph of disks of a dually chordal graph is chordal [16], \(H\) is chordal, too. \(H\) contains the edges \(za\) and \(zc\), \(ab_1\), \(cb_i\), and \(b_kb_{k+1}\) for all \(1 \leq k < i\). Note that, if \(d(u, w) > 2\), \(a\) and \(c\) are not adjacent in \(H\). However, the path \(\{a, b_1, \ldots, b_k, c\}\) connects \(a\) and \(c\). Therefore, because \(H\) is chordal and by Lemma 2.7 (page 9), there is a \(k\) with \(1 \leq k \leq i\) such that \(z\) is adjacent to \(b_k\) in \(H\). Thus, \(d(x, v_k) \leq r + 1\), i.e., \(v_k \in Pr(x, P)\).

Corollary 6.8. For dually chordal graphs, a minimum eccentricity shortest path can be found in \(O(n^3m)\) time.

Graphs with bounded Tree-Length or Tree-Breadth.

Lemma 6.12. If \(G\) has tree-length \(\lambda\) or tree-breadth \(\rho\), a factor \(\gamma \geq pg(G)\) can be computed in \(O(n^3)\) time such that \(\gamma \leq 3\lambda - 1\) or \(\gamma \leq 6\rho - 1\), respectively.

Proof. To compute \(\gamma\), first determine the pairwise distances of all vertices. Then, compute a layering partition for each vertex \(x\). Let \(\gamma + 1\) be the maximum diameter of all clusters of all layering partitions.

As shown in Lemma 3.1 (page 13), the diameter of each cluster is at most \(3\lambda\) if \(G\) has tree-length \(\lambda\) and at most \(6\rho\) if \(G\) has tree-breadth \(\rho\). Therefore, for each shortest path \(P\), \(\text{diam(Pr(x, P))} \leq 3\lambda\) and \(\text{diam(Pr(x, P))} \leq 6\rho\), respectively. Thus, \(pg(G) \leq \gamma \leq 3\lambda - 1\) and \(pg(G) \leq \gamma \leq 6\rho - 1\).
Computing the pairwise distances of all vertices can be done in $O(nm)$ time. A layering partition can be computed in linear time (Lemma 2.5, page 7). For a given layering partition, the diameter of each cluster can be computed in $O(n^2)$ time if the pairwise distances of all vertices are known. Thus, γ can be computed in $O(n^3)$ time. □

Note that it is not necessary to know the tree-length or tree-breadth of G to compute γ. Thus, by computing γ and then running Algorithm 6.3 for each vertex in G, we get:

Corollary 6.9. For graphs with tree-length λ or tree-breadth ρ, a minimum eccentricity shortest path can be found in $O(n^{3\lambda+3})$ time or $O(n^{6\rho+3})$ time, respectively.

δ-Hyperbolic Graphs.

Lemma 6.13. If G is δ-hyperbolic, then $\text{pg}(G) \leq 4\delta$.

Proof. Consider two vertices u and w such that $u, w \in \text{Pr}(x, P)$ for some vertex x and shortest path P. Let $v \in P$ be a vertex such that $d(u, v) - d(v, w) \leq 1$ and $d(u, v) \geq d(v, w)$, i.e., v is a middle vertex on the subpath from u to w.

Assume that $d(u, w) > 4\delta + 1$. Thus, $d(u, v) \geq d(v, w) \geq 2\delta + 1$ and $d(u, w) > d(u, v) + 2\delta$. Therefore, by Lemma 2.10 (page 10), $d(v, x) < \max\{d(x, u), d(x, w)\}$. This contradicts that $u, w \in \text{Pr}(x, P)$. Hence, the diameter of a projection is at most $4\delta + 1$ and, therefore, $\text{pg}(G) \leq 4\delta$. □

Corollary 6.10. For δ-hyperbolic graphs, a minimum eccentricity shortest path can be found in $O(n^{4\delta+4})$ time.

6.3 Approximation Algorithms

In this section, we present different approximation algorithms. The algorithms differ in their approximation factor and runtime. First, we show algorithms for general graphs. Then, we present approaches to compute an approximation for graphs with bounded tree-length and graphs with bounded hyperbolicity. Additionally, we present an approach to compute an approximation based on the layering partition of a graph.
6.3.1 General Graphs

In [41], we show that a spread path gives an 8-approximation for MESP. Recently, Birmelé et al. [10] were able to improve this result.

Theorem 6.8 (Birmelé et al. [10]). Let G be a graph having a shortest path of eccentricity k. Any spread path in G has eccentricity at most $5k$. This bound is tight.

From Theorem 6.8, it follows that a 5-approximation for MESP can be computed in linear time by simply performing two BFS calls. Birmelé et al. [10] additionally show that Algorithm 6.4 below computes a 3-approximation in linear time. However, the runtime of this approach has a much higher constant factor.

Algorithm 6.4: [10] Computes a 3-approximation for MESP.

- **Input:** A graph $G = (V, E)$.
- **Output:** A shortest path with eccentricity at most $2k$, where k is the minimum eccentricity of all paths in G.

1. Compute a spread path P in G from x to y and determine its eccentricity.
2. Initialise an empty queue Q of triples (u, v, s) where u and v are vertices of G and s is an integer.
3. Insert $(x, y, 0)$ into Q.
4. While Q is non-empty.
5. Remove a triple (u, v, s) from Q.
6. Compute a shortest path P' from u to v and determine a vertex w with maximal distance to P'.
7. If $d(P', w) < \text{ecc}(P)$ Then
 - Set $P := P'$.
8. If $s < 8$ Then
 - Insert $(u, w, s + 1)$ and $(v, w, s + 1)$ into Q.

Theorem 6.9 (Birmelé et al. [10]). Algorithm 6.4 calculates a 3-approximation for the MESP problem in linear time.

Next, we present a 2-approximation algorithm. It is based on the following two lemmas.
Lemma 6.14. In a graph G, let P be a shortest path from s to t of eccentricity at most k. For each layer $L_i^{(s)}$, there is a vertex $p_i \in P$ such that the distance from p_i to each vertex $v \in L_i^{(s)}$ is at most $2k$. Additionally, $p_i \in L_i^{(s)}$ if $i \leq d(s, t)$, and $p_i = t$ if $i \geq d(s, t)$.

Proof. For each vertex v, let $p(v) \in P$ be a vertex with $d(p(v), v) \leq k$.

For each $i \leq d(s, t)$, let $p_i \in P \cap L_i^{(s)}$ be the vertex in P with distance i to s. For an arbitrary vertex $v \in L_i^{(s)}$, let $j = d(s, p(v))$. Because $ecc(P) \leq k$ and P is a shortest path, $|i - j| \leq k$. Thus, $d(p_i, v) \leq d(p_i, p(v)) + d(p(v), v) \leq 2k$.

Let $L' = \{ v \mid d(s, v) \geq d(s, t) \}$. Because P has eccentricity at most k, $d(p, t) \leq k$ for all $p \in \{ p(v) \mid v \in L' \}$. Therefore, $d(t, v) \leq 2k$ for all $v \in L'$.

Lemma 6.15. If G has a shortest path of eccentricity at most k from s to t, then every path Q with $s \in Q$ and $d(s, t) \leq \max_{v \in Q} d(s, v)$ has eccentricity at most $3k$.

Proof. Let P be a shortest path from s to t with $ecc(P) \leq k$ and Q an arbitrary path with $s \in Q$ and $d(s, t) \leq \max_{v \in Q} d(s, v)$. Without loss of generality, we can assume that Q starts at s. Also, let u be an arbitrary vertex. Since $ecc(P) \leq k$, there is a vertex $p \in P$ with $d(u, p) \leq k$. Because $d(s, t) \leq \max_{v \in Q} d(s, v)$, there is a vertex $q \in Q$ with $d(s, p) = d(s, q)$. By Lemma 6.14, the distance between p and q is at most $2k$. Thus, the distance from q to u is at most $3k$.

Corollary 6.11. For a given graph G and two vertices s and t, each shortest (s, t)-path is a 3-approximation for the (s, t)-MESP problem.

Note that the bounds given in Lemma 6.14 and Lemma 6.15 are tight. Figure 14 gives an example.

For Algorithm 6.5 below, we say the layer-wise eccentricity of a shortest (s, t)-path Q is ϕ if, for each layer $L_i^{(s)}$, $\max \{ d(q_i, u) \mid u \in L_i^{(s)} \} \leq \phi$ where $q_i \in Q \cap L_i^{(s)}$ if $i \leq d(s, t)$ and $q_i = t$ if $i > d(s, t)$. By Lemma 6.14, a shortest path with eccentricity k has a layer-wise eccentricity of $2k$. Therefore, determining a shortest path with minimum layer-wise eccentricity gives a 2-approximation for the MESP problem. To find such a path, Algorithm 6.5 computes, for each vertex s, the maximal distance of a vertex v to all other vertices u in the same layer $L_i^{(s)}$ and uses a modified BFS to find a shortest path with minimal layer-wise eccentricity starting at s. 105
Theorem 6.10. Algorithm 6.5 calculates a 2-approximation for the MESP problem in $O(n^3)$ time.

Proof (Correctness). Assume a given graph G has a shortest path P from s to t with $\text{ecc}(P) = k$ and s is the vertex selected by the loop starting in line 2. Let Q be a shortest path from s to v.

We show that lines 4 to 8 calculate, for each v, the minimal $\phi(v)$ such that there is a shortest path Q from s to v with a layer-wise eccentricity $\phi(v)$.

By induction, assume this is true for all vertices $u \in L_i(s)$ with $j \leq i - 1$. Now let v be an arbitrary vertex in $L_i(s)$. Line 6 calculates the maximal distance $\phi(v)$ from v to all other vertices in $L_i(s)$. Since v is the only vertex in $Q \cap L_i(s)$ for every shortest path Q from s to v, the layer-wise eccentricity of each Q is at least $\phi(v)$. Let u be a neighbour of v in the previous layer. By induction hypothesis, $\phi(u)$ is optimal. Therefore, $\phi(v) := \max \left\{ \min_{u \in N^{-}[v]} \phi(u), \phi(v) \right\}$ (line 7) is optimal for v.

Since line 9 selects the vertex u with the smallest $\phi(u)$ as parent for v, each path Q from s to v in $T(s)$ has an optimal layer-wise eccentricity of $\phi(v)$. Line 8 calculates the maximal distance from v to all vertices in $\{ u \mid d(s, u) \geq d(s, v) \}$. Thus, $\text{ecc}(Q) \leq \phi'(v)$ and line 10 and line 11 select a shortest path which has an eccentricity at most $\phi'(v)$.

By Lemma 6.14, we know that P has a layer-wise eccentricity of at most $2k$. Thus, the path Q from s to t in $T(s)$ has a layer-wise eccentricity of at most $2k$. Additionally, Lemma 6.14 says that t has distance at most $2k$ to all vertices in $\{ v \mid d(s, v) \geq d(s, t) \}$. Therefore, $\text{ecc}(Q) \leq 2k$. Thus, the path selected in line 11 is a shortest path with eccentricity at most $2k$. □

Proof (Complexity). Line 1 runs in $O(nm)$ time. If the distances are stored in an array, they can
Algorithm 6.5: A 2-approximation for the MESP problem.

Input: A graph $G = (V, E)$.

Output: A shortest path with eccentricity at most $2k$, where k is the minimum eccentricity of all paths in G.

1. Calculate the distances $d(u, v)$ for all vertex pairs u and v, including $L_i^{(u)} = \{ v \in V \mid d(u, v) = i \}$ with $0 \leq i \leq \text{ecc}(u)$ for each u.

2. For Each $s \in V$

 3. Set $\phi(s) := 0$.

 4. For $i := 1$ To $\text{ecc}(s)$

 5. For Each $v \in L_i^{(s)}$

 6. Set $\phi(v) := \max_{u \in L_i^{(s)}} d(u, v)$.

 7. Let $N^-(v) = L_i^{(s)} \cap N(v)$ denote the neighbours of v in the previous layer. Set $\phi(v) := \max \{ \min_{u \in N^-(v)} \phi(u), \phi(v) \}$.

 8. Set $\phi^+(v) := \max \{ d(u, v) \mid d(s, u) \geq i \}$.

9. Calculate a BFS-tree $T(s)$ starting from s. If multiple vertices u are possible as parent for a vertex v, select one with the smallest $\phi(u)$.

10. Let t be the vertex for which $\phi'(t) := \max \{ \phi(t), \phi^+(t) \}$ is minimal. Set $k(s) := \phi'(t)$

11. Among all computed pairs s and t, select a pair (and corresponding path in $T(s)$) for which $k(s)$ is minimal.

For the case that a start vertex s for a shortest path is given, Algorithm 6.5 can be simplified by having only one iteration of the loop starting in line 2. Then, the runtime is $O(nm)$.

Corollary 6.12. A 2-approximation for the (s,t)-MESP problem can be computed in $O(nm)$ time.

6.3.2 Graphs with Bounded Tree-Length and Bounded Hyperbolicity

In Section 6.2.3, we show how to find a shortest path with minimum eccentricity k for several graph classes. For graphs with tree-length λ, this can require up-to $O(n^{3\lambda+3})$ time. In this section, we show that, for graphs with tree-length λ, we can find a shortest path with eccentricity at most
\[k + 2.5\lambda \] in at most \(O(\lambda m) \) time and, for graphs with hyperbolicity \(\delta \), we can find a shortest path with eccentricity at most \(k + O(\delta \log n) \) in at most \(O(\delta m) \) time.

Lemma 6.16. Let \(G \) be a graph with hyperbolicity \(\delta \). Two vertices \(x \) and \(y \) in \(G \) with \(\text{ecc}(x) = \text{ecc}(y) = d(x, y) \) can be found in \(O(\delta m) \) time.

Proof. Let \(u \) and \(v \) be two vertices in \(G \) such that \(d(u, v) = \text{diam}(G) \). For an arbitrary vertex \(x_0 \) and for \(i \geq 0 \), let \(y_i = x_{i+1} \) be vertices in \(G \) such that \(d(x_i, y_i) = \text{ecc}(x_i) \) and \(d(x_i, y_i) < d(x_{i+1}, y_{i+1}) \).

To prove Lemma 6.16, we show that there is no vertex \(y_{2\delta+1} \).

Because \(d(x_0, y_0) = \text{ecc}(x_0), d(x_0, y_0) \geq \max\{d(x_0, u), d(x_0, v)\} \). Therefore, by Lemma 2.10 (page 10), \(d(u, v) \leq \max\{d(u, y_0), d(v, y_0)\} + 2\delta \) and, thus, \(\text{diam}(G) \leq \text{ecc}(x_1) + 2\delta \). Since \(d(x_i, y_i) < d(x_{i+1}, y_{i+1}) \), there is no vertex \(y_j \) with \(j \geq 2\delta+1 \), otherwise \(d(x_j, y_j) > \text{diam}(G) \). Therefore, a vertex pair \(x, y \) with \(\text{ecc}(x) = \text{ecc}(y) = d(x, y) \) can be found in \(O(\delta m) \) time as follows: Pick an arbitrary vertex \(x_0 \) and find a vertex \(x_1 \) with \(d(x_0, x_1) = \text{ecc}(x_0) \) using a BFS. Next, find a vertex \(x_2 \) such that \(d(x_1, x_2) = \text{ecc}(x_1) \). Repeat this (at most \(2\delta \) times) until \(d(x_i, x_{i+1}) = \text{ecc}(x_i) = \text{ecc}(x_{i+1}) \). □

Recall that, if a graph has tree-length \(\lambda \), its hyperbolicity is at most \(\lambda \) (Theorem 2.4, page 10). Thus, it follows:

Corollary 6.13. Let \(G \) be a graph with tree-length \(\lambda \). Two vertices \(x \) and \(y \) in \(G \) with \(\text{ecc}(x) = \text{ecc}(y) = d(x, y) \) can be found in \(O(\lambda m) \) time.

The next lemma shows that, in a graph with bounded tree-length, a shortest path between two mutually furthest vertices gives an approximation for MESP.

Lemma 6.17. Let \(G \) be a graph with tree-length \(\lambda \) having a shortest path with eccentricity \(k \). Also, let \(x \) and \(y \) be two mutually furthest vertices, i.e., \(\text{ecc}(x) = \text{ecc}(y) = d(x, y) \). Then, each shortest path from \(x \) to \(y \) has eccentricity less than or equal to \(k + 2.5\lambda \).

Proof. Let \(P \) be a shortest path from \(s \) to \(t \) with eccentricity \(k \) and \(Q \) be a shortest path from \(x \) to \(y \). Consider a tree-decomposition \(T \) for \(G \) with length \(\lambda \). We distinguish between two cases:

1. There is a bag in \(T \) containing a vertex of \(P \) and a vertex of \(Q \) and
2. There is no such bag in \(T \).

108
Claim 1. For each vertex \(p \in P \) with \(d_G(s,p_s) \leq d_G(s,p) \leq d_G(s,p_t) \), \(d_G(p,Q) \leq 1.5 \lambda \).

Proof (Claim). There is a vertex set \(\{p_s = p_0, p_1, \ldots, p_l, p_{l+1} = p_t\} \subseteq P \), where \(p_i \in B_{i-1} \cap B_i \) for all positive \(i \leq l \). Because \(p_i, p_{i+1} \in B_i \) for \(0 \leq i \leq l \), \(d_G(p_i, p_{i+1}) \leq \lambda \). Thus, because \(P \) is a shortest path, for all \(p' \in P \) with \(d_G(s,p_s) \leq d_G(s,p') \leq d_G(s,p_t) \) there is a vertex \(p_i \) with \(0 \leq i \leq l+1 \) such that \(d_G(p_i, p') \leq 0.5 \lambda \). By definition of \(T \), each bag \(B_i \) \((0 \leq i \leq l) \) contains a vertex \(q \in Q \), i.e., \(d_G(p_i, Q) \leq \lambda \) \((0 \leq i \leq l+1) \). Therefore, for all \(p' \in P \) with \(d_G(s,p_s) \leq d_G(s,p') \leq d_G(s,p_t) \) there is a vertex \(p_i \) with \(0 \leq i \leq l+1 \) such that \(d_G(p'T, Q) \leq d_G(p_i, p') + d_G(p_i, Q) \leq 1.5 \lambda \).

Consider an arbitrary vertex \(v \) in \(G \). Let \(v' \) be a vertex in \(P \) closest to \(v \) and let \(P_v \) be a shortest path from \(v \) to \(v' \). If \(v' \) is between \(p_s \) and \(p_t \), i.e., \(d_G(s,p_s) \leq d_G(s,v') \leq d_G(s,p_t) \), then, by Claim 1, \(d_G(v, Q) \leq d_G(v, v') + d_G(v', Q) \leq k + 1.5 \lambda \). If \(P_v \) intersects a bag containing a vertex \(q \in Q \), \(d_G(v, Q) \leq k + \lambda \).
Next, consider the case when \(P_v \) does not intersect a bag containing a vertex of \(Q \) and (without loss of generality) \(d_G(s,v') > d_G(s,p_t) \). In this case, each path from \(x \) to \(v \) intersects \(B_l \).

Claim 2. There is a vertex \(u \in B_l \) such that \(d_G(u,y) \leq k + 0.5\lambda \).

Proof (Claim). Let \(y' \) be a vertex in \(P \) that is closest to \(y \) and let \(P_y \) be a shortest path from \(y \) to \(y' \). If \(P_y \) intersects \(B_l \), there is a vertex \(u \in P_y \cap B_l \) with \(d_G(y,u) \leq k \).

If \(P_y \) does not intersect \(B_l \), then there is a subpath of \(P \) starting at \(p_t \), containing \(y' \), and ending in a vertex \(p_t \in B_l \). Because \(d_G(p_t,p_t) \leq \lambda \), \(d_G(y',\{p_t,p_t\}) \leq 0.5\lambda \). Therefore, \(d_G(y,\{p_t,p_t\}) \leq d_G(y,y') + d_G(y',\{p_t,p_t\}) \leq k + 0.5\lambda \). \(\Box \)

Let \(u, v', \) and \(z \) be vertices in \(B_l \) such that \(d_G(u,y) \leq k + 0.5\lambda \), \(v' \) is on a shortest path from \(x \) to \(v \), and \(z \in Q \). Because \(d_G(x,y) = \text{ecc}(x), \ d_G(x,v') + d_G(v',v) \leq d_G(x,y) \). Also, by the triangle inequality, \(d_G(x,y) \leq d_G(x,v') + d_G(v',y) \) and \(d_G(v',y) \leq d_G(v',u) + d_G(u,y) \). Because \(\{u,v',z\} \subseteq B_l \) and \(d_G(u,y) \leq k + 0.5\lambda \), \(d_G(v',v) \leq k + 1.5\lambda \) and therefore \(d_G(z,v) \leq k + 2.5\lambda \).

Thus, if there is a bag in \(T \) containing a vertex of \(P \) and a vertex of \(Q \), then \(d_G(v,Q) \leq k + 2.5\lambda \) for all vertices \(v \) in \(G \).

Case 2: There is no bag in \(T \) containing vertices of \(P \) and \(Q \). Because there is no such bag, \(T \) contains a bag \(B \) such that each path from \(x \) and \(y \) to \(P \) intersects \(B \) and there is a vertex \(z \in B \cap Q \).

Consider an arbitrary vertex \(v \). If there is a shortest path \(P_v \) from \(v \) to \(P \) which intersects \(B \), then \(d_G(z,v) \leq k + \lambda \). If there is no such path, each path from \(x \) to \(v \) intersects \(B \). Let \(v' \in B \) be a vertex on a shortest path from \(x \) to \(v \) and let \(u \in B \) be a vertex on a shortest path from \(y \) to \(P \). Note that \(d_G(u,y) \leq k \).

Because \(d_G(x,y) = \text{ecc}(x), \ d_G(x,v') + d_G(v',v) \leq d_G(x,y) \). Also, by the triangle inequality, \(d_G(x,y) \leq d_G(x,v') + d_G(v',y) \) and \(d_G(v',y) \leq d_G(v',u) + d_G(u,y) \). Because \(\{u,v',z\} \subseteq B \) and \(d_G(u,y) < k \), \(d_G(v',v) < k + \lambda \) and therefore \(d_G(z,v) < k + 2\lambda \).

Thus, if there is no bag in \(T \) containing vertices of \(P \) and \(Q \), \(d_G(v,Q) < k + 2\lambda \) for all vertices \(v \) in \(G \). \(\Box \)

Recall that a \(\delta \)-hyperbolic graph has tree-length at most \(O(\delta \log n) \) (Theorem 2.4, page 10).
Corollary 6.14. Let G be a graph with hyperbolicity δ having a shortest path with eccentricity k. Also, let x and y be two mutually furthest vertices, i.e., $\text{ecc}(x) = \text{ecc}(y) = d(x, y)$. Each shortest path from x to y has eccentricity less than or equal to $k + \mathcal{O}(\delta \log n)$.

Lemma 6.16, Lemma 6.17, Corollary 6.13, and Corollary 6.14 imply our next result:

Theorem 6.11. Let G be a graph having a shortest path with eccentricity k. If G has tree-length λ, a shortest path with eccentricity at most $k + 2.5\lambda$ can be found in $\mathcal{O}(\lambda m)$ time. If G has hyperbolicity δ, a shortest path with eccentricity at most $k + \mathcal{O}(\delta \log n)$ can be found in $\mathcal{O}(\delta m)$ time.

Recall that a graph is chordal if and only if it has tree-length 1 (Theorem 2.1, page 9).

Corollary 6.15. If G is a chordal graph and has a shortest path with eccentricity k, a shortest path in G with eccentricity at most $k + 2$ can be found in linear time.

Figure 16 gives an example that, for chordal graphs, $k + 2$ is a tight upper bound for the eccentricity of the determined shortest path.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{example.png}
\caption{Example for Corollary 6.15. For the shown chordal graph G, a shortest path from s to v passing v' has eccentricity 2. This is the minimum for all shortest paths in G. The diametral path from s to u passing u' has eccentricity 4 because of its distance to w.}
\end{figure}

6.3.3 Using Layering Partition

In this subsection, we present an algorithm to compute an approximation for MESP using the layering partition of a graph. For the remainder of this subsection, let G be a graph, let T be a layering partition of G, and let Δ be the maximum cluster diameter of T. Additionally, let k_G and k_T be the minimum eccentricities of any shortest path in G and T, respectively.
First, we show that
\[k_T - \frac{1}{2} \Delta \leq k_G \leq k_T + \Delta. \]

Lemma 6.18.
\[k_T - \frac{1}{2} \Delta \leq k_G \]

Proof. Let \(P \) be a path in \(G \) with the start vertex \(s \), the end vertex \(t \), and with eccentricity \(k_G \). Let \(T_P \) be the subtree of \(T \) induced by the clusters of \(T \) which intersect \(P \). Let \(Q \) be the shortest path in \(T \) from \(C_s \) to \(C_t \), where \(C_s \) and \(C_t \) are the clusters containing \(s \) and \(t \), respectively. Clearly, by the properties of a layering partition, each cluster of \(Q \) is also a cluster of \(T_P \).

Claim 1. For all \(p \in P \), \(d_G(p, Q) \leq \frac{1}{2} \Delta \).

Proof (Claim). Let \(C_P \) be a cluster of \(T_P \) that is not part of \(Q \). If no such cluster exists, then \(T_P = Q \) and, thus, \(d_G(p, Q) = 0 \) for all \(p \in P \). Additionally, let \(C_Q \) be the cluster of \(Q \) which is closest to \(C_P \) in \(T \) and \(p \) be a vertex of \(P \) in \(C_P \).

Due to the properties of a layering partition, there are two vertices \(p_s, p_t \in P \cap C_Q \) with \(d_G(s, p_s) < d_G(s, p) < d_G(s, p_t) \). Because \(P \) is a shortest path and the diameter of a cluster is at most \(\Delta \), \(d_G(p, \{p_s, p_t\}) \leq \frac{1}{2} \Delta \) and, therefore, \(d_G(p, Q) \leq \frac{1}{2} \Delta \). \(\square \)

Let \(v \) be an arbitrary vertex of \(G \) and \(v' \) be a vertex in \(P \) with minimal distance to \(v \). By definition of \(P \), \(d_G(v, v') \leq k_G \). Then, by triangle inequality, \(d_G(v, Q) \leq d_G(v, v') + d_G(v', Q) \), and, by Claim 1, \(d_G(v, Q) \leq k_G + \frac{1}{2} \Delta \). Recall that, for any two vertices \(u \) and \(v \) of \(G \), \(d_T(u, v) \leq d_G(u, v) \) (Lemma 2.6, page 8). Thus, for any vertex \(v \) of \(G \), \(d_T(v, Q) \leq k_G + \frac{1}{2} \Delta \).

Let \(v \) be a vertex of \(G \) with maximal distance to \(Q \) in \(T \), i.e., \(d_T(v, Q) = \text{ecc}_T(Q) \). Therefore, because \(k_T \leq \text{ecc}_T(Q) \), \(k_T \leq d_T(v, Q) \leq k_G + \frac{1}{2} \Delta \).

Lemma 6.19.
\[k_G \leq k_T + \Delta \]

Proof. Let \(Q \) be a path in \(T \) with minimum eccentricity, i.e., \(\text{ecc}_T(Q) = k_T \), such that \(Q \) starts at the cluster \(C_s \) and ends at the cluster \(C_t \). Additionally, let \(s \) and \(t \) be two vertices of \(G \) with \(s \in C_s \) and \(t \in C_t \) and let \(P \) be a shortest path from \(s \) to \(t \) in \(G \).
Consider a vertex \(v \) of \(G \) with maximal distance to \(P \) in \(G \). Hence, \(k_G \leq \text{ecc}_G(P) = d_G(v, P) \). Because \(d_G(u, v) \leq d_T(u, v) + \Delta \) for each vertex \(u \) of \(G \) (Lemma 2.6, page 8), it follows that \(d_G(v, P) \leq d_T(v, P) + \Delta \). Note that, by the properties of a layering partition, \(P \) intersects all clusters of \(Q \). Thus, \(d_T(v, P) \leq d_T(v, Q) \). Additionally, by definition of \(Q \), \(d_T(v, Q) \leq \text{ecc}_T(Q) = k_T \).

From combining these observation, it follows that

\[
k_G \leq \text{ecc}_G(P) = d_G(v, P) \leq d_T(v, P) + \Delta \leq d_T(v, Q) + \Delta \leq \text{ecc}_T(Q) + \Delta = k_T + \Delta. \quad \square
\]

Based on Lemma 6.18 and Lemma 6.19, we can compute an approximation for MESP in linear time.

Theorem 6.12. For a graph \(G \) with minimum eccentricity \(k \), a shortest path \(P \) with eccentricity at most \(k + \frac{3}{2} \Delta \) can be computed in linear time.

Proof. First, construct a layering partition \(T \) for \(G \), starting at an arbitrary vertex. Next, find a path \(Q \) in \(T \) with minimum eccentricity. Let \(C_s \) and \(C_t \) be the start and end clusters of \(Q \). Pick two arbitrary vertices \(s \in C_s \) and \(t \in C_t \). Then, compute a shortest path \(P \) from \(s \) to \(t \) in \(G \) and output it. Note that each of these steps can be done in linear time, including the construction of \(T \) (Lemma 2.5, page 7) as well as finding \(Q \) in \(T \) (Corollary 6.6).

Note that the construction of \(P \) is the same as in the proof of Lemma 6.19. Therefore, as shown in the proof, \(\text{ecc}_G(P) \leq \text{ecc}_T(Q) + \Delta \) and, by Lemma 6.18, \(\text{ecc}_G(P) \leq k + \frac{3}{2} \Delta \). \(\square \)

6.4 Relation to Other Parameters

Similar to path-length, one can see the minimum eccentricity \(k \) of all shortest paths of a graph \(G \) as a parameter describing the structure of \(G \). In this section, we show how \(k \) relates to the path-length of \(G \) and other parameters.

Theorem 6.13. Let \(G \) be a graph with path-length \(\lambda \) and path-breadth \(\rho \) and let the minimum eccentricity of all shortest paths be \(k \). Then,

\[
k \leq \lambda \leq 4k + 1 \quad \text{and} \quad \frac{1}{2} k \leq \rho \leq 2k + 1.
\]

113
Proof. As shown in Lemma 5.1 (page 69), it clearly follows from the definition of path-length that a graph with path-length \(\lambda \) has a shortest path with eccentricity at most \(\lambda \). Therefore, \(k \leq \lambda \) and, since \(\lambda \leq 2\rho \), \(\frac{1}{2}k \leq \rho \).

Next, let \(P \) be a shortest path in \(G \) with the start vertex \(s \) and \(\text{ecc}(P) = k \). As shown in Lemma 6.14, the radius of \(L_i^{(s)} \) is at most \(2k \). Thus, its diameter is not larger than \(4k \). One can now create a path decomposition \(\mathcal{X} = \{X_1, \ldots, X_n\} \) by creating a set \(X_i \) including layer \(L_i^{(s)} \) and all vertices from \(L_i^{(s)} \) which are adjacent to vertices in \(L_i^{(s)} \), i.e., \(X_i = L_i^{(s)} \cup \{ u \mid uv \in E, u \in L_i^{(s)}, v \in L_i^{(s)} \} \). It is easy to see that the radius of \(X_i \) is at most \(2k + 1 \), the diameter of \(X_i \) is at most \(4k + 1 \), and that \(\mathcal{X} \) is a valid path decomposition for \(G \), i.e., \(\rho \leq 2k + 1 \) and \(\lambda \leq 4k + 1 \). \(\square \)

Recently, Völkel et al. [92] defined a closely related problem called \(k \)-Laminarity problem. It asks if a given graph contains a diametral path with eccentricity at most \(k \). If a graph contains such a path, it is called \(k \)-laminar. Similar, if every diametral path of a graph has eccentricity at most \(k \), it is called \(k \)-strongly laminar.

Theorem 6.14 (Birmelé et al. [10]). Let \(G \) be a graph where the minimum eccentricity of all shortest paths is \(k \). Additionally, let \(l \) and \(s \) be the minimal values such that \(G \) is \(l \)-laminar and \(s \)-strongly laminar. Then,

\[
k \leq l \leq 4k - 2 \quad \text{and} \quad k \leq s \leq 4k.
\]

These bounds are tight.

6.5 Solving \(k \)-Domination using a MESP

In [68], an \(O(n^7) \) time algorithm is presented which finds a minimum dominating set for graphs containing a shortest path with eccentricity 1. Using a similar approach, we generalise this result to find a minimum \(k \)-dominating set for graphs containing a shortest path with eccentricity \(k \).

Recall that, for a graph \(G = (V, E) \), a vertex set \(D \) is a \(k \)-dominating set if \(N^k[D] = V \).
Additionally, \(D \) is a minimum \(k \)-dominating set if there is no \(k \)-dominating set \(D' \) for \(G \) with \(|D'| < |D| \).

Lemma 6.20. Let \(D \) be a minimum \(k \)-dominating set of a graph \(G \) and let \(G \) have a shortest path of eccentricity at most \(k \) starting at a vertex \(s \). Then, for all non-negative integers \(i \leq \text{ecc}(s) \),

\[
|D \cap \bigcup_{l=i-k}^{i+k} L_l^{(s)}| \leq 6k + 1.
\]

Proof. Let \(P = \{s = v_0, v_1, \ldots, v_j\} \) be a shortest path with \(j \leq \text{ecc}(s) \) and \(\text{ecc}(P) \leq k \). Also, let \(D_i = D \cap \bigcup_0^{i+k} L_i^{(s)} \) be a set of \(k \)-dominating vertices in the layers \(L_i^{(s)} \) to \(L_i^{(s)} \). Because \(D \) is \(k \)-dominating, \(D_i \) can only \(k \)-dominate vertices in the layers \(L_i^{(s)} \) to \(L_i^{(s)} \). By Lemma 6.1, these layers are also \(k \)-dominated by \(P_i = \{v_{i-3k}, \ldots, v_{i+3k}\} \). Thus,

\[
N^k[D_i] \subseteq \bigcup_{l=i-2k}^{i+2k} L_l^{(s)} \subseteq N^k[P_i].
\]

Assume that \(|D_i| > |P_i| \). Note that \(|P_i| \leq 6k+1 \). Then, there is a \(k \)-dominating set \(D' = (D \setminus D_i) \cup P_i \) such that \(|D| > |D'| \). Thus, \(D \) is not a minimum \(k \)-dominating set. \(\square\)

Based on Lemma 6.20, Algorithm 6.6 below computes a minimum \(k \)-dominating set for a given graph \(G = (V, E) \) with a shortest path of eccentricity \(k \) starting at a vertex \(s \) as follows. In the \(i \)-th iteration, the algorithm knows all vertex sets \(S \) for which there is a vertex set \(S' \) such that (i) \(S = S' \cap \bigcup_{l=i-k}^{i+k} L_l^{(s)} \), (ii) the set \(S^* = S \cup \bigcup_{l=i-k}^{i+k} L_l^{(s)} \) \(k \)-dominates \(L_{i-1}^{(s)} \) and has cardinality at most \(6k + 1 \), and (iii) \(S' \) \(k \)-dominates the layers \(L_0^{(s)} \) to \(L_{i-1}^{(s)} \). Due to Lemma 6.20, a set \(S^* \) with a larger cardinality cannot be a subset of a minimum dominating set of \(G \) and, hence, neither can be \(S \) or \(S' \). Each such set \(S \) is stored as a pair \((S, S')\) in a set \(X_{i-1} \) where \(S' \) is a corresponding set with minimum cardinality, i.e., \(X_{i-1} \) does not contain two pairs \((S, S')\) and \((T, T')\) with \(S = T \). Note that, since \(S' \) has minimum cardinality, it does not contain any vertices from any layer \(L_j^{(s)} \) with \(j > i - 1 + k \). We show later that, this way, \(X_{i-1} \) always contains a pair \((S, S')\) such that \(S' \) is subset of some minimum \(k \)-dominating set.

Then, for each pair \((S, S') \in X_{i-1} \), the algorithm computes all sets \(S \cup U \) which \(k \)-dominate
the layer $L_i^{(s)}$ and have cardinality at most $6k + 1$. For such a set, the sets $R = (S \cup U) \setminus L_{i-k}^{(s)}$ and $R' = S' \cup U$ are created and, if the set X_i does not contain a pair (P, P') with $P = R$, stored as the pair (R, R') in X_i. In the case that X_i already contains such a pair (P, P'), either, if $|R'| < |P'|$, (P, P') is replaced by (R, R') or, if $|R'| \geq |P'|$, (R, R') is not added to X_i.

Note that $L_{i+k}^{(s)} = \emptyset$ for $i > \text{ecc}(s) - k$. Therefore, the algorithm can stop after $\text{ecc}(s) - k$ iterations.

Algorithm 6.6: Determines a minimum k-dominating set in a given graph G containing a shortest path of eccentricity k starting at s.

Input: A graph G, an integer k, and a vertex s which is start vertex of a shortest path with eccentricity k.

Output: A minimum k-dominating set.

1. Compute the layers $L_0^{(s)}, L_1^{(s)}, \ldots, L_{\text{ecc}(s)}^{(s)}$.
2. Create the set $X_0 := \{ (S, S) \mid S \subseteq N^k[s]; 0 < |S| \leq 6k + 1 \}$.
3. For $i := 1$ To $\text{ecc}(s) - k$
 4. Create $X_i := \emptyset$.
 5. For Each $(S, S') \in X_{i-1}$
 6. For Each $U \subseteq L_{i+k}^{(s)}$ with $|S \cup U| \leq 6k + 1$
 7. If $N^k[S \cup U] \geq L_i^{(s)}$ Then
 8. $R := (S \cup U) \setminus L_{i-k}^{(s)}$
 9. $R' := S' \cup U$
 10. If There is no pair $(P, P') \in X_i$ with $P = R$ Then
 11. Insert (R, R') into X_i.
 12. If There is a pair $(P, P') \in X_i$ with $P = R$ and $|R'| < |P'|$ Then
 13. Replace (P, P') in X_i by (R, R').
6. Among all pairs $(S, S') \in X_{\text{ecc}(s) - k}$ for which S' k-dominates G, determine one with minimum $|S'|$, say (D, D').
7. Output D'.

Theorem 6.15. For a given graph G and a vertex s which is start vertex of a shortest path with eccentricity k, Algorithm 6.6 determines a minimum k-dominating set in $n^{O(k)}$ time.

Proof (Correctness). To prove the correctness, we show by induction that, for each i with $0 \leq i \leq \text{ecc}(s) - k$, there is a minimum k-dominating set D and a pair $(S, S') \in X_i$ such that $S' = D \cap \bigcup_{l=0}^{i+k} L_l^{(s)}$. If this is true for $i = \text{ecc}(s) - k$, then $S' = D$. Hence, if (S, S') is a pair in $X_{\text{ecc}(s) - k}$
such that $S' k$-dominates G and has minimum cardinality, then S' is a minimum k-dominating set of G.

By construction in line 2, X_0 contains all pairs (S, S') such that S' is a vertex set with cardinality at most $6k + 1$ which k-dominates $L^{(s)}_0$. Thus, the base case is true. Next, by induction hypothesis and by definition of the pairs (S, S'), there is a minimum dominating set D and a pair $(S, S') \in X_{i-1}$ such that $S = S' \cap \bigcup_{i=1-k}^{i+k-1} L^{(s)}_i = D \cap \bigcup_{i=1-k}^{i+k-1} L^{(s)}_i$. Let $M = D \cap L^{(s)}_{i+k}$. By Lemma 6.20, $|D \cap \bigcup_{i=1-k}^{i+k} L^{(s)}_i| = |S \cup M| \leq 6k + 1$. Therefore, there is an iteration of the loop starting in line 6 with $U = M$. Because $S \cup M = D \cap \bigcup_{i=1-k}^{i+k} L^{(s)}_i$, $S \cup M$ k-dominates $L^{(s)}_i$, i.e., $N^k[S \cup M] \supseteq L^{(s)}_i$. Thus, the algorithm creates a pair (R, R') with $R' = D \cap \bigcup_{i=0}^{i+k} L^{(s)}_i$ (see line 7 to line 9).

Assume that there is a pair $(P, P') \neq (R, R')$ with $P = R$ and $|P'| \leq |R'|$, i.e., (R, R') will not be stored in X_i or replaced by (P, P') (see line 10 to line 13). Because $P = R$, $P' \cap \bigcup_{i=1-k+1}^{i+k} L^{(s)}_i = D \cap \bigcup_{i=1-k}^{i+k} L^{(s)}_i$. Let $D' = P' \cup \left(D \cap \bigcup_{i=1-k+1}^{i+k} L^{(s)}_i\right)$. By definition, P' k-dominates $\bigcup_{i=0}^{i+k} L^{(s)}_i$. Thus, D' k-dominates $\bigcup_{i=0}^{i+k} L^{(s)}_i$. Note that $D' \supseteq D \cap \left(\bigcup_{i=1-k+1}^{i+k} L^{(s)}_i\right)$. Thus, D' also k-dominates $\bigcup_{i=1-k+1}^{i+k} L^{(s)}_i$. Therefore, D' is a minimum k-dominating set and there is a pair $(P, P') \in X_i$ such that $P' = D' \cap \bigcup_{i=0}^{i+k} L^{(s)}_i$.

Proof (Complexity). For a given i, there are no two pairs (S, S') and (T, T') in X_i with $S = T$ (see line 10 to line 13). Thus, for each set $U \subseteq L^{(s)}_{i+k}$, $S \cup U \neq T \cup U$. Additionally, since S and T intersect at most $2k$ consecutive layers, $S \neq T$ for all pairs $(S, S') \in X_i$ and $(T, T') \in X_j$ with $|i - j| \geq 2k$. Therefore, a set $S \cup U$ is processed at most $O(k)$ times by the loop starting in line 6. Hence, because there are at most n^{6k+1} sets $S \cup U$ with $|S \cup U| \leq 6k + 1$, the loop starting in line 6 has at most $O(n^{6k+1})$ iterations.

Next, we show that a single iteration of the loop starting in line 6 requires at most $O(m)$ time. It takes at most $O(m)$ time to check if $N^k[S \cup U] \supseteq L^{(s)}_i$ (line 7) and at most $O(n)$ time to construct (R, R'). Determining if X_i contains a pair (P, P') with $P = R$ and (if necessary) replacing it can be achieved in $O(n)$ time as follows. One way is to use a tree-structure similar to the one we used for Algorithm 6.1. An other (less memory efficient) option is to use an array A_i of size n^{6k+1} where each element can store a pair (S, S'). To determine the index of a pair, assume that each vertex
of G has a unique identifier in the range from 0 to $n - 1$. Additionally, assume that the vertices in a set S are ordered by their identifier. Therefore, each set S can be represented by a unique $(6k + 1)$-digit number with base n. This number is the index of a pair (S, S') in A_i. Hence, it takes at most $O(n)$ time to add (R, R') to X_i and (if necessary) replace a pair (P, P').

Therefore, the total runtime of the algorithm is $O(n^{6k+1}km)$.

If the start vertex s is unknown, one can use Algorithm 6.1 to, first, find a shortest path with eccentricity k and, then, use Algorithm 6.6 to find a minimum k-dominating set.

6.6 Open Questions

Finding Start and End Vertex. The Minimum Eccentricity Shortest Path problem can be naturally split into two subproblems. First, find the start and end vertices of an optimal path. Second, for a given vertex pair, find a shortest path between them with the minimum eccentricity. We know that the second subproblem remains NP-hard (Corollary 6.2). However, is it possible to determine the start and end vertices of an optimal path efficiently?

APX-Complete? In Section 6.3.1, we show multiple algorithms which compute a constant factor approximation in linear or polynomial time. Therefore, MESP is in APX. It remains an open question if the problem is APX-complete.

Complexity for Planar Graphs. We show that MESP is NP-complete for planar graphs (Corollary 6.1) and remains W[2]-hard for sparse graphs (Corollary 6.3). Additionally, we show that the problem is Fixed Parameter Tractable for graphs with bounded degree (Corollary 6.5). Since every induced subgraph of a planar graphs has an average degree less than 6, we conjecture that there is a Fixed Parameter Tractable algorithm to solve MESP on planar graphs.

Computing Projection Gap. In Section 6.2.3, we show that we can solve MESP in polynomial time, if the projection gap of a given graph bounded by a constant. Additionally, we determine an upper bound for the projection gap of some graph classes. It would be interesting to know how to compute the projection gap for a given graph.
Bibliography

