HIERARCHICAL SAMPLING
FOR
LEAST-SQUARES POLICY ITERATION

by

DEVIN SCHWAB

Submitted in partial fulfillment of the requirements for the degree of
Master of Science

Electrical Engineering and Computer Science Department

CASE WESTERN RESERVE UNIVERSITY

January, 2016
We hereby approve the dissertation of Devin Schwab candidate for the degree of Master of Science*.

Committee Chair
Dr. Soumya Ray

Committee Member
Dr. Cenk Cavusoglu

Committee Member
Dr. Michael Lewicki

Committee Member
Dr. Harold Connamacher

Date of Defense
September 2, 2015

*We also certify that written approval has been obtained for any proprietary material contained therein.
Contents

List of Figures v

List of Acronyms vii

Abstract viii

1 Introduction 1

2 Background and Related Work 6
 2.1 Markov Decision Processes (MDP) 6
 2.1.1 Optimality 8
 2.2 Value Functions 9
 2.2.1 Bellman Optimality Equation 10
 2.3 Reinforcement Learning 12
 2.3.1 Model Free Learning 12
 2.3.2 Policy Iteration 14
 2.4 Approximate Reinforcement Learning 15
 2.4.1 Value Function Representation 15
 2.4.2 Approximate Policy Iteration 16
 2.4.3 Q-function Projection and Evaluation 17
 2.5 Q-Learning 19
 2.5.1 Approximate Q-learning 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Least-Squares Policy Iteration</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Hierarchical Reinforcement Learning</td>
<td>23</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Advantages of Hierarchical Reinforcement Learning</td>
<td>24</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Hierarchical Policies</td>
<td>25</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Hierarchical and Recursive Optimality</td>
<td>26</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Semi-Markov Decision Processes</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>MaxQ</td>
<td>30</td>
</tr>
<tr>
<td>2.8.1</td>
<td>MaxQ Hierarchy</td>
<td>31</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Value Function Decomposition</td>
<td>31</td>
</tr>
<tr>
<td>2.8.3</td>
<td>MaxQ-0 Algorithm</td>
<td>33</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Pseudo-Rewards</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Hierarchical Sampling</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Motivation</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Hierarchical Sampling Algorithm</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Sampling Algorithm</td>
<td>41</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Hierarchical Projection</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Kullback-Leibler Divergence</td>
<td>48</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Hierarchy Sampling Algorithm</td>
<td>48</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Random Hierarchical Policy Sampling</td>
<td>49</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Weakly Polled Sampling</td>
<td>53</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Polled Sampling</td>
<td>60</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Discussion</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Derived Samples</td>
<td>63</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Inhibited Action Samples</td>
<td>63</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Abstract Samples</td>
<td>66</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Discussion</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>Hierarchical Sampling with Derived Samples</td>
<td>69</td>
</tr>
</tbody>
</table>
4 Empirical Evaluation 73
 4.1 Methodology ... 73
 4.2 Domains ... 74
 4.2.1 Taxi Domain ... 75
 4.2.2 Wargus Domain ... 77
 4.2.3 Hallways Domain 79
 4.3 Hypotheses ... 81
 4.3.1 Hypothesis 1: Hierarchical Sampling vs Flat Learning ... 82
 4.3.2 Hypothesis 2: Hierarchical Sampling vs
 Hierarchical Learning 85
 4.3.3 Hypothesis 3: Hierarchical Sampling vs
 Hierarchical Learning with Pseudorewards 87
 4.3.4 Hypothesis 4: Derived Samples
 Improve Convergence Rate 91
 4.3.5 Hypothesis 5:
 KL-Divergence from Target Distribution 92

5 Conclusions 95

A Detailed Domain Descriptions 97
 A.1 Taxi Domain ... 97
 A.1.1 Taxi State Variables 97
 A.1.2 Taxi Action Effects 98
 A.1.3 Taxi Subtask Descriptions 98
 A.2 Wargus Domain ... 99
 A.2.1 Wargus State Variables 99
 A.2.2 Wargus Action Effects 100
 A.2.3 Wargus Subtask Descriptions 101
List of Figures

1.1 Example hierarchy for cooking task 4

2.1 Policy Iteration Flowchart. Image taken from Lagoudakis and Parr 2003 [1]... 14

2.2 Approximate Policy Iteration Flowchart. Image taken from Lagoudakis and Parr 2003 [1]................................. 17

2.3 A 2 room MDP. The agent starts somewhere in the left room and must navigate to the goal in the upper right corner of the right room. The arrows indicate the recursively optimal policy. The gray cells show the states where the recursively and hierarchically optimal policies are different. [2] .. 27

2.4 Hierarchy for a simple 2 room maze 28

3.1 Simple Hierarchy to Illustrate Projection 44

3.2 Flat MDP as a hierarchy with no extra information about decomposition of subtasks. .. 46

3.3 Weakly Polled Example Hierarchy 56

3.4 Weakly Polled Example Markov Chain 56
LIST OF FIGURES

4.1 Taxi Domain [2]
The colored letter areas the four pickup/dropoff locations. The car icon represents the current location of the agent. The grid contains wall obstacles (represented by bold lines) which the agent cannot move through ... 76

4.2 The hierarchy for the Taxi World domain. 77

4.3 Wargus Domain ... 78

4.4 Wargus Hierarchy ... 79

4.5 Hallway Domain ... 80

4.6 Hallway Hierarchy ... 81

4.7 Taxi - Baseline Learning Curves .. 83

4.8 Wargus Baseline Comparisons Learning Curve - Best Policies ... 85

4.9 Taxi - Hierarchical Sampling vs Hierarchical Learning - Best Policies 86

4.10 Wargus - Hierarchical Sampling vs Hierarchical Learning - Best Policies 86

4.11 Hallways - Baseline Comparison .. 90

4.12 Taxi - Comparing the effect of the inhibited action samples and abstract action samples when used with Polled sampling on the Taxi domain ... 91

4.13 Wargus - Comparing the effect of inhibited action samples and abstract action samples when used with Polled sampling on the Wargus Domain 92

4.14 Taxi - KL-Divergence .. 94
List of Acronyms

HRL Hierarchical Reinforcement Learning.

LSPI Least-Squares Policy Iteration.

LSTDQ Least-Squares Temporal Difference Q.

MDP Markov Decision Process.

RHP Random Hierarchical Policy.

RL Reinforcement Learning.

SDM Sequential Decision Making.

SMDP Semi-Markov Decision Process.
Hierarchical Sampling for Least-Squares Policy Iteration

Abstract

by

DEVIN SCHWAB

For large Sequential Decision Making tasks, an agent may need to make lots of exploratory interactions within the environment in order to learn the optimal policy. Large amounts of exploration can be costly in terms of computation, time for interactions, and physical resources. This thesis studies approaches to incorporate prior knowledge to reduce the amount of exploration. Specifically, I propose an approach that uses a hierarchical decomposition of the Markov Decision Process to guide an agent’s sampling process, in which the hierarchy is treated as a set of constraints on the sampling process. I show theoretically that, in terms of distributions of state-action pairs sampled with respect to hierarchical states, variants of my approach have good convergence properties. Next, I perform an extensive empirical validation of my approach by comparing my methods to baselines which do not use the prior information during the sampling process. I show that using my approach, not only will irrelevant state-action pairs be avoided while sampling, but that the agent can learn a hierarchically optimal policy with far fewer samples than the baseline techniques.
Chapter 1

Introduction

Every decision has an immediate effect, but more importantly, each decision can also have long-term consequences. In order to make the best decision, both the immediate effects and the long-term effects must be taken into account. For instance, choosing to eat nothing but junk food would be enjoyable in the short term, but the long-term health consequences are a major problem. Sequential Decision Making (SDM) is the study of how to make the best decisions when both immediate and long-term consequences are considered.

Examples of SDM problems abound in the real world. For instance, the everyday task of what to eat for dinner can be thought of as an SDM. First, what to eat must be decided, then where to get the ingredients, then how to make it, etc. Each decision affects the best decisions at the next stage. Algorithms capable of automatically choosing the optimal actions in these types of situations would be extremely useful and have wide applicability.

Researchers have been working on designing algorithms that can “solve” an SDM problem for many years. The simplest and least flexible is to preprogram in the optimal decision for every scenario. Obviously, this only works for tasks with a very small amount of scenarios. The other classic approach is to provide the computer, or
agent, with a model of how the decisions affect the environment. The agent can then use this model to plan ahead and choose the best plan of decisions. However, this approach is not very flexible, as if the environment changes, the model must first be updated by the programmer.

Rather than providing the agent with lots of information about the SDM, like planning and preprogramming algorithms, learning algorithms acquire all of their information about the SDM by interacting with it. Reinforcement Learning (RL) is the name of the class of algorithms designed to learn how to optimally solve an SDM from scratch. RL algorithms start out knowing nothing about the environment, except for the actions it can decide to take. Each time the RL algorithm needs to make a decision, it examines the environment and consults its policy to determine what decision to make. In the beginning, the agent has no information about the effects of decisions, so its policy is random. But as decisions are made, the associated outcome is tracked. Over time, decisions that had positive outcomes are likely to be made again, and decisions that had negative outcomes are likely to be avoided. Eventually, with enough experience the agent will learn a policy that makes the best decision in every scenario.

For example, consider the task of cooking a meal, which requires the preparation of a number of different dishes. The agent would need to learn how to boil the water, cook the pasta, steam the broccoli and plate the food. Each of these different steps themselves require multiple actions to achieve. An RL agent would start in the environment knowing nothing about it, except which actions it could decide to perform. In this case, those actions might be things like “turn on the stove”, “place the pot on the stove”, “put the pasta in the pot”, “fill the pot with water”, “clean the broccoli”, “get out the plates”, etc. Because the agent starts with no prior knowledge, it will randomly try different actions and observe the outcome. In some cases, it will decide on the right action, like turning on the stove when the pot is already on top.
In other cases, it will decide on the wrong action, like putting the pasta in the pot with no water. In either case, the agent will observe the results of the actions it takes to learn whether they had positive or negative outcomes. The correct actions, which have positive outcomes, will then become the actions selected by the agent’s policy.

RL algorithms have many advantages over the planning and preprogramming approach, however, the example of cooking a meal clearly demonstrates some of the shortcomings. For example, the agent will waste time trying dumb actions, like putting an empty pot on the stove. In fact, some of the dumb actions might even be dangerous. The agent may use the stove incorrectly, thus starting a fire. Therefore, improvements to the basic RL algorithms that allow for prior information about the optimal policy are desirable.

One way to encode prior information is through the use of a hierarchical decomposition. Rather than trying to solve the whole task at once, the agent can solve a decomposed version of the task. For example, the meal task can be broken down by dish: make the pasta, make the broccoli, plate the meal. Each of those tasks can be further broken down. For instance, the make the broccoli task might contain the subtasks: clean the broccoli, cut the broccoli, and steam the broccoli. A visual representation of this is shown in figure 1.1. Now when the agent is trying to learn how to optimally prepare the broccoli, it will not waste time trying to do things with the pasta. This can also prevent dangerous actions like turning on the stove when making the broccoli.
The issue with a hierarchical decomposition is that the optimal policy for a given decomposition might not be the best policy possible without the hierarchy. When an agent executes a hierarchical policy, it will pick a specific task and execute that task until its finished, while ignoring the other tasks in the hierarchy. This can be problematic when the decisions in one task affect the optimal decision in another task. For the cooking task example, the choice of what dishes to use when cooking each food affects the other foods. Assume that the agent chooses to use the big pasta pot to prepare the broccoli. This may reduce the cost of the “Make Broccoli” task, but it also increases the cost of the “Make Pasta” task, as now the agent has to wash the pasta pot first. If the agent had taken into account the “Make Pasta” task when preparing the broccoli it could have decided to use the smaller pot for the broccoli, thus removing the need for the extra washing in the pasta subtask.

In this work, I propose a way of incorporating prior information into an agent using a task hierarchy. My contributions are:

- A technique that utilizes the hierarchy as a set of constraints on the samples the agent collects while learning

- A theoretical evaluation of the convergence properties of variations of the sampling technique

- A method that uses the hierarchy and collected samples to guarantee that states
that are inhibited by the hierarchy are inhibited in the policy found by the agent

- A method that uses the hierarchy to generalize the collected samples in order to increase the amount of “experience” each sample provides

- Experimental evaluation of my techniques, as compared to baselines, showing that in many situations my techniques can converge significantly faster than the baselines

The thesis is organized into three main chapters. In the first chapter, I provide the necessary background to understand the rest of the thesis. This chapter also includes references to relevant existing work. The second chapter contains the theoretical contributions of this thesis. First, I derive the desired distribution of samples for a task hierarchy. Next, I present the hierarchical sampling algorithm and its variations. For each variation, I provide a theoretical analysis of the asymptotic properties. I also introduce the notion of generating samples based on the information in the task hierarchy. The third chapter contains the hypotheses about the theory along with their experimental verification. I test each of the sampling variations on a variety of domains and compare them to existing algorithms as a baseline. I show that my algorithm can perform significantly better than the baselines over a range of domains.
Chapter 2

Background and Related Work

This chapter covers the related background and existing algorithms that are used in this thesis. First, I define Markov Decision Processes (MDPs), the mathematical foundation for SDM problems. Then I define the value function, which is a way to determine the utility of a state and policy. This is followed by an overview of RL algorithms and approximate RL algorithms. Next, I describe Q-learning, a specific online RL algorithm that is used as a baseline. I then present Least-Squares Policy Iteration (LSPI), an offline RL algorithm that I use with my hierarchical sampling algorithms. Next, I present an overview of Hierarchical Reinforcement Learning (HRL). Finally, I discuss a specific HRL framework, MaxQ, and its associated algorithm.

2.1 Markov Decision Processes (MDP)

The formal way of modeling an SDM process is as an Markov Decision Process (MDP). MDPs are defined as a tuple \((S, S_0, A, P, R, \gamma)\) [3]. \(S\) is the set of all states. These states are fully observable and contain all of the information the agent needs to make optimal decisions. \(S_0 \subseteq S\) is the set of states an agent can start in. It is possible to have a probability distribution defined over the states in \(S_0\), which define the probability of starting in a particular state from the set. \(A\) is the set of actions
available to the agent. \(P : S \times A \times S \rightarrow [0, 1] \) is the transition function, a probabilistic function, which maps state action pairs to resulting states. \(R : S \times A \rightarrow \mathbb{R} \) is the reward function, which maps each state action pair to a real value. \(\gamma \in (0, 1) \) is the discount factor, which controls how the agent trades off immediate rewards for long term rewards. The closer the discount factor is to 1, the more the agent prefers long term rewards to short term rewards.

As an example, consider a part of the cooking task described in the introduction. In this case, the set of states, \(S \), contains all of the information about the environment that the agent needs to know about in order to cook. This might include a binary variable indicating whether or not the pasta is in the pot, as well as the location of the agent, the location of the pot and the temperature of the stove. The starting state would have the stove temperature at room temperature, all of the pots in the cabinets, and the pasta not in the pot. Some of the actions available might be “put pasta in pot” and “turn on stove”. The transition function maps a state-action-state tuple to a probability. The value is the probability of the action causing a transition between the two states. As an example, let \(x \) be a state where the “pasta in pot” variable is false. Let \(x' \) be the state \(x \) with the “pasta in pot” variable being true. If the “put pasta in pot” action has a 90% chance of succeeding in state \(x \), then the transition function would be \(P(x, \text{put pasta in pot}, x') \rightarrow 0.9 \) and \(P(x, \text{put pasta in pot}, x) \rightarrow 0.1 \). The reward function maps states and actions to a real number. If in state \(x \) the agent calls the “put pasta in pot” action, then the reward function might be \(R(x, \text{put pasta in pot}) \rightarrow 1 \). If there is another state, \(y \), where using action “put pasta in pot” is the wrong action, then this might have a reward function \(R(y, \text{put pasta in pot}) \rightarrow -10 \). Finally, a reasonable value for \(\gamma \) might be 0.9. The closer \(\gamma \) is to 0, the less the agent will care about the long term rewards of successfully completing the entire meal task.

At each state, \(s \in S \), the agent will choose an action, \(a \in A \), using its policy,
\(\pi(s) : S \rightarrow A\). The goal of the agent is to learn an optimal policy, which maps each state in the MDP to the best possible action the agent can make in that state.

2.1.1 Optimality

The agent’s goal is to learn an optimal policy, \(\pi^*\), that maximizes the rewards the agent receives from the MDP. Each execution of a policy gives a specific trajectory, \(T\), of states the agent entered, and rewards the agent received. The utility of such a trajectory is shown in equation 2.1.

\[
U(T) = r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots + \gamma^k r_k
\]

(2.1)

This particular way of calculating a trajectory’s utility is known as cumulative discounted reward. Other utility functions exist [4], but this work does not deal with them. Cumulative discounted reward considers all rewards over the course of a trajectory, but weights short term rewards higher than long term rewards.

While a specific trajectory’s utility can be explicitly calculated, the agent is interested in finding a policy that generates the trajectory with the best possible utility in all scenarios. So the agent must select the policy that maximizes over the expected trajectories according to the policy as seen in equation 2.2. These trajectories may vary from run to run, based on the starting state, and non-determinism of the actions.

\[
\pi^* = \arg\max_\pi \mathbb{E}_T [U(T|\pi)]
\]

(2.2)

All algorithms that solve an MDP boil down to trying to solve equation 2.2.
2.2 Value Functions

Learning algorithms solve equation 2.2 by calculating, sometimes indirectly, the value function over the state space. The value of a state is an estimate of how valuable a state is to an agent’s policy. Policies that generate trajectories passing through high value states are expected to have high utilities as calculated by equation 2.1.

The value function is defined by recursively deconstructing the cumulative discounted reward as shown in equation 2.3. This recursive definition is known as the Bellman equation [5].

\[
V^\pi(s) = E \{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s, \pi \} \\
= E \{ r_t + \gamma V^\pi(s_{t+1}) | s_t = s, \pi \} \\
= \sum_{s'} P(s, \pi(s), s') (R(s, \pi(s)) + \gamma V^\pi(s')) \\
= R(s, \pi(s)) + \gamma \sum_{s' \in S} P(s, \pi(s), s') V^\pi(s')
\] (2.3)

The Bellman equation shows that the value of a state is defined by the value of the states the agent can transition to, from this state, following the policy \(\pi \).

The value function allows the agent to compare the quality of two different policies for a task. A superior policy will have a value function that satisfies the criteria in equation 2.4.

\[
V^{\pi_1}(s) \geq V^{\pi_2}(s), \forall s \in S
\] (2.4)

The goal of the agent is to find a policy \(\pi^* \), with value function \(V^{\pi^*}(s) \), that satisfies equation 2.4 when compared to every possible policy’s value function.
2.2.1 Bellman Optimality Equation

To guarantee that a policy is optimal, the agent needs to compare the policy value function to the optimal value function, $V^{\pi^*}(s)$. The naïve approach would be to calculate the value function for every possible policy and then pick whichever policy satisfied equation 2.4, when compared to all of the other policies. However, there are far too many policies to check and the value function can be computationally expensive to compute for MDPs with large state spaces.

Fortunately, the value of the optimal policy can be computed without knowing the optimal policy using the Bellman optimality equation shown in equation 2.5. This equation relates the optimal value of a state, to the optimal value of its neighbors.

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} P(s, a, s') \left(R(s, a) + \gamma V^*(s') \right)$$ \hspace{1cm} (2.5)

The Bellman optimality equation also gives a method of choosing the optimal action with respect to the value function. Just use the action that gave the best value in the first place. Equation 2.6 shows this.

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P(s, a, s') \left(R(s, a) + \gamma V^*(s') \right)$$ \hspace{1cm} (2.6)

Bellman Backup Operator

For a given policy, if the model of an MDP is known, then the agent can treat the Bellman equations as a set of $|S|$ linear equations with $|S|$ unknowns. Each state must satisfy equation 2.3 and in each state the unknown is $V^\pi(s)$. However, solving all of the equations simultaneously can be computationally impractical. Instead, an iterative solution can be defined by transforming the equation into an operator called
the “Bellman Backup Operator”. This is shown in equation 2.7.

\[(B^\pi \psi)(s) = \sum_{s' \in S} P(s, \pi(s), s') (R(s, \pi(s)) + \gamma \psi(s')) \quad (2.7)\]

\(\psi\) is the set of all real-valued functions over the state space. \(\psi(s)\) is that function evaluated for a particular state \(s\). For a fixed policy, it can be shown that this backup operator has a fixed point where \(V^\pi = B^\pi V^\pi\). It can also be shown that for a fixed policy, \(B^\pi\) is a monotonic operator, meaning that applying \(B^\pi\) to any \(V \neq V^\pi\) will always return a \(V\) that is closer to \(V^\pi\). That means that for any initial value function (i.e. \(V \in \psi\)) repeated application of the backup operator is guaranteed to converge to the fixed point \(V^\pi\).

Equation 2.7 can also be written in terms of a fixed action \(a\) as shown in equation 2.8.

\[(B^a \psi)(s) = R(s, a) + \gamma \sum_{s' \in S} P(s, a, s') \psi(s') \quad (2.8)\]

Using this formulation, a backup operator that converges on the optimal value function given any starting value function can be created. The Bellman optimality criterion showed that the optimal value function is the maximum expected value over all actions. So, by applying a maximum over all fixed action backups for all states it is guaranteed that the new value function \(V_{k+1}\) will be greater than or equal to \(V_k\) for all states. This gives a way to find the optimal value function and therefore, the optimal policy using the Bellman backup operator. This is shown in equation 2.9.

\[(B^* \psi)(s) = \max_{a \in A} \left(R(s, a) + \gamma \sum_{s' \in S} P(s, a, s') \psi(s') \right) \quad (2.9)\]

Repeated applications of this will reach the fixed point \(V^* = B^* V^*\).
CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Reinforcement Learning

This section presents an overview of RL algorithms. I first define model-free algorithms, that do not require the transition function and reward function of an MDP in order to find an optimal policy. I compare these to model-based algorithms, that do require the transition and reward function. Then, I introduce the Quality function, or Q-function, that is the model-free equivalent to the value function. Next, I present the Q-function equivalents of the Bellman equation and Bellman Optimality equation. Finally, I give an overview of Policy Iteration algorithms.

2.3.1 Model Free Learning

Section 2.2 and 2.2.1 explained how the Bellman equations can be used to find the value function of a policy, and from there the optimal policy. The issue is that value function based techniques require that the agent have an estimate of the transition model, P, and reward function, R, of the MDP. Techniques that estimate the model of the MDP are known as model-based learning algorithms. When a good estimate of a model can be learned, model-based algorithms perform well, however, often it is difficult to learn the MDP’s model.

Model-free based algorithms avoid the requirement for a model by instead learning an estimate of the state-action value function, more commonly called the Quality-function, or Q-function for short. The Q-function is defined in equation 2.10. Instead of having single values for every state, each state has as many value as there are actions. This increases the number of values needed to define the function, but allows
the agent to reason about the value of each specific action in a state individually.

\[Q^\pi(s, a) = E \{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s, a_t = a, \pi \} \]
\[= E \{ r_t + \gamma Q^\pi(s', \pi(s')) | s_t = s, a_t = a, \pi \} \]
\[= \sum_{s' \in S} P(s, \pi(s), s') (R(s, \pi(s)) + \gamma Q^\pi(s', \pi(s'))) \] (2.10)
\[= R(s, a) + \gamma \sum_{s' \in S} P(s, \pi(s), s') Q^\pi(s', \pi(s')) \]

There is also a form of the Bellman optimality equation for the state-action function shown in equation 2.11. The main difference between the value function version is that there is no need to take the maximum with respect to the actions over the entire equation. It is only necessary to take the maximum over the inner Q-values. This saves a large amount of computation and removes the need to reason forward with the transition function, \(P \).

\[Q^*(s, a) = \sum_{s' \in S} P(s, a, s') (R(s, a) + \gamma \max_{a' \in A} Q^*(s', a')) \] (2.11)

The optimal value function can be obtained using the optimal Q-function by taking the largest value of the Q-function for each state. This relationship is shown in equation 2.12.

\[V^*(s) = \max_{a \in A} Q^*(s, a) \] (2.12)

The optimal policy is also easy to find using the optimal Q-function. This is shown in equation 2.13.

\[\pi^*(s) = \arg\max_{a \in A} Q^*(s, a) \] (2.13)
2.3.2 Policy Iteration

An alternative to learning an estimate of the Q-function, is to directly learn the optimal policy [1]. In reality the exact values of the Q-function do not matter, only the rankings matter, as the final policy is a maximum over the Q-function. Policy iteration works directly in policy space and is not concerned with finding the exact Q-function.

Policy iteration algorithms work in a loop consisting of two steps: policy evaluation and policy improvement. Policy evaluation uses the Bellman backup operator from equation 2.7 to find the fixed point of the value function for the current policy. Policy improvement then looks at the value of each state-action pair and determines if any state-action pairs have better values than the state-action pairs defined by the current policy. If a better action is found, then the policy is updated. This update is guaranteed to be a better value because at least one state now has a greater value. When no more changes to the policy are needed, the policy has converged to the optimal policy, as there is no state in which the policy could select an action that has a higher value. The general process is illustrated in figure 2.1.

![Policy Iteration Flowchart](image)

Figure 2.1: Policy Iteration Flowchart. Image taken from Lagoudakis and Parr 2003 [1].
2.4 Approximate Reinforcement Learning

This section discusses methods for approximating the value function and Q-function. First, I present motivation for why approximation is needed. This includes examples of the two main ways of representing Q-functions. Then, I present Approximate Policy Iteration. Finally, I give an explanation of one technique for performing Approximate Policy Iteration.

2.4.1 Value Function Representation

Any RL algorithm that uses the Q-function to solve for the optimal policy, requires a representation of the Q-function. The most common representation is a table of values, with one value for each state-action pair. This means that there is no approximation error present in the estimate, however, as the state-action space grows the number of values needed to represent the Q-function grows. Generally, as the number of values an agent needs to learn increases, its convergence rate will decrease. In the most extreme case, the state space is continuous and an exact representation would require learning an infinite number of values.

Approximation can overcome these issues. The most popular approximation is a linear combination of features. These features can be as simple as a discretization of the state space or they can be complex functions hand picked by domain experts. The only constraint is that the features can only use information from the current state of the environment and the current set of actions. This is shown in equation 2.14.

\[Q = \sum_{i=0}^{n} \theta_i f_i(s,a) \]

(2.14)

Each \(\theta\) is a weight and \(f_i(s,a)\) is the i-th feature function. Typically, an extra feature always equal to 1 is added in to the representation to allow for a constant offset for the entire linear combination. The weights, \(\theta_i\), are often combined into a single
“weight vector” $\Theta = [\theta_0, \cdots, \theta_n]$. The features are similarly combined into a feature vector $f(s, a) = [f_0(s, a), \cdots, f_n(s, a)]$. This allows equation 2.14 to be rewritten in the more compact form shown in equation 2.15.

$$\tilde{Q} = \Theta \cdot f$$ \hspace{1cm} (2.15)

Now the agent only needs to learn the values of Θ instead of the individual Q-value of every state-action pair.

It is important to note that if poor features are chosen, it may be impossible for the agent to find a reasonable policy. As an extreme example, consider trying to approximate a policy with a single feature that always evaluates to 1. In this case, all of the state-action pairs would have exactly the same value, thus making it impossible for the agent to make intelligent decisions.

The feature representation can also give some generalization to the agent’s experience. Consider the case where an agent has visited a state s_1 many times and has performed all of the different actions many times. This means that the agent has a good estimate of the Q-function for that state. Assume that the state has a feature vector value of f_a. If the agent then visits a similar state s_2, which has a feature vector f_b, then because s_1 is similar to s_2 it is likely that $f_a \approx f_b$. This means that the agent will likely already know the best action in s_2 even though it has not visited that state many times. Features also allow experts in a domain to encode prior knowledge. All of these upsides can make the feature vector representation a better choice.

2.4.2 Approximate Policy Iteration

Policy iteration using a parametric representation, such as the one shown in equation 2.15, is known as “Approximate Policy Iteration”. The general process is illustrated in figure 2.2. The process is mostly the same, with the addition of value
function and policy projection operations.

![Approximate Policy Iteration Flowchart](image)

Figure 2.2: Approximate Policy Iteration Flowchart. Image taken from Lagoudakis and Parr 2003 [1].

The addition of the projection operations in approximate policy iteration can break the Bellman Backup operator and cause the agent’s policy to diverge. This means that under normal circumstances the convergence guarantees for the different RL algorithms are lost.

2.4.3 Q-function Projection and Evaluation

As mentioned, adding the projection operations into Policy Iteration can cause the algorithms to lose their convergence guarantees. This section goes over a method of performing the policy evaluation and update steps of Approximate Policy Iteration, such that the convergence guarantees are maintained. This algorithm, known as Least-Squares Temporal Difference Q (LSTDQ), was first presented by Lagoudakis and Parr in 2003 [1].
The state-action Bellman equation, shown in equation 2.10, can be written in a matrix format as shown in equation 2.16.

\[
Q^\pi = R + \gamma P \Pi \pi Q^\pi \tag{2.16}
\]

In this equation \(Q^\pi\) and \(R\) are vectors of size \(|S||A|\). \(P\) is the normal transition function written as a matrix of size \(|S||A| \times |S|\) such that \(P((s,a), s') = P(s,a, s')\). \(\Pi \pi\) is a matrix of size \(|S| \times |S||A|\) that describes the policy \(\pi\).

As shown in section 2.5 and equation 2.15, the Q-function can be approximated as the linear combination of a set of features. Generalizing this to a compact matrix form, each feature, \(f_i(s,a)\), can be thought of a row vector of size \(|S||A|\). As shown in equation 2.17, each of the feature row vectors can be set as a column in a matrix of the feature vectors. The dimensions of the matrix are \(|S||A| \times n\) where \(n\) is the number of features.

\[
\Phi = \begin{bmatrix}
 f_1(s_1, a_1) & f_2(s_1, a_1) & \ldots & f_n(s_1, a_1) \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1(s_{|S|}, a_{|A|}) & f_2(s_{|S|}, a_{|A|}) & \ldots & f_n(s_{|S|}, a_{|A|})
\end{bmatrix} \tag{2.17}
\]

Using equation 2.17, the approximate Q-function from equation 2.15 can be rewritten in matrix form, as shown in equation 2.18.

\[
\tilde{Q}^\pi = \Phi w^\pi \tag{2.18}
\]

\(w^\pi\) is a real-valued column vector of length \(n\) just like in the Q-learning representation.

Using the matrix representation it is possible to apply the Bellman operator and a projection operation to solve the system as standard set of linear equations \(Aw^\pi = b\),
where equation 2.19 and 2.20 define the matrix A and vector b respectively.

$$A = \Phi^T(\Phi - \gamma P\Pi \pi \Phi) \quad (2.19)$$

$$b = \Phi^T R \quad (2.20)$$

2.5 Q-Learning

Q-learning is one of the most common model-free reinforcement learning algorithms. Q-learning learns an estimate of the Q-function using feedback from the environment and then using equation 2.13, the optimal actions for the policy are chosen. The agent bootstraps itself with a guess for the Q-function, which is refined based on the reward it receives from each action. The update function for the Q-function estimate is shown in equation 2.21

$$\tilde{Q}_{t+1}(s_t, a_t) \leftarrow \tilde{Q}_t(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a \tilde{Q}_t(s_{t+1}, a) - \tilde{Q}_t(s_t, a_t) \right] \quad (2.21)$$

Q-learning is an online algorithm, meaning that after every action it takes, it updates its policy. Q-learning’s policy is derived from its current Q-function estimate. Because Q-learning updates its Q-function estimate after every action, it automatically updates its policy. It is important to note that the α parameter, known as the learning rate, must be chosen appropriately. α controls how much the agent weights new information vs existing information. If α is too high, then infrequent events can overwhelm the Q-function estimate and make it inaccurate. If α is too low, the Q-learning can take a long time to converge to the optimal policy.

Another important feature of Q-learning is that it is an off-policy algorithm. Off-
policy learners learn the value of the optimal policy independently of the agent’s actions. This means that Q-learning can use any policy while learning and it can still improve its policy, so long as there is a non-zero probability that it will visit every state-action pair infinitely many times and an appropriate value of α is chosen. In other words, in the limit if the Q-learning agent is guaranteed to sample every state-action pairs infinitely often then Q-learning is guaranteed to converge to the optimal policy [6].

2.5.1 Approximate Q-learning

Approximate Q-learning uses the representation from equation 2.15 in conjunction with the Q-learning update function from equation 2.21 to learn an optimal policy in an online, off-policy manner. The Q-learning update equation is used with an online least-squares update rule to find the optimal values of Θ. The loss function, L, that online least-squares is being applied to is shown in equation 2.22.

$$L(\theta) = \frac{1}{2} \left(r_{t+1} + \gamma \max a \bar{Q}_t(s_{t+1}, a) - \bar{Q}_t(s_t, a_t) \right)$$

$$= \frac{1}{2} \left(r_{t+1} + \gamma \max a \bar{Q}_t(s_t, a_t) - \Theta \cdot f(s_t, a_t) \right)$$

$$= \frac{1}{2} \left(r_{t+1} + \gamma \max a \bar{Q}_t(s_t, a_t) - \sum_{i=0}^{n} \theta_i f_i(s_t, a_t) \right)$$ \hspace{1cm} (2.22)

As usual, the derivative of the loss function is taken with respect to each θ. This gives the gradient of the loss function. The update rule then moves the old estimate along this gradient. This is shown in equation 2.23.

$$\theta_{k,t+1} = \theta_{k,t} + \alpha \frac{\partial L(\Theta)}{\partial \theta_k}$$

$$= \theta_{k,t} + \alpha \left[r_{t+1} + \gamma \max a \Theta_t \cdot f(s_{t+1}, a) - \Theta_t \cdot f(s_t, a) \right] f_i(s_t, a)$$ \hspace{1cm} (2.23)
In general, Q-learning with feature vector representation loses its convergence guarantees. However, recent work has shown that under certain conditions the convergence guarantees can be restored [7]. Even with this recent result, it is still safer to choose an algorithm that will always converge when using linear feature approximation.

2.6 Least-Squares Policy Iteration

This section presents the Least-Squares Policy Iteration (LSPI) algorithm. LSPI is an offline, approximate policy iteration algorithm that represents the policy as a linear combination of features. First, the policy evaluation and improvement step of the approximation policy iteration process is described. Then, the overall LSPI algorithm is shown. The LSPI algorithm provides strong guarantees for convergence of the policy, even with approximation and projection errors. This makes it a great choice for large, and complex MDPs that require approximation to efficiently solve.

Least-Squares Temporal Difference Algorithm

Section 2.4.3 explained how the Bellman equations could be constructed in matrix form and solved as a system of linear equations. Unfortunately the A and b values cannot be calculated directly by the agent because they require the transition model, P, and the reward function, R. However, using samples from the environment, A and b can be estimated. The samples are tuples defined as (s, a, s', r). s is the state, in which the agent took action a. r is the reward the agent received for taking the action a. s' is the state the agent transitioned to. Algorithm 1 gives the pseudocode used to iteratively build the estimates of A and b from a set of samples D. This algorithm is known as Least-Squares Temporal Difference (LSTD) Q as it uses a set of samples to, in a model free manner, get a least-squares fixed-point approximation
of the Q-function.

Algorithm 1 LSTDQ Algorithm

1. **procedure** LSTDQ(D, n, ϕ, γ, π)
2. $\triangleright D$: Source of samples (s, a, r, s')
3. $\triangleright n$: Number of features
4. $\triangleright \phi$: Set of features
5. $\triangleright \gamma$: Discount factor
6. $\triangleright \pi$: Current Policy to compute \tilde{Q}^π
7. $\tilde{A} \leftarrow 0$ \hspace{1cm} $\triangleright n \times n$ matrix
8. $\tilde{b} \leftarrow 0$ \hspace{1cm} $\triangleright n$ sized row vector
9. **for** sample $(s, a, s', r) \in D$ **do**
10. $\tilde{A} \leftarrow \tilde{A} + \phi(s, a) (\phi(s, a) - \gamma \phi(s', \pi(s')))^T$
11. $\tilde{b} \leftarrow \tilde{b} + \phi(s, a)r$
12. **end for**
13. $\tilde{w}^\pi \leftarrow \tilde{A}^{-1}\tilde{b}$
14. **return** \tilde{w}^π
15. **end procedure**

LSPI Algorithm

Just as in Q-learning with feature approximation, the policy is found by taking the argmax with respect to actions over the approximate Q-function represented by the linear combination of features. This policy is then iteratively improved in a combined evaluation and improvement step. First, the matrix A and vector b are estimated from a set of samples and then the set of linear equations is solved for its weights. The estimation of A and b is done iteratively as shown in the LSTDQ algorithm shown in algorithm 1. The main LSPI algorithm is simply a loop over the LSTDQ algorithm until the norm between two successive policies is less than a user-specified threshold, or a maximum number of iterations is reached. This is shown in algorithm 2.
CHAPTER 2. BACKGROUND AND RELATED WORK

Algorithm 2 LSPI Algorithm

1: procedure LSPI(D, n, φ, γ, ϵ, π₀)
2: \(\triangleright D\): Source of samples \((s, a, r, s')\)
3: \(\triangleright n\): Number of basis functions
4: \(\triangleright \phi\): Set of features
5: \(\triangleright \gamma\): Discount factor
6: \(\triangleright \epsilon\): Stopping criterion
7: \(\triangleright \pi_0\): Initial policy
8: \(\pi' \leftarrow \pi_0\)
9: do
10: \(\pi \leftarrow \pi'\)
11: \(\pi' \leftarrow \text{LSTDQ}(D, k, \phi, \gamma, \pi)\)
12: while \(\|w - w'\| < \epsilon\)
13: return \(\pi\)
14: end procedure

Unlike Q-learning with approximation, the weights for the features are guaranteed to converge and multiple applications of the LSTDQ algorithm is guaranteed to find the best possible policy given its representation [1]. This means that given a set of features able to reasonably approximate the true Q-function, LSPI is guaranteed to find a policy that is close to the true optimal policy [1].

It is important to choose the samples in \(D\) wisely. The samples should give information about different parts of the state-action space. The samples should also be biased towards areas of the state-action space that are more complex. Normally the samples in \(D\) are collected using a uniform random policy. However, this work shows that using a more intelligent sampling strategy can give large improvements in terms of the number of samples LSPI needs to learn an optimal policy.

2.7 Hierarchical Reinforcement Learning

This section introduces the concept of HRL algorithms. First, I present some advantages of using a hierarchical algorithm vs a non-hierarchical algorithm. Next, I give the definition of a hierarchical policy. I follow this with a definition and discus-
sion of the two types of optimality possible for a hierarchical policy. I then define Semi-Markov Decision Processes (SMDPs) and explain what purpose they serve in the context of the task hierarchy. Finally, I provide a brief overview of some of the existing HRL frameworks.

2.7.1 Advantages of Hierarchical Reinforcement Learning

Both Q-learning and LSPI are capable, in theory, of solving any MDP optimally, however, in practice, large MDPs present significant challenges for both algorithms. The biggest issue is known as “the curse of dimensionality”, which is that the number of parameters that need to be learned grows exponentially with the size of the state space. So, as the state-action space grows, the number of samples and the computational resources needed to find an optimal policy can quickly become intractably large. Additionally, as the state-action space increases in size the rewards tend to become sparser, which make the agent’s learning more difficult as it receives less frequent feedback.

Luckily, many MDPs inherently have structure in terms of their state variables and reward functions. Inspiration can be taken from human problem solving techniques. Rather than treating the state-action space as “flat”, an agent can hierarchically break down the MDP into sub-problems that are much easier to solve.

Breaking a large task into subtasks has many advantages. First, each subtask will be, by definition, smaller than the full task it was created from. Additionally, because each subtask is smaller it will take less actions to execute. Therefore, the reward signals will not need to be propagated as far back along the trajectory of a policy. Another advantage is that subtasks will often only need to know some of the state variable values in order to make an optimal decision. This allows each subtask policy to ignore irrelevant state variables, thus making the subtask MDPs even smaller.
In addition to the above advantages, hierarchical MDPs can make it easier to include prior expert knowledge in an agent. Rather than starting completely from scratch, an expert can give a hint to the agent in the form of policies for some of the subtasks and even in the structure of the hierarchy itself. Another way of including prior information is to use Bayesian priors over the state-action space. However, previous work has shown that the hierarchical information and the Bayesian information can complement one another [8]. Essentially, the hierarchy provides coarse prior information about the overall policy, and Bayesian priors provide fine-grained prior information at the level of a single state-action pair.

Subtasks also open the possibility to transfer knowledge between agents. Many MDP hierarchies will have similar subtasks. If a subtask in one MDP already has an optimal policy it can be used as a starting point for a policy in a similar subtask in a different MDP.

2.7.2 Hierarchical Policies

In the flat MDP, the agent’s goal is to find a policy that optimizes the expected rewards the agent will receive. In the hierarchical case, the agent’s goal is to find a hierarchical policy that optimizes the expected rewards, while conforming to the hierarchy’s constraints.

A hierarchy is defined by the set of its subtasks, M. Each $M_i \in M$ has its own policy $\pi(i,s)$. The hierarchical policy is the set of policies for each subtask. The actions in the subtask policies can be either primitive actions from the original MDP or subtasks from the hierarchy.

To execute a hierarchical policy, the agent starts in the root task of the hierarchy, M_0. It then consults M_0’s policy, $\pi(0,s)$. π_0 gives either a primitive action or a subtask. If the policy calls for a primitive action, that action is immediately executed. When the policy calls for a subtask, the agent recurses down into the selected subtask.
and begins executing it according to its policy. The agent continues executing the chosen subtask until that subtask is finished, at which point it returns to the parent and continues with the parent policy. This recursive execution of subtask policies continues until the root task terminates, at which point the original MDP has been finished.

An alternative execution style is called “polled execution” [2]. Polled execution makes each decision by starting at the root of the hierarchy. It then recurses down the hierarchy choosing the child subtask specified by each subtask’s policy. Eventually, it reaches a primitive action which it executes. It then starts again at the root of the hierarchy. The main difference is that, in the normal execution style once a subtask is started it continues executing until it is finished, whereas in polled execution, the agent starts at the root task every single time.

2.7.3 Hierarchical and Recursive Optimality

The goal of the agent is to find a hierarchical policy that optimizes the expected rewards it will receive. In all of the hierarchical frameworks the provided hierarchy constrains the space of possible policies in the underlying MDP. If a good hierarchy is provided, the agent’s job of learning what to do in the environment is significantly easier. On the other hand, the restriction in the policy space may prevent the agent from learning the globally optimal policy. For this reason, hierarchical algorithms seek a different definition of optimality.

The first type of hierarchical optimality is *recursive optimality*. In a recursively optimal policy, each subtask policy is optimal given that its children have optimal policies. The second type of optimality is *hierarchically optimal*. In a hierarchically optimal policy, the policy of a subtask may be suboptimal so that another subtask can have a better policy. Hierarchically optimal policies are better than recursively optimal policies, however, to learn a hierarchically optimal policy the subtasks must
somehow take into account the other subtasks, which complicates the learning process.\footnote{For some tasks the recursively optimal policy may be the same as the hierarchically optimal policy, but it can never be better than the hierarchically optimal policy.}

While the cooking task previously introduced could have different recursively optimal and hierarchical optimal policies, in order to more clearly illustrate the difference, consider a simple maze task. In this case there are two rooms, a left room and a right room, with two doors between them. The agent starts in the left room and its goal is to get to the upper right corner of the right room. This is shown in figure 2.3. An example hierarchical decomposition for this task is shown in figure 2.4.

Figure 2.3: A 2 room MDP. The agent starts somewhere in the left room and must navigate to the goal in the upper right corner of the right room. The arrows indicate the recursively optimal policy. The gray cells show the states where the recursively and hierarchically optimal policies are different. [2]
CHAPTER 2. BACKGROUND AND RELATED WORK

The hierarchy in figure 2.4 has a subtask for each room. Each of the room’s subtask’s have the four move actions that are the primitive actions from the original MDP. The goal of the left room is to exit the left room and the goal of the right room is to reach the goal state. A recursively optimal policy would exit the left room as fast as possible, regardless of how much work that creates for the agent in the right subtask. The figure shows the recursively optimal policy. The gray cells indicate where the hierarchically and recursively optimal policies differ. When the agent is in one of the gray cells, it can either go up, towards the top exit, or down, towards the bottom exit. If the agent chooses to go up, it must take 2 extra steps compared to going down. So to act locally optimal in the left room subtask, it should exit by going down. However, by moving towards the bottom exit in the left subtask, the agent creates more work in the right room subtask. Entering the right room by the bottom door forces the agent to take 4 more steps to reach the goal compared to entering by the top room. So in the recursively optimal policy the agent saves 2 steps in the left room, but gains 4 steps in the right room. In the hierarchically optimal policy, the agent loses 2 steps in the left room and gains 0 steps in the right room. Therefore, overall the hierarchically optimal policy is better.

It is important to note that not only can the recursively optimal policy be worse than the hierarchical policy, it can be arbitrarily worse. For example, more rooms
can be added in order to make the two-rooms domain recursively optimal policy worse than it is consider that in the two-rooms domain to make the recursively optimal policy worse than it. Each room can have the sub-optimality shown in the example present. So, by adding in more rooms between the agent and the goal it is possible to construct an example of a domain where the recursively optimal policy will be arbitrarily worse than the hierarchically optimal policy.

2.7.4 Semi-Markov Decision Processes

One complication that arises from a hierarchical decomposition of a regular MDP, is that the subtasks become Semi-Markov Decision Processes (SMDPs). The main difference between an SMDP and an MDP is that an SMDP has actions that take multiple time steps. While this distinction does not add any new representational capabilities compared to a standard MDP, it does make specifying the problem much easier. While an action is executing, the state may change multiple times and the agent may receive multiple reward signals.

Just like an MDP, an SMDP is defined as a tuple \((S, S_0, A, P, R, \gamma)\). \(S, S_0, \) and \(A\) are all defined the same as a regular MDP, only \(P\) and \(R\) differ. In an MDP the transition function was defined as the \(P(s, a, s')\) or the probability of starting in state \(s\), executing action \(a\) and ending in state \(s'\). In an SMDP the actions can take multiple time steps so the function requires another input parameter \(N\). \(P(s, a, N, s')\) is the probability of starting in state \(s\), taking durative action \(a\) and this action then taking \(N\) steps and ending with the agent in state \(s'\). As mentioned, an SMDP adds no extra representational power because if the transition model is marginalized over the variable \(N\) a normal MDP transition model is obtained for the underlying MDP. The reward function is similarly changed to include a number of time steps from action \(a\) until a reward is received. That is \(R(s, a, N)\) is the function \(R : S \times A \times N \rightarrow \mathbb{R}\), which defines the reward received \(N\) time steps into the execution of action \(a\) from
state s. Just as P can be marginalized over N to receive the underlying MDPs transition model, R can be marginalized over N to receive the underlying MDPs reward function. The γ term remains the same as in the original MDP tuple.

Given that an SMDP is just a convenient abstraction over an underlying MDP, the Bellman equation can be rewritten with this new abstraction. This is seen in equation 2.24.

$$V^\pi(s) = \sum_{s', N} P(s, \pi(s), N, s) \left[R(s, \pi(s), N) + \gamma^N V^\pi(s') \right] \quad (2.24)$$

Equation 2.24 can be rewritten with the reward replaced as the expected total reward received over the course of executing action $\pi(s)$. This is shown in equation 2.25.

$$V^\pi(s) = R(s, \pi(s)) + \sum_{s', N} P(s, \pi(s), N, s) + \gamma^N V^\pi(s') \quad (2.25)$$

2.8 MaxQ

There are many existing hierarchical frameworks to choose from including: Hierarchies of Abstract Machines (HAM) [9], Options [10], and ALisp [11]. This work uses the MaxQ hierarchical learning framework [2]. In MaxQ, the subtasks in the hierarchy are defined in terms of termination conditions. Each subtask has its own reward and value function and its own state abstraction. This allows the agent to easily learn a recursively optimal policy by finding the optimal policy in each subtask. As will be shown, MaxQ is also capable of learning a hierarchically optimal policy through the use of preprogrammed pseudo-rewards while still keeping the subtasks isolated from one another.
2.8.1 MaxQ Hierarchy

MaxQ takes the MDP, \(M \), and divides it into a hierarchy of \(n \) subtasks, \((M_0, \cdots, M_n)\). Each of the tasks shown in the hierarchy is specified by a three tuple, \((T_i, A_i, \bar{R}_i)\). \(T_i(s_i) \) is a logical predicate that partitions the states in \(S \) into a set of active states \(S_i \) and terminal states \(T_i \). The agent can only execute subtask \(M_i \) when the current state \(s \) is in \(S_i \). \(A_i \) is the set of actions that can be performed in subtask \(M_i \). This can be a primitive action from the original MDP’s set \(A \) or a subtask from the hierarchy. If a child subtask \(M_j \) has parameters then it will appear in \(A_i \) once for each of the possible bindings. \(\bar{R}_i(s, a) \) is a pseudo-reward function which specifies expert coded rewards when the agent transitions from a state \(s \in S_i \) to a state \(s' \in T_i \). This function gives the agent an idea of how desirable a specific termination state is, which can allow MaxQ to find hierarchically optimal policies while treating each subtask as independent.

MaxQ executes the policy using a stack and each subtask’s policy. The agent starts with an empty execution stack. It then checks the root subtask’s policy to determine which action to call. If the action is a primitive action, the agent executes it and then walks back up the execution stack until a non-terminal subtask is reached. If the action is a non-primitive action, then it recurses down the hierarchy selecting the best action from each subtask’s policy until a primitive action is reached.

While each subtask has its own policy, the value of the policy is determined by the value of its children subtasks and primitive actions. The next section explains how the value function is hierarchically decomposed.

2.8.2 Value Function Decomposition

Recall that the value function is expectation over the cumulative discounted rewards the agent will receive while executing a policy \(\pi \). The difference in MaxQ is that now there is a value function for every subtask. So, the value function is parameterized
by the subtask index as shown in equation 2.26 [2].

\[
V^\pi(i, s) = E \left\{ r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s, \pi \right\}
\]

(2.26)

Consider if the policy \(\pi_i \) chooses the subroutine \(a \). Subroutine \(a \) will run for a number of steps, \(N \), and then terminate in state \(s' \) according to the transition model for the subtask \(i \), \(P^\pi_i(s, a, N, s') \). This means that the value function from equation 2.26 can be split into the expectation over two summations as shown in equation 2.27.

\[
V^\pi(i, s) = E \left\{ \sum_{k=0}^{N-1} \gamma^k r_{t+k} + \sum_{k=N}^{\infty} \gamma^k r_{t+k} | s_t = s, \pi \right\}
\]

(2.27)

The first summation is the discounted sum of rewards obtained while executing the subtask \(a \) from state \(s \) to termination. In other words \(V^\pi(a, s) = \sum_{k=0}^{N-1} \gamma^k r_{t+k} \). The second term is the value of continuing the policy from state \(s' \), \(V^\pi(i, s') \), with a discount equal to the number of steps it took \(a \) to terminate. Equation 2.27 can be rewritten as equation 2.28. This equation is of the same form as the standard MDP Bellman equation shown in equation 2.25. In this case \(R(s, \pi(s)) = V^\pi(\pi_i(s), s) \).

\[
V^\pi(i, s) = V^\pi(\pi_i(s), s) + \sum_{s', N} P^\pi_i(s, \pi_i(s), N, s') \gamma^N V^\pi(i, s')
\]

(2.28)

As suggested by the name, MaxQ actually uses the Q-function in each subtask. Equation 2.28 can be rewritten in terms of the Q-function as shown in equation 2.29.

\[
Q^\pi(i, s, a) = V^\pi(a, s) + \sum_{s', N} P^\pi_i(s, a, N, s') \gamma^N Q^\pi(i, s', \pi(s'))
\]

(2.29)

Let \(C^\pi(i, s, a) \) equal the summation part of equation 2.29. This function is called the “completion function” because it represents the expected discounted cumulative reward of completing subtask \(M_i \) after running subtask \(M_a \) from state \(s \). Using this
new definition, equation 2.29 can be rewritten recursively as in equation 2.30.

\[Q^\pi(i, s, a) = V^\pi(a, s) + C^\pi(i, s, a) \]

(2.30)

The value of \(V^\pi(i, s) \) can be found by recursing down the subtasks using the definition in equation 2.31.

\[V^\pi(i, s) = \begin{cases}
Q^\pi(i, s, \pi_i(s)) & \text{if } i \text{ is composite} \\
\sum_{s'} P(s, i, s') R(s, i) & \text{if } i \text{ is primitive}
\end{cases} \]

(2.31)

2.8.3 MaxQ-0 Algorithm

The prior sections described how the MaxQ hierarchy is defined, and how the value function is decomposed into the different subtasks in the hierarchy. This section explains the basic MaxQ algorithm for learning the value function and policy of each subtask. In this case MaxQ will converge to a recursively optimal policy with respect to the given hierarchy.

The basic idea is similar to the Q-learning algorithm discussed in section 2.5. For each subtask, the agent will choose an action. It will then execute the action by calling the learning algorithm recursively. For each recursive call, the number of steps taken is tracked. Once the called action finishes the subtask which called the child action updates its completion function based on the now updated children value functions. If the action was a primitive action, then its value function is updated using equation 2.32. If the action was a subtask, then the completion function is updated using the rule in equation 2.33.

\[V(i, s) \leftarrow (1 - \alpha_t(i)) V(i, s) + \alpha_t(i) \cdot r_t \]

(2.32)

\[C(i, s, a) \leftarrow (1 - \alpha_t(i)) \cdot C(i, s, a) + \alpha_t(i) \cdot \gamma^N V(i, s') \]

(2.33)

Throughout both of the algorithms the value function is needed. Equation 2.34 shows how these numbers are defined. Evaluating these values requires a complete search of all paths through the MaxQ hierarchy staring at node \(i \) and ending at all of the leaf nodes that are descendants of \(i \).

\[
V(i, s) = \begin{cases}
\max_a Q(i, s, a) & \text{if } i \text{ is composite} \\
V(i, s) & \text{if } i \text{ is primitive}
\end{cases}
\]

(2.34)

\[
Q(i, s, a) = V(a, s) + C(i, s, a)
\]

Just like Q-learning, the MaxQ paper proves that so long as each state-action pair in a subtask has a non-zero probability of being visited an infinite number of times, then MaxQ is guaranteed to converge.

2.8.4 Pseudo-Rewards

The issue with the MaxQ-0 algorithm is that each subtask’s policy is computed optimally with respect to its children. This is the definition of recursive optimality. However, as shown, a better type of optimality, hierarchical optimality, exists. The issue with finding hierarchically optimal policy is that the subtasks can no longer be treated as independent. Now the execution stack for a policy effects which terminal state a subtask should try to end in. This was shown in the two rooms example.

MaxQ deals with the suboptimality of a recursively optimal policy by allowing each subtask to define a pseudo-reward function, \(\tilde{R}_i \). Pseudo-rewards are hand-coded, fixed reward functions included in the MaxQ hierarchy definition. The pseudo-reward function can only be non-zero for state-action pairs that transition to a termination state for the subtask. These extra rewards are included in addition to the true MDP
rewards received by the agent during execution. The purpose of the pseudo-reward is to allow the programmer to weight a particular subtask exit up or down according to how useful that exit is in the next subtask to be executed.

To illustrate how this works, consider the previous two rooms example from section 2.7.3. In this domain the recursively optimal policy moves the agent to the closest door, but the hierarchically optimal policy moves the agent to the top door. As was shown, the hierarchically optimal policy has a greater value than the recursively optimal policy, even though the hierarchical policy’s left room subtask has a locally suboptimal policy.

If MaxQ-0 was run on the two rooms domain, it would converge to the recursively optimal policy because MaxQ-0 does not use pseudo-rewards. However, if a pseudo-reward function is defined for the left room subtask, the programmer can give a pseudo-reward of +10 to the top exit. The left subtask can use this pseudo reward when calculating its internal policy. This will cause the left room policy to always use the top door, thus making the whole policy hierarchically optimal.

MaxQ-0 can be modified into the MaxQ algorithm by tracking two completion functions for each subtask. One completion function, which uses the pseudo-rewards, determines the internal policy of that subtask. The other completion function is the same as the one used in MaxQ-0. This completion function is used by the parent subtask when computing the values of its actions. Separate completion functions are needed to guarantee that the pseudo-rewards of a task do not “contaminate” the other SMDPs, which would change the MDP that was being solved.
Chapter 3

Hierarchical Sampling

This chapter explains the contributions of this work and provides a theoretical analysis of the contributions. First, I give motivation for why hierarchical sampling is needed. Then, I present my hierarchical sampling algorithm. To prove the theoretical properties of variations of this algorithm I define an operation, called “Hierarchical Projection”, that maps the distribution of samples in the hierarchical MDP to the distribution of samples in the flat MDP. Next, I present three variations of the hierarchical sampling algorithm and prove asymptotic convergence properties with respect to the target distribution. Following the hierarchical sampling algorithm explanation, I introduce the concept of “derived samples”, that are samples generated from the hierarchy. I first present inhibited action samples, that teach the flat policy solver which actions are inhibited by the hierarchy. I then present abstract samples that generalize samples across multiple states using information in the hierarchy about irrelevant state variables. Finally, I show the full algorithm using hierarchical sampling, hierarchy samples and LSPI.
3.1 Motivation

As discussed in section 2.7.1, hierarchical algorithms have many advantages over traditional flat algorithms. Even so, HRL algorithms often settle for a recursively optimal policy. By sacrificing global and hierarchical optimality the space of possible possibles is greatly restricted. This can lead to huge increases in the rate of convergence to the optimal policy. Also, computing a recursively optimal policy is generally much easier, as when computing a hierarchically optimal policy all of the subtask interactions must be considered. The issue with recursively optimal policies is that, as shown in section 2.7.3, recursively optimal policies can be arbitrarily worse than the hierarchical optimal policy. So even though HRL algorithms, which guarantees recursive optimality, can greatly speed up the convergence of the policy, the policy it converges to might not be any good!

MaxQ attempts to solve this trade-off between computational complexity and the optimality of the policy through pseudo-rewards, however, pseudo-rewards have their own issues. If the proper pseudo-rewards are set for the tasks in the hierarchy then MaxQ can find the hierarchically optimal policy with very little extra overhead. However, picking the proper pseudo-rewards can be difficult in practice. In general the expert needs to have an idea of what the optimal policy looks like in order to pick good values. Also, if poor values are chosen, then the pseudo-rewards can do more harm than good. For instance, consider if the incorrect pseudo-rewards are chosen for the two rooms domain from section 2.7.3. If a positive pseudo-reward is placed on the top door then MaxQ will converge to the hierarchically optimal policy. However, if instead a positive pseudo-reward is placed on the bottom door MaxQ will actually do worse than the recursively optimal policy, as now the agent will always try to exit through the bottom door.

MaxQ is also incapable of concurrently executing multiple subtasks. The hierarchical decomposition allows the agent to focus on a single task. This has the advantage
of allowing the HRL algorithm to treat the different subtasks independently which means less computation is required. However, this restricts the policies to completing subtasks one at a time. There may be cases where efficiency can be gained by interleaving different parts of the subtask. For example, when cooking a meal it is often useful to start the preparation of another dish when the first dish is cooking. In the example cooking hierarchy, this might mean that the agent can start on the broccoli after it starts the water boiling. MaxQ could not do this given the example hierarchy. Instead, the agent would have to completely finish the pasta before moving onto the broccoli.

Despite these shortcomings, HRL algorithms still have a number of advantages over flat RL algorithms. Q-learning, LSPI and other flat RL algorithms can take a long time to learn when the state-action space of an MDP is large. The “curse of dimensionality” can be a major issue for many algorithms. As the state space grows, the computational resources can increase exponentially with the size of the state space. Additionally, as the state-action space becomes larger the reward signals tend to be sparser. This means the agent will have to wait longer before it receives feedback. When feedback is received a long time after the action takes place, it can be difficult for the agent to determine what the exact cause of the feedback was, thus making it difficult to determine the optimal actions for a policy.

Another downside of flat algorithms is that they can lack an easy way to encode prior information. Bootstrapping the agent with prior information can help the agent converge to the optimal policy faster by more accurately directing the exploration and policy search. Without prior information, the agent’s initial policy is random, which puts the agent at a high risk of doing something dangerous to its environment or itself. For simulated domains this is not a concern, but for an agent in the real world, such as a robot, this might be a major concern.

Previous work has shown that Bayesian priors can encode some prior information
about particular state-action pairs. However, it has been shown that this information is actually different than the type of information that a hierarchical decomposition gives [8]. It is possible to include Bayesian priors on possible policies, however, this has its own issues. In general, it is difficult to compute with policy priors. Also, policy priors do not allow for state and action abstraction like a task hierarchy. Therefore, even if Bayesian priors are used there is still a use for the task hierarchy information.

Hierarchies also break the large MDP down into smaller, easier to solve subtasks. This allows the agent to abstract away state variables and actions that are irrelevant in each sub problem, making each subtask easier to solve. This type of decomposition also encodes relationships between the subtasks based on their positions in the hierarchy. Related tasks will be in the same subgraph, and unrelated subtasks will not. Consider the kitchen example discussed previously. If the agent wants to cook the pasta then it does not need to concern itself with the actions related to cooking the broccoli. Additionally it does not need to concern itself with the parts of the state that are related to the broccoli when cooking the pasta, as they have no effect on the task at hand.

One of the major advantages of MaxQ is the ability for state abstraction. Even though the decomposition creates more SMDPs to be solved, these SMDPs can eliminate irrelevant state variables. This makes the state-action space of each SMDP much smaller and thus easier to solve. However, even with state abstraction it is still possible to have too large of a state space. For example, if a state variable is continuous, it is impossible to use the tabular representation that MaxQ uses in each subtask. In theory it is possible to use a feature based representation like in Q-learning or LSPI, but just like in Q-learning, the convergence guarantees are lost.

Ideally, an algorithm could be created that has the advantages of the flat methods (better than recursively optimal policies and feature approximation) with the advantages of the hierarchical algorithms (faster convergence, state abstraction, elimination
of irrelevant actions while learning). This thesis presents an algorithmic framework that accomplishes these things.

3.2 Hierarchical Sampling Algorithm

The main contribution of this work is a method of using a task hierarchy as a set of constraints on the sampling process. A normal, offline, “flat” RL algorithm can then use these samples to converge to a policy both faster and safer. The sampling technique is separated from the actual learning, meaning that in theory it can be used with any offline learning algorithm, however, this work focuses on applying it with the LSPI algorithm. This work focuses on using a MaxQ hierarchy to construct the constraints, but in theory any hierarchical framework could be used in a similar manner.

At each state the hierarchy has terminated subtasks and non-terminated subtasks. The terminated subtasks form constraints on the actions that can be taken. If an action is unavailable in every executable subtask, then the hierarchy constrains the agent so that it will not try that action. This makes sure that the agent spends its time exploring actions that are actually relevant to the state. The hierarchy can also be defined to disallow dangerous actions in certain states. In that case this sampling technique will also stop the agent from executing the dangerous actions.

The second part of the contributions uses the collected samples and the hierarchy to derive new samples. These samples are referred to as “derived samples”. There are two types of derived samples: inhibited action samples and abstract samples. Inhibited action samples are generated for actions the agent was disallowed from testing, due to the hierarchy constraints. These samples guarantee that the policy found by the agent never chooses these actions. The second type of sample, abstract samples, generalize individual samples across irrelevant state variables. The information in the
original sample is duplicated and irrelevant state variables are varied to indicate to
the agent, that no matter the value of the irrelevant state variables, the action will
have the same outcome.

The sampling collection algorithm dictates how the agent goes about collecting
the “real” samples. Whereas in normal sampling a uniform random policy over the
state-action space is used, the sampling strategies presented in this work modify
this probability distribution via the hierarchy. This thesis presents three different
variations on this technique.

3.3 Sampling Algorithm

The standard way for an agent to select actions when collecting samples from an
MDP, is to use a uniform random policy. In every state, the agent selects with
uniform random probability an available action. So if three actions are available, the
chance that the agent will try any of one of them is one-third. This type of sampling
policy has the advantage that as the number of samples it collects approaches infinity,
the probability that it has seen every state-action pair goes to 1. This ensures that
eventually the agent will have enough information to find the optimal policy.

The issue with a uniform random policy, is that many actions are only relevant in
a small subset of the state space. This means that the agent will waste a lot of samples
trying actions that will never be relevant. If the agent knew ahead of time how likely
an action is to be relevant in a given state, it could bias its sample collection towards
these actions.

The kitchen domain provides a good example of a case where some actions are
irrelevant in most of the state space. In the kitchen task many of the actions require
very specific states. For instance, placing the pasta in the water should only be done
after the water is boiled. Also, plating the food should only be done after the food is
cooked. The MaxQ agent, by virtue of the hierarchy, knows that putting the pasta in the water is unlikely to be the correct action. It also knows that until the food is ready, the plating actions are completely irrelevant.

An even more pressing issue with a uniform random policy is that the agent may select actions that are dangerous to itself or the environment. These actions may prevent the agent from ever completing its task. For instance, turning on the stove is essential to cooking the meal, however, if the stove is turned on at an inappropriate time the agent may get burned or start a fire. Even if an action doesn’t cause physical harm, it may transition the agent to a state in which it can never complete its task. If the agent does an incorrect action when preparing the food, it may ruin the ingredients and be unable to ever finish preparing the meal.

The MaxQ agent can avoid ruining the ingredients by limiting the actions that can be applied to subtasks via termination conditions. Whenever the agent is in a state where it is not safe to do an action, then the subtasks containing that action should be in a terminated state. This will prevent MaxQ from ever using the dangerous actions.

The most basic contribution of this work is the design and analysis of a sampling algorithm that directs how the agent collects its real samples so that dangerous state-action pairs are avoided. The algorithm uses the same hierarchy provided by the MaxQ framework. Three specific variations on this basic algorithm are presented and analyzed. They are referred to as: Random Hierarchical Policy (RHP) sampling, Weakly Polled sampling, and Polled sampling. A theoretical analysis of the different properties of the variations is also presented.

3.3.1 Hierarchical Projection

When the agent is executing a hierarchical policy, the state space no longer consists of just the state of the environment, S. It now consists of the callstack used to reach the
current subtask, M_i. The callstack can be thought of as a path through the hierarchy from the root task to the current subtask which is being executed. For example, in the kitchen task hierarchy, shown in figure 1.1, if the agent is executing “cook noodles” subtask, then the callstack would be “{cook dinner, make pasta}”. The hierarchies are actually poly-trees meaning that some subtasks may have multiple possible callstacks. For example, in the two-rooms hierarchy, shown in figure 2.4, the navigate subtask is a child of both “Exit left root” and “Navigate right room”. This means that when executing navigate there are two callstacks possible “{Root, Exit Left Room}” and “{Root, Navigate Right Room}”. Let the set of all possible callstacks be C and a specific callstack be c. The new state-callstack space is now $C \times S$ and states are now (c, s).

To determine how to sample from the hierarchy, a target sample distribution must first be defined. In a flat MDP, when an agent starts learning it has no information about the reward or transitions of the state-action pairs. In order to make sure that the agent will not miss any important state-action pairs, the agent will generally use a uniform random sampling policy. When an agent starts learning in a hierarchically decomposed MDP, it has no information about the reward or transitions of the state-action pairs in each subtask. Therefore it makes sense to use a uniform random sampling policy in each subtask. Just like in the flat MDP case, as the number of samples from each subtask approaches infinity, the probability that every state-action pair has been sampled goes to 1. While the policy in each subtask is uniform random, the policy over the state-callstack-action space is not uniform random.

To show how the probability of a state-callstack-action being sampled from the uniform random policy can be calculated consider figure 3.1. In this figure the lettered nodes are composite subtasks, and the numbered nodes are primitive action subtasks.
CHAPTER 3. HIERARCHICAL SAMPLING

Figure 3.1: Simple Hierarchy to Illustrate Projection

For a given state, s, some of the subtasks will be terminated and some will be non-terminated. If a subtask is terminated then it cannot be added to the callstack. Mathematically, if a subtask, M_i, is terminated for state s, then given a callstack $c \in C$ where $M_i \in c$ implies that $(c, s) \not\in C \times S$. In other words not only is that subtask impossible to enter, its children cannot be entered.

The callstack of a subtask is essentially a path through the hierarchy. Therefore, for a given state, the probability of a specific callstack being sampled is the probability of traversing the hierarchy via that callstack’s path. The probability of traversing a specific path is the probability of each of the path’s segments being chosen. Each segment in the path is determined by the selected child subtask and the children subtasks are selected via a uniform random sampling policy in each subtask. Equation 3.1 shows the probability of selecting a specific path segment.

$$P(M_i|s) = \frac{1}{\#\text{children}(M_i|s)} \quad (3.1)$$

In this equation M_i is the current subtask being sampled. $\#\text{children}(M_i|s)$ is the number of non-terminated children of subtask M_i for the state s. The probability is conditioned on the state s because the set of non-terminated subtasks depends on the current state.

The segments are all chosen independently of one another, so to get the full path probability, all of the individual segment probabilities are multiplied. Equation 3.2
shows the probability for a path in the hierarchy. In this equation the S variables represent segments in the path.

\[
P(c|s) = P((S_0, S_1, \cdots, S_n)|s) \\
= P(S_0|s)P(S_1|s) \cdots P(S_n|s) \\
= \frac{1}{\#children(M_0|s)\#children(M_1|s)\cdots \#children(M_n|s)}
\]

(3.2)

For example, consider a state s where all of the subtasks in the hierarchy from figure 3.1 are non-terminated. In this case the probability of the callstack “{A, B, 3}” being chosen in state s, will be $P(((A, B), (B, 3))|s) = \frac{1}{6}$. Using equation 3.1, the probability of segment (A, B) being chosen is $P((A, b)|s) = \frac{1}{3}$ and the probability of segment $(B, 3)$ being chosen is $P((B, 3)|s) = \frac{1}{2}$. These values can be used with equation 3.2 to get the final probability of the full path. In this case $P(((A, B), (B, 3))|s) = P((A, B)|s)P((B, 3)|s) = \frac{1}{6}$.

Equations 3.1 and 3.2 define the target distribution over the state-callstack space. However, my sampling algorithms use the hierarchy to collect samples in the original flat state-action space. Therefore it is necessary to define the “hierarchy projection” operation which maps the state-callstack distribution to a state-action distribution.

The flat samples only keep information about which primitive actions were tried in what state, they do not contain information about the callstack at the time the action was sampled. Therefore, to project the hierarchical distribution down to a flat distribution for each state-action pair in the flat MDP, the probability is the sum of all of the state-callstacks which have that action at the top. This is shown in equation 3.3.

\[
P(a|s) = \sum_{\forall c \in C, a \in c} P(c|s)
\]

(3.3)

As a sanity check, consider a flat MDP with no prior information known. This flat
CHAPTER 3. HIERARCHICAL SAMPLING

MDP can be transformed into a hierarchy with a single root task and every primitive action as a child of the root task. Figure 3.2 shows an example of what this might look like. This hierarchy tells the agent that all tasks are relevant to the root task and that all are equally likely to be relevant. Essentially it contains no information that the flat MDP does not have. Therefore, we would expect the projected hierarchical distribution to be uniform over the state-action space. Using the equation 3.3 this indeed is the case.

![Figure 3.2: Flat MDP as a hierarchy with no extra information about decomposition of subtasks.](image)

Using the projected hierarchy as a target distribution leads to the distribution of collected samples having three nice properties:

1. For a given state, if an action is only available via terminated subtasks then this action has 0 probability of being sampled.

2. For a given state, the probability of an action being chosen is weighted by how many different paths in the hierarchy there are to that action.

3. For a given state, the probability of an action being chosen is weighted by its depth in the hierarchy.

The hierarchy only allows an agent to access non-terminated subtasks. Subtasks are generally designed to be terminated when, for a given state, they will be irrelevant. For example, in the cooking task the “plate food” subtask will be irrelevant until the pasta, broccoli, and sauce are all finished. Therefore, in all states where the pasta, broccoli or sauce are not finished, the plate food subtask will be terminated.
Generally, actions are made children of a subtask only if they can help the agent complete that subtask. Therefore, if an action is only a child of terminated subtasks then that action is expected to not help complete any of the relevant subtasks. Meaning that the agent should not waste its time sampling these unreachable actions.

The second property is also desirable, as if an action is available in many subtasks, then that action can help complete multiple subtasks. Therefore it is more likely that for any given state that action can help the agent and so these should be sampled more frequently.

The third property ensures that actions closer to the root subtask will be more likely to be sampled. Remember that the root subtask has the goal of the original MDP that was decomposed. Therefore an action closer to this subtask is more likely to be helpful to completing the overall task, and not just one of the decomposed subtasks. So it is more useful for these actions to be sampled more frequently.

It is important to note that this hierarchically projected distribution can be arbitrarily different from the flat uniform random sampling distribution. In states where there are actions unreachable in the hierarchy, the unreachable actions will have 0 probability of being sampled, whereas in the flat uniform random distribution they will have a non-zero probability. The weighting due to actions appearing multiple times and an action’s depth in the hierarchy can make them different even in states where there are no unreachable actions. If the hierarchy is poorly designed this can be bad. For example if an important action for a state was unreachable in the hierarchy the agent would never sample this action and therefore never learn that it should take this action. In practice however, the hierarchies have been carefully designed by experts with prior knowledge and so this difference between the hierarchically projected distribution and the flat uniform random distribution is not an issue.

The next sections describe the variations on the core sampling algorithm that the agent uses to actually collect samples. The goal is that these action selection
strategies, select actions such that the distribution of samples over the state-action space converge to the distribution defined by the hierarchical projection operation from this section.

3.3.2 Kullback-Leibler Divergence

The following sections will define various approaches to selecting the hierarchically allowed actions. A metric must be used to determine how closely each variation will match the target distribution. The Kullback-Leibler Divergence (KL-Divergence) is the metric used.

KL-Divergence is a measure of the difference between two probability distributions P and Q. Given a target distribution P, the KL-Divergence measures the information lost when Q is used to approximate the target distribution P. The mathematical definition of the KL-Divergence is shown in equation 3.4.

$$D_{KL}(P||Q) = \sum_i P(i)ln\frac{P(i)}{Q(i)}$$

(3.4)

3.3.3 Hierarchy Sampling Algorithm

In section 2.6, I presented the LSPI algorithm. The key input to the LSPI algorithm was the set of samples, D. The agent uses this sampling algorithm to produce the sample set, D, that LSPI uses. No modifications to LSPI need to be made in order for the contributions in this thesis to work.

The basic pseudo-code of the sampling procedure is shown in algorithm 3. Every variation on this algorithm uses the constraints that if an action is unreachable from the root task for a given state then the agent should not execute it. However, the variations differ in how to choose the primitive action from among those that are available. At the end of the sample collection all of the samples are returned in the set D. This D is the same D shown in the LSPI pseudo-code. That is, D is the set
of samples used by whatever offline learning algorithm the agent is using.

Algorithm 3 Hierarchical Sampling Algorithm
The three variations presented in sections 3.3.4, 3.3.5, 3.3.6 differ in how they execute the highlighted line 7.

1: procedure HierarchicalSampling(M)
2: $\triangleright M$: is the hierarchy for the MDP
3: $D \gets \text{emptyset} \quad \triangleright D$ is the set of samples collected
4: while collecting samples do
5: $s \gets$ current state of the environment
6: $A_\text{reachable} \gets$ all primitive actions reachable from the root task
7: Select an action $a \in A_\text{reachable}$
8: Execute the action a and save the sample (s,a,r,s') in D
9: end while
10: $D_{\text{derived}} \gets \text{DeriveSamples}(D)$
11: return $D \cup D_{\text{derived}}$
12: end procedure

3.3.4 Random Hierarchical Policy Sampling

Random Hierarchical Policy (RHP) sampling is the first variation on how to choose the primitive action. This is what might be considered the naïve version of the action selection, as each subtask is sampled using a uniform random policy. This is the same policy that the hierarchical projection operation is applied to in order to get the target distribution, so one would expect this sampling variation to always converge with zero error. However, as will be shown, this is not actually the case.

The algorithm is shown in algorithm 4. The basic procedure is to start with the root task of the hierarchy M_0. Then a list of all of the children of the subtask M_0 are gathered. A child from the list is selected with uniform random probability. The sampling method is then recursed into. If the action was primitive, a sample of this action is collected. If the action is a composite subtask then this subtask is repeatedly sampled until it reaches a termination state.

49
Algorithm 4 Random Hierarchical Policy Sampling

1: procedure RHPSampling(M_i, M)
2: \hspace{1em} $\triangleright M_i :$ is the current subtask being sampled
3: \hspace{1em} $\triangleright M :$ is the MaxQ style hierarchy for the MDP
4: \hspace{1em} $D \leftarrow \emptyset$
5: \hspace{1em} \textbf{if} M_i is a primitive action \textbf{then}
6: \hspace{2em} $s \leftarrow$ current state
7: \hspace{2em} execute action M_i
8: \hspace{2em} $r \leftarrow$ reward from action
9: \hspace{2em} $s' \leftarrow$ current state
10: \hspace{2em} $D \leftarrow \{(s, M_i, r, s')\}$
11: \hspace{1em} \textbf{else}
12: \hspace{2em} \textbf{while} subtask M_i not finished \textbf{do}
13: \hspace{3em} $s \leftarrow$ current state
14: \hspace{3em} $\textit{children} \leftarrow$ all children of M_i where s is not a terminal state
15: \hspace{3em} $M_j \leftarrow$ random($\textit{children}$)
16: \hspace{3em} $d \leftarrow$ RHPSampling(M_j, M)
17: \hspace{2em} $D \leftarrow D \cup d$
18: \hspace{2em} \textbf{end while}
19: \hspace{1em} \textbf{end if}
20: \hspace{1em} \textbf{return} D
21: \textbf{end procedure}

Random Hierarchical Policy Sampling Analysis

The Random Hierarchical Policy (RHP) sampling will certainly avoid executing actions that according to the hierarchy are unreachable. However, as this section shows, it is not guaranteed to converge to the hierarchical projection distribution with 0 error. In fact, the error can be arbitrarily bad.

In the algorithm, the agent must keep sampling from a subtask until it has reached the termination condition for that subtask. This means that each time a subtask is chosen, some number of actions, n, will be sampled from it. Let the number of children each subtask executes before reaching a termination condition be called the completion time. Each subtask will have a different completion time, and the completion time will vary based on the starting state and the actions taken. Let $N_{M_i}(s)$ be defined as the expected completion time of a subtask M_i starting from
CHAPTER 3. HIERARCHICAL SAMPLING

state s. Using the completion time the theorem 3.3.1 can be stated and proved.

Theorem 3.3.1. If the completion times, $N_{M_i}(s)$, of the subtask differ, then the distribution of state-action pairs sampled by the Random Hierarchical Policy sampling algorithm will have a KL-Divergence with respect to the target hierarchical distribution of

$$D_{KL}(P||Q) = \sum_{s \in S} \sum_{a \in A} \left(\sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \frac{1}{\#siblings(M_i|s) + 1} \right) \ln \left(\frac{\sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \frac{1}{\#siblings(M_i|s) + 1}}{\sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \sum_{M_k \in siblings(M_i)} N_{M_k}(s)} \right)$$

This error is unbounded.

Proof. Using the completion times for each subtask, the probability of a path segment being sampled can be calculated. Each time the agent chooses a segment, on average, it will sample it $N_{M_i}(s)$ times. This biases the distribution of segments to those where the child subtask has a longer completion time. This leads to a path segment probability as shown in equation 3.5.

$$P_{RHP}((M_i, M_j)|s) = \frac{\sum_{M_k \in children(M_i)} N_{M_k}(s)}{\#children(M_i|s)} \frac{N_{M_j}(s)}{\#children(M_i|s)}$$

$$= \frac{1}{\#children(M_i|s)} \sum_{M_k \in children(M_i)} N_{M_k}(s) \quad (3.5)$$

The path segment probabilities from equation 3.5 can then be used to find the
probability of a particular callstack being sampled under RHP. Just like in the target
distribution the segments are chosen independently in each segment so the total path
probability is just the product of all of the segment probabilities.

\[
P_{RHP}(c|s) = P_{RHP}((S_0, S_1, \cdots, S_n)|s)
= P_{RHP}(S_0|s)P_{RHP}(S_1|s) \cdots P_{RHP}(S_n|s)
= \prod_{M_i \in c} \frac{N_M(s)}{\sum_{M_k \in \text{siblings}(M_i)} N_M(s)}
\] (3.6)

The callstack probabilities can then be projected using the hierarchical projection
operation defined in equation 3.3. This leads to equation 3.7.

\[
P_{RHP}(a|s) = \sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \frac{N_M(s)}{\sum_{M_k \in \text{siblings}(M_i)} N_M(s)}
\] (3.7)

Using the KL-Divergence the difference between the probabilities of state-action
pairs in the target distribution, \(P(a|s)\), and the RHP distribution, \(P_{RHP}(a|s)\) can be
calculated. The result is shown in equation 3.8.

\[
D_{KL}(P||Q) = \sum_{s \in S} \sum_{a \in A} P(a|s) \ln \frac{P(a|s)}{P_{RHP}(a|s)}
= \sum_{s \in S} \sum_{a \in A} P(a|s) \ln \left(\frac{P(a|s)}{\sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \sum_{M_k \in \text{siblings}(M_i)} N_M(s) N_M(s)} \right)
\] (3.8)

To prove that this is unbounded, substitute in the target distribution path prob-
abilities. This leads to the KL-Divergence shown in equation 3.9.

$$D_{KL}(P||Q) = \sum_{s \in S} \sum_{a \in A} \left(\sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \frac{1}{\#siblings(M_i|s) + 1} \right)$$

$$\ln \left(\frac{\sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \frac{1}{\#siblings(M_i|s) + 1}}{\sum_{\forall c \in C, a \in c} \prod_{M_i \in c} \sum_{M_k \in siblings(M_i)} N_{M_k}(s)} \right)$$

(3.9)

The target distribution path probabilities depend on the number of children in each subtask. The RHP path probabilities depend on the completion times of each subtask. The completion time of a subtask is unrelated to its number of children. The only way these two distributions would be equal is if every subtask had equal completion times for all its children. However, this is very unlikely to be the case and in general the completion times for a subtask can be arbitrarily long. This means that it is possible for every subtask to have one child with a completion time that is arbitrarily bigger than the other completion times. Which means the target distribution and the RHP distribution can be arbitrarily different for each state-action pair. Therefore RHP’s divergence from the target distribution is unbounded.

3.3.5 Weakly Polled Sampling

The issue with RHP sampling is that, in some cases, it can focus its sample collection too heavily on a single subtask. Sticking with subtasks until they terminate can skew the distribution of samples towards subtasks that take a long time to complete when randomly sampling. Weakly polled sampling attempts to fix this issue through a minor change to the primitive action selection procedure.

Rather than sticking with a subtask to completion, weakly polled sampling adds an extra “exit subtask” action to every subtask. Each time the agent selects an action
in a subtask it has the chance of selecting the exit subtask action which kicks the agent back up to the parent subtask. The modified pseudocode for this is shown in algorithm 5.

The relevant changes are on lines 15 and 16-18. Line 15 modifies the action selection to select an action from the union of the set of children actions and the early exit action. Lines 16-18 ensure that if the early exit action was chosen then it will leave the function early. Otherwise the algorithm is exactly the same as the RHP Sampling.

<table>
<thead>
<tr>
<th>Algorithm 5 Weakly Polled Sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: procedure WeaklyPolledSampling(M_i, M)</td>
</tr>
<tr>
<td>2: ⊲ M_i : is the current subtask being sampled</td>
</tr>
<tr>
<td>3: ⊲ M : is the MaxQ style hierarchy for the MDP</td>
</tr>
<tr>
<td>4: D ← ∅ ⊲ D is the set of samples collected from this subtask</td>
</tr>
<tr>
<td>5: if M_i is a primitive action then</td>
</tr>
<tr>
<td>6: s ← current state</td>
</tr>
<tr>
<td>7: execute action M_i</td>
</tr>
<tr>
<td>8: r ← reward from action</td>
</tr>
<tr>
<td>9: s' ← current state</td>
</tr>
<tr>
<td>10: D ← {(s, M_i, r, s')}</td>
</tr>
<tr>
<td>11: else</td>
</tr>
<tr>
<td>12: while subtask M_i not finished do</td>
</tr>
<tr>
<td>13: s ← current state</td>
</tr>
<tr>
<td>14: children ← all children of M_i where s is not a terminal state</td>
</tr>
<tr>
<td>15: M_j ← random(children ∪ exitAction) ⊲ Select a random child action</td>
</tr>
<tr>
<td>16: if M_j is exit action then</td>
</tr>
<tr>
<td>17: return D</td>
</tr>
<tr>
<td>18: end if</td>
</tr>
<tr>
<td>19: d ← WeaklyPolledSampling(M_j, M)</td>
</tr>
<tr>
<td>20: D ← D ∪ d</td>
</tr>
<tr>
<td>21: end while</td>
</tr>
<tr>
<td>22: end if</td>
</tr>
<tr>
<td>23: return D</td>
</tr>
<tr>
<td>24: end procedure</td>
</tr>
</tbody>
</table>

In the MaxQ paper there is a version of hierarchical policy execution known as “polled execution” [2]. In this type of execution the agent always starts at the top of the hierarchy for every action selection. This algorithm has a chance on every action selection to either perform the action in the current subtask or select one of its children.
of making it back to the root and traversing the hierarchy downwards, but unlike polled execution, the probability of it starting from the root is not 1. Therefore this variation is referred to as “Weakly Polled”.

Weakly Polled Sampling Analysis

Unlike in RHP sampling, the agent can now choose to move back up the hierarchy. In RHP sampling the agent would only move back up the hierarchy if it happened to randomly enter a state that terminated one of the subtasks in its callstack. Because the agent can now control when it exits the hierarchy, a new edge from child subtasks to parent subtasks can be added to the hierarchy.¹ This allows the hierarchy to be viewed as a Markov Chain.

To illustrate how the Markov Chain is derived from the hierarchy, consider the hierarchy in figure 3.3. Figure 3.4 shows the Markov Chain version of this hierarchy. Each of the subtask nodes in the hierarchy are now nodes in the Markov Chain. Shared nodes must be split so that a copy exists for each possible parent. This is because when transitioning back to the parent, the agent will always transition back to the parent which it originally came from. When the probabilities of sampling from one of the Markov Chain nodes is calculated all the split nodes can be summed to get the probability of the original unsplit node.

In the original hierarchy the probability of choosing an edge was uniform over all of the children nodes. For this example, each edge has a probability of 0.5. In the Markov chain version, the probabilities of transitioning along a specific edge is uniform among all of the outgoing edges from the node. The number of outgoing edges is the number of children the node in the hierarchy has plus one for the new

¹Technically the previous algorithm can be viewed as a Markov chain. The probability transitions back to the parent could be calculated using the underlying MDP’s transition function. However, in practice it is difficult to compute the sample distribution in this manner. Hence, why an analysis of the Markov chain was not used in the previous proof.
early exit edge. This shown in equation 3.10.

\[
P(e|M_i) = \frac{1}{\text{#outgoing}(M_i)} = \frac{1}{\text{#children}(M_i) + 1} \tag{3.10}
\]

In this equation \(e\) is an edge in the Markov chain and \(M_i\) is a node in the Markov chain corresponding to the subtask \(M_i\) from the original hierarchy. \(P(e|M_i)\) is the probability of transitioning along an edge \(e\) while in the node \(M_i\).

![Figure 3.3: Weakly Polled Example Hierarchy](image)

Figure 3.3: Weakly Polled Example Hierarchy

![Figure 3.4: Weakly Polled Example Markov Chain](image)

Figure 3.4: Weakly Polled Example Markov Chain

When analyzing a Markov Chain, it is important to check if the chain is bipartite. A bipartite chain can be divided into two classes of nodes: even nodes and odd nodes. In a bipartite chain there is no stationary distribution over the nodes because of periodicity between the even and odd nodes. [12] [13]. If at time \(t\), the agent is in a node in the even class, then the probability of it being in an even node at time \(t+1\) is zero and the probability of it being in an odd node at time \(t+1\) is 1. More generally,
the probability distributions become those shown in equations 3.11 and 3.12.

\[
\forall k \geq 0, P(\text{even}) = \begin{cases}
1 & \text{if } t + 2k \\
0 & \text{if } t + 2k + 1
\end{cases} \tag{3.11}
\]

\[
\forall k \geq 0, P(\text{odd}) = \begin{cases}
0 & \text{if } t + 2k \\
1 & \text{if } t + 2k + 1
\end{cases} \tag{3.12}
\]

For the sake of analysis, first consider whether the chain is non-bipartite as a task hierarchy can be either bipartite or non-bipartite. If a hierarchy is bipartite, then the nodes can be split into their even and odd classes and then analyzed using the same non-bipartite Markov Chain stationary distribution equations.

For a non-bipartite Markov chain, the stationary distribution over the states is defined by the simple formula \[\omega(v) = \frac{C(v)}{k} \] shown in equation 3.13.

\[
\omega(v) = \frac{C(v)}{k} \tag{3.13}
\]

Where \(v \) is a node in the Markov Chain, this case \(v \in M \). \(C(v) \) is the total of the edge weights for all edges between node \(v \) and some other node, and \(k = \sum_{v \in V} C(v) \).

Theorem 3.3.2. The distribution over the state-action pairs sampled by the Weakly Polled sampling algorithm will have a KL-Divergence with respect to the target hier-

\[\text{Most task hierarchies, being poly-trees will be bipartite. However, it is possible to imagine non-bipartite hierarchies. For example, consider a hierarchy with a root node that has two children: a composite task A and a primitive task b. If A also has b as a child, then the graph is non-bipartite.} \]
archival projection distribution of

\[D_{KL}(P||Q) = \sum_{s \in S} \sum_{a \in A} \left(\sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s)}{\#\text{children}(M_a|s)} \right) \]

\[\ln \sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s) \sum_{x \in A} \sum_{M_x \in \text{parent}(x)} \frac{1}{\#\text{children}(M_x|s)+1} \sum_{M_a \in \text{parent}(a)} \frac{1}{\#\text{children}(M_a|s)+1}}{\#\text{children}(M_a|s)\sum_{M_a \in \text{parent}(a)} \frac{1}{\#\text{children}(M_a|s)+1}} \] (3.14)

when the task hierarchy is non-bipartite. When the task hierarchy is bipartite, the KL-Divergence with respect to the target hierarchical projection distribution will be

\[D_{KL}(P||Q) = \left[\sum_{s \in S} \sum_{a \in A_{\text{even}}} \left(\sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s)}{\#\text{children}(M_a|s)} \right) \right] \]

\[\ln \sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s) \sum_{x \in A_{\text{even}}} \sum_{M_x \in \text{parent}(x)} \frac{1}{\#\text{children}(M_x|s)+1} \sum_{M_a \in \text{parent}(a)} \frac{1}{\#\text{children}(M_a|s)+1}}{\#\text{children}(M_a|s)\sum_{M_a \in \text{parent}(a)} \frac{1}{\#\text{children}(M_a|s)+1}} \]

\[+ \left[\sum_{s \in S} \sum_{a \in A_{\text{odd}}} \left(\sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s)}{\#\text{children}(M_a|s)} \right) \right] \]

\[\ln \sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s) \sum_{x \in A_{\text{odd}}} \sum_{M_x \in \text{parent}(x)} \frac{1}{\#\text{children}(M_x|s)+1} \sum_{M_a \in \text{parent}(a)} \frac{1}{\#\text{children}(M_a|s)+1}}{\#\text{children}(M_a|s)\sum_{M_a \in \text{parent}(a)} \frac{1}{\#\text{children}(M_a|s)+1}} \]

Proof. First, consider a non-bipartite hierarchy. Equation 3.13 can be used to find the distribution over the nodes in the Markov Chain model of the hierarchy. This equation gives the distribution over all nodes, not just the primitive nodes. So, after extracting the probabilities of the primitive action nodes from the full distribution, the probabilities must be renormalized. This is shown in equation 3.15 where \(\omega^* \) is the stationary distribution over only primitive subtask nodes.

\[\omega^*(a|s) = \frac{C(a|s)}{\sum_{x \in A} C(x|s)}, \forall a \in A \subseteq M \] (3.15)
In this equation a is a primitive action node, A is the set of all primitive action nodes and M is the set of all subtask nodes. $C(a)$ is the sum of all of the weights of all of the edges entering node a. The distribution needs to be conditioned on the state s because different states have different sets of subtasks terminated. The edge of the weights in this Markov chain was defined in equation 3.10. Plugging this into equation 3.15 gives equation 3.16.

$$\omega^*(a|s) = \frac{\sum_{M_a \in \text{parent}(a)} \#\text{children}(M_a|s) + 1}{\sum_{x \in A} \sum_{M_x \in \text{parent}(x)} \#\text{children}(M_x|s) + 1} \sum_{x \in A} \sum_{M_x \in \text{parent}(x)} \frac{1}{\#\text{children}(M_x|s)}$$ (3.16)

The target probability of sampling an action a was previously defined in equation 3.3. Rewriting this equation using the same notation used in this section gives the following

$$\sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s)}{\#\text{children}(M_a|s)}$$

Therefore, the error in the distribution for a given state can be written as equation 3.17.

$$D_{KL}(P||Q) = \sum_{s \in S} \sum_{a \in A} \left(\sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s)}{\#\text{children}(M_a|s)} \right) \ln \frac{P(M_a|s)\omega^*(a|s)}{\#\text{children}(M_a|s)}$$ (3.17)

In the bipartite case the action nodes can be divided into the two bipartite classes: A_{even} and A_{odd}. Then distributions for each class can be calculated as follows.
\[\omega^*_\text{even}(a \in A_{\text{even}}|s) = \frac{\sum_{M_a \in \text{parent}(a)} \frac{1}{\# \text{children}(M_a|s)+1}}{\sum_{x \in A_{\text{even}}} \sum_{M_x \in \text{parent}(x)} \frac{1}{\# \text{children}(M_x|s)+1}} \]

\[\omega^*_\text{odd}(a \in A_{\text{odd}}|s) = \frac{\sum_{M_a \in \text{parent}(a)} \frac{1}{\# \text{children}(M_a|s)+1}}{\sum_{x \in A_{\text{odd}}} \sum_{M_x \in \text{parent}(x)} \frac{1}{\# \text{children}(M_x|s)+1}} \]

The error terms for each set of distributions can be written in the same manner as for the non-bipartite case. Then the two error terms can be added together. Therefore the total KL-Divergence is just the summation of these two error terms over all states and actions as shown in equation 3.18.

\[
D_{KL}(P||Q) = \left[\sum_{s \in S} \sum_{a \in A_{\text{even}}} \left(\sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s)}{\# \text{children}(M_a|s)} \right) \right]
\]

\[
\ln \frac{P(M_a|s)}{\# \text{children}(M_a|s)} \sum_{M_a \in \text{parent}(a)} \frac{1}{\# \text{children}(M_a|s)+1}
\]

\[
+ \left[\sum_{s \in S} \sum_{a \in A_{\text{odd}}} \left(\sum_{M_a \in \text{parent}(a)} \frac{P(M_a|s)}{\# \text{children}(M_a|s)} \right) \right]
\]

\[
\ln \frac{P(M_a|s)}{\# \text{children}(M_a|s)} \sum_{M_a \in \text{parent}(a)} \frac{1}{\# \text{children}(M_a|s)+1}
\]

(3.18)

3.3.6 Polled Sampling

Polled sampling is based on the polled execution model from the MaxQ paper [2]. Rather than sticking with a subtask until completion like in RHP sampling, polled sampling starts at the root every time it selects an action to test. In each subtask it selects a child subtask or primitive action uniformly randomly from among the children. The modified pseudocode is shown in algorithm 6. This algorithm is called repeatedly for each sample, starting with the root subtask, as shown in algorithm 7.
Algorithm 6 Path Sampling

1: **procedure** `SamplePath(M_i, M)`
2: \(\text{\triangleright } M_i : \text{is the current subtask being sampled} \)
3: \(\text{\triangleright } M : \text{is the MaxQ style hierarchy for the MDP} \)
4: \(s \leftarrow \text{current state} \)
5: **if** `M_i` is a primitive action **then**
6: \(\text{execute action } M_i \)
7: \(r \leftarrow \text{reward from action} \)
8: \(s' \leftarrow \text{current state} \)
9: \(\text{return } (s, M_i, r, s') \)
10: **else**
11: \(\text{children} \leftarrow \text{all children of } M_i \text{ where } s \text{ is not a terminal state} \)
12: \(M_j \leftarrow \text{random(children)} \) \(\text{\triangleright Select a random child action} \)
13: \(\text{return PolledSampling}(M_j, M) \)
14: **end if**
15: **end procedure**

Algorithm 7 Polled Sampling

1: **procedure** `PolledSampling(M)`
2: \(\text{\triangleright } M : \text{is the MaxQ style hierarchy for the MDP} \)
3: \(D \leftarrow \emptyset \)
4: \(R \leftarrow \text{root}(M) \)
5: **while** collecting samples **do**
6: \(D \leftarrow D \cup \text{SamplePath}(R, M) \)
7: **end while**
8: \(\text{return } D \)
9: **end procedure**

Polled Sampling Analysis

Theorem 3.3.3. Polled sampling is guaranteed to converge to the hierarchical projection target distribution with zero KL-Divergence.

Proof. Each step the agent selects a path in the hierarchy to a primitive state. The probability of a particular state being collected is the multiplication of each path segment. For a subtask, \(M_i \), the algorithm selects a child with uniform probability to act as the next segment in the path. In other words the segment probability is
This is the same probability as a path segment in the hierarchical projection distribution. This probability was defined in equation 3.1. Therefore, the probability of any one path being picked for an action is equal to the hierarchical projection distribution path probability defined in equation 3.2. For a given state, each time a path is chosen, it is chosen independently and because the distribution does not change, it is guaranteed that the distribution of sampled paths will converge to the theoretical hierarchical distribution.

Just like in the hierarchical projection operation, the actions actually being sampled are the primitive action subtasks at the end of each path. Therefore the probability of an action picked via polled sampling is the same as the target hierarchical projection probability defined in equation 3.3.

\[
\frac{1}{\#\text{children}(M_i|s)}
\]

3.3.7 Discussion

The previous sections presented the main hierarchical sampling algorithm and three different variations on this algorithm. Out of the three, only one of the algorithms is guaranteed to converge with zero KL-Divergence from the target distribution. However, it is important to note that this result is only about asymptotic convergence. I did not perform a finite sample analysis. So nothing theoretical can be said about the rate at which these algorithms converge to their final distributions. Because the rates of convergence are unknown, it is difficult to say that the polled sampling will always perform best. There may be situations where weakly polled sampling, or RHP sampling converges faster. Even though they will converge with error, it might be possible for the error to be small enough, such that LSPI can find the optimal policy. Also, there may be other variations that perform even better.
It also cannot be said how much error in the sample distribution is enough to break the policy solver that uses the collected samples. It may be that on some domains RHP has an error small enough for the agent to find an optimal policy. On other domains the error may be so large that the policies found via RHP sampling perform worse than flat LSPI. For these two reasons it is important to empirically evaluate the performance of all three variations.

3.4 Derived Samples

This section presents two methods for expanding the set of collected samples using the hierarchy. These generated samples are referred to as “derived samples” because the agent creates them by examining the real samples in the context of the given task hierarchy. The first type of derived samples presented are inhibited action samples. These samples are designed to guarantee that the policy does not choose an action prohibited by the hierarchy. The second type of hierarchy samples are abstract samples. These samples use state abstraction in the hierarchy to generate extra samples for potentially unvisited state-action pairs.

3.4.1 Inhibited Action Samples

When using the hierarchical sampling algorithm, no matter the variation, the distribution of samples over the state-action space is guaranteed to contain no state-action pairs where in the given state there is no path in the hierarchy to the action through non-terminated tasks. This property is desirable because it prevents the agent from wasting samples on irrelevant actions and in some cases can be used to prevent the agent from taking dangerous actions. However, the issue is that the learning algorithm using these samples is unaware of the hierarchy. In some cases the policy solver can decide that these unsampled actions are the best action to use in the policy.
To resolve this issue, a way is needed to inform the learning agent that the inhibited actions should never be chosen for the policy. This has to be done in such a way that the choice of the optimal action from among the other actions is unaffected.

Inhibited action samples are generated by combining the collected samples with information in the hierarchy. For each sample that was collected, the agent can consult its hierarchy to see if there are any unreachable actions. If there are such actions, then for each action a new sample is generated. This new sample has the same s and s' as the original sample, and the action is set to the unreachable action. The only remaining portion to be determined is the reward.

It is important to properly choose the reward that is assigned to the generated samples. If the reward is higher than any of the action rewards, then there is a chance the policy will choose the inhibited action. If the reward is higher than the real samples then it can affect the estimate of the value of the state thus causing inaccuracies in other parts of the policy. Therefore, it is necessary to choose a reward that is less than or equal to the worst possible value of a state-action pair in the MDP.

The worst possible value a state-action pair could have, is if the policy chose an action that does not change the state and has the smallest reward out of all of the actions. This means that when following the policy, the agent would execute this action an infinite number of times receiving the reward r_{min} each time. The total reward collected from following the policy in this state is then defined by the sum of the discounted rewards. This happens to be a geometric series, so a closed form
solution can be found. This is shown in equation 3.19.

\[R_{\text{min}} = r_{\text{min}} + \gamma r_{\text{min}} + \gamma^2 r_{\text{min}} + \cdots \]

\[= \sum_{k=0}^{\infty} \gamma^k r_{\text{min}} \]

\[= r_{\text{min}} \sum_{k=0}^{\infty} \gamma^k \]

\[= \frac{r_{\text{min}}}{1 - \gamma} \]

(3.19)

The value \(R_{\text{min}} \) will be less than the worst possible value for a state, meaning that any action assigned this reward will be the last choice for an agent deciding on the optimal action for its policy. To guarantee that the action is never chosen, the agent simply needs to select a reward that is less than or equal to \(R_{\text{min}} \).

The pseudocode for inhibited action sample generation is shown in algorithm 8.

Algorithm 8 Inhibited Action Sampling Algorithm

1. **procedure** GENERATEINHIBITEDACTIONSAMPLES(\(D, M, \gamma \))
2. \(\triangleright D: \) The set of real samples
3. \(\triangleright M: \) The hierarchy
4. \(r_{\text{min}} \leftarrow \) minimum reward of all samples \(d \in D \)
5. \(R_{\text{min}} \leftarrow \frac{r_{\text{min}}}{1 - \gamma} \)
6. \(D_{\text{neg}} \leftarrow \emptyset \)
7. **for** sample \(d \in D \) **do**
8. \(A \leftarrow \) set of all actions in the hierarchy
9. \(A_{\text{reachable}} \leftarrow \) set of actions reachable from root for state \(s \) from sample \(d \)
10. \(A_{\text{unreachable}} \leftarrow A - A_{\text{reachable}} \)
11. **for** \(a \in A_{\text{unreachable}} \) **do**
12. \(D_{\text{neg}} \leftarrow D_{\text{neg}} \cup \{(d.s, a, R_{\text{min}}, d.s')\} \)
13. **end for**
14. **end for**
15. **return** \(D_{\text{neg}} \)
16. **end procedure**
3.4.2 Abstract Samples

In many MDPs there are state variables in the state that only affect the value of a small subset of the state-action space. Unfortunately, even though these state variables affect the transition and reward functions in only a small part of the state-action space, the flat RL algorithms must spend time learning that these state variables are largely irrelevant by sampling the MDP. One of the major advantages of the MaxQ framework is that the hierarchical decomposition allows each subtask to have an abstract state function. This function can remove the irrelevant state variables, so that the subtask policy ignores the irrelevant variables. This can significantly shrink each subtask’s state-action space and thus make it much easier to learn the optimal policy in each subtask.

It would be ideal to take this same state abstraction and apply it in the flat MDP case, so that the agent does not need to waste samples determining that a state variable is irrelevant. Abstract samples provide a way to take the state abstraction functions encoded in the MaxQ hierarchy and translate the information so that the offline flat MDP algorithm can utilize it.

For each real sample collected, the sample is checked against the hierarchy to see if there are any irrelevant state variables for the sample’s action. If there are any irrelevant variables found, then the new abstract samples are generated by copying the real sample and then arbitrarily changing the values of the irrelevant state variables. These abstract samples teach the offline learning algorithm that the transition and reward function are unaffected by the irrelevant variables without requiring the agent to collect explicit samples from the environment, like it would in the normal flat RL algorithms.

MaxQ uses many different state abstraction rules, but the one that allows abstract samples to be generated is the “Max Node Irrelevance” condition [2]. Assume that the state can be factored into the set of relevant state variables, X, and irrelevant state
variables, Y. That is for a given state, s, it can be decomposed as follows: $s = (x, y)$. Max Node Irrelevance guarantees that the transition function is factorable as shown in equation 3.20 and that the reward function is independent of the irrelevant variables as shown in equation 3.21.

\[P(x', y'|x, y, a) = P(y'|y, a)P(x'|x, a) \]
\[R(x', y'|x, y, a) = R(x'|x, a) \]

If these conditions hold for a primitive action node in the hierarchy, then the values of y do not affect the values produced for that action. To illustrate this, start with an action a and two different states, $s_1 = (x, y_1)$ and $s_2 = (x, y_2)$, that differ only in the state variables in the irrelevant set. In this case we want to prove that if the Max Node irrelevance conditions hold, then the value function between the two states for the given action will be equivalent. The value of taking action a in state s_1 can be simplified using the properties from equations 3.20 and 3.21. This is shown in equation 3.22. The value function $V(a, s_2)$ can be simplified in the same way. This shows that for both states the value depends only on the state variables in the x set.

\[V(a, s_1) = \sum_{s'_1} P(s'_1|s_1, a)R(s'_1|s_1, a) \]
\[= \sum_{x', y'_1} P(y'_1|y_1, a)P(x'|x, a)R(x'|x, a) \]
\[= \sum_{y'_1} P(y'_1|y_1, a)\sum_{x'} P(x'|x, a)R(x'|x, a) \]
\[= \sum_{x'} P(x'|x, a)R(x'|x, a) \]

LSPI learns an estimate of the Q-function using the samples. Therefore if samples are provided for many different values of the state variables in Y, but the variables
in X retain their values and the reward of performing the action a remains constant, LSPI will learn that these variables in Y do not affect the Q-function for the given action. This leads to the algorithm shown in algorithm 9.

Algorithm 9 Abstract Sample Generation

1: procedure \textsc{GenerateAbstractSamples}(D, M)
2: \hspace{1em} \triangleright D : Set of real samples (s, a, r, s')
3: \hspace{1em} \triangleright M : The MaxQ hierarchy
4: $A \leftarrow \emptyset$ \hspace{1em} \triangleright A is the set of generated abstract samples
5: for sample $(s, a, s', r) \in D$ do
6: $Y \leftarrow$ all variables that meet Max Node irrelevance
7: for the given action a according to the hierarchy M
8: for each combination of values, y generated from Y do
9: \triangleright If the range of values for each variable in Y is known
10: then every possible combination of values, y can be generated.
11: Otherwise valid values can be pulled from other samples in the set D
12: $s_a \leftarrow s$
13: $s'_a \leftarrow s'$
14: for $y_i \in y$ do
15: $s_a(y_i) \leftarrow y_i$
16: $s'_a(y_i) \leftarrow y_i$
17: end for
18: $A \leftarrow A \cup \{(s_a, a, r, s'_a)\}$
19: end for
20: end for
21: return $A \cup D$
22: end procedure

Inhibited Action Samples from Abstract Samples

It is possible to generate inhibited action samples from the generated abstract samples. Instead of calling algorithm 8 with just the set of real samples, D_{real}, call it with the union of the set of real samples and the set of abstract samples, $D_{\text{real}} \cup D_{\text{abstract}}$.

It is especially important to generate inhibited action samples from the abstract samples when the agent is only collecting a small amount of samples. Without doing this, the abstract samples can actually hurt the policy. Abstract samples add information about states that the agent has potentially not yet visited. If inhibited action
samples are only generated for real samples and not the derived abstract samples, then there may be states which were never really sampled, but still have abstract samples. In these states the inhibited action samples are required to guarantee that LSPI does not get confused and choose an action that should be inhibited.

3.4.3 Discussion

Both of types of derived samples are going to skew the distribution of real samples. This invalidates the sample convergence results; however, the target distribution is clearly only a sufficient condition for convergence. If converging to the target distribution was necessary, then LSPI would not work with uniform random sampling. Really, the most important thing for the convergence of LSPI, is that it receives lots of high quality data about as many of the state-action pairs as possible. Both of these techniques only add correct information to the existing real sample information. Therefore it seems reasonable to expect that these techniques will help performance. Even if the effects did lead to a distribution LSPI could not work with, the LSPI algorithm contains a term to undo biasing in the sample distribution. This could be used to fix any of the biases introduced by derived samples. Future work will examine a more robust theoretical analysis of how both of these techniques affect the convergence properties.

3.5 Hierarchical Sampling with Derived Samples

Algorithm 10 shows the full algorithm using both the hierarchical sampling variation and the derived sample generation subroutines. Note that the order that the samples are generated is important. The abstract samples must be generated first so that inhibited action samples can be generated for both the abstract samples and the real samples. Also the LSPI algorithm could be replaced by another off-policy,
offline algorithm, but all of my experiments use LSPI, so that is the algorithm I have included.

Algorithm 10 Hierarchical Sampling with Derived Samples

```
1: procedure LSPIWithHierarchicalSamples(M, γ, n, φ, ϵ, π₀)
2: ⊲ M : The MaxQ Hierarchy
3: ⊲ n : Number of basis functions
4: ⊲ φ : Set of features
5: ⊲ γ : Discount factor
6: ⊲ ϵ : Stopping criterion
7: ⊲ π₀ : Initial policy
8: D_{real} ← sample with RHP, Weakly Polled, or Polled Sampling
9: D_{abstract} ← GenerateAbstractSamples(D, M)
10: r_{min} ← minimum reward from D_{real}
11: D_{inhibited} ← GenerateInhibitedActionSamples(D_{real} ∪ D_{abstract}, M, γ)
12: D ← D_{real} ∪ D_{abstract} ∪ D_{inhibited}
13: π ← LSPI(D, n, φ, γ, ϵ, π₀)
14: return π
15: end procedure
```

It is possible to prove that in the limit algorithm 10 will converge to the hierarchically optimal policy. To guarantee that RHP sampling will converge, it must be assumed that a uniform random policy is a proper policy for each subtask. A proper policy is a policy that is guaranteed to end in a finite number of steps. Without this guarantee it is possible for RHP to get stuck sampling a single task forever. Polled sampling and weakly polled sampling will converge even if a subtask’s sampling policy is not a proper policy. This is shown in theorem 3.5.1.

Theorem 3.5.1. If an infinite number of samples is collected via polled or weakly polled sampling, then Least-Squares Policy Iteration will find the hierarchically optimal policy. If a uniform random policy is a proper policy for every subtask, then Least-Squares Policy Iteration is guaranteed to find the hierarchically optimal policy when using Random Hierarchical Policy sampling.

Proof. As shown in theorem 3.3.3, polled sampling will converge to the target distribution with no bias. This means that with an infinite number of samples every
reachable path in every state will be sampled. Therefore, every state-action pair possible is sampled with polled sampling. With an infinite amount of samples, each of these state-action pairs is sampled an infinite amount of times.

The Q-learning paper [6] showed that if every state-action pair is visited infinitely often then it is possible for the agent to find the optimal policy. In this case only state-action pairs allowed by the hierarchy are sampled infinitely often, so globally optimal policies cannot be guaranteed. However, hierarchically optimal policies can be guaranteed because all of the state-action pairs consistent with the hierarchy will be sampled infinitely often.

Weakly polled sampling will have bias from the target distribution, but it has a non-zero probability of sampling any reachable action for a given state. Therefore, with an infinite amount of samples, weakly polled sampling will also sampling each state-action pair consistent with the hierarchy infinitely often.

Random Hierarchical Policy sampling requires that a uniform random policy be a proper policy. If the policy is not proper, it is possible for a RHP to get stuck sampling a single subtask forever. Polled sampling does not have this issue because it always starts at the root, meaning it does not stick with a non-terminated subtask. It chooses new subtasks every time it samples. Weakly Polled sampling does not have this issue because it can leave a non-terminated subtask and move to a different subtask.

When proper policies are assumed RHP sampling will also allow LSPI to find the hierarchically optimal policy. RHP too has a non-zero probability of sampling each reachable subtask because the completion times are now finite. Therefore, RHP will sample every state-action pair consistent with the hierarchy infinitely often.

The inhibited action samples do not affect the ability to find the hierarchically optimal policy. As shown they simple guarantee that unreachable actions are never chosen in the final policy. This is consistent with the hierarchically optimal policy.
The abstract action samples do not affect the ability to find the hierarchically optimal policy. Any sample generated via abstract samples could have been sampled directly using one of the three sampling variations. Therefore it is not adding any extra information in the case of infinite samples being collected via the hierarchical sampling variations. ■
Chapter 4

Empirical Evaluation

This section describes the different experiments performed to test the theoretical contributions described in section 3. The basic methodology is described in section 4.1. Any special modifications to the methodology is described in that experiments section.

First, I test the hypothesis that using hierarchical sampling can increase the rate of convergence to the optimal policy. I then test the hypothesis that my algorithms will converge to the hierarchically optimal policy, even when MaxQ will not. Next, I test the hypothesis that abstract samples improve the convergence rate more than inhibited action samples. Finally, I test the hypothesis that the polled sampling will converge with zero error, and the other two sampling variations will not. I follow these results with a brief discussion.

4.1 Methodology

I tested my hierarchical sampling algorithm using MaxQ as a hierarchical learning algorithm baseline. I used flat LSPI and flat Q-learning as a baseline for flat learning algorithms. Both my agents and the baseline agents were tested over a variety of different MDPs. In each domain, the agents were run for a set range of samples.
Every so often, the policies of each agent were frozen and tested multiple times. The tests ran until either the agent successfully finished the task, or a maximum number of steps was reached. For each test run, I saved the total rewards received by the agent. These results were then averaged across all of the runs to get an estimate for the value of the policy found by that agent after a set amount of samples. This whole process was repeated 5 times for each agent. All of the data from the five times were averaged in order to ensure that there were no random fluctuations that would cause abnormal behavior.

Curves of the results from each policy freeze, for each agent, were plotted. These curves allow the convergence rates and the value of the best policies found by each agent to be compared for each domain. These plots are referred to as “learning curves”.

The LSPI algorithms used a basis function which performed no approximation. Each state-action pair has its own feature and weight just like in the tabular representation of the Q-function that MaxQ and Q-learning use. This was to ensure that there were no errors introduced due to approximation.

4.2 Domains

In this section I present the various domains used to test the different hierarchical sampling variations. First, I present the Taxi domain, which was used extensively in the original MaxQ paper [2]. Then, I present Wargus [14] [15], a domain based on resource collection in real time strategy games. Next, I define a modified version of the Wargus domain with continuous state variables. Finally, I present Hallways, a version of Ronald Parr’s Maze domain [16]. This section provides a very brief overview of each domain. For a more detailed description please see appendix A. All of these domains are used to test various hypotheses about the different sampling variations.
These hypotheses are described in the following sections.

4.2.1 Taxi Domain

In taxi world the agent is tasked with navigating to a passenger, picking up the passenger, navigating to the passenger’s desired destination and then finally, dropping off the passenger. Each time the passenger is dropped off the task resets, making this an episodic problem. Figure 4.1 shows a representation of a 5x5 grid world version of the problem. In this example there are 4 pickup/dropoff locations: Red, Yellow, Green, and Blue. Each time the task starts, the agent is in a random grid cell and the passenger is randomly located at one of the pickup/dropoff locations. The destination of the passenger is one of the other three pickup/dropoff locations.

There are six actions the agent can perform. There are four navigation actions: north, south, east and west. Each of these actions has a reward of -1. If an obstruction blocks the taxi from moving in that direction the state of the world does not change, but the -1 reward is still received. There is a pickup action which moves the passenger to the taxi when the taxi is at the same pickup/dropoff location as the passenger. If the taxi executes this action at the location of the passenger it receives a reward of -1, otherwise it receives a reward of -10. There is a dropoff action which moves the passenger from the taxi to the pickup/dropoff location the taxi is currently at. If the taxi is at the passenger’s designated destination then it receives a reward of +20, otherwise it receives a reward of -10.
Figure 4.1: Taxi Domain [2]
The colored letter areas the four pickup/dropoff locations. The car icon represents
the current location of the agent. The grid contains wall obstacles (represented by
bold lines) which the agent cannot move through

This task can be broken into a very simple hierarchy which is shown in figure 4.2.
The full task is represented by the root node of the hierarchy. The root node policy
can choose to either get a passenger or put a passenger at the destination. The Get
and Put tasks share a common set of navigate subtasks which move the taxi to one
of the pickup/dropoff locations. Because the navigates differ only in the goal state
location (i.e. which pickup/dropoff location the taxi should go to), the task is shown
as taking a parameter “t”. The edge between Get and Navigate(t) has a label of
“t/source” meaning that when Get calls navigate, it binds the t parameter to one of
the source locations (i.e. the pickup/dropoff locations). The navigate task, while a
simple example, shows one way in which subtasks can be reused, even within a single
MDP.
In the version of taxi tested, each move action has a 20% chance of failing. If the action fails, the agent will move in one of the directions perpendicular to the executed action. For example, if the agent executes the action “North”, then 80% of the time the agent will move north by one space (assuming no obstacles are in the way). 10% of the time the agent will actually move east and the other 10% of the time the agent will actually move west. The failed action probabilities are included to show that these algorithms work even with non-deterministic actions. It also makes it more difficult for the agent to learn the proper policy, which makes the differences in the algorithms more apparent.

For a detailed description of the task hierarchy subtasks see section A.1.

4.2.2 Wargus Domain

The Wargus domain is based off of parts of the popular real-time strategy genre [14] and was used in previous HRL research [15]. In Wargus type games, the player must accomplish a number of simultaneous goals such as building a base, defeating enemies in combat and collecting resources. The Wargus domain focuses on the resource collection aspects.

There are two types of resources in the Wargus domain: gold and wood. The goal of the agent is to collect a prespecified amount of each resource from the different...
trees and mines in the environment. Every time the agent collects some wood or gold, it must then go and drop off the resource at the town hall. Each resource location has a finite amount of resource available. After the resource has run out, the agent must use another resource location to get more of that type of resource. The agent must learn both the optimal order to collect the resources and the optimal locations to get the resources from.

![Diagram of Wargus Domain](image)

Figure 4.3: Wargus Domain

Figure 4.3 shows what the Wargus world tested looks like. The agent starts at a random location in the 6x6 grid world. There are two trees with two wood each and two mines with two gold. The town hall is located at the center of the map. The target amount of resources the agent needs to collect are three gold and three wood. Meaning that the agent will need to visit both of the mines and the trees in order to get all of the required resources. For a detailed description of the state variables see section A.2.

Wargus has 7 different primitive actions: north, south, east, weest, mine, chop and deposit. North, south, east, and west move the agent around. Mine is used to get gold from a mine, and chop is used to get wood from a tree. Deposit is used to place the held resource in the townhall. For a detailed description of the actions see
When the agent meets one of the requirements it receives a +50 reward. If the agent deposits a resource that has already met its goal then it gets a -10 penalty. All of the move actions give a reward of -1. If the agent tries to chop, mine or deposit in an invalid state then it gets a -10 reward. Otherwise these actions also give a -1 reward.

The hierarchy for this domain is shown in figure 4.4. For descriptions of each subtask and their termination conditions see section A.2.

4.2.3 Hallways Domain

The Hallway domain is based off of the hallways maze from Ron Parr’s dissertation [16]. The maze consists of a series of connected rooms, each with internal obstacles. The agent starts in a specific room and must navigate to a fixed goal room. The maze has both a coarse and fine grained structure. The coarse structure consists of the series of hallways and intersections the agent must traverse to reach the goal. The fine grained structure consists of obstacles inside each room that the agent must navigate around.
Figure 4.5 shows the particular maze configuration used in this section’s experiments. The agent always starts in the upper left corner room and the goal is always in the empty room on the bottom right corner.

There are four primitive actions in this domain: north, south, east, and west. Each of these move actions has a 20% chance of failure. If the action fails, the agent will move in one of the directions perpendicular to the action executed. For instance if the agent calls the north action and it fails, there is a 50% chance of the agent moving east, and a 50% chance of the agent moving west.
Figure 4.6 shows the hierarchy for this domain. This hierarchy was taken from Dietterich’s paper [2]. For a detailed description of each subtask and its termination and goal conditions see section A.3.

4.3 Hypotheses

This section presents the hypotheses tested and their results. The hypotheses tested are as follows:

1. Hierarchical Sampling can improve the rate of convergence to the optimal policy when compared to flat learning methods, like LSPI and Q-learning.

2. Hierarchical Sampling can improve the rate of convergence to the optimal policy when compared to hierarchical learning methods, like MaxQ.

3. Hierarchical Sampling can converge to the hierarchically optimal policy, even when hierarchical learning methods, like MaxQ, require pseudo-rewards.
4. Both Abstract samples and inhibited action samples improve the rate of convergence to the optimal policy.

5. The KL-divergence of the sample distribution to the target distribution will match the theoretical predictions.

4.3.1 Hypothesis 1: Hierarchical Sampling vs Flat Learning

One of the motivations for this work, is that the prior information of the hierarchy should be capable of speeding up the convergence to the optimal policy. To test this hypothesis, the learning curves for my hierarchical sampling methods were compared to flat LSPI and flat Q-learning on different domains.

The first domain tested is the taxi domain. Taxi has a small state-action space of approximately 3,000 unique values and a relatively easy to learn policy. However, as the MaxQ paper [2] showed, there are still gains to be made through the task hierarchy. Taxi also provides a good domain to test the effects that inhibited action samples and abstract samples have on the rate of convergence.

Inhibited action samples can be generated for every state where the passenger is not in the taxi. When the passenger is not in the taxi the Put task is terminated, making the dropoff action inaccessible from the root. The minimum reward for the Taxi domain is -10. For all of the agents a discount factor of 0.9 was used. This means that the negative samples should have a reward of -100.

Abstract samples can be generated for most of the actions the agent tries. For any of the four move actions, the passenger source and destination are irrelevant. This allows the agent to learn the move action effects and rewards for all source/destination combinations in a single episode. The destination is also irrelevant for the pickup action.

Figure 4.7 shows the baselines compared to the two best hierarchical sampling variations on the Taxi domain. The graph removes noise by holding the best policy
seen up until that point. So if the policy performed a little less well in a subsequent test that will not show up on the graph.

As expected my hierarchical sampling variations outperform flat LSPI and flat Q-learning by a lot. In this case the polled with inhibited action and abstract samples converged the fastest in only 20,000 samples followed by the weakly polled with inhibited action and abstract samples. LSPI does eventually converge at around 100,000 samples, however, that is far after two of my variations have converged.

![Figure 4.7: Taxi - Baseline Learning Curves](image)

Taxi has a fairly small and compact state-action space. It is expected that for a larger state space the difference between my hierarchical sampling methods and the flat methods will be even greater. Especially if each action’s relevant state variables are a small subset of the state variables. In that case the abstract samples and inhibited action samples can provide a huge boost over the flat methods.

The Wargus domain has a much larger state-action space than Taxi. Taxi has approximately 3,000 unique state-action pairs, whereas, Wargus has approximately 48,384 unique state-action pairs.

Wargus also has ample opportunity to generate abstract samples. In any sample
for a move action (North, South, East, West) only the X and Y location variables are relevant. When mining, the variables related to the wood collection portion of the task are irrelevant. Similarly when the agent is chopping wood, the variables related to the gold collection portion of the task are irrelevant. The flat methods need to manually collect samples in order to learn which states are irrelevant for a given action, but the hierarchical methods can generate them through the abstract sample procedure.

Inhibited action samples are also useful in Wargus. When the agent is not holding any resource, the deposit action is unavailable. The inhibited action samples should quickly teach the agent not to call deposit when it has no resource. The environment also provides a negative reward for calling deposit in these states, meaning the flat learning methods will eventually learn this fact. However, by using inhibited samples, the agent does not need to waste time collecting samples for these actions. Similarly, inhibited action samples can be generated for chop and mine when the agent has a resource or that particular resource’s goal has been met.

Figure 4.8 shows the baselines compared to the top three hierarchical sampling variations on the Wargus domain. Again the best policies were held across points. As expected my hierarchical sampling methods do significantly better than the flat learning algorithms. All three variations converge within 20,000 samples to the optimal policy, compared to flat LSPI which even by 100,000 samples has not yet found the optimal policy.
These two experiments show that my methods can greatly improve the rate of convergence as compared to flat methods.

4.3.2 Hypothesis 2: Hierarchical Sampling vs Hierarchical Learning

I am using the LSPI algorithm as the hierarchical sampling agent’s offline policy solver. LSPI performs a global optimization taking into account all of the information it has. On the other hand Hierarchical Learning algorithms, like MaxQ, only optimize the local policies in each subtask. This means that if LSPI has a good distribution of high quality samples it should be able to find a better policy faster than MaxQ.

To test this hypothesis I plotted the learning curves for my hierarchical sampling variations and the MaxQ algorithm for both Taxi and Wargus. The learning curves for Taxi are shown in figure 4.9 and the learning curves for Wargus are shown in figure 4.10.
Figure 4.9: Taxi - Hierarchical Sampling vs Hierarchical Learning - Best Policies

Figure 4.10: Wargus - Hierarchical Sampling vs Hierarchical Learning - Best Policies
CHAPTER 4. EMPIRICAL EVALUATION

The Taxi learning curves show that my methods outperform MaxQ. Both polled with inhibited action and abstract samples and weakly polled with inhibited action and abstract samples converge before MaxQ. Polled sampling does particularly better than MaxQ.

The Wargus learning curves show that even if my methods do not outperform MaxQ they will at least match its performance. In this case all three variations of the hierarchical sampling converge. Both polled and weakly polled variations converge at approximately the same time as MaxQ. This shows that my algorithms not only have an advantage over flat algorithms, but also existing hierarchical learning algorithms.

4.3.3 Hypothesis 3: Hierarchical Sampling vs Hierarchical Learning with Pseudorewards

One of the disadvantages of the MaxQ algorithm, is that it is only guaranteed to find the recursively optimal policy. As discussed in section 2.7.3, the recursively optimal policy for a hierarchy can be arbitrarily worse than the globally optimal policy. MaxQ allows the user to specify pseudo-rewards which can allow it to find the hierarchically optimal policy. However, as discussed in section 3.1, specifying these pseudo-rewards is often difficult. In the worst case the pseudo-rewards can be set incorrectly, thus leading to policies even worse than the recursively optimal policy. Because my algorithm uses a flat policy solver, I hypothesize that my algorithm will be able to find the hierarchically optimal policy without the use of pseudo-rewards, even when MaxQ requires pseudo-rewards to find the same policy.

The Hallways domain hierarchy has a recursively optimal policy that will never reach the goal. Recursively optimal means that each subtask’s policy is optimal. In this case, every action gives a -1 reward, so the quicker a subtask completes, the better it does. The issue is that the agent can pick a direction of the Go task and then run the ExitInter task. As soon as the agent leaves the intersection it enters
the ExitHall subtask. If the agent calls the Back subtask, then it will reenter the intersection, causing Back and ExitHall to terminate in a single step. The agent will then call ExitInter again and keep repeating this sequence forever. This is because the number of steps to actually exit the hallway in the correct direction will be a lot more than the one step it takes for the agent to just go back into the intersection it just left. Hence, without pseudo-rewards MaxQ will perform terribly on this domain.

Pseudo-rewards are necessary for MaxQ to find a policy that at least reaches the goal. I define the pseudo-rewards as +1000 if the ExitHall subtask exits into the goal intersection and -1000 if the ExitHall subtask exits into any other intersection, including the one it just came from. So if the agent calls ExitHall(north, room8) and it successfully enters the intersection north of room8, it will receive a pseudo-reward of +1000. If it instead enters the intersection in room8, it will receive a pseudo-reward of -1000. Even if the agent takes a very circuitous route through the obstacles it will take far less than 1000 steps for it to reach the goal intersection. So now internally ExitHall will consider the sniff actions as a better choice than the back action. It is important to note that I cannot prove that these pseudo-rewards are the best pseudo-rewards possible, however, as will be shown they do improve the policy MaxQ finds.

While MaxQ with pseudo-rewards can converge to the hierarchically optimal policy for Hallways, the hierarchically optimal policy will not be as good as a globally optimal policy that can be found by algorithms such as flat Q-learning and flat LSPI. Given the Hallways hierarchy, the MaxQ agent is stuck moving forward until it hits an obstacle. Before it can get out of the obstacle and go around, it first has to slide along the obstacle until it hits a corner. On the other hand, the flat policies can preemptively move around the obstacle. Also the hierarchical policy has to pick a sliding direction and stick with it until it either finishes the subtask or gets stuck. If noise causes the agent to drift then it might be more optimal to pick a different
perpendicular direction to slide in. These two effects cause the globally optimal policy found by the flat methods to perform better than the hierarchical optimal policy found by algorithms like MaxQ.

Unlike in the Taxi and Wargus domains, Hallways has no irrelevant state variables, so no abstract samples can be generated. However, inhibited actions can be generated for move actions that would attempt to move the agent into a wall or obstacle.

In the general case I expect my algorithm will only be able to converge to the hierarchically optimal policy, however, Hallways is a special case where hierarchical sampling can find the globally optimal policy. In Hallways the hierarchy is such that the hierarchical sampling agent will receive samples for every action in every state. These samples will either come from directly sampling the environment or from deriving inhibited samples. Because LSPI will receive samples for every state-action pair, LSPI should be able to find the globally optimal policy. In the general case only hierarchically optimal policies can be guaranteed because the hierarchy may stop state-action pairs that are important to the globally optimal policy from being sampled. If such a hierarchy was used for sampling, then policy solver would be missing the information it needs to find the globally optimal policy.

Figure 4.11 shows the learning curves of the best hierarchical sampling variations and MaxQ with pseudo-rewards.
Of the three hierarchical sampling variations, both polled and weakly polled sampling converge to the globally optimal policy. However, in this case the random hierarchical policy sampling does not converge. This is not totally unexpected given the theoretical predictions about RHP’s biasing from the target distribution.

MaxQ with pseudo-rewards does converge to the hierarchically optimal policy. However, as discussed the hierarchically optimal policy has less utility than the globally optimal policy in the Hallways domain.

In this domain the weakly polled sampling actually converges before the polled sampling. As mentioned, the theoretical results are only for asymptotic convergence properties so the fact that weakly polled converges first does not violate any theorems, however, it does highlight why it is important to test all three of the variations on the different domains. One piece of future work is to determine theoretical convergence rates which would eliminate the uncertainty in which of the three variations will perform best on a domain.
4.3.4 Hypothesis 4: Derived Samples

Improve Convergence Rate

Both the inhibited action samples and the abstract samples add extra information to the sample set. Therefore, it is expected that both types of derived samples will lead to improvements in the convergence rates. It is also expected that abstract samples will cause a larger jump in the convergence rate because they can add information to states the agent may not yet have sampled. Also, in general more abstract samples can be generated than inhibited action samples.

To test this expectation, the convergence rates of the hierarchical sampling algorithm with only inhibited action samples with inhibited action and abstract samples were compared to flat LSPI. Figure 4.12 shows these curves for the polled sampling variation on the Taxi domain.

![Figure 4.12: Taxi - Comparing the effect of the inhibited action samples and abstract action samples when used with Polled sampling on the Taxi domain](image)

Polled sampling with inhibited action samples does slightly better than flat LSPI, showing the value of the hierarchical sampling and the inhibited action samples. However, there is a much larger improvement in the convergence rate when the abstract
samples are added.

Figure 4.13 shows polled sampling variations vs flat LSPI on the Wargus domain. In Wargus, the inhibited action samples clearly help the convergence rate. However, once again the abstract samples have an even larger effect.

![Figure 4.13: Wargus - Comparing the effect of inhibited action samples and abstract action samples when used with Polled sampling on the Wargus Domain](image)

Plotting these curves for the weakly polled variation shows similar results. This indicates that the abstract samples do indeed have the largest effect on the convergence rate. Therefore, I would expect my methods to perform better on domains where there are more opportunities to generate abstract samples.

4.3.5 Hypothesis 5:

KL-Divergence from Target Distribution

Chapter 3 proved theorems about the asymptotic convergence properties of each of the sampling variations. I showed that in the limit, polled sampling will converge without bias to the hierarchical projection distribution. KL-Divergence formulas were also given for weakly polled sampling and RHP sampling. I expect that the experimental
KL-Divergence values will follow the patterns indicated by the theoretical analysis. That is, polled sampling will converge with zero error, weakly polled sampling will converge with small non-zero error, and RHP sampling will converge with a large non-zero error.\footnote{It is difficult to calculate the exact theoretical KL-Divergence for RHP because the expected completion times are difficult to calculate. For this reason, rather than comparing each experimental KL-Divergence to the exact theoretical KL-Divergence, I instead check the listed properties of the KL-Divergence for each variation.}

I used the Taxi domain samples to test this hypothesis. In fact, I expect the Taxi domain RHP samples to have a large KL-Divergence because the navigate tasks will take a lot longer to complete than the pickup and dropoff tasks. There is some bias expected in the weakly polled distribution, however, this bias is expected to be small because the probabilities of each action being chosen are only slightly decreased by adding in the early exit action.

Figure 4.14 shows how the KL-Divergence changes as the number of samples collected by each technique increase. I did not include the derived samples when calculating the KL-Divergence. The exact value of the target hierarchical projection distribution was calculated by enumerating every state possible in Taxi and using the hierarchy with equation 3.3.
The plot shows the expected behavior. Polled sampling converges with approximately zero error. Weakly polled converges with a small but non-zero error. RHP sampling converges with a large non-zero error. This validates the convergence properties analyzed in chapter 3.
Chapter 5

Conclusions

In this work, I have introduced a new sampling algorithm that uses prior information encoded in a task hierarchy, to direct sample collection for an offline learning algorithm. While this idea can be applied to other offline algorithms and other task hierarchy frameworks, I have focused my analysis and experiments on the use of LSPi and the MaxQ framework. I introduced the target distribution that a hierarchical sampling algorithm should converge to through the new “hierarchical projection” operation. I then used this distribution to analyze three different variations on the basic hierarchical sampling algorithm in the process proving properties of their asymptotic convergence to the target distribution. I also introduced the concept of “derived samples”, which allow an agent to expand the samples it has collected using additional information encoded in a task hierarchy. Through multiple experiments I have shown that my hierarchical sampling algorithm not only outperforms flat learning algorithms, such as Q-learning and LSPi, but that it can also outperform hierarchical learning algorithms, such as MaxQ. I have also shown that for domains which MaxQ requires pseudo-rewards to converge, my algorithm is capable of finding the hierarchically optimal policy with no pseudo-rewards. Additionally, I have shown that derived samples can significantly improve the rate of convergence to the optimal pol-
icy. Finally, I have experimentally validated the theoretical asymptotic convergence properties for the hierarchical sampling variations.

The main limitation of the hierarchical sampling technique is the amount of computational resources needed to find the policy. LSPI does a global optimization by solving a large set of linear equations. This optimization can take a long time and use a lot of memory. Therefore, it would be useful to investigate methods of reducing these computational costs, such as by verifying that approximation works with my algorithm. This thesis also does not provide theoretical analysis of the rate of convergence. So future work should examine theoretical convergence rates. Finally, a stronger theoretical basis should be developed for the derived samples.

This work provides a theoretical framework to analyze any future hierarchical sampling results. More importantly, this work has proven that when compared to existing methods, using the task hierarchy to direct sample collection can have large positive effects, both on the rate of policy convergence, and the quality of the converged policies.
Appendix A

Detailed Domain Descriptions

This appendix contains more detailed information about the different domains. This includes a domains state variables, detailed action behaviors, and detailed subtask descriptions.

A.1 Taxi Domain

The basic taxi description is located in section 4.2.1. Figure 4.1 gives an illustration of the domain and figure 4.2 gives the task hierarchy.

A.1.1 Taxi State Variables

Taxi has four state variables. They are as follows:

X The X location of the grid cell the agent is currently in.

Y The Y location of the grid cell the agent is currently in.

Source When the passenger has not been picked up this represents the location the taxi should pick the passenger up from. After the passenger has been picked up it represents whether the passenger is still in the taxi or whether the passenger has been dropped off at the destination.
Destination One of the four pickup/dropoff locations. This is the location that the passenger should be dropped off in.

A.1.2 Taxi Action Effects

The taxi actions and their effects and rewards are as follows:

- **North** Moves the taxi up one cell unless it is at the top of the grid. This action always give a -1 reward.

- **East** Moves the taxi right one cell unless there is a wall to the agent’s right or the agent is in the last column. This action always give a -1 reward.

- **South** Moves the taxi down one cell unless it is in the bottom row. This action always give a -1 reward.

- **West** Moves the taxi left one cell unless there is a wall to the agent’s left or the agent is in the first column. This action always give a -1 reward.

- **Pickup** If the taxi is at the passenger’s source location then this moves the passenger into the taxi and give a -1 reward. Otherwise nothing happens and the agent gets a -10 reward.

- **Dropoff** If the passenger is in the taxi and the taxi is at the correct dropoff location then this moves the passenger to the destination and give a +20 reward. Otherwise nothing happens and the agent gets a -10 reward.

A.1.3 Taxi Subtask Descriptions

The termination conditions for each subtask are as follows:

- **Root** This is the original MDP. The goal is to dropoff the passenger at the specified dropoff location.
Get The goal of this subtask is to navigate to and pickup the passenger. This subtask is only executable if the passenger is not currently in the taxi.

Put The goal of this subtask is to navigate to the destination and dropoff the passenger. This subtask is only executable if the passenger is in the taxi.

Pickup This is the primitive pickup action. If the taxi is at the location of the passenger it succeeds.

Dropoff This is the primitive dropoff action. if the taxi is at the destination of the passenger and the passenger is in the taxi then this succeeds.

Navigate(t) The goal is for the agent to navigate to the location specified by the “t” parameter. When called from Get t is bound to one of the 4 source locations. When called from Put t is bound to one of the 4 destination locations. This subtask is terminated when the taxi is at the specified destination.

North This is the primitive move north action.

East This is the primitive move east action.

South This is the primitive move south action.

West This is the primitive move west action.

A.2 Wargus Domain

The basic Wargus description is located in section 4.2.2. Figure 4.3 shows an illustration of this domain and figure 4.4 gives the hierarchy.

A.2.1 Wargus State Variables

The Wargus state variables are as follows:
The X location of the agent in the grid world.

Y The Y location of the agent in the grid world.

Resource The resource held by the agent. It has three values: None, Gold and Wood.

Tree 1 Has Wood 1 if the tree at (0, 5) still has wood, 0 otherwise.

Tree 2 Has Wood 1 if the tree at (5, 5) still has wood, 0 otherwise.

Mine 1 Has Gold 1 if the mine at (0, 0) still has gold, 0 otherwise.

Mine 2 Has Gold 1 if the mine at (5, 0) still has gold, 0 otherwise.

Wood Requirement Met 1 if the agent has collected the goal amount of wood, 0 otherwise.

Gold Requirement Met 1 if the agent has collected the goal amount of gold, 0 otherwise.

A.2.2 Wargus Action Effects

The Wargus actions are as follows:

North Move the agent up one cell in the grid

East Move the agent one cell right in the grid

South Move the agent one cell down in the grid

West Move the agent one cell left in the grid

Mine Gold If the agent is on the location of a gold mine and that gold mine has gold, and the agent is holding nothing, then change the resource held by the agent to “Gold”.

100
Chop Wood If the agent is next to the location of a tree and that tree has wood, and the agent is hold nothing, then change the resource held by the agent to “Wood”

Deposit If the agent is hold either gold or wood, and is next to the town hall, then change the resource held by the agent to “None” and increase the resource count for that resource. If the resource count matches the goal amount of resources then change the appropriate requirement met variable to 1.

A.2.3 Wargus Subtask Descriptions

The termination conditions for each subtask are as follows:

Root This task is terminated when both “Wood Requirement Met” and “Gold Requirement Met” are 1.

Get Gold This task is terminated when the agent is holding either gold or wood. It is also terminated when the “Gold Requirement Met” variable is 1.

Get Wood This task is terminated when the agent is holding either gold or wood. It is also terminated when the “Wood Requirement Met” variable is 1.

Deposit GW This Task is terminated when the agent is holding nothing.

Mine This is the primitive action “Mine Gold”.

Chop This is the primitive action “Chop Wood”.

Deposit This is the primitive action “Deposit”.

Navigate(t) This task is terminated when the agent is at the location specified by t. The “Get Gold” task binds t to the locations of the gold mines. The “Get Wood” task binds t to the locations the agent can chop wood. The “Deposit GW” task binds t to the locations the agent can deposit.
North This is the primitive action “North”

East This is the primitive action “East”

South This is the primitive action “South”

West This is the primitive action “West”

A.3 Hallways Domain

The basic hallways domain was presented in section 4.2.3. Figure 4.5 shows an illustration of the configuration used and figure 4.6 shows the task hierarchy.

A.3.1 Hallways State Variables

The state variables of Hallways are as follows:

Room The current room number of the agent.

X The X location in the current room.

Y The Y location in the current room.

A.3.2 Hallways Subtask Descriptions

The Hallways hierarchy is intended to be a close conversion of the Hierarchy of Abstract Machines (HAM) that was used in Parr’s original dissertation. However, HAM subtasks, unlike MaxQ subtasks, can have internal states. To get around this limitation, separate subtasks for each internal state of the HAM are created. HAMs can also terminate after a set amount of actions, however, MaxQ subtasks can only terminate based on a change in the state of the subtask. Hence the large number of subtasks and the large number of parameters when compared to the hierarchies for wargus and taxi.
APPENDIX A. DETAILED DOMAIN DESCRIPTIONS

The subtasks are described as follows:

Root The original MDP task. It chooses a direction, d, to Go.

Go(d,r) The parameter r is bound to the ID of the room this task is started in. This task terminates when the agent enters an intersection other than r. If the intersection entered is the first intersection in direction d then Go reaches a goal termination state, otherwise it is non-goal termination state.

ExitInter(d,r) Terminates when the agent has exited room r. The termination is a goal terminal if the agent exited in direction d.

ExitHall(d,r) Terminates when the agent has exited the current hall (i.e. entered an intersection). The goal condition is that the agent has entered the first intersection in direction d from room r. Otherwise it is a non-goal terminal.

Sniff(d,r) In the original HAM controller the subtask sniff would move the agent until it hit a wall and then move perpendicularly along the wall until either the wall ended or it got stuck in a corner. This subtask broken down into two subtasks, ToWall and FollowWall, in order to represent the two classes of internal states in the original HAM.

ToWall(d) The agent moves in direction d until it hits a wall.

FollowWall(d,p) The agent moves in direction p until either the direction d is clear or both d and p and blocked.

Back(d,p,x,y) In the original HAM controller the subtask Back would execute a precoded sequence of steps (one step back and five steps in direction p). This subtask is broken down into two subtasks, BackOne and PerpThree, in order to represent the two classes of internal states in the original HAM. The goal is for the agent to move one step backwards and then three steps in direction
In order to check if the agent has moved relative to its starting position the starting position, x and y, are bound as parameters in this subtask.

BackOne(d,x,y) The agent moves one step backwards, in direction opposite d. This subtask terminates if the agent has moved one more cells in the opposite direction of d or if there is a wall in the opposite direction of d.

PerpThree(p,x,y) The agent moves three steps in direction p. This subtask terminates if the agent has moved three or more cells in direction p or of if there is a wall in direction p.

Move(d) Moves the agent in direction d. This maps to the primitive actions: north, south, east, and west.

105

