TOOLS OF PLAY: DEVELOPING A PEDAGOGICAL FRAMEWORK FOR GAMING LITERACY IN THE MULTIMODAL COMPOSITION CLASSROOM

Tina Lynn Arduini

A Dissertation

Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2016

Committee:

Kristine Blair, Advisor

Gi Yun,
Graduate Faculty Representative

Lee Nickoson

Sue Carter Wood
Kristine Blair, Advisor

Since the publication of James Paul Gee’s (2003) seminal text *What Video Games Have to Teach us About Learning and Literacy*, scholars in the field of rhetoric and writing have been looking at the ways video games have made an impact on modern literacies. Paralleling this research, rhetoric and writing teacher-scholars have also been exploring the benefits to teaching multimodal composition skills to their students. My dissertation examines the intersections of these two related fields of study in order to help construct a pedagogical framework that utilizes gaming literacies in the multimodal composition classroom.

Using the gaming literacy narratives of three student gamers at a rural Midwestern university, I address the following research questions: How do students acquire gaming literacy? What kinds of multimodal skills are acquired through gaming literacy? What does one’s gaming literacy narrative reveal about his or her literate practices? The answers to these questions help to inform my approach to the more pedagogically-driven research question: How can gaming literacy be effectively used in the multimodal composition classroom?

My findings are influenced by technofeminist research methodologies so that I explore not only the role that video games have played upon my research participants but also the social adaptations that the participants have exerted over their gaming experiences. Similarly, I help breakdown the rigid line between researcher and research participant by inviting my participants into a discussion of my findings, allowing them to maintain agency over their representations. My research reveals many connections between gaming literacies and the skills required to create and consume meaningful multimodal compositions. In my analysis of these findings, I establish the
importance of these connections—specifically the social and technological skills obtained through gaming—and develop a pedagogical framework that utilizes the literate skills of gamers in order to institute practical course goals and objectives for the multimodal composition classroom.
For my parents—Flora and Kenneth—and Mike, who have always supported my aspirations.
ACKNOWLEDGMENTS

This project has been a joy to complete largely due to the people who have been involved from its inception to its completion. I’d like to first thank Dr. Kristine Blair—my chair, mentor, and friend. Her support for my project from its rudimentary stages as a Venn diagram on a white board to its 200-page manuscript has been invaluable. Thank you for your guidance and feedback at every step during my PhD work. You inspired me to engage with the field and helped me find my scholarly identity—I will be forever thankful.

I’d also like to thank the rest of my committee: Dr. Lee Nickoson for her detailed feedback on my work, especially on areas of the research that made me a bit nervous; Dr. Sue Carter Wood for her continued support and grammar advice when I couldn’t pin down some pesky phrases; and Dr. Gi Yun for his outside-of-the-field insights that made me more aware of my audiences.

Finally, I’d like to thank my family and my cohort. Their continued support made this leg of my academic journey the best one yet because I never felt isolated regardless of how much time I had to spend sitting alone at the computer. Many thanks to my online social network as well. They were always willing to help me think of the right word or phrases whenever I got stumped. And deepest thanks go to my husband—Mike Shank—for his help with this project in particular. His hours of transcribing and collaboratively-coding made my life much easier and more enjoyable.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1: GAMING LITERACY AND MULTIMODALITY</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defining Terms</td>
<td>5</td>
</tr>
<tr>
<td>Literature Review</td>
<td>8</td>
</tr>
<tr>
<td>Gaming Literacy</td>
<td>8</td>
</tr>
<tr>
<td>The literate practices of gamers</td>
<td>10</td>
</tr>
<tr>
<td>Gaming literacy in the traditional composition classroom</td>
<td>19</td>
</tr>
<tr>
<td>Gaming literacy in the multimodal composition classroom</td>
<td>23</td>
</tr>
<tr>
<td>Multimodal Composition in the Classroom</td>
<td>26</td>
</tr>
<tr>
<td>Chapter Abstracts</td>
<td>31</td>
</tr>
<tr>
<td>Conclusion</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2: TECHNOFEMINIST RESEARCH PRACTICES ON SOCIOTECHNICAL COLLABORATIONS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Gamers and Their Literate Practices</td>
<td>36</td>
</tr>
<tr>
<td>A Technofeminist Approach to Research</td>
<td>40</td>
</tr>
<tr>
<td>Framing Arguments as a Technofeminist</td>
<td>41</td>
</tr>
<tr>
<td>Social technology</td>
<td>42</td>
</tr>
<tr>
<td>Multivocal narration</td>
<td>45</td>
</tr>
<tr>
<td>Collecting Data as a Technofeminist</td>
<td>49</td>
</tr>
<tr>
<td>Survey as a recruitment tool</td>
<td>50</td>
</tr>
<tr>
<td>Feminist interview techniques</td>
<td>52</td>
</tr>
<tr>
<td>Technofeminist literacy narratives</td>
<td>57</td>
</tr>
<tr>
<td>Conclusion ..</td>
<td>126</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CHAPTER 4: EXAMINING THE TECHNOLOGICAL SKILLS OF GAMERS AND THEIR POTENTIAL APPLICATIONS IN THE MULTIMODAL COMPOSITION CLASSROOM ..</td>
<td>129</td>
</tr>
<tr>
<td>Gamers as Cyborgs ..</td>
<td>131</td>
</tr>
<tr>
<td>Technology Cyborgs ..</td>
<td>132</td>
</tr>
<tr>
<td>Using multiple devices ...</td>
<td>132</td>
</tr>
<tr>
<td>Using multimedia devices ...</td>
<td>139</td>
</tr>
<tr>
<td>Becoming proficient with software ...</td>
<td>143</td>
</tr>
<tr>
<td>Social Cyborgs ...</td>
<td>147</td>
</tr>
<tr>
<td>Digital communities ...</td>
<td>148</td>
</tr>
<tr>
<td>Social networks ..</td>
<td>151</td>
</tr>
<tr>
<td>Gamers as Technological Engineers ...</td>
<td>156</td>
</tr>
<tr>
<td>Access and Economics with Technology ...</td>
<td>160</td>
</tr>
<tr>
<td>Conclusion ..</td>
<td>166</td>
</tr>
<tr>
<td>CHAPTER 5: A PEDAGOGICAL FRAMEWORK ..</td>
<td>168</td>
</tr>
<tr>
<td>Literacy Transfer ..</td>
<td>170</td>
</tr>
<tr>
<td>Collaborative Skills in the Multimodal Composition Classroom</td>
<td>173</td>
</tr>
<tr>
<td>Offline Collaborations ...</td>
<td>174</td>
</tr>
<tr>
<td>Sharing technology ..</td>
<td>175</td>
</tr>
<tr>
<td>Identity assessment ..</td>
<td>178</td>
</tr>
<tr>
<td>In-class group work ..</td>
<td>180</td>
</tr>
<tr>
<td>Online Collaborations ...</td>
<td>181</td>
</tr>
</tbody>
</table>
“In a world where communication between individuals and groups is both increasingly cross-cultural and digital, teachers of composition are beginning to sense the inadequacy of texts—and composition instruction—that employs only one primary semiotic channel (the alphabetic) to convey meaning.”
–Pamela Takayoshi and Cynthia L. Selfe (2007, p. 2)

“Video gaming…is a multimodal literacy par excellence.”
–James Gee (2007, p. 18)

With the rise of digital technologies, communication in the twenty-first century has forever changed. Digital media and communication has infiltrated a significant portion of our lives, creating a space for new meaning-making practices and possibilities. Being able to communicate effectively is no longer limited to mere alphabetic text on the page (or screen) as we are constantly bombarded with image, audio, and video files on a daily basis. Because of these changes in how we communicate, it is becoming increasingly important to redefine what it means to be literate in this new, digitally-permeated world. And, more importantly, for teachers of composition and rhetoric, it is becoming imperative that we redesign our curricula to take these new digital and multimodal texts into consideration in an effort to heed Cynthia Selfe’s (2004) warning that “if our profession continues to focus solely on teaching only alphabetic composition. . . we run the risk of making composition studies increasingly irrelevant to students engaging in contemporary practices of communicating” (p 72). What Selfe and others (Bourelle, Bourelle, & Rankins-Robertson, 2013; Edwards-Groves, 2011; Lutkewitte, 2014; Sidler, Morris, & Smith, 2008) have pointed out is the need to engage twenty-first century students with practices that allow them to become more effective consumers and composers of multimodal texts. This dissertation is born from these ideas and serves to answer the call for more
multimodal-driven pedagogies by examining how playing video games can create literate skills that can be useful in the multimodal composition classroom.

Building from the work of scholars in New Literacy Studies (NLS), this project embraces the need to redefine *literacy* based on the social and cultural forces at play on one’s communication skills (Brandt & Clinton, 2002; Gee, 2001, 2010; Street, 1995, 2001). Essentially, by limiting the definition of literacy to “one’s ability to read and write,” we run the risk of privileging a one-dimensional, monocultural concept of literacy at the expense of othering, or even devaluing, dissimilar ways of learning and communicating. Besides the sociocultural effects of this othering, a serious consequence to the pigeon-holing of this definition can be seen in the composition classroom as students with different literate skills feel alienated from the writing process. By adopting NLS’s definition of literacy that looks at the “social, cultural, historical, and institutional” (Gee, 2010, p. 166) contexts that influence and define one’s ability to communicate, writing instructors can better prepare and engage students with the writing process.

Similar to NLS scholars who have redefined how the field looks at the growing definition of literacy, scholars in the field of computers and writing have been examining the digital impact on writing and the ways in which communication has changed during the twenty-first century. As scholars have pointed out (DeVoss, Eidman-Aadahl, & Hicks, 2010; Kress, 2003; Selber, 2004; Sidler, Morris, & Smith, 2008;), communication in the digital age is no longer limited to printed alphabetic text, and it usually entails digital technologies—from word processors to digital cameras to video-editing software. With this changing landscape of communication, the work of NLS scholars is even more important. Gunther Kress (2003) posited, “It is no longer possible to think about literacy in isolation from a vast array of social, technological and
economic factors,” clarifying this postulation by explaining how modern communication has shifted towards “the new dominance of the image and . . . the medium of the screen” (p.1). To be literate in the twenty-first century, then, means being able to read (and potentially create) images and videos while interpreting the texts that may accompany them.

In the midst of all these changes in communication, video games have become increasingly popular, filling a social and interactive void in entertainment and capitalizing on the preeminence of images and screens. With projections of video game experience reaching as high as 97% of today’s youth and 69% of adult heads-of-household (McGonigal, 2011, p. 11), the impact of video games on our culture has become an important topic in cultural studies. More specifically, over the past decade, video games have become a popular topic of conversation amongst scholars of rhetoric and writing. Through special issues of peer-reviewed journals (Computers and Composition, 2008; Computers and Composition Online, 2008), panels on national conferences (including four concurrent sessions and a special interest group at Conference on College Composition and Communication, 2014), and special-topic books (Colby, Johnson, & Colby, 2013; Gee, 2007; Hawisher & Selfe, 2007; Prensky, 2006), scholars in the field of rhetoric and composition have begun to explore the academic and communicative applications of video game experience. And while gaming in the past has been seen as “too violent” or a “waste of time,” gaming scholars have begun to reassess the side effects of gaming, illustrating how video games have actually made gamers more adaptable, more social, more effective problem solvers, and more prepared for life in the twenty-first century.

Building from their work, this dissertation will extend the research of video game literacy into the literate lives of gamers by looking at the literacy narratives of current college student gamers at a Midwestern university and exploring how their gaming literacies intersect with the
skills required to create multimodal compositions. The data collection process for this research project was two-fold, involving a short survey of general studies writing students and interviews of three student gamers. In my analysis of this data, I address research questions like, how do students acquire gaming literacy? What kinds of multimodal skills are acquired through gaming literacy? And, what does one’s gaming literacy narrative reveal about his or her literate practices? The answers to these questions help to inform my approach to the more pedagogically-driven research question: How can composition instructors effectively use the literate practices of gamers in the multimodal composition classroom? By examining how these students acquired and developed their own gaming literacies, this project draws necessary conclusions between the literate practices of gamers and the required meaning-making skills of the multimodal composition classroom, establishing a pedagogical framework for utilizing gaming literacy in the multimodal composition classroom.

My research is also informed by technofeminist research methodologies so that I explore not only the role that video games have had on my research participants but also the social adaptations that the participants have exerted over their gaming experiences. This methodological position creates a space where I am able to critically assess the social relations amongst gamers and between gamers and technology. Similarly, throughout this project I employed feminist research methods that included conversation-style interviews and open-access to my research project via an online blog so that my research participants had a chance to interact with the data and determine whether or not they had been properly represented. I also rigorously coded my data using grounded theory. This approach to coding corresponded with my feminist research methods as I used reflective memos and collaborative analysis to determine possible themes and analytical frameworks for my data.
To better situate this study and explain how it adds to the scholarship of rhetoric and writing, this opening chapter defines key terms, reviews the literature surrounding gaming literacy in the multimodal composition classroom, establishes the research questions developed from the literature, and ends with an outline of the remaining chapters of this dissertation. The literature review is further divided into two sections to help structure my research interests: gaming literacy and multimodal composition. The first section contains information about the literate practices of gamers, establishing the literate skills that gamers inherently possess. This section also explores how gaming literacy is being used in the traditional composition classroom, examining the theories and practices of composition scholars interested in gaming studies. Finally, this section highlights some of the scholarship being done with gaming literacy and multimodal composition so that I can effectively position myself within this developing body of work. The second section of the literature review establishes the importance of multimodal composition instruction, highlighting the work of computers and writing scholars over the past 20 years. In addition to establishing an exigency for my project, this opening chapter contextualizes the work that has been done with gaming literacy in order to differentiate the parameters of my study and subsequent analysis.

Defining Terms

Because my dissertation invokes the use of content-specific terms that have multiple meanings, it’s important to define how those terms will be used throughout my analysis of gaming literacy in the multimodal composition classroom.

The first two terms are *gaming* and *gamers*. Admittedly, games have been around for thousands of years, and there are a variety of game genres in existence: board games, sports games, video games, etc. For the purpose of this dissertation, however, *gaming* will refer
specifically to video gaming and the act of playing a digital game on a gaming console, computer, or similar technological device that can support such content (e.g., a smart phone). By extension, *gamer* will be loosely used to describe anyone who plays such games. Therefore, a person who spends six hours a day sniping other players from a hilltop in *Call of Duty* and a person who sits in a waiting room matching-up jellybeans in *Candy Crush* are both gamers because both depend upon the social and technological practices that define the gaming community.

Traditionally, *gamer* is used to define someone who spends a considerable amount of time playing video games. As my research participant John noted, “Well, a true gamer, I believe, is an individual who invests a lot of their time and money into leveling up their avatar or character within the system,” making the distinction that a gamer is someone who dedicates a significant amount of energy into gaming. John continued, however:

> And there’s little terms like *noob* and stuff like that. But once you work past that, you’ve earned your right to be called a gamer. Like if you’re still at level five, and you’re like “I don’t know what to do!” and you don’t want to learn how to do it, then you’re not really a gamer. . . . Wanting to learn makes a big difference.” (February 2015)

Building upon his insight that “wanting to learn” determines whether or not a person is a gamer, I have chosen to use this more inclusive definition of a gamer because the skills people obtain from playing video games are not necessarily dependent upon how often or how long they play. Instead, the literate skills of gaming are dependent upon people’s willingness to play and their enjoyment of the exercise.

As a pivotal term in my work, *gaming literacy* defines the literate practices of gamers. Essentially, gaming literacy is one’s ability to play video games and his or her proficiency
navigating and using video game-related information: websites, walkthroughs, internet forums, etc. As Gee notes in the epigraph, gaming literacy is an expression of multimodal literacy because the literacy of gaming “goes far beyond images and words to include sounds, music, movement, and bodily sensations” (Gee, 2007, p. 18). The simple act of playing a video game, for instance, requires a fluency in image interpretation, alphabetic text consumption (for many games), kinesthetic manipulation, and audio awareness. Additionally, people who play video games can find themselves consuming texts outside of the game in order to unlock secret treasures, beat a difficult boss/level, or decide which game to buy next. Gaming literacy, then, is not limited to players’ abilities to scale castle walls with their avatars or knock down boxes with virtual birds, and instead includes all of the skills required to interact with video games and the community of gamers who also play them.

Though used to a lesser degree throughout the study, gaming paratext refers to any text or artifact related to a video game. Borrowing the term from Gérard Genette (1997) and building upon the notion that a paratext functions as a threshold or vestibule that affords consumers “the possibility of stepping inside or turning back” (1997, p. 2), I explore the concept of gaming paratexts in order to illustrate how the literate consumption of gamers goes beyond simply interfacing with pixels on a screen—though that literate act is significant in and of itself. More importantly, gaming paratexts allow gamers the chance to rhetorically analyze and engage with video games. To illustrate, Mia Consalvo (2007) offered an extensive list of common gaming paratexts:

Before a videogame is ever released, communication and artifacts relating to it spring up like mushrooms. . . . Fans of a game series post updates to a blog, mailing list, or chat site. Previews of the game, including screen shots, trailers, and interviews with the
developers, appear on television and in magazines. . . . And once a game is released. . .
reviews (both commercial and noncommercial), ads, cheat code releases, G4 TV specials, walkthroughs, discussion board topics on GameFAQs.com, and perhaps the opportunity to pay more real money to upgrade your game experience all appear. (p. 8)

Because gaming paratexts offer an exhaustive representation of the kinds of multimodal texts that define the gaming community, they offer unique insight into the multimodal skills gamers acquire through their social practices.

Finally, throughout this text, **multimodal composition** is used to refer to texts that make use of a variety of digital media—images, videos, audio, etc. While scholars like Jason Palmeri (2012) have made the case that composition studies have “always already been multimodal” (p. 21) through practices like multimodal prewriting activities (p. 25) or pre-digital composing technologies like the cassette tape (pp. 97–100), this project will specifically look at the digital practices of multimodality. It is important to note the on-going discussion about the prevalence of multimodality in the history of composition and rhetoric; however, one of the main goals for this project is to explore the preparation of students for communication in the twenty-first century. Because twenty-first century communication is largely dependent upon digital technologies, it is, therefore, more important for me to limit multimodal composition to the digital in order to more effectively highlight the ways in which students can benefit from the gaming literacies that make use of overlapping digital practices.

Literature Review

Gaming Literacy

Before looking at the benefits it can bring to the multimodal composition classroom, *gaming literacy* should first be thoroughly defined and analyzed so that we can easily note the
kinds of twenty-first century skills one can obtain by playing video games—most notably, social communication practices and technological fluency. Working together to complete levels or other defeat in-game characters and players, gamers create systems for rapid communication that involve simple hand gestures from an avatar or simple commands over a headset. Using their own kinesthetic skills, gamers manipulate virtual landscapes and characters in order to unlock achievements or build their gaming identities. And through paratext consumption and creation, gamers share information with one another: teaching others how to play, recommending new games, and showcasing their in-game accomplishments. These skills help to define gamers as a community and allow us to see how gamers manipulate and create unified ways of thinking, communicating, and knowing.

Because of this complex interconnectivity among gamers, it is important to note that the literacies gamers have developed are largely dependent upon the social structure of the gaming community. That is, as a type of NLS, gaming literacy reveals the social and cultural forces at play in the formation of gaming’s shared social language (Gee, 2001). As Gee defined it, a social language is usually marked by “different patterns of vocabulary, syntax... and discourse connectors,” and while communication within the paratexts of gaming does not necessarily utilize community-specific syntax or discourse connectors, it does contain specific vocabularies and express the second-half of Gee’s definition in that it “connect[s] to specific sorts of social activities and to a specific socially situated identity” (Gee, 2001, p. 718).

As evidenced in the variety of gaming paratexts, the social language of gaming can only be interpreted by those who are part of the gaming community and are in search of the gaming-related information that the paratexts provide. For instance, a walkthrough for Angry Birds Danger Above level 7-11 explained how one must, “Fire the first White bird just above the
10

helmet pig, bombing as late as possible. . . . If necessary, use the last White bird to target any remaining pigs” (Ford, 2012). To those unfamiliar with the game, these instructions sound like nonsense, and the capitalization of “White” seems grammatically incorrect. However, *Angry Birds* gamers know how to follow these instructions and recognize that “White” is one of the bird’s known names (the other is Matilda) and should be capitalized as a proper noun.

Through the use of a social language and gaming paratexts, gamers easily establish themselves as a functioning community with unique literate practices. Whether they are playing online in large groups or alone on a non-networked device, gamers share common goals and use similar strategies for success. These approaches help them define their meaning-making practices, and offer them a shared rhetorical experience. By examining the literacy practices of gamers and establishing a more in-depth definition of gaming literacy, I will illustrate how gamers function as a community and contribute to each other’s successes and skill development. Once these parameters for gaming literacy are established, it will be easier to assess how gaming literacy has been used as a tool in traditional and multimodal composition classrooms.

The literate practices of gamers

Basically, *gaming literacy* refers to the literate practices of gamers and their abilities to effectively play video games and utilize gaming-related paratexts. Just as there is a variety of video game genres in the world today, so, too, is there a variety of gaming literacy skills that players acquire. These skills range from social collaboration as players work together to unlock achievements and vanquish foes to technological proficiency as players navigate their avatars through digital landscapes and utilize digital technologies to assist in their continued success. As people actively play video games, they are able to continually redefine their meaning-making practices by exploring new worlds with new rules and patterns for success. And they are able to
continuously redefine their sense of community as new games bring in new players and commonalities.

As a social practice, gaming creates a space for shared language use and collaboration. Because they belong to a global community that can effectively communicate on the common ground of playing video games, gamers participate in a discourse community. That is, gamers are “a group of people who are unified by similar patterns of language use, shared assumptions, common knowledge, and parallel habits of interpretation” (Deans, 2002, p. 136). They use the social language (Gee, 2001) of gaming to communicate with one another and collectively form social units that are designed to make the gaming experience more engaging and more effective. As Josh Gardiner’s experience from Cynthia L. Selfe, Anne F. Mareck, and his chapter from Gaming Lives in the Twenty-First Century illustrated, the discourse community of gaming allows gamers to form groups based on shared experiences, potentially resulting in transnational collaboration. Talking about his experience playing Counter-Strike, Gardiner noted:

There’s 7 guys and 5 girls, 12 people altogether [in my clan], I think only 3 of us are from the United States, Two people are from Britain, one person’s from Ireland, got another guy in the Netherlands, got a guy in Spain, got a girl in Italy. People from all over the place.” (Selfe, Mareck, & Gardiner, 2007, p. 25)

He continued this discussion by talking about the technological information that his group shared with one another, from setting up private servers to explaining how to “overclock your computer” to learning each other’s home languages (Selfe, Mareck, & Gardiner, 2007, p. 25).

What his literacy narrative highlights is the idea that gaming offers a venue for players to learn

1 For the purpose of this research project, I will use Thomas Deans’s definition of a “discourse community” because his discussion of these communities hinges on the idea that insider knowledge of a discourse community creates better opportunities for clear communication with and within a discourse community. Similarly, my research will establish a connection between (though not a reliance upon) composition instructors’ knowledge of gaming literacy and their ability to foster communication skills with their students.
even more intricate literacies from one another. As a researcher who is also using literacy narratives to highlight the possible benefits gaming literacy can have in the multimodal classroom, I see the potential application of Gardiner’s technology-sharing. Students who are not only able to learn technological skills from one another but also able to teach these skills to each other can be huge assets in the multimodal classroom, where the role of expert is shared by students and instructors. Students need not be limited to instructor-guided composing practices, enabling them to take responsibility for their texts and maintain a higher level of personal agency in their work.

Selfe, Mareck, and Gardiner also specifically noted that Gardiner “acquired not only gaming literacies, but also additional cultural and linguistic literacies” (2007, p. 25) through his interactive game play. Part of the literate skills acquired by gaming literacy, therefore, includes the opportunity for multicultural exchange. Gamers not only have the opportunity to share information about the technological advances of different countries, but they also allow players to feel comfortable communicating in multicultural forums. Both of these literate skills allow players to come to a better understanding of globalization and the impact of technology on a transnational scale. With a growing trend towards globalization, multicultural skills are important to learn in any context. Though my research will not be fully dedicated to exploring these specific kinds of skills in the multimodal classroom, it’s important to note how gaming literacy affords opportunities for multicultural exchange. Students who compose digital media should be well aware of a global audience, and online gaming makes global audiences commonplace.
Other scholars have also highlighted the social and collaborative nature of gaming. Gee (2007), for instance, shared an anecdote about an adult who tried video games after listening to one of Gee’s presentations:

One older adult who tried a video game. . . [became] seriously frustrated. Then his 21-year-old stepson came into the room and asked him “What are you doing?” The man said “Trying to learn to play this damn video game.” The son said “For heaven’s sake, why would you do that alone?” (p. 8)

The interaction between the man and his stepson helps to illustrate the collaborative nature of gaming—players are not meant to game in isolation and instead rely upon a community to foster and develop the skills required to win. The stepson was surprised by his stepfather’s attempt to play a video game because, as a gamer, the stepson already knew that learning how to play a video game requires the insights and expertise of gamers who have played similar games in the past. Gamers learn how to play from other gamers. That is, the gaming community is comprised of Deborrah Brandt’s concept of literacy sponsors. Veteran gamers “enable, support, teach, and model” the literate practices of gaming to novice players in order to “gain advantage by it in some way” (Brandt, 2001, p. 19), chiefly defeating the game through collaborative efforts.

This collaborative nature also reveals how gaming literacy can be a useful means for acquiring diverse communication skills. Online gamers, in particular, must learn how to navigate a game’s interface while communicating with players through audio, visual, or alphabetic text. In their text On Multimodality: New Media in Composition Studies, Jonathan Alexander and Jacqueline Rhodes (2014) explained:

When we consider how video and computer gaming is a major source of entertainment. . . as well as a popular form of socializing. . . , we sense a significant arena in which to
explore not just multimodal composition but also multimodal *interaction.* (p. 128, emphasis in original)

Players who interact with one another through a video game interface must learn how to become comfortable with multiple interactions at once (e.g., navigating their avatar, communicating through a headset, scrolling through menu screens, etc.). These interactions create opportunities for players to choose from various methods of communication, creating a space for new collaboration practices. For instance, a player may communicate with his or her assault team through a headset, send a private message to another player through an in-game text message, and then use his or her avatar to motion for back-up. Being well-versed in only one mode of communication can limit a player in an online arena; therefore, gamers must quickly learn how to navigate these communication options in order to effectively complete tasks and reach milestones.

This kind of multimodal interaction isn’t just limited to in-game communication practices. Browser games (i.e., video games that can be played through a web-browser across multiple platforms), for instance, allow players to engage in gameplay while completing other tasks and communicating with the world outside the game. With an open chat line or a link to a social media page, players of browser games can interact with one another through alphabetic text while interacting with the game through audio and visual stimulation. In her work on Facebook gaming, Lindsay Sabatino (2014) helped illustrate how these kinds of gaming literate practices could be transferred into more academic settings when she discussed the ways in which *Mafia Wars* could be used in the composition classroom: “Most internet games, like those on Facebook, require gamers to reach out and ask for help from other players, which also involves engaging in the public nature of writing” (p. 49). Though a newer form of gaming, social media
games like *Mafia Wars* or *Farmville* effectively tap into the social aspect of gaming literacy and create a space for gamers to collaborate and assist one another. As Sabatino explained, this collaboration not only helps players develop the literate practice of collaborative play and asking for help from other people, but also helps students develop public writing skills as they learn to negotiate with their peers.

Though the social and collaborative side of gaming is an important cornerstone to gaming literacy, an even more essential skill—related to my project’s focus on multimodality—is the literate practice of technology. In their article “Using Gaming Literacies to Cultivate New Literacies,” Hui-Yin Hsu and Shiang-Kwei Wang (2010) defined *gaming literacy* as a type of *new literacy*. This led them to conclude that gaming literacy “generally means being able to use information and communication technology (ICT) tools to ‘identify questions, locate information, evaluate the information, synthesize information to answer questions, and communicate the answers to others’” (p. 401). Gaming literacy, in this respect, is completely contingent upon twenty-first century literacy skills and digital communication.

Because modern gaming requires players to use new technologies, gamers’ fluency with ICT tools rapidly expands. Hsu and Wang further concluded that, “a literate game player should be able to recognize the following elements involved in reading and playing games: text, visual-graphic elements, audio elements, game goals, game rules, and scenario design” (2010, p. 403). This means that gaming literacy requires a level of multimodal fluency since playing a video game requires gamers to actively process a variety of media in order to move through the levels and ultimately defeat the game.

As one of the forerunners in the field of gaming literacy, Gee (2007) also supported the idea that gamers create literacy through the use of multimodal communication skills in *What
Video Games Have to Teach us about Learning and Literacy. He defined gamers as members of a *semiotic domain*, which is “any set of practices that recruits one or more modalities (e.g., oral or written language, images, equations, symbols, sounds, gestures, graphs, artifacts, etc.) to communicate distinctive types of meanings” (2007, p. 19). As participants in a semiotic domain, gamers use a variety of modalities to communicate not only with each other, but also with the game itself. That is, gamers communicate in-game through the use of headsets or instant messaging, out-of-game through the use of online forums and blogs, and with-the-game through the use of character movement, symbol analysis, and audio interpretation.

In his seminal work on gaming literacy, Gee explored the ways in which gamers are encouraged to cultivate 36 different *learning principles* (Gee, 2007, pp. 221–227) as they navigate through their games and support one another through the gaming experience. These learning principles range from self-knowledge (principle 9) and identity analysis (principle 8) to design appreciation (principle 2) and cultural modeling (principles 30–32). Essentially, gaming creates a forum wherein players have opportunities for hands-on learning scenarios that expand a variety of technical and analytical skills.

The development of these skills can especially be seen in the literate lives of gamers as they acquire knowledge through gaming. Building on the ideas of *What Video Games Have to Teach us about Learning and Literacy*, writers in Selfe and Hawisher’s (2007) *Gaming Lives in the Twenty-First Century: Literate Connections* expanded Gee’s notion of gaming literacy and the skills one can acquire from playing video games. According to Selfe and Hawisher, the main goal of their book was to “tell the stories of individual gamers—using their own words and observations—and offer historical and cultural analyses of their literacy development, practices, and values” (2007, p. 1). While these skills included the social practices that Gardiner
experienced with his transnational *Counter Strike* clan, many of the writers in this text helped establish the technical skills associated with gaming literacy. In “Lost (and Found) in Translation,” Erin Smith and Eve Deitsch revealed how gaming helped them “develop more sophisticated alphabetic reading skills” (2007, p. 56). More importantly, however, Deitsch’s experiences playing games on early Commodore computers provided her with the confidence to learn how to manipulate the technology at a young age: “As I got older, I learned how to load [the games] myself, as well as turn the computer on myself. When I was around age 6... I learned quickly how to type in the commands to boot the games” (2007, p. 57). At an age when most children are developing the early literacy practices of reading and writing, Deitsch was able to operate a sophisticated piece of technology so that she could continue her game play without the assistance of her father.

Examples like Deitsch’s help to illustrate the pervasive power of gaming literacy, showcasing how the desire to keep playing can provide players with incentive for technological prowess. Because multimodal composition relies heavily on one’s ability to manipulate digital technologies, gaming literacy can, therefore, be a noteworthy asset in the multimodal composition classroom. Besides benefitting personal writing skills, students like Deitsch, who have acquired technological skills through gaming, can also collaborate with other students, teaching them how to manipulate digital composing devices. And with their increased comfort level around technology, student gamers can foster a relaxed and comfortable classroom atmosphere.

Deitsch’s experience with technology is echoed in other literacy narratives as gamers are afforded access to digital technologies through the devices that bring them recreational pleasure. In the same collection of texts, Stephanie Owen Fleischer, Susan A. Wright, and Matthew L.
Barnes explored how gaming provided players with an inspiration to “learn more about the technological intricacies of digital environments. . . [and] enhance their linguistic and mathematical abilities, as well as their own senses of self and community” (2007, p. 144). Their research focused on the gaming experiences of Barnes and Hayden Daniel Kessler, both of whom came to video gaming after experiencing the tabletop game *Dungeons and Dragons*. This game inspired them to try video games and provided them with the access they needed to become proficient users of computers.

Similarly, the literacy narratives explored by Daniel Keller (2007) in “Gaming, Identity, and Literacy” expose the technological access provided by video games and the technological skills that develop through the literate practices of gaming. Keller explained, “For most of the participants featured [in this chapter], games served as a primary gateway to learning programming” (Keller, et al., 2007, p. 77). Gaming literacy provided a space for these gamers to feel comfortable around technology so that they could explore other venues for technological expression.

As several of these texts illustrate, exploring the literacy narratives of gamers can reveal many of the literate practices afforded by gaming literacy, and many of these practices can translate into useful skills to have in the multimodal composition classroom. While players approach video games with different skill levels or techniques, unifying principles like collaboration and technological prowess are commonplace amongst all gamers. In order to participate in the discourse community of gaming, players need to be socially adept. Even if they are not communicating directly with other players in a collaborative team, they need to be able to manipulate the digital data (e.g., Hsu and Wang’s, 2007, discussion of ICTs) associated with the video game in order to succeed. And because video games require access to technology, they
inherently help players develop digital proficiencies and comfort. My research project adds to this breadth of gaming literacy narratives and highlights how gaming literacy has become an important twenty-first century communicative skill.

Gaming literacy in the traditional composition classroom

Besides the social and technological skills obtained through gaming literacy, the literate practices of gaming can also be broken down into the kinds of skills that educators can utilize in their classrooms. While my work specifically highlights the ways in which gaming literacy can be used in the multimodal composition classroom, it’s important to still consider the potential benefits gaming literacy can have for the learning outcomes of all composition classrooms. Richard Colby, Mathew S.S. Johnson, and Rebekah Shultz Colby (2013), for example, highlighted some of these skills in their edited collection *Rhetoric/Composition/Play: Reshaping Theory and Practice of Writing* as they sought to answer questions like, “How can playing a video game encourage students to (re)consider how they write, read, and research,” and “in what ways do games help us recontextualize classroom spaces?” (p. 4). As many of the writers in this collection illustrated, gaming literacy can be adapted to suit the needs of composition instructors, whose main goals are to help students develop critical thinking and writing skills.

Looking for ways to explore writing as process, rhetoric and writing scholars have developed methods for combining gaming literacy with more traditional writing skills. Benjamin Miller (2013), for instance, offered a metaphorically-driven framework for re-envisioning the writing process by drawing “parallels between exploratory writing processes and exploratory gameplay at the heart of an action/adventure video game series like The Legend of Zelda” (p. 101). By drawing connections between gamers’ experiences with the recursive nature of an
action/adventure video game, he argued that instructors could get students to feel more relaxed about “playing” with writing.

Taking video game integration into the composition classroom a step further, Schulz Colby (2013) and Colby incorporated World of Warcraft (WoW) into a first-year writing curriculum in order to “teach students academic research traditions—qualitative, quantitative, and text-based research methods—and the dominant disciplinary ways of writhing within them” (p. 123). In the introduction to her chapter “Gender and Gaming in a First-Year Writing Class,” Schulz Colby (2013) reflected on this course and explained how they used WoW as a research forum, allowing students to devise traditional research projects based on the WoW community, mechanics, or paratexts. Throughout the course, students further developed their gaming and composition literacies as they composed alphabetic texts. Though different from Miller’s integration of pre-existing gaming literacy, both instances show positive potential outcomes for incorporating gaming literate practices into a traditional composition classroom.

Video games also offer ideal locations for rhetorical analysis, creating an opportunity for gamers to actively question the assumptions made by their gaming literacies. As sites of social interaction and virtual game play, video games assume different roles according to their genres. Composition students who analyze these games can, therefore, interpret not only how the characters rhetorically function and make choices in-game but also how real-world players rhetorically interact with the game itself. As Ian Bogost (2007) articulated in Persuasive Games: The Expressive Power of Videogames, “Videogames do not just offer situated meaning and embodied experiences of real and imagined worlds and relationships; they offer meaning and experiences of particular worlds and particular relationships” (p. 241, emphasis in original). As
an amendment to Gee’s (2007) concept of situated or embodied learning, Bogost’s focus on particular worlds and relationships highlights the rhetorical nature of video games.

Essentially, a good video game follows a set of rhetorical rules specific to the world of the game and the game’s genre. Bogost continued, “rhetorical positions are always particular positions” (2007, p. 241, emphasis added). Because the virtual world of the video game functions according to a set or prescribed rules—including social practices and game play success—students who analyze games are afforded the opportunity for a unique rhetorical analysis of a multimodal genre. More importantly, students who analyze video games in the composition classroom also have the chance to analyze “the practice of using processes persuasively” (Bogost, 2007, p. 28), a term Bogost defined as procedural rhetoric. Though he doesn’t provide direct translation of his theories into the composition classroom, other rhetoric and writing scholars have adapted some of Bogost’s ideas to potential classroom applications (e.g., Colby, 2014; Vlieghe, Bourgonjon, Rutten, & Scoetaert, 2011).

Other texts have also highlighted the ways in which gaming literacy can be made useful in the traditional composition classroom. In “What Digital Games and Literacy Have in Common: A Heuristic for Understanding Pupils’ Gaming Literacy,” Thomas Apperley and Christopher Walsh (2012) explored four quadrants (p. 115) of gaming literacy that instructors could make use of in the classroom: actions, designs, situations, and systems. These four quadrants set the foundation for their heuristic for understanding gaming (HUG) literacy. With the main goal of their discussion being to help instructors communicate with young gamers in the classroom, Apperley and Walsh wanted to “alert [teachers] to the unique opportunities that digital games provide for connecting the literacy curriculum to texts and practices significant to pupils’ lifeworlds” (2012, p. 116). Focusing on their experience with high school teachers, they
argued that instructors who learned the intricacies of gaming literacy and how to qualify those skills to students would be able to create more meaningful classroom activities.

More importantly in this text, however, Apperley and Walsh defined the term *paratexts* in relation to gaming: “the print and multimodal texts used and often developed by game players that circulate in the complex nexus of literacy practices that make up digital gaming cultures” (2012, p. 116). As noted in my definitions section, these paratexts are an important facet of the modern gaming community as they utilize the literacy skills of gamers who create, manipulate, and read those texts. Apperley and Walsh argued that paratexts engage gamers “in relevant print-based and multimodal literacy practices, making these activities a fluid example of situated learning” (2012, p. 117) as players must compare and assess the variety of paratexts available to them. In the traditional composition classroom, this analysis can be used as a tool for rhetorical assessment and practice. Students who understand which paratexts to trust or which ones they prefer, can translate those analytical skills to more academic-based textual analysis.

What these classroom examples illustrate is that the precedent has been set for incorporating gaming literacy into the traditional composition classroom. Scholars have been proposing ways to incorporate video games into their classrooms because, as Gee (2006) noted, the medium holds great potential as a new media art form. Besides the aesthetics of design and the programming of technology, video games have inherent narrative components, making them easily adaptable to composition classrooms, where traditional reading and writing skills are valued and taught. For composition instructors, therefore, the implementation of video games in the classroom typically means incorporating actual games into the classroom, either through game-based learning or game design. While my research recognizes and makes note of these pedagogical tools, one of the goals for the project is to look at the ways in which gamers make
meaning through their shared literacy. Therefore, actual video games need not be made part of the pedagogical framework I propose.

Gaming literacy in the multimodal composition classroom

Though most gaming scholarship in the field of composition has been dedicated to using gaming literacy in the traditional composition classroom, I think it’s even more important for the field to explore how these literate practices can be used in the *multimodal* composition classroom. Because twenty-first century literacies are becoming important tools in the modern workplace, it is essential for writing instructors to help students cultivate digital composition skills. As John Alberti (2013) referenced, gamers already possess some level of multimodal composition fluency. Postulating why student “playtesters” of the writing-based game *Ink* created multimodal compositions, even though they weren’t given explicit instructions or multimodal guidelines, Alberti wrote that “the discursive experiences of students in the real/play world outside of any particular class” (2013, p. 20) may have been responsible for the successful creation of these documents. If student gamers are cultivating these kinds of multimodal skills outside of the classroom, then it seems reasonable to have composition instructors help nurture those skills in a more formal setting, where attention to tone, audience, and style can be expressed. To that end, there are a few scholars who have been making contributions to the use of gaming literacy in the multimodal composition classroom. My research goal is to further these attempts and help build a collection of pedagogical resources for multimodal composition instructors.

The primary method for incorporating multimodality into the composition classroom through the use of gaming literacies is to facilitate game design in the classroom. Danielle LaVaque-Manty (2013), for instance, proposed teaching students how to create their own video
games in the composition classroom. Building from the premise that composition instructors don’t need to be gaming experts to aid their students in game design, LaVaque-Manty described her experience teaching an intermediate composition course called “Persuasive Games: Making Meaning with Video Games” (2013, p. 116). As a self-proclaimed newbie to video games (she had only been playing games for a year before she began teaching the course), LaVaque-Manty described how her students made use of Bogost’s procedural rhetoric in order to design and develop a “functioning game” within the course’s seven-week time frame. In this example, students developed gaming literacy as they learned how to compose a multimodal text (i.e., video game) and appeal to gaming audiences. And because her course included a reflective component that required students to analyze the effectiveness of their (collaboratively produced) video games, LaVaque-Manty was able to provide students with an opportunity to learn a new digital-writing genre through traditional composition practices.

Combining traditional composition practices with multimodal gaming skills affords instructors with the opportunity to help students transfer their private gaming literacies into more public and academic areas. Similar to Apperley and Walsh’s (2012) HUG, Hsu and Wang’s (2007) article explained how analyzing or “debriefing” a game could lead to meaningful “scaffolding” in the classroom. Using the simulation game Lemonade Stand as a sample, Hsu and Wang discussed how game-based learning allowed students to “practice new-literacies skills by learning to identify problems, accessing and evaluating information, using multimedia elements for the production of information, and communicating results with peers” (2007, p. 408). As part of a debriefing process to video game incorporation in the classroom, instructors could facilitate discussions about the game and the students’ gaming experiences.
While their classroom designs were not necessarily targeted toward composition instruction, Hsu and Wang offered examples of how video game integration into the classroom could be used to scaffold reading and writing skills. To this end, they argued for video game design in the classroom, during which students would “brainstorm ideas, search and evaluate information, analyze and synthesize information, exchange and communicate their thoughts and ideas, and use multimedia technology to embody their imagination and creativity” (2007, p. 411). Manipulating video games through game-based learning and game design, therefore, could offer composition instructors the chance to help students see composing as a multi-stepped process that involves meaningful reflection and analysis.

While game design can be seen as an essential step to incorporating gaming literacy into the multimodal composition classroom, it needn’t be the only or primary method for multimodal integration. As Selfe, Mareck, and Gardiner (2007) expressed, “Multimodality is a key feature of [online gaming environments]” (p. 29). And due to its multimodal nature, gaming literacy can create a natural scaffold in the multimodal composition classroom. Scholars like LaVaque-Manty (2013) and Hsu and Wang (2007) have illustrated how gaming literacy can be used to help students develop multimodal composing skills through the use of game design, and my project contends that we need not limit game-based multimodal composition to replicating the medium of games. Because student gamers are familiar with games and the multimodal paratexts that surround them, my research explores how gaming literacy can also provide a foundation for multimodal composition instruction that grants experience in composing and consuming a variety of multimodal digital texts.
Multimodal Composition in the Classroom

As many game studies scholars have noted (Gee, 2006, 2007; Hsu & Wang, 2010; Prensky, 2006; Selfe & Hawisher, 2007; Walsh, C. 2010), one of the biggest literacy advantages afforded by gaming literacy is a fluency in multimodal composition. This fluency is becoming exceedingly important in the twenty-first century as multimodality becomes the standard in digital communication practices. And as Gunther Kress (2003) explained, these changes have brought upon “a need for new thinking.” Kress concluded, “if the meaning of a message is realized, ‘spread across,’ several modes, we need to know on what basis this spreading happens, what principles are at work” (2003, p. 35). Essentially, we need to create a methodology for analyzing and creating multimodal compositions in order to effectively communicate with this new type of literate practice.

Fortunately, scholars have been discussing these issues at length over the past decade as evidenced by NCTE’s (2005) Position Statement on Multimodal Literacies. Highlighting the “unique capacities and challenges of digital forms,” this position statement helped construct the field’s consideration of and approach to multimodal composition and stimulated a conversation about the necessity of multimodal composition instruction. As we move deeper into the twenty-first century, more focus is being placed on the need to include multimodality in the composition classroom. NCTE even updated their definition of twenty-first century literacies in 2013, postulating that “Because technology has increased the intensity and complexity of literate environments, the 21st century demands that a literate person possess a wide range of abilities and competencies, many literacies.”

This focus on multimodality in the composition classroom is, of course, not a new enterprise. By the early 1990s, computers and composition as a field specialization had “come of
With the developments of *Computers and Composition: An International Journal* and the Computers and Writing yearly conference, talks about the importance of digital integration into the composition classroom have been going on since the computer boom in the 1980s. Palmeri (2012) has even helped establish how multimodal writing pedagogy has been around since the 1960s. In his text *Remixing Composition: A History of Multimodal Writing Pedagogy*, Palmeri “demonstrate[d] the unique disciplinary heritage that compositionists bring to the study and teaching of multimodal composing” (2012, p. 7). Citing examples from past turns in composition studies that included film, radio, and comics, Palmeri illustrated the deeply rooted connection between composition studies and multimodality.

Like the genres Palmeri highlighted, video games have also been encroaching on these literary media turns as evidenced by the Game Studies subject area at the Popular Culture Association/American Culture Association national conference and the subject areas related to gaming on the Digital Archive of Literacy Narratives (DALN). And still other scholars (Kress, 2003; Selber, 2004; Whithaus, 2005) have highlighted the significant impact that digital literacies have made on composition studies. Michelle Sidler, Richard Morris, and Elizabeth Overman Smith (2008) noted in their introduction to *Computers and Composition: A Critical Sourcebook* that “It almost seems unnecessary to say that we live in a digital age” (p. 1). The impact of digital technologies on writing and literacy has permeated our cultural communication processes to the degree that writing with technology is often taken for granted as an “invisible” writing genre (DeVoss, Eidman-Aadahl, and Hicks, 2010, p. 7) with social media sites like Facebook and Twitter comprising a significant portion of people’s daily writing habits. And other digital texts like gaming walkthroughs and FAQs (frequently asked questions) are
overlooked as invisible genres by players who see them as mere tools of the community instead of literature.

As multimodality moves into the composition classroom, more emphasis is being placed on students’ abilities to create and consume texts that utilize media other than print, and by making these invisible genres visible, composition instructors have the opportunity to capitalize on the writing experiences that their students bring to the classroom. In their introduction to Because Digital Writing Matters: Improving Student Writing in Online and Multimedia Environments, Dânielle Nicole DeVoss, Elyse Eidman-Aadahl, and Troy Hicks (2010) established, “much has changed in the landscape of what it means to ‘write’ and to ‘be a writer’” in the twenty-first century (p. 1, emphasis in original). Social networking sites mark only a fraction of the changes that have occurred to make digital writing such a ubiquitous form of communication. Gaming websites, for instance, have risen in popularity with the top four websites yielding over 10,000,000 unique monthly visitors (eBizMBA, 2014). These websites create a space for gamers to create and share gaming literature like FAQs, walkthroughs, and reviews. Players who were able to recognize the writing skills they developed on these kinds of sites would find twenty-first century communication more accessible.

Citing the Writing in Digital Environments (WIDE) Research Collective, DeVoss, Eidman-Aadahl, and Hicks warned that “equipping students to write in only one mode—traditionally black ink on white paper in scripted genres—will not serve students in their higher education experiences or in the workplaces of the future” (2010, p. 5). Students need to learn how to create, disseminate, and interpret digital writing if they are to be successful critical thinkers in the twenty-first century. And because composition classrooms are the place where writing instruction occurs, it is essential for composition instructors to embrace digital writing
and multimodal composition so that they can best prepare students for the new challenges and opportunities afforded by digital communications.

More importantly, DeVoss, Eidman-Aadahl, and Hicks “make the case that digital writing is a complex activity; more than just a skill, it is a means of interfacing with ideas and with the world, and a mode of thinking and expressing in all grades and disciplines” (2010, p. 16). Composition instructors, therefore, need to be able to assist their students in making informed and rhetorical decisions about multimodal texts. As Tiffany Bourelle, Andrew Bourelle, and Sherry Rankins-Robertson (2013) highlighted, “Traditional print-based communication has increasingly merged with, or been replaced by, multimedia elements.” They argued that this turn towards multimedia is creating a space for composition students “to be successful communicators in the twenty-first century” (“Introduction”). That is, twenty-first century communication no longer relies solely on print or alphabetic text, and more emphasis is being placed on educating students on the possibilities of multimodal texts instead.

To help ease with this transition towards multimodality, composition scholars have been researching the changes that need to occur to establish an effective multimodal composition classroom. Christine Joy Edwards-Groves (2011) explained:

creating meaningful text is now. . . about design, production and presentation. . . And so, as students are increasingly being expected to represent learning in dynamic multimodal texts, there is a need to provide learning opportunities which overly enable students to move across the multiple modes of text design and textual presentation. (p. 51)

Her proposal to this gap in education was to provide collaborative opportunities where students could harness “third-space technoliterate practices” (p. 62) to help create multimodal
compositions. Similarly, Maureen Walsh (2010) noted that composition instructors needed to identify “the need to adapt classroom communication to those digital communication practices that students access outside school” (p. 226). Students in the twenty-first century tend to have experience with digital communication (e.g., gaming literacy) before they reach the composition classroom; therefore, it benefits composition instructors to utilize those skills to help train those students in formal multimodal literate practices. Students who read or write gaming walkthroughs, for instance, have experience making decisions about the kinds of information necessary to elicit a kinesthetic reaction (i.e., players must use their controls to manipulate the virtual game) within a visual representation (i.e., the virtual world of the game) through the means of an alphabetic or visual text (i.e., the walkthrough itself). Once these kinds of rhetorical choices and reactions are made apparent, students will have an easier time adapting to multimodal composing practices. And with textbooks like Selfe’s (2007) Multimodal Composition: Resources for Teachers and Kristin Arola, Jennifer Sheppard, and Cheryl Ball’s (2014) Writer/Designer: A Guide to Making Multimodal Projects that feature possible assignments and assessments for multimodal composition classrooms and handbooks like Diana Hacker and DeVoss’s (2012) Understanding and Composing Multimodal Projects: A Supplement for A Writer’s Reference that offer students supplemental information about completing these kinds of projects, the permeation of multimodal composition practices can more definitively push towards complete field saturation.

Because my research project hinges on the assumption that multimodal composition is a worthwhile enterprise for composition instructors, insights from scholars like Selfe and DeVoss, Eidman-Aadahl, and Hicks help expose the exigency of a project that seeks to enhance the effectiveness of multimodal instruction. As the multimodal scholars in this section have noted,
communication in the twenty-first century is no longer limited to alphabetic text. And even though text-only video games still exist (e.g., Interactive Fiction [IF] games and Multi-User Dungeon [MUD] games), most modern gamers play within visually-stimulating and audio-enhanced virtual worlds, which grant them access to and experience with multimodality on a frequent basis. By heeding the advice of Walsh (2010) and DeVoss, Eidman-Aadahl, and Hicks (2010) and making students’ experiences with multimodal texts more transparent, my proposed pedagogical framework can help establish how the application of gaming literacy in the classroom falls in-line with the goals and proposed studies of multimodal scholars.

Chapter Abstracts

The second chapter of my dissertation offers an overview of my project and describes how I performed my research as well why I chose the methods used. It then offers a breakdown of my technofeminist methodological process, highlighting the coding used via grounded theory and the feminist research techniques implemented during the data collection process. Specifically, I offer a rationale for using survey and interview as my primary means for data collection, and I discuss how and where I set-up each interview so that my process remains transparent and representative. This chapter also highlights some of the limitations to my study and the potential gaps left from my data collection.

Chapters three and four include a detailed analysis of my findings. Focusing on the social aspects of gaming literacy, chapter three discusses how my research participants’ social skills were influenced through their gaming histories. These skills include literate practices of collaboration, friendly competition, and familial literacy sponsorship. Throughout the chapter I analyze how these skills intersect with the skills required for creating and consuming multimodal texts in order to set-up my discussion of a pedagogical framework for multimodal composition.
instruction in chapter five. Similarly, chapter four continues the discussion of findings, focusing instead in the technological skills that can be acquired through gaming literacy. Additional literate skills of technological proficiencies are highlighted and, once again, compared to the skills needed to create and consume multimodal texts.

The final chapter of my dissertation includes a synthesis of my findings. Organized into potential learning objectives, it establishes how my research on gaming literacy can be used to establish a theoretical framework for multimodal instruction in the composition classroom. After establishing how my research can contribute to the field of rhetoric and writing, I include a discussion of potential avenues for further consideration and research.

Conclusion

Over the past few decades, we have entered into a new era of communication, one saturated with images, texts, and audio. Traditional alphabetic text no longer carries the same cultural significance as information is more quickly disseminated through screens that utilize the semiotic powers of multimodality. One of those screens used for information distribution has been used to create artificial realities where players could forge their own destinies and vanquish imaginary foes. Once slandered as a gateway to laziness and asocial behavior, video games are no longer seen as a pox on our culture. Studies in gaming have uncovered the potential for video games to make positive changes in the world (McGonigal, 2010, 2011) and on the learning practices of gamers (Apperley & Walsh, 2012; Gee, 2001, 2007; Prensky, 2006; Steinkuehler, 2008). And even though research into gaming literacy has begun to establish how students could use their gaming skills in the classroom, this research project attempts to take that research even further, continuing the discussion of the possible ways in which gaming literacy can be
effectively used in the multimodal classroom as a social and technological foundation for the literate practices needed to compose digital and multimodal texts.

By looking at and analyzing the gaming literacy narratives of students, this project can help composition instructors tap into a deep resource of literate practices. As video games continue to be popularized and consumed in mass quantities, their impact on the lives of students will continue to grow. If we can establish how to make effective use of the skills our students are subconsciously acquiring as they play these games, then we can make the composition classroom experience more engaging and more beneficial to the changing communication needs of our students. In response to this need and Alexander and Rhodes’s (2014) warning that “we need to ask about other possibilities for expression, for representation, for communicating meaning, for making knowledge” (p. 4) in order to justify our field’s embrace of multimodal communication instruction, this dissertation analyzes the potential for gaming literacy in the composition classroom and provides a pedagogical framework for action.
CHAPTER 2: TECHNOFEMINIST RESEARCH PRACTICES ON SOCIOTECHNICAL COLLABORATIONS

“Feminist researchers start with the premise that research methods are never neutral, impartial, or disinterested. They argue that researchers need to confront their biases directly by acknowledging their research agenda and interests and by becoming involved with subjects of research studies.”

–Gesa Kirsch (1992, p. 257)

“A... methodological challenge researchers face frequently these days arises from the effort to foster interactive, collaborative, reciprocal, mutually beneficial, nonhierarchical relations with research participants and their communities.”

–Gesa E. Kirsch (2012, p. xii)

As Nancy Naples (2003) asserted, “the specific methods we choose and how we employ those methods are profoundly shaped by our epistemological stance” (p. 3). Our meaning-making processes and the ways in which we understand the world affect what we value as researchers. And the research we value influences both the methods we use for data collection and analysis and the methodologies we employ to foreground our projects. As I approached my research and defined my research questions, I had to consider my own epistemology: How did I create knowledge? What information did I need to formulate a theory? What research methods did I value?

Through this self-reflection, my research identity started to take shape, and I began to see a common thread: narrative. I use narratives to share knowledge, and I analyze narratives to make meaning and sense of the world. More importantly, however, I began to see how my research could contribute to the field and build upon the “narrative turn” in composition studies that Deborah Journet (2012) defined as “a deepening understanding that narrative is fundamental to how people organize and make sense of their lives” (p. 15). With narration as a driving force behind my knowledge creation, I created a research project that privileges the literacy narratives
of gamers in order to understand how students’ gaming literacies factor into their digital and multimodal meaning-making processes.

Once I had a research agenda that capitalized on my epistemological stance, I sought to define my research methodology in order to shape my research methods and data collection processes. I decided that I needed a methodology that offered me the chance to employ narrative analysis, but, more importantly, I needed a methodology that continued to parallel my attempts to define and create knowledge. Once again, I drew upon my epistemology, following Naples’s determination that, “our epistemological assumptions also influence how we define our roles as researchers, what we consider ethical research practices, and how we interpret and implement informed consent or ensure the confidentiality of our research subjects” (2003, p. 3). Because I place importance on collaboration and multivocal approaches to creating knowledge, I wanted my research participants to be involved in the meaning-making process. Like Patrick W. Berry, Gail Hawisher, and Cynthia Selfe (2012), I value fair representation and “the active agency of [my] participants” (“Introduction”); therefore, I knew my methodology also needed to be based on equal opportunities for data reflection and analysis. And because my research considers digital media, I needed a methodology that foregrounded technology as an integral component to knowledge creation and assessment. To these ends, I decided to frame my research through a technofeminist lens, allowing me to engage in feminist research methods that draw attention to the social and political roles that technology plays.

Addressing Kirsch’s (1992, 2012) challenges from the epigraphs and building upon other feminist researchers’ calls for collaborative and nonhierarchical relationships between researchers and their participants (Berry, Hawisher, & Selfe, 2012; Deutsch, 2004; McCorkel & Myers, 2003; Naples, 2003; Yost & Chmielewski, 2013), my research agenda hinges upon the
reciprocal nature of research. This reciprocity helps to establish the blurred lines that exist between researcher and research participant as they make meaning together and reflect on their own experiences. As part of my project, I had to confront my own insider status as a gamer and reflect on how my gaming literacy narrative paralleled and differed from my research subjects. I also had to straddle my insider/outsider status and deal with feeling like an imposter as I analyzed a community in which I used to be more active. The following chapter addresses the various roles I had to play as a researcher and outlines how my work is informed by a technofeminist methodology. It also helps explore how this technofeminist lens allowed me to effectively address my research questions.

By first using narration to define my project and establish the methodological parameters that informed my research process, I situate myself in current technofeminist scholarship on writing research. From there, I list my data collection and analysis methods and explain how they helped me fulfill my goals as a technofeminist researcher. Finally, I end the chapter with an exploration of the limitations to my study in response to my methodological choices and data sets.

Student Gamers and Their Literate Practices

Before addressing how my research employs the tenets of technofeminist methodologies, it’s best to first frame my project and explain the overall goals of the research. This first section, therefore, establishes how I came to this project, lists my research questions, offers a brief overview of my research process, and describes my research participants.

At the onset of this project, I knew that I wanted to pursue a research agenda that would provide me with more insights into the multimodal composition classroom. As a writing researcher interested in multimodal composition, I wanted to learn more about the skills required
to generate thoughtful and rhetorically-responsive multimodal texts. I found that I agreed with scholars like DeVoss, Eidman-Aadahl, and Hicks’s (2010) position that “teachers of writing have a crucial role in supporting students in understanding the complexities of communication in a twenty-first century world” (p. 2). Since the advent of Web 2.0 and the rise of social networking sites, students have been exposed to digital writing on a massive scale in their day-to-day lives. I wanted my research to add to the growing conversation about digital writing studies because I see the integration of technology into composition studies as “a challenge we face daily in our classrooms, our hallways, our school districts, and our world” (DeVoss, Eidman-Aadahl, & Hicks, 2010, p. 2).

Drawing upon my experience as a gamer and following insights from gaming scholars who have noted the potential benefits of gaming literacy (Bogost, 2007; Colby, Johnson, & Colby, 2013; Gee, 2006, 2007; Prensky, 2006; Selfe & Hawisher, 2007), I also knew that video games would afford me with a unique opportunity to explore multimodality because video games are quintessential multimodal texts. Even in their most basic forms, video games incorporate text, sound, image, and kinesthetic play. And video games that employ an online component incorporate even more interactive play through in-game socializing and out-of-game paratext creation and consumption. These overlapping interests in multimodal composition and video games led me to my culminating research question: *How can composition instructors effectively use the literate practices of gamers in the multimodal composition classroom?*

To address this question, I needed to uncover additional research questions that would lead me towards this theory-building opportunity. Primarily, I needed to learn more about the potential overlap that occurred between gaming literacy and multimodal skills, hence a secondary question I needed to ask was, *what kinds of multimodal skills are acquired through*
gaming literacy? After considering research that addressed some of these connections between multimodality and gaming (Apperley & Walsh, 2012; Gee, 2007; Hsu & Wang, 2010; Selfe, Mareck, & Gardiner, 2007), I realized that I needed to devise a research methodology that would grant me access to the information I needed while capitalizing on my unique position as an insider to the gaming community. My final two research questions, therefore, are intrinsically linked to my technofeminist methodology as they privilege the value of narrative and focus on the social and cultural impact of technology on my research participants: How do students acquire gaming literacy? What does one’s gaming literacy narrative reveal about his or her literate practices?

As I discuss in a later section (“Collecting Data as a Technofeminist”), I attended to these questions by obtaining the gaming literacy narratives of three research participants. Drawing upon Krista Bryson’s (2012) notion that literacy narratives can be seen as “a site of revelations about the literate lives of narrators” (p. 255), I employed data collection methods that helped me construct the literacy narratives of my research participants in order to reveal the potential multimodal skills they obtained through gaming and the gaming community. This data collection process was two-fold, starting with a brief online survey and ending with two 30-minute interviews with select students. The survey was used primarily as a recruitment tool for my interviews. As my primary data collection method, the interviews were used to gather information about how students acquired gaming literacy and how they currently used those literacy skills in the gaming community. My goal as a researcher was to help my participants understand the literate lives they led as gamers so that we could discuss the social and technological skills afforded by gaming.
My data included a total of 42 responses to the survey and 3 interviewees. Though I address the limitations of gender representation in a later section, it’s important to note that even though the majority of the survey respondents were female (22 female, 19 male, 1 “choose not to answer”), all three of my interview volunteers were male. The first interviewee was Sam. He was 21 years old, identified as “white,” and played video games 7 days a week. The next participant was Tobias. He was 19, also identified as “white,” and also played video games 7 days a week. The final participant was John. He was 23, identified as “some other race,” and played video games 3–4 days a week. I met with each student a total of two times for roughly 30 minutes per interview. During the first interview, each student told me about his first gaming experiences: whom he played with, what games he played, how he started gaming. Our discussions during the second interviews covered more current issues they faced as gamers: what kinds of games they played, what kinds of devices they used to play, what kinds of websites they used for support. To allow my research participants access to my emerging theories and findings, I also created an online blog where they were invited to partake in my knowledge-shaping.

Once my data collection was complete, I used grounded theory to code and analyze data. This entailed using research memos throughout the data collection process and multiple rounds of coding once the interview transcripts were complete. I also triangulated my coding by sharing my data with colleagues and collaborating on potential themes. Though I will address the benefits and technofeminist underpinnings of this method in a later section (“Analyzing Data as a Technofeminist”), it’s important to note that using grounded theory coding allowed me to look at

2 The names of the participants have been changed to protect their confidentiality.
3 This blog [https://tinaarduini.wordpress.com/] contained early reflections on my data collection, my gaming literacy narrative, and drafts of my chapters. Though my participants did not leave comments on the blog itself, I did notice an increase in visitors on the days following the email updates I provided for each participant. This indicates that they were likely viewing the changes I made. Additionally, one participant responded to a few of these emails with his approval towards how he was represented in my chapter drafts.
emerging themes and reflect upon them as I formulated a theory of comprehension and application.

A Technofeminist Approach to Research

As a technologically-driven methodological framework, technofeminism offers researchers the opportunity to make use of a multidisciplinary approach to research because it foregrounds the tenets of feminist methodologies alongside growing research about technological innovations. This makes technofeminism an important methodological lens for composition studies because it allows writing scholars to continue the efforts of feminist scholars—who have called for increased reciprocity, fair representation, and collaboration (Kirsch, 1992; Naples, 2003; Sullivan, 1992; Sullivan, 1999)—while taking new media studies into account. As Jen Almjeld and Kristine Blair (2012) have noted:

> technofeminist researchers are able to discuss the range of questions the larger field of composition studies should be asking in regards to what we recognize as viable research. These include questions about the role of self-reflexivity in research, the false insider/outside dichotomy, new media’s place in the rhetorical tradition, and the role of digital tools in developing researcher and subject identities. (p. 104)

Because my research project investigates the identity-construction and relationships of gamers (to technology and to each other), my research methodology is best informed by these technofeminist principles. This methodological lens allows me to explore the facets of gaming literacy that are defined by gamers as they establish their identities and participate in their communities. By maintaining a self-reflective relationship between me, my research, and my research participants, I am able to employ some of the most useful tenets of technofeminism in my knowledge-creation: exploring the sociotechnical relationships between users and
technology, clarifying epistemological assumptions about technological fluency acquisition, dismantling false insider/outsider and researcher/researched dichotomies, and establishing rigorous collaborative research practices.

Framing Arguments as a Technofeminist

As scholars in the field have noted (Almjeld & Blair, 2012; Blair & Tulley, 2007), using a technofeminist research methodology can sometimes be met with skepticism and tension from scholars outside the field critiqued due to the methodology’s reliance on subjective social practices. As with other qualitative methodologies, technofeminism helps us call attention to the voices of our research participants and requires us to reflect on our roles as researchers. The self-reflective nature of this research process can, therefore, be seen as less rigorous or objective because it doesn’t require clearly quantifiable results. Quantitative skeptics sometimes push for *replicable, aggregable, and data supported* (RAD) research that removes the role of the researcher in order to let the data speak for itself. Richard Haswell (2012) even mentioned how “the need for quantitative research in the composition field is a crisis in itself,” (p. 186) highlighting how obsessive scholars can be when it comes to obtaining statistically-driven data sets. This passive-voice research is meant to highlight each datum, free from the environmental cues where it was obtained.

What these scholars fail to recognize, however, is that the relationship between the researcher and his or her project is intrinsically connected to the research process and eventual outcome of the study. Ignoring the interference of this relationship on the research project limits our understanding of the data, and it is only by recognizing and examining our roles as researchers that we can begin to see a clearer picture of what the research is really telling us. As Almjeld and Blair (2012) have contested, “striving for objectivity in data collection and analysis
is a worthy goal, but it can best be obtained by admitting that it is impossible—by situating oneself as a researcher who is by definition biased in some way” (p. 107). As researchers, we tend to be biased towards our projects and frequently rely upon preconceived notions about what we hope to find. While research methods can be used to help expose those biases—as I illustrate in my study by using a collaborative approach to coding the data—ignoring that they exist can potentially negate the fair representation of data analysis. Transparency of the research and the researcher is, therefore, essential when it comes to analyzing data and developing potential theories.

Transparency can, of course, lead to messier research projects because a plethora of considerations need to be made. Through a technofeminist methodological lens, however, these considerations can help make the work even more rigorous and critical. By systematically approaching the data and framing the argument to take the relationships of researchers, participants, and technology into account, a project informed by a technofeminist methodology can better situate the data and potentially make it more replicable for future work. So while it would be easier to look at the raw data from a survey, for instance, the conclusions we draw may be misleading. Only by understanding the nature of the survey, the identities of the survey takers, the location of the survey, and the survey access offered can we fully understand the data we interpret. Throughout the following section, therefore, I add some layers of transparency to my research project and establish how the methods of technofeminism address my research questions.

Social technology

One of the defining characteristics of technofeminism is rooted in Judy Wajcman’s (2010) concept that “technological innovation is itself shaped by the social circumstances within
which it takes place” (p. 149). This important tenet of technofeminism establishes the interconnectedness of technology and society. Communities shape and are shaped by the technologies they use as those technologies grant access to new social interactions and potential meaning-making methods. The technologies employed by these communities then change as their members adapt to new opportunities and conveniences. Because my research focused on the literate practices of gamers, who have a committed relationship with technology, this methodological framework granted me the opportunity to further explore the connections between technology and society in order to formulate a rhetorically-effective pedagogical framework for a technologically-dependent multimodal composition classroom.

My culminating research question (i.e., How can composition instructors effectively use the literate practices of gamers in the multimodal composition classroom?) calls for technological innovation and directly looks for enactable meaning-making practices that can be exploited by a given community’s literate skills. Essentially, the goal of this question is to uncover how members of the gaming community make use of digital communication practices as a means of comparison to the kinds of skills students would need in the multimodal composition classroom. Because technofeminism looks not only at the technology that an individual uses but also at the relationship that person has to technology, framing my research through a technofeminist lens allowed me to further explore the ways in which gamers manipulated the technology to suit their social needs.

Too often, critics have looked at the ways in which video games influence society and operate as an external force upon a group of people—namely young gamers (e.g., Bonus, Peebles, & Riddle, 2015; Strahan & Elder, 2015). By looking at the roles gamers play in shaping their experiences with technology, however, technofeminism afforded me with the opportunity to
“shake the stranglehold that a naïve ‘technological determinism’ had on the dominant understanding of the intertwining of society and technology” (Wajcman, 2004, “Beyond Technological Determinism”). Recasting technology as a sociotechnical product—instead of an autonomous, outside force—allowed for more reflection during the research process and a more accurate portrayal of the ways in which video games infiltrated my research participants’ lives.

Technology in its various forms is neither objective nor unilateral. According to the tenets of technofeminism, technologies exude a political agenda and can be marked by the social practices they enforce or avoid. Though technofeminism typically focuses on exposing the gender inequalities established by the dominant use and manipulation of technology, Wajcman (2004) noted that “gender is not the only axis of social hierarchy and identity” (“Introduction”). So while the popularized political agenda of video games is frequently defined by gender stereotypes and heterosexual-male-dominated expressions of competition and sexuality, my goal for this project was to uncover the social relationships between various kinds of gamers—not necessarily how one gender defined itself in the gaming community. For instance, there are various layers of social hierarchies within the gaming community, from competition-level players to noobs—i.e., beginner-level players who struggle to understand the rules of play. Examining the social relations that exist within and between these groups of people can help establish how the technology surrounding gaming serves multiple purposes.

These purposes are inherently social and can contribute to feminist agendas, exploring even more pertinent applications of technofeminist methodologies. As Kristine Blair and Christine Tulley (2007) noted, “it is the nature of electronic, networked spaces themselves that may well mesh with the feminist goals of identity, agency, and community” (p. 305). Modern video games are frequently networked, and gaming paratexts provide multiple opportunities for
networked interactions. Within these networked video game spaces, gamers are afforded ample opportunity for establishing their identities and participating in the gaming community. More importantly, gamers can use these spaces to establish agency over the technology that dictates much of what they can and cannot do in the game itself. And because these networked video game spaces provide places for gamers to engage in multimodal communication—i.e., they consume and create gaming multimodal paratexts and digitally interact with each other and gaming technologies—the relationships gamers develop help to address my project’s focus on the intersections between gaming literacies and multimodality (i.e., What kinds of multimodal skills are acquired through gaming literacy?). The symbiotic relationship between a culture and the technologies it uses helped to establish technofeminism as the most logical framework for my research project.

Multivocal narration

Another major component of a technofeminist methodology is the feminist privileging of multivocal stories and narration. As Christine Denecker, Kristine Blair, and Christine Tulley (2013) postulated:

> narrative provides that sturdy thread that enables students, teachers, and citizens to share their lived experiences that might otherwise be marginalized. Indeed, such narratives have the potential to resist cultural stereotypes and to document the ways experiences are inevitably filtered through differences such as race and ethnicity, class, sexuality, and generation. (“Introduction”)

Essentially, narration allows us to represent those who have been silenced through their differences. And while there are some inherent risks involved with multivocal research projects (including the risks of broad strokes representation and privileging the voice of the researcher
For instance, an important component to both feminist and technofeminist methodologies is collaboration. In multivocal research projects where both the researcher and the research participants are invited to share their stories, a potential site for collaboration exists. As researchers compile their data and formulate their theories, they are able to interact with the people who have agreed to put their own narratives under the research lens. This dialogical exchange between researcher and researched creates an opportunity for deeper understanding as they work together to interpret the possible interpretations of their stories and shared experiences.

By including multiple voices within a research project, scholars also have the opportunity to explore how different people approach some of the same issues, lending this kind of research towards Sandra Harding’s notion of strong objectivity. As defined by Jill A. McCorkel and Kristen Myers (2003), “‘Strong’ objectivity . . . is the acknowledgment that all cultures and societies maintain assumptions about the nature of the social world” (p. 202). We can take this definition even further and contend that individuals also maintain specific assumptions about the nature of their social worlds within given communities. This means that there is no objective “Truth” to pursue because how we interpret and understand the social world depends upon our cultural ideologies. While this may seem like a daunting landscape for a researcher who is seeking to make a hypothesis and come to some culminating theory, viewing the social world as a web of interconnected theories and identities can help make research more meaningful and relatable. For a researcher who is looking to explore the potential literate practices of gamers,
this kind of outlook allows for multiple approaches to gaming literacy and more potential for uncovering essential skills obtained through gaming.

Focusing on multivocal research projects also offers the chance for more organic research that can rely on the dialogical nature of knowledge construction and researchers’ abilities to consolidate conflicting points of view. Conducting research through this feminist and collaborative approach creates a space for consensus and fair representation. As Kirsch (1997) noted when multivocal projects were more of a novelty:

Many scholars are excited about these new forms of discourse because they reflect the interactive, dialogic nature of writing and research processes, because they honor and preserve the voices of others, and because they allow authors to situate themselves in specific social and cultural contexts. Furthermore, experimental texts expose the multiple subject positions writers and readers often occupy, collapse boundaries between different genres of writing, and challenge traditional forms of academic discourse (such as single-voiced, seamless research reports). In addition, multi-vocal texts disrupt the smooth, linear progression of argumentative and narrative forms of writing, thereby asking readers to confront multiple, at times conflicting, realities. (p. 193)

Representing multiple voices within a given research project is one of the biggest benefits to multivocal research; however, the interaction between researchers and their participants offers an even greater benefit to the study. If properly executed and thoughtfully considered (where both researcher and participants sincerely invest in the outcome of the project), this interaction allows the researcher to reflect on his or her own biases, revealing possible assumptions that would have otherwise tainted the theories. Relying on the honesty of the research participants to help shape
the meaning-making process also creates a suspension of power over the data, offering the data a chance to reveal otherwise overlooked considerations.

Applying a more technofeminist lens to these ideas about multivocal narratives allows us to explore the roles of technobiographies and how they can shape research. Just as literacy narratives help establish the roles that literacy plays in someone’s life, technobiographies help establish the impact technology has had on a person. Citing the work of scholars outside the field of composition and rhetoric, Almjeld and Blair (2012) noted how technobiographies could be seen “as a way of capturing a sense of pluralism and diversity of experience.” They further argued towards a goal for composition and rhetoric scholars that would “rely on narrative and biography to neither celebrate nor scapegoat technology, but instead to theorize how our relationships to technology have been influenced by material conditions” (p. 102). My research works to answer this call to action as it requires my participants to reflect on the role that gaming technology has played on their lives as gamers, allowing them to establish how their relationship to that technology has changed over time.

By concentrating on the idea that technobiographies “neither celebrate nor scapegoat technology,” my research helps to establish the sociotechnical nature of gaming. In the past, video games have been vilified and praised, offering them a sense of autonomy that simply doesn’t exist. Video games are made to be played, and each playing experience differs according to the people who are engaged and the technology used to connect them. Recognizing and celebrating these differences not only adds to the multivocal power of collaborative meaning-making practices, but also further establishes the intricate social nature of gaming literacy. Consideration for gaming-related technobiographies and gamers’ relationships became a prominent focus for my research project, allowing me to pose my narrative-based research
questions (i.e., How do students acquire gaming literacy? What does one’s gaming literacy narrative reveal about his or her literate practices?). These questions take an active interaction between gamer and technology for granted, drawing focus towards the way gamers’ stories reflect the skills they obtain through their relationships.

Collecting Data as a Technofeminist

Though they informed how I addressed and came to understand my research questions, technofeminist methodologies played an even bigger role throughout my data collection process as I continually reflected upon my relationships to my participants and the data. Drawing upon Naples’s (2003) insight that “a feminist approach to fieldwork include[s] a sensitivity to issues of power and control in the research process and argu[e] for a self-reflective practice” (p. 50), my research process entailed reflection on my role as a researcher, requiring me to assess how my positionality potentially affected my interactions with my research participants. As I formulated my survey and interview questions and conducted my interviews, I was acutely aware of my position as both an insider and outsider to the gaming community. This awareness highlighted the importance of reflection and transparency in the project because I knew it was important to explore how feeling like an imposter affected my motives as a researcher.

Living in the liminal space between these positions also required more attention to myself as a researcher so that I could follow Naples’s (2003) approach to feminist scholarship and “address questions in my research that [were] simultaneously personally, politically, and academically significant” (2003, p. 13). As a gamer, I was personally invested in the outcome of my research, and I approached each interview with a political agenda and framework, hoping to establish a more familiar relationship with my research participants. And looming in the background of all data collection was my academic agenda: to make a contribution to the field of
composition and rhetoric. Focusing on the self-reflective nature of my research and the ways in which I handled the fluidity of my insider/outsider identity, the following sections address how technofeminist theories informed my data collection.

Survey as a recruitment tool

To help gather data for reflection on gaming literacy in the multimodal classroom, my project had two stages. The first stage involved a general survey of General Studies Writing (GSW) students from Bowling Green State University (BGSU), asking them to answer questions about their gaming habits and use of technology (Appendix A). The goals of this stage were not only to seek out potential interviewees for phase two of my project, but also to seek to understand the kinds of technological skills students were using in their gaming lives. The data collected from this survey served as a springboard for conversation during the interviews, allowing me to tailor my conversations with my research participants to reflect their experiences. This data also helped to establish the multiliterate capacity of gamers, essentially addressing my research question, *What kinds of multimodal skills are acquired through gaming literacy?*

During phase one of my data collection, I asked for volunteer writing instructors from BGSU’s GSW program to help me recruit students to respond to my survey. Appealing to my colleagues allowed me to work with like-minded individuals who would feel more invested in helping me complete my project. By focusing on our shared status as GSW instructors, I was able to foster a collegial environment that allowed them to feel more comfortable with the work I was doing, potentially dispelling fears that their students would be taken advantage of. I attended instructor meetings to ask for volunteers and sent out a mass email through the GSW program director. The survey was then accessed through the online survey generator Survey Monkey and
was distributed electronically through an email (Appendix B). The writing instructors whom I recruited were provided with this email and asked to send it out *en masse* to their students.

Besides having easy access to the pool of GSW instructors as a fellow colleague, I chose to recruit through GSW because the program includes students from all university disciplines, offering me a more representative sample of students and their gaming habits. Students in this program tend to be limited to freshmen and sophomores. This had the potential to limit the age range and experience of my participants; however, my research hinges upon the idea that many of my participants would have played video games based on outside statistics about the gaming experiences of teenagers: 61% of gamers are under the age of 35 (ESA, 2014, p. 3) and 97% of today’s youth have played video games at some point (McGonigal, 2011, p. 11). Therefore, this somewhat limited demographic did not diminish the results of my data collection.

Building upon Mary Sue MacNealy’s (1999) recommendation that “no matter what type of survey is being considered, the researcher should first establish a clear purpose because the purpose determines, or at least influences, the answers to many of the other concerns a survey research must deal with” (p. 148), I created my survey with the main purpose of procuring possible interviewees for phase two of my research. To that end, the survey was short, containing only four gaming-literacy related questions and three demographic-related questions. The demographic information was only used to define the identities of my interviewees, while the gaming-literacy related questions were taken into consideration during my data analysis stage. During the second half of the survey, students were asked to check boxes that corresponded with the kinds of paratexts with which they engaged while gaming. Besides providing students with a list of possible options, I also provided them with the option to include “other” paratext examples in case they accessed gaming venues that I hadn’t considered. No one added any beyond the
examples I gave, but I felt it was important to provide them with this option so as not to limit their choices to my biased experience.

In a small way, the survey also appealed to the perceived need for quantitative studies in the field of rhetoric and writing, helping me pursue Haswell’s (2012) four functions of quantitative methods (p. 188). Mainly, the survey granted me insight into the literate practices of gamers, uncovering some of the nuances and examples of gaming literacies. The survey also offered a chance for transgression because it provided me with a means for “[changing] the way teachers and administrators conceive of their field” by uncovering trends in gaming literacy development. And though my sample size was small, the survey offered the function of challengeability in a limited capacity by “mak[ing] possible the support or falsification” of my findings, creating a space or opportunity for further quantitative studies to continue this research. Finally, to a lesser degree, my survey offered a means of persuasion because quantitative studies are still valued by stakeholders as “agent[s] of social, political, disciplinary, and instructional change” (Haswell, 2012, p. 188). Though my sample size was limited, it offered me an opportunity to hypothesize about gaming literacy trends.

Feminist interview techniques

While my survey allowed me to make some generalizations about the possible multimodal skills one could acquire through gaming literacy, more of my research time and energy was dedicated towards phase two of my data collection—interview. The second stage of my project involved more elaborate interviews of students who play video games. Taken from volunteers from the survey, these interviewees and I discussed how they came to gaming and the kinds of literate practices involved in their current gaming habits. Our conversations were divided into two interviews (Appendix C) so that we could focus exclusively on their gaming
literacy narratives during the first interview and their current use of gaming literate practices in the second. The data collected from these interviews was used to help address a variety of my research questions: How do students acquire gaming literacy? What does one’s gaming literacy narrative reveal about his or her literate practices? What kinds of multimodal skills are acquired through gaming literacy?

Interview as a technique for research collection is a widely adopted method because it offers the researcher a chance to ask probing questions related to his or her research and offers the research participant a chance to share his or her story. Instead of simply coding data taken from a static source, interviewing research participants humanizes the data collection process, appealing to technofeminist research methodologies like reflection and narration. This kind of reflection is especially important in digital spaces where more emphasis tends to be placed on the digital text rather than the person behind it. As Stuart Blythe (2007) contended, “We should interview participants and observe group meetings. . . rather than code Web sites for evidence of how digital writing is used” (p. 222). Blythe continued that interviews can help provide context for textual analysis because they allow the users of digital texts to explain how they use those texts to communicate and reflect upon their digital practices (2007, p. 223).

Because interview as a technique offered me the chance to more fully interact with my data and use collaborative meaning-making skills, I invited my survey participants to volunteer to be interviewed about their gaming habits. Of my 42 respondents, 9 people volunteered to be contacted for an interview by providing their names and email addresses at the end of the survey. I contacted all 9 volunteers via email and waited for their responses. Within a couple of weeks, two students confirmed their volunteer status and made plans to meet with me. This low rate of participation concerned me as a researcher, however, because I wanted a larger sample size for
my discussion. Because my email correspondence occurred at the end of the fall semester, I considered that some students had simply stopped taking on extra tasks. To compensate for this, I waited until the spring semester began, and then contacted the remaining 7 volunteers once more. I got one more volunteer from this round of solicitations, providing me with three interviewees in total. Though a 33% participation-rate was still relatively low, I felt that three research participants would provide me with enough data to triangulate my results.

Once my research participants were contacted and had signed their consent forms, I met with each volunteer twice for roughly 30 minutes per session. The first interview occurred in December before the fall semester ended, and the last interview occurred in April near the end of the spring semester. On average, there were two months between each participant’s first and second interviews. This allowed me the chance to review the data and let the participants more fully digest our discussions. The two interviews focused on obtaining information about students’ acquisition of gaming literacy (interview one) and their current use of gaming-related technologies (interview two). This created a space for us to discuss their literate skills as gamers, and it allowed me to more fully assess how their consumption of multimodal texts impacted their literate practices.

Using open-ended dialogue and letting the conversations flow naturally, we shared stories and reflected on past gaming experiences. In this sense, I drew upon Cynthia L. Selfe and Gail E Hawisher’s (2012) “feminist understandings of interviews as a process not of extracting information but of sharing knowledge” (p. 36). Because my interviewees and I were part of a shared community of gamers, I knew it was important for them to understand that I was not an “expert” who was looking to judge their stories or responses. Instead, I wanted them to feel as though we were simply reminiscing about our past gaming experiences and reliving our early
days of playing video games. More traditional interview techniques of question and answer responses can lead to a more pronounced hierarchal positioning, creating a potential for unreliable data collection as interviewees feel the need to perform for the interviewer. As Megan R. Yost and Jennifer R. Chmielewski (2012) described, “The typical dynamic between the researcher and participant does little to facilitate trust” (p. 246). Feminist interview practices, on the other hand, develop a more conversational approach, established out of a shared community experience between interviewer and interviewee.

Like other feminist practices, this interview technique helped to “eliminate the inevitable power imbalances between the researcher and researched” that Almjeld and Blair (2013) noted (p. 101). By adding in a chance for reflection during and after the interview, feminist interview techniques can also help with “privileging participant voices” (Almjeld & Blair, 2013, p. 101) and can “emphasize the importance of a mutually meaningful relationship between researchers and participants in the cocreation of knowledge” (Yost & Chmielewski, 2012, p. 246). This trust not only helped interviewees feel more comfortable sharing information, but it also built upon the shared community literacy between researcher and research participant. As a member of the gaming community, I already had experience with gaming literacy; therefore, I was able to make my co-researchers feel more at ease by conversing with them less formally about our shared experiences of playing video games. By breaking down this hierarchal position between interview and interviewee, I hoped to mimic Selfe and Hawisher’s experience of having interviewees be “dialogically and discursively engaged with [me] in making meaning and formulating interpretations of their experiences” (2012, p. 39, emphasis in original).

Throughout the interview process, I also invited my research participants to make meaning with me by granting them access to an online blog published through WordPress.com
where I posted preliminary ideas about the project and drafts of my developing chapters. In this sense, interviewees became co-researchers as they had the opportunity to voice their opinions and ideas about my research and findings, helping me honor the “collaborative role that we play with participants in making meaning of their narratives” (Selfe & Hawisher, 2012, p. 42). Because there is no opportunity for co-authorship in the dissertation process, this interactivity allowed me the best opportunity for fair representation of my co-researchers and their stories. None of my co-researchers added comments to this space, but I did periodically send them email updates when I made changes to the blog in order to keep them apprised of my research progress. Visitor activity on the blog increased on those days, so I feel it is safe to assume that they at least reviewed my work.

My research blog not only helped me engage in feminist research practices like collaboration and fair representation, but also helped me perpetuate my technofeminist research identity by incorporating an interactive technological system into my research process. By maintaining a digital presence, I was able to provide transparency into my research process and engage in some of the digital literacies I was discussing with my research participants, like accessing a blog, posting comments, and participating in an online community. During the research process, I also had to reflect on the role that I wanted this technology to play. Operating under Wajcman’s (2004) warning that “a technological system is never merely technical: its real-world functioning has technical, economic, organizational, political and even cultural elements” (“Beyond Technological Determination”), I knew that I would need to determine how my ownership of this blog impacted the collaborative space I had hoped to create. While I saw this blog as a shared space for us to make meaning together, I was the only one who could upload files or make changes to the space. And even though my research participants were invited to
join in the conversation or review my posts, their lack of interaction somewhat diminished the political intentions for the blog.

Technofeminist literacy narratives

The ultimate goal of the interviews in phase two of my data collection was to obtain the literacy narratives of my research participants in order to determine how they came to understand gaming and develop the literate practices of gamers. Fostering a multivocal approach to meaning-making, I let the many voices of my research participants interact with one another in the analysis of my findings. Essentially, I collected their gaming literacy narratives in order to address the following research questions: *How do students acquire gaming literacy? What does one’s gaming literacy narrative reveal about his or her literate practices? What kinds of multimodal skills are acquired through gaming literacy?* Because phase two was such an integral part of my data collection, I think it’s important to note how literacy narratives can be used as effective research tools.

Though my research participants didn’t create traditional literacy narratives on their own, my dissemination of their stories serves as a representation of their gaming literacy narratives. Similar to the ways in which literacy narratives are recorded for the Digital Archive of Literacy Narratives (DALN) at the Conference on College Composition and Communication (CCCCs) each year, my open-ended interview technique afforded my research participants with a space for orally sharing their gaming literacy narratives. This kind of discourse-community literacy narrative helped to reveal the insider social language of my research participants’ gaming identities as well as the rhetorical power of the discourse community’s meaning-making practices. As Berry, Hawisher, and Selfe (2012) noted in *Transnational Literate Lives in Digital Times*:

Because our cultural understandings of literacy are the material of which literacy narratives are woven... they cannot avoid reflecting in some way—whether directly or indirectly—what it means to read and compose in a particular culture or time and place.

("Conclusion")

The discourse literacy narratives of my research participants, therefore, helped to reflect the literate practices of gaming. More importantly, they helped me establish our cultural understandings about gaming literacy, allowing me to place those literate skills within the larger context of what it means to be literate in the twenty-first century.

Literacy narratives, in general, help to reveal the creation of identity and how one regards literacy in his or her life. In her article, “Translating Self and Difference through Literacy Narratives,” Mary Soliday (1994) wrote, “By foregrounding their acquisition and use of language as a strange and not a natural process, authors of literacy narratives have the opportunity to explore the profound cultural force language exerts in their everyday lives” (p. 511). By removing themselves from the act of acquiring literacy, people are able to more effectively analyze the role literacy has played in their lives. Moreover, literacy narratives provide authors with an opportunity to explore their own sense of self and how they have learned to rationalize and create identity. As Selfe (2013) noted, “As people tell literacy stories, they also formulate their own sense of self; with each telling, this self changes slightly according to a constellation of social and cultural factors, personal aspirations and understandings. . . among many other factors.” The third-party stance of the literacy narrative provides a safe distance for contemplation and analysis. The literacy narratives of my research participants and how they acquired the literate practices of gaming, therefore, revealed the effects their gaming literacy has
had on their overall ability to communicate. This information was then used to analyze how those communication skills could be used in the multimodal classroom.

As part of the narrative turn in humanities and social sciences, literacy narratives have also been established as legitimate research tools for understanding how and why we acquire literacy. Selfe explained, “The cultural and academic trend rests in large part upon an understanding that storytelling is linked in fundamental ways to meaning, knowledge, and identity” (2013). Telling stories provides authors and readers with a chance to analyze the world around them in hopes of discovering how or why we do things. As Martin Kreiswirth (2000) classified the benefits of the narrative turn, “A common feature of the various turns away from monologic scientific grounding is a swerve toward mutual interrelationships, toward dialogical interdisciplinary linkages” (p. 298). Essentially, because of the narrative turn, we have been able to explore more possibilities and multiple truths—offering us the potential to explore interrelationships between fields, disciplines, and meaning-making practices. As facets of this narrative turn, therefore, the literacy narratives of my research participants can offer us the possibility of exploring the interrelationships between gamers’ acquisition of literacy and their potential for proficiency in the multimodal classroom, which mimics the multimodality of the semiotic domain of gamers.

Positionality as a researcher

The interconnectedness of technology and society also presupposes the founding of relationships. Moreover, these relationships exist not only between a community and its technologies, but also between individual community members and between the community and society at large. As a researcher, I, therefore, knew that I needed a methodological framework that allowed me to question how a relationship was forged and the potential risks involved in
maintaining a productive relationship. These kinds of questions can best be answered by feminist methodologies, which focus heavily on relationships and the nature of representation.

As Laura Sullivan (1999) noted, “the role of representations. . . is useful for feminists who want to investigate the ways culture. . . affects subject construction and thereby mediates the relationship between individuals and the social world” (p. 28). Looking at the relationships that gamers had between themselves, their peers, and their technologies allowed me to more deeply explore the development of their literate practices. More importantly, because I was aware of these relationships and my own positioning as a researcher and fellow gamer, my research project allowed me to make use of collaborative investigations, invoking the “best approach to research” by “recogniz[ing] and acknowledg[ing] the historical and social locatedness of the researcher, as well as the institutional and sociohistorical contexts in which particular knowledges are produced” (Sullivan, 1999, p. 39).

Locating myself as a researcher became an important step in my research process. Like Nancy Deutsch (2004), I believe that:

The researcher’s awareness of her or his own subjective experience in relation to that of her or his participants’ is key to acknowledging the limits of objectivity. It recognizes the bidirectional nature of research. I am subject, object, and researcher. My participants are subjects, objects, and actors. To assert otherwise is to be disingenuous about the process of research, especially qualitative research. (pp. 888–889)

In order to be honest about the research I was doing, I needed to position myself both as a member of the gaming community and as a scholar in the field of composition and rhetoric. Ignoring these roles had the potential to bias my research and allow others to write off my project as self-promoting and non-rigorous. Instead, I needed to explore how my positionality
had potential influences upon my work: I was invested in the outcome of my work, and I had experience that allowed me to easily relate to my research participants despite our age, race, and gender differences. By valuing their experiences, I also valued my own. These potential biases needed to be confronted in order to facilitate a fairly represented research project.

Throughout the research process, I was constantly aware of my position as both an insider and outsider. At times throughout the interviews, I was a peer, sharing stories about the games we played (like the *Smash Brothers* and *Zelda* franchises) or the websites we frequented (like IGN.com and GameFAQs.com). Other times, I was the researcher in power—driving our conversation in certain directions, taking notes, and referring to my list of questions. More often than not, however, I was both—a peer-researcher. I was invested in what my research participants had to say while I got swept away by our conversations. In this way, I invoked Naples’s concept of fluidity between insider and outsider. As she explained, “The bipolar construction of insider/outsider also sets up a false separation that neglects the interactive processes through which ‘insiderness’ and ‘outsiderness’ are constructed” (2003, p. 49). Once we embark upon ethnographic research, we are never fully an insider or outsider because our relationship to the community constantly shifts as we invest in different community roles and agendas. Because I needed to straddle these roles in the gaming community, I was afforded special insight into how and why gamers might develop the literate practices my study sought to uncover.

As part of my role as a peer-researcher, I also make conscious decisions about location and attire in order to facilitate the feminist research practices I hoped to embody. Specifically, I wanted my research participants to feel comfortable with me, so I sought locations for the interviews that would feel more natural to them. Through email contact, I asked my participants
to decide upon where we would meet in an attempt to grant them some power over the interview. Though I did offer my office as a courtesy, I encouraged them to choose a place where they would feel more comfortable. The locations varied between a student lounge in the English Department, a small sitting area above the cafeteria in the Student Union, and a small café in the university library. I also made conscious decisions about my appearance so that I would seem more approachable, wearing clothes that marked me as a fellow gamer and sitting next to my participants instead of across from them whenever possible. These conscious efforts towards camaraderie allowed me to create a more egalitarian environment for data collection, upholding the technofeminist principles that defined my research.

Analyzing Data as a Technofeminist

Once my data collection was complete, I needed to find a rigorous way to analyze my findings that would still uphold the technofeminist methodologies that drove my research. Partly in response to Peter Smagorinsky’s (2008) position that, “If I don’t know pretty clearly how the researcher is conducting the study, then it doesn’t matter much to me what the results are because I have no idea of how they were produced” (p. 393), I knew that my data analysis needed to be grounded in theoretical approach that established my credibility as a researcher. More importantly, that analytical approach needed to be rooted in my overarching methodological lens in order to establish myself as a technofeminist researcher. Because of its rigorous and self-reflective nature, grounded theory became a natural choice for my data analysis.

As a theoretical method for data analysis, grounded theory provides qualitative researchers with the opportunity to make their research more replicable (i.e., valuable) because it requires a systematic approach to coding data sets and searching for recurring themes. Because
of my position as an insider to the gaming community, I ran the risk of letting my biases inform my research and potentially taint my findings and results. Grounded theory helped to alleviate these concerns by allowing me to step back from the data. As Bob Broad (2012) argued

Grounded theory is the qualitative method that does the best job, in my view, of meeting qualitative researchers’ most urgent responsibility: to actively seek out interpretations contrary to what they might have hoped or expected to find, and to ensure that interpretations and findings are “emic,” that is, that they are deeply rooted in the interpreted framework(s) of research participants. (p. 204)

By forcing me to let the data speak for itself, a grounded theory approach to data analysis afforded me with the opportunity to maintain my scholarly credibility as a researcher. To help add another level of transparency to this process, in the following sections, I offer a brief overview of the grounded theory process, explain how that process upholds the tenets of technofeminist methodologies, and explore how I used the process to help code and analyze my research.

Grounded theory collection processes

As Kathy Charmaz (2014) explained, “Grounded theory begins with inductive data, invokes iterative strategies of going back and forth between data and analysis, uses comparative methods, and keeps you interacting and involved with your data and emerging analysis” (p. 1). Essentially, grounded theory involves continual interplay between the data and the building of a theory. Each step in the research process involves close examination of the data sets in order to let theories emerge from the research. This process allows researchers to step back from their involvement in the data collection so that the end result is more comprehensive and potentially less biased.
At the onset of a research project, a grounded theorist needs to take detailed and systematic notes. In her advice to scholars pursuing a grounded theory approach, Charmaz (2014) offered, “Gathering rich data will give you solid material for building a significant analysis. Rich data are detailed, focused, and full. They reveal participants’ views, feelings, intentions, and actions as well as the contexts and structures of their lives” (p. 23). This advice further illustrates how much importance is placed on context. Because they are required to take note of all that they see, hear, or experience, researchers are afforded the opportunity to reflect on their data collection methods and the roles they may have played in the process. Similar to feminist analysis—especially standpoint theory—grounded theory allows us to explore how “all knowledge is socially situated, [because] it requires researchers to specify the location and contexts in which their knowledge is produced” (McCorkel & Myers, 2003, p. 202). Paying attention to the environment where data was collected can make data collection and analysis messier because it requires the researcher to take more than just the participants’ words into consideration. However, the environment and participant identity can sometimes have a significant impact on the research as far as level of comfort and willingness to speak openly are concerned.

During my interviews, I took note of the time of day, location, and room placement so that I could reflect on whether or not the context of the interview affected the information I received. On one occasion, one of my research participants was purchasing lunch when I stopped in to meet him. This seemed to affect him slightly since it took until the end of our conversation for him to open up and provide more details about his gaming experience. His distraction wasn’t overtly evident, but it may have impacted how willing he was to linger on certain topics. On another occasion, a research participant and I met in a comfortable lounge, seated in cushioned
chairs around a coffee table. Leaning back in his chair, he seemed eager to converse and shared more information than I even thought to ask for. Taking note of how our bodies interacted with the interview spaces didn’t seem to affect my overall research project or agenda, but it did make me a more sympathetic interviewer since my awareness of my participants’ comfort allowed me to make better choices about where to meet for our second round of interviews. I wanted my participants to feel willing to share their stories with me so that I could best represent them in my analysis.

Fair representation is an important consideration for both grounded theory and technofeminism, and fairly representing a research participant stems from thorough reflections. During the data collection process, a grounded theorist takes meticulous notes of his or her participants’ stories. These notes, however, are usually supplemented by recordings and transcripts of the interactions between researcher and participant so that nothing is left up to the interpretation of the interviewer. That is, the feelings of the interviewer can be set aside once he or she is no longer in the moment of the interview. Through a technofeminist lens, the human element in data collection is impossible to ignore because, as Charmaz warned, “people construct data—whether it be researchers generating first-hand data through interviews or fieldnotes. . . . We may treat such documents, records, and census data as facts; however, individuals constructed them” (2014, p. 29). Because the interviewer can return to the transcripts at a later date, he or she can take a step back from the conversation in order to more systematically review what was said.

Coupled with the grounded theory method of memoing, examining transcripts after an interview can be an effective way to approach the data from multiple perspectives and allow for a more comprehensive and technofeminist review of the data. During my data collection phase,
immediately following each interview, I composed a brief note about how I thought the interview went and where I expected my research to go. This allowed me to viscerally react to the interviews and make predictions about what I expected to find in my analysis, while reviewing the transcripts at a later date allowed me to assess the conversations from a more scholarly and objective standpoint. For instance, in my first memo, I noted the differences in our gaming pasts since his was more competitive than mine. At the time, I thought this might be related to a difference in gender. Looking at the transcripts from that interview, however, I saw other emerging themes, like social interactions and familial bonding. Because I was able to suspend our identities as male and female gamers, reviewing the transcripts enabled me to make more systematic insights into his gaming literacy narrative. Though our gender differences were still part of my analytical lens, they didn’t become the only lens through which I could interpret the data.

Collaborative coding and self-reflective memos

Although grounded theory methods involve recursive analysis and data collection processes, deep analysis of the data occurs once the data collection process is underway. The main methods for this deeper analysis revolve around data coding and self-reflective memos. Careful attention to these two phases in data analysis can help make the research process more meaningful and fluid.

One of the most important processes in grounded theory is its method of coding. As Johnny Saldaña (2009) explained in *The Coding Manual for Qualitative Researchers*, “one of the coder’s primary goals is to find . . . repetitive patterns of action and consistencies in human affairs as documented in the data” (p. 5). This method usually involves a three-stage process whereby researchers continually review and reflect upon the data. In the first stage of coding—
open coding (Neff, 1998, p. 129)—researchers analyze their data and brainstorm a list of different codes to help categorize the data into meaningful themes. As they begin to narrow their codes and test potential themes, researchers enter into the second stage of axial coding. These axial codes become the basis for core categories, which are used to further categorize and systematically analyze the data (Neff, 1998, p. 130). Finally, the core categories are used to “systematically and deliberately go through the full data base looking not only for additional examples of core categories but also for examples that defy core categories” (Neff, 1998, p. 130, emphasis in original). Because of its emphasis on looking for categories that support and defy the emerging themes of the research, grounded theory coding offers a comprehensive and self-correcting method for data analysis. More importantly, for the purpose of this research project, this level of continual reflection forces the researcher to revisit and question his or her motives and biases, upholding some of the major tenets of technofeminist methodologies, like reflection and fair representation.

Once my interviews were over and my transcripts complete, I entered into the coding phase of my project. During the open-coding stage, I took note of everything I saw, brainstorming lists of possible themes like “enjoys playing games,” “plays with siblings,” “plays with friends,” and “video game time as a reward.” By not limiting myself to a list of premeditated themes, my categories were allowed to take shape more organically as each aspect of my participants’ stories was assigned a list of potential themes. Once I began to see common threads in those themes, I was able to move into axial coding and began to eliminate repetitive categories so that I could work with clear core categories during the final, selective (Neff, 1998, p. 130) stage of coding. Because coding serves as the core of grounded theory’s iterative nature, this stage in the research process allowed me to reflect upon my research and my role as a
technofeminist researcher. As I saw the social and technological aspects of gaming literacy practices take shape, I was better able to formulate my theories in order to make practical contributions to the field.

In order to further evoke the iterative and reflective nature of grounded theory coding, I also employed a system of checks in order to confirm some of the theories I had discovered. The first system included collaborative coding with another researcher. In an effect to triangulate my findings, I shared my transcripts with a fellow researcher and asked him to look for potential themes. This allowed me to make sure that my closeness to the project didn’t dictate my results. I also tested my codes against my own and other gaming literacy narratives obtained through the DALN. Appealing to the work of Joyce Neff, Liza Potts, and Carl Whithaus (2011), these tests were performed as a theoretical sampling and “a means of checking for confirming and disconfirming evidence” (p. 14). By establishing that my core categories were consistently present across the literacy narratives, I was able to offer clear connections between my data and theory-building.

Limitations of the Study

Though my research was systemically collected and analyzed, there were still limitations to my study. Most notably are the limitations to my sample sizes and participant diversity. The survey was potentially sent out to 200 students; however, only 42 people responded. Though the survey itself played only a small role in my research, more participants would have allowed me to more effectively interpret the survey results in relation to the study—perhaps finding potential indications of the relationships between the frequency of playing video games and using digital spaces to communicate about gaming. According to my survey 55% of students played video games at least one day a week, and 54% of them used gaming-related web content. There may be
some kind of trend related to these pieces of information; however, with such a small sample size, venturing a claim would be problematic.

My survey also indicated a 52% female response rate, while all of my research participants were male. Though this can be seen as somewhat problematic given my technofeminist methodological approach, gender representation at the interview-stage of the data collection process was a less important component than locating authentic gaming literacy narratives. The representation of women’s experiences is frequently heralded as an important component to feminist and technofeminist studies; however, fair representation of a select community—regardless of gender—is also important. Because representing all genders in the sample size does not guarantee fair representation, I felt that my somewhat gender-biased sampling did not detract from the study. As feminist scholar Patricia Sullivan (1992) noted “the mere inclusion of both men and women subjects at the stage of data collection, either through random sampling or deliberate selection procedures, does not necessarily ensure that a study will be free of androcentric bias” (p. 42). Conversely, having an all-male sample size does not necessitate an androcentric bias. Fair representation of gamers’ literate skills based on gaming literacy narratives is more dependent upon collaborative assessment and open-ended discussion—as were afforded by my open-access blog and feminist interview tactics—where research participants can feel free to share their stories without risk of rejection.

And even though technofeminism tends to focus on calling attention to the lives of women in technological spaces, this is not the only defining tenet of technofeminist methodology. As Wajcman (2004) explained “gender is not the only axis of social hierarchy and identity” (“Introduction”). As a community, gamers are frequently disenfranchised as socially-inept people who lazily lie around playing mindless games all day. Moreover, along the same
lines of gender representation, an all-male sample size afforded me the opportunity to explore a counternarrative to the more common stereotypes of misogynistic and anti-feminist male gamers. In the wake of stories like #gamergate—where gaming critics and designers like Anita Sarkessian, Zoe Quinn, and Brianna Wu were threatened with physical abuse on social media for voicing concerns about gender and racial representation in video games (Mother Jones, 2014)—this project came at a time when the gaming industry was at arms against itself over political issues about what video games could and should contain. Though supporters of #gamergate claimed to be female and people of color, the face of the scandal remained white and male. By talking about video games and sharing gaming-related origin stories with my three male participants, I was able to circumnavigate these hostile waters and, more importantly, share an alternative view of the male gamer as inquisitive and socially adept—once again foregrounding the technofeminist importance of fair representation.

To further address the gender limitations of my study and to appeal to technofeminist scholars who see the importance of including female lives in the analysis of technological spaces, I also used my own experiences as a gamer and stories from female volunteers at the DALN to help triangulate my data. Narratives are frequently used in qualitative studies to help give voices to under-represented groups of people, making these kinds of stories logical extensions of feminist and technofeminist methodologies. By incorporating my own experiences into the literacy narratives I studied, I was able to follow the lead of feminist scholars like Denecker et al. (2013), who argued that “narrative also allows our voices as teacher-scholars to be heard, to tell a story of our literate lives that we do not get to share in as much detail in traditional accounts of research results” (“Introduction”). As an autoethnographic component of my study, therefore, my literacy narrative helped push against traditional research in order to
appeal to more feminist and representative appeals. Further incorporating female voices through the DALN afforded me the chance to consider not only how female gamers might acquire the literate skills of gaming but also how my research findings based on an all-male sample were accurate portrayals of gamers’ lives.

Conclusion

In her discussion about the social implications of and the effects humans have on emerging technologies, Wajcman (2004) wrote, “Different groups of people involved with a technology can have very different understandings of that technology, including different understandings of its technical characteristics” (“Beyond Technological Determinism”). The diversity with which we approach technologies helps determine how we use that technology and how that technology will evolve. For gamers, this sociotechnical interaction impacts how they make meaning and interact with the world. As a researcher interested in these interactions, I found that technofeminist methodologies allowed me to best perceive and analyze the sociotechnical impact of gaming literacy.

More specifically, I found that looking at the literacy narratives of gamers gave me a chance to more clearly see how gamers interacted with each other and their technologies as they developed transferrable literate skills. Analyzing these narratives, therefore, afforded me the chance to more fully examine the sociotechnical nature of gaming: how video games served as access points for both social interactions and technological experiences and how those access points defined how the technology was used and developed by the gaming community. Heeding the advice of my committee, I also knew that it was important to analyze the narratives carefully so that my research would not seem shortsighted or overly idealist. As Blair noted in her section of “The role of narrative in articulating the relationship between feminism and digital literacy”:
For computers and writing specialists, and for feminists, narrative has helped us to theorize more localized relationships to technology that are not always utopic, not always positive, but always mediated through cultural context and the specific material conditions that enable and constrain access for individuals.” (Denecker et al., 2013, “Relationships”)

If narratives were to be the basis of my data analysis, then I would need to not only showcase how they aligned with my research goals, but also explore how they offered me alternative and even contradictory narrations. By concentrating on the cultural context of the gaming community and the specific access points of my research participants, I was able to more effectively situate the literacy narratives in a meaningful discussion of rhetorical work.

In the following chapters, I explore and analyze my research with the sociotechnical relationship between gamers and their technology and the open-minded relationship between my research agenda and my data in mind. In chapters three and four, I focus more specifically on highlighting the literacy narratives that I collected in order to best address how the literate practices of gamers develop and can be made useful in the multimodal composition classroom. Because of the sociotechnical nature that defines the gaming community, analyzing literacy narratives became important to me during my data analysis; therefore, it became a central focal point for my project. In chapter five, I attempt to synthesize this information in order to develop a pedagogical framework that can best utilize those literate skills in the multimodal composition classroom. By focusing on a self-reflective research agenda that prioritized narration and collaboration, I was able to build distinct theories about the nature of gaming literacy and its potential applications to the multimodal composition classroom.
“But video-game players can be part of a powerful network, if they so desire and know how. Their own ineptness need not stop them. There is knowledge they can use, if they know how to leverage it, stored in other people and in various tools and technologies.”
–James Gee (2007, p. 200)

“Gamers, without a doubt, are reinventing what we think of as our daily community infrastructure. They’re experimenting with new ways to create social capital, and they’re developing habits that provide more social bonding and connectivity.”
–Jane McGonigal (2011, p. 93)

As Gee and McGonigal’s epigraphs indicate, gamers have used the power of networking to help establish a community infrastructure that allows them to share and create knowledge. They share gaming strategies and cheat codes, modify console controllers, and design levels and in-game challengers for one another. In addition to in-game play, gamers communicate through gaming forums, wikis, and social media groups. They also share knowledge about games through walkthroughs and game FAQs (Frequently Asked Questions), and they even outwardly project their group affiliations with online and console avatars. Like the participants in my research study, modern gamers frequently epitomize McGonigal’s assessment by developing gaming habits that include meeting online to share in-common gaming goals or to simply chat about their days. They are also invested in each others’ successes and form a support group that functions as an interconnected matrix of information and skill.

Knowing how to communicate with and tap into this community infrastructure are important tenets of gaming literacy. Those who are part of the gaming discourse community gain the expertise of their peers, modifying and expanding their own knowledge and skill sets in order to become more adept gamers. In What Video Games Have to Teach Us about Learning and Literacy, Gee (2007) continued this assessment of gaming’s discourse community:
In such a network, the other players and various tools like cheat codes are part of what I know. . . . My knowledge is not only social, it is distributed outside my body. If you were to assess just my skills playing video games alone in my home, you would underestimate me. . . . The knowledge that I gain playing games...can spread into the network as well. In turn, knowledge flows to me, making me better than your original estimate would have assumed. (p. 202, emphasis in original)

Referring to his own role in that community, Gee explained how the social capital of gaming can create players who can do and achieve more. Modern gaming need no longer occur in isolation. In fact, it frequently requires players to interact with one another across multiple venues where they can reap the benefits of community-based learning.

Throughout my research project, my participants noted various ways in which they interacted with this gaming collective. They not only interacted in real-time with other gamers in their houses but also participated asynchronously in online message boards about games they played. Even when they played solo campaigns, they remained social with their peers, discussing enemies they defeated and storylines they uncovered. When I asked one of them to describe his childhood experience with gaming, he explained, “It was a very social thing in my house. It was honestly a very big part of growing up; it was playing video games with my siblings, fighting over them like crazy” (Tobias, January 2015). Video games offered Tobias and my other two participants chances to interact with their siblings, learn how to share access to a desired technology, and find ways to stay connected to peers and family members as they grew up.

Because the potential educational benefits of social competence are vast, addressing the social interactions of my research participants helped me explore some key intersections between gaming literacy practices and the multimodal composition classroom. To help showcase the
development of these social practices in this chapter, I first explore my research participants’ experiences with collaboration and examine their cooperative gaming practices, specifically highlighting how they work together to complete game objectives and share technology. To help appeal to my technofeminist methodologies and illustrate the non-gender-specific experiences of video game collaboration, I also include references to the literacy narratives of the three women from the DALN. And because meeting new people online is a common social interaction for gamers, I briefly analyze these kinds of meetings, which were somewhat uncommon for my research participants. Next, I look more closely at competitive gaming and the social behaviors associated with those practices. Finally, borrowing a term from Deborah Brandt (1998), I end the chapter with a discussion of my participants and the women from the DALN’s sponsors of literacy and look at the social relationships between gamers and their familial, technological, and educational sponsors.

Collaboration

Collaboration within the gaming community is somewhat inherent. While many games rely on competition to drive players forward, more popular competitive games like the Call of Duty series or even Grand Theft Auto V allow players to create collaborative teams that band together and complete missions. Similarly, massively-multiplayer online games (MMOs) like World of Warcraft and social media games like Criminal Case include quests that offer incentives for collaboration. This creates a space for players to learn how to best work together to achieve common goals. In the multimodal composition classroom, these kinds of collaborative skills can help foster a student-centered environment where peers sincerely invest in each other’s successes.
To illustrate the potential for collaboration, after incorporating *World of Warcraft* gameplay into his composition classroom, Justin Hodgson (2013) noted:

Before the end of our first class, students were forming groups on their own and working out plans for in-game and in-class play. In fact, collaboration acted as the driving force, and students regularly worked together in and out of class. (p. 54)

Students who gamed together began to work together from day one. Similarly, one of my research participants shared his experience with using video games to forge friendships: “I know when I was in high school I made a lot of friends through Xbox” (Sam, March 2015). Simply being able to connect to fellow gamers online offered Sam the ability to develop meaningful relationships that lasted throughout his high school and into his college careers. Hodgson further established the pervasiveness of gaming-related collaboration by noting how his students began helping each other with non-gaming, classroom-related projects (2013, pp. 54–55). For both Sam and Hodgson’s students, gaming’s reliance on collaboration offered them a platform to develop fruitful social partnerships.

In addition to group-based gaming experiences, single-player games also rely heavily on gamer collaboration as expert players tackle missions and offer advice to novices. Rebekah Shultz Colby (2013) showcased this kind of interaction in her chapter “Gender and Gaming in a First-Year Writing Class.” In discussing how her students interacted with an assigned gaming component, she noted, “The more experienced gamers often helped the newer gamers by offering them tips, telling them where to go for quests, and grouping together to accomplish harder quests” (2013, p.133). Though she used this example to help illustrate how males and females approached playing *World of Warcraft* differently, the example highlights the
collaboration that happens outside of a game. Even when players aren’t working together to
defeat a boss or finish a level, they still share information to help support one another.

In the multimodal composition classroom, these kinds of support systems can benefit
student interactions, leading to more meaningful and rhetorically-effective projects. As the
National Council of Teachers of English (NCTE) professed in its 2005 Position Statement on
Multimodal Literacies, collaboratively-driven projects promote student learning and yield better
results. Students who can rely on one another not only share information and improve the
fluencies of each group member but also invent new meaning-making and composition practices
that make use of the team’s overall expertise. As an integral component to gaming literacy,
collaboration offers gamers a chance to develop these necessary multimodal composition skills.

Even the hard-wired technology of gaming indicates the importance of collaboration in
gaming literacy—with the newest generations of video game consoles coming equipped with the
capability to connect between four and eight controllers. Though additional controller
capabilities may seem like a minor change in such advanced digital technology, the change
enables players to collaborate within the same room on the same television. For instance, each of
my research participants discussed various multiplayer experiences. Coming from a house with
three siblings and parents who sometimes played, Tobias noted the importance of a system with
multiple controllers while he was growing up: “We had a Genesis, and I think that only had two
people. So those old [Nintendo] 64 games, it was nice: We could all play. So I think that was part
of the reason why [we favored the Nintendo 64]” (January 2015). Simply noting that it was
“nice” to have everyone play at once illustrates Tobias’s consideration for the social and
collaborative nature of gaming. He and his family valued the system that allowed all of them to
play at once so that they could share gaming experiences.
Locating technologies that can be easily shared by all students can be difficult in the multimodal composition classroom, where financial limitations play more significant roles in determining technological infrastructure. Though it may be “nice” to have every student access the technology all at once, it is not always feasible in a classroom setting. Gamers who understand the importance of equal playtime, however, can be better equipped to negotiate the demands of sharing devices and screen time. By transferring their understanding of preferred technological interactions into the multimodal composition classroom, gamers can help create a more collegial environment for multimodal experimentation.

Whether it is through face-to-face or online communication, collaboration through gaming occurs on many fronts. Gamers not only share their stories and gameplay experiences, but also rely on one another in order to complete levels and game-related tasks. These collaborative interactions allow them to expand their gaming literacies and develop a network of interdependent players. As my research participants illustrated during our interviews, the collaborative nature of gaming served a major role in the development of their gaming literacies, potentially exposing them to transferrable skills that could they could use in the multimodal composition classroom.

Face-to-Face Interactions

The collaborative spirit of gaming and investment in others’ successes tends to be most evident in gaming circles comprised of face-to-face friends. By virtue of physical proximity, real-world friends have ample opportunities to share their gaming experiences with one another. For my research participants, this proximity frequently entailed sharing consoles, games, and even characters. With these shared commodities between friends, collaboration became a necessary skill they had to learn in order to appreciate and more fully-experience the games they
played. As part of their gaming literacy development, players had to learn how to negotiate shared time with the technology and continued interest and investment in games that they had to wait to play.

Though multimodal composition can be done in isolation, the reality is that many college campuses and classrooms have limited technology resources, forcing students to negotiate shared space and time with their peers as well. More importantly, collaboration as a pedagogical tool has long been heralded as a successful tactic in the composition classroom. Scholars like Molly Scanlon (2015) have begun to articulate the potential benefits of collaboration in multimodal production as well. Citing a 1995 project by Barbara Mirel, Susan Feinberg, and Leif Allmendinger, Scanlon postured that “the work of collaboration has the potential to enrich multimodal texts.” Scanlon went on to discuss “the ways in which [collaborative] dialogue can facilitate collaborative acts by merging multiliteracies” (2015, p 106) as co-authors become both writers and artists, mingling their skills in a multimodal output. Because the literate practices of sharing technology and collaborating on major tasks are common components of gaming literacy, gamers may already possess some of these collaborative skills as they negotiate among their collaborative identities as spectators, supporters, and agents.

Watching others play

With the popularity of cooperative video games like the *Left for Dead* and *Borderlands* franchises, video game collaboration tends to be defined by players’ abilities to help each other in-game. For my research participants, however, collaboration mainly occurred outside of the game as players frequently took passive roles as viewers. All three of my research participants noted times when watching others play became part of their gaming experiences. Viewing experiences ranged from taking turns on single-player games to assessing a game’s playability
before purchase to having a non-gamer offer support via a guidebook. This less-interactive contact in an otherwise physical set of literacy practices helps to highlight the pervasiveness of social interaction in gaming. Players and non-players are invited into a game’s experience regardless of skill level or interest in the gameplay.

The most common collaborative-interaction for my research participants occurred when they would share games with their relatives or friends. With access to technology being limited to one video game console per family or household, each participant noted times when he had to share a single-player game with someone else. These moments of shared progress through a game required negotiation and collaboration as players determined how the game would be shared: either separate save files with separate characters or a single save file with shared characters. Determining which method for sharing was required was left up to each person; however, all three tended to follow a general rule: If the main goal of the game was to get to the end of the story, characters were not shared; if the main goal of the game was to unlock playable characters or elements, characters were shared. Tobias elaborated on the unspoken rules he and his siblings followed for not sharing a character:

Those games, whether it was RPGs or things like that, it was always separate files because we all wanted to experience the whole thing. . . . We didn’t want to just jump in and jump through plots and what not, so we made sure those were always separate.

(January 2015)

For some games, like the RPGs (role-playing games) Tobias mentioned, the experience of hearing the story first-hand is critical to the game’s enjoyment. Similarly, these kinds of games tend to require a player to develop and mold his or her character, choosing attributes and costumes that reflect a player’s unique style.
The literate practices of developing these characters to reflect one’s identity and of negotiating a schedule for sharing such an involved game are important facets of gaming literacy. Players have to be aware of the game’s genre and design, and they have to know the level of investment they wish to make into the game. When it comes to these kinds of first-person video games, most players take on the role of a *projective identity* (Gee, 2007). That is, they “project” their real-world values onto their characters while simultaneously seeing those characters as on-going “projects” to be developed (Gee, 2007, p. 50). Because there is so much personal investment in these kinds of characters, players frequently don’t share their development. In fact, I shared a few laughs with one of my research participants when I mentioned sharing these kinds of characters: Sam had a brother who was playing *Pokemon Blue* and a roommate who was playing *Dragon Age: Inquisition*. While he would watch them play their characters on these respective games, sharing was a laughable option. Instead, they would take turns playing their own characters and socializing about the game.

Similar to the identity construction in one of these single-player games, the development of a multimodal space frequently reflects the identity of its creator. Multimodal composing is time consuming, and with this investment of time comes an investment of creation. That is, the multimodal project becomes a *projective identity* of the author, just as the character becomes the projective identity of the player. As multimodal authors make choices about their modes of communication and the kinds of modalities they wish to employ, they project their identities and negotiate between their real-world values and the digital expressions they choose to include in the project. For instance, Lalitha Vasudevan, Katherine Schultz, and Jennifer Bateman (2010), explained how one of the participants in a multimodal storytelling project conducted in a fifth-grade classroom was able to project his identity through the use of multiple modes: “In the
culminating project for the year, Michael drew on this experience using a range of digital expressive modalities to compose a digital story that included family photographs, a carefully selected soundtrack, and a scripted voiceover.” (p. 453). A student once considered to be resistant to the composing process, Michael was able to use his multimodal assignment to represent himself in an engaging and thoughtful manner.

Like Michael and his purposefully chosen images, gamers spend significant time tailoring their in-game avatars and customizing their projective identities. This investment in shaping an avatar frequently leads to a sense of pride and ownership over the digital creation, cultivating a hesitation to sharing a first-person game experience with another player. Instead, players tend to showcase their avatars as products of their labor. Tobias, for instance, mentioned how he had spent over 140 hours playing the game *Final Fantasy 7: Crisis Core* and how his brother had spent over 200 hours playing *The Elder Scrolls*. With such rich time investment in these games, neither player wanted to share his character or game with the other person. However, Tobias’s brother showed him his character in *The Elder Scrolls* as a way to proudly exhibit its creation and development. And Tobias, as a fellow gamer and someone interested in character development, was able to assess whether or not this game was something with which he wanted to get involved. In the multimodal classroom, these kinds of projective identity showcases occur in activities like studio reviews, where students benefit from sharing their projects and potentially incorporating some of their peers’ ideas into their own creations.

While sharing the projective identities of gamers can be a fun way to experience a shared interest in a game, these kinds of high-time-commitment games aren’t the only first-person games that players watch each other play. A significant part of shared technology access involves collaboratively playing games in order to unlock special characters, events, and useable
components. Players who understand this literate decision are willing to share the game’s experience in order to speed up their process through the game. Tobias explained it well:

Some games where it wasn’t just one character you were developing. . . . Like we had *Dragon Ball Z* games where you would go through the world with different characters and different story lines and unlock stuff. We would share those files because it wasn’t just one character you were developing. We like knew the story; we knew *Dragon Ball Z*, so we just wanted to have the stuff unlocked. Stuff like that we’d have one shared file…. It allows you to see the full thing. (January 2015)

Being able to “see the full thing” and experience the game in its entirety outweigh experiencing the game first-hand in these instances. Because gamers can share the experience of the game by watching each other unlock these components, they aren’t as worried about first-hand exposure especially when they can replay any given level themselves.

These kinds of games, where shared access involves sharing technological experience, parallel the kinds of experiences multimodal composers would have in a collaborative venue like a classroom. Students in multimodal classrooms frequently watch each other (or the instructor) work through technological problems so that “new achievements” can be unlocked. For instance, while taking a course on multimodal composition during my second year of PhD work, I watched my instructor manipulate VoiceThread—an interactive collaboration tool that utilizes images, text, audio, and other file formats in order to allow users to share and present information. Though the program has a variety of tutorials for users, I was able to skip all of them and instead mimic the work she did on the screen. In these kinds of instances, being able to negotiate one’s relationship with technology through the hands of another person is an important transferrable skill between gaming literacy and the multimodal composition classroom. Though
my ability to mimic someone complete a task was not solely dependent upon my skills as a gamer, having the experience of watching someone else negotiate through a technological space certainly came in handy.

The social courtesies required to watch someone else interact with technology can be difficult to master with impending urges to want to interface first-hand; however, gaming literacy hinges upon this kind of passive gameplay collaboration. Second-hand interfacing grants gamers necessary experience for interacting with multimodal texts in the classroom. Just as new gamers watch veteran players easily navigate through gameplay, novice composers of multimodal texts must frequently watch more skilled composers manipulate and utilize the programs needed to create multimodal compositions so that they can see the full-range of digital composition capabilities. Being able to follow a long list of commands can be difficult, so having any experience with this kind of interaction can be useful.

Sharing technology is also a reality for both gamers and multimodal composers. Just as players need to know how to “wait their turn” and memorize important aspects of gameplay, composers need to be patient when waiting for less-skilled peers to complete their tasks and learn the program. For gamers, sharing gaming technology with less-experienced players is a common way to help novice players learn the basics of gameplay. Tobias explained this important step in his gaming literacy narrative:

I just remember [my brother] gave me a controller, and I had no idea even how to punch. He had to show me what the buttons were. . . . And I know there were times when he just wanted to unplug my controller—just be like, “You’re doing great.” But, no he was great. He was patient with it. (January 2015)
The patience he was shown positively affected Tobias’s relationship with gaming and his ability to play the game well. Because he was able to test his digital capabilities in a safe space with positive support from a more skilled player, Tobias developed confidence in his abilities, encouraging him to continue with his experimentation.

Similarly, for multimodal novices, having the ability to “play” with the technology can provide important skill-building experiences. In her article about the Digital Media and Composition (DMAC) Institute, Linda S. Stewart (2015) shared a story about what happened when the director of the program required “the person with the least experience” to manipulate the technology: “As painful as my process must have been for my patient and tech-savvy partner. . . It gave me permission to play and practice without feeling guilty about my skill level with new technologies” (p. 55). Both of these examples illustrate the collaborative community-based enterprises of gaming and multimodal composition, as novices are afforded the chance to share the technology under the supervision of experts. Though there are instances of veteran players or composers becoming impatient with novices, the community consensus for good will between players is built upon the premise that veterans frequently act as sponsors for newcomers (see my section on Literacy Sponsors in this chapter).

Even people who are uninterested in playing video games are invited into the literate practices of gaming by watching others play—once again establishing the social importance of gaming literacy. This kind of non-player observation can take a variety of forms. Drawing from personal experience, I have watched others play games while I completed projects. For instance, while I was completing my master’s degree, I had limited time to play video games. I still enjoyed engaging with games, however, so I’d watch my husband play Final Fantasy X, a video game with rich storyline cut scenes. Even though I couldn’t interact with the game itself, I was
able to take short breaks from studying to watch the cinematic scenes that drove the plot of the game forward. From there, he and I could talk about what we thought was going to happen next, and he was able to ask for my suggestions whenever he encountered a foe that seemed particularly tricky to vanquish.

This kind of collaborative social interaction even extends to include non-gamers, whose valuable skills are absorbed into the literate practices of gaming. In discussing his current gaming habits, John shared this story about his girlfriend who helped him through difficult levels of a game, even though she didn’t play video games herself:

If my girlfriend comes over she’ll be like, “Oh I want to watch you play this.” . . . So I’ll put it in, and we’ll just play. . . . I have the guidebook for *Grand Theft Auto 5*, and she’s basically my navigator I tell her. She has the book in front of her, and if I get lost I’ll be like, “This is where I’m stuck at.” She’ll be like, “Okay, baby, I’ll look for it.” And then she finds it. And we get unstuck. And then we follow the storyline from that point. (April, 2015)

As John’s story highlights, gaming can become a collective endeavor when gamers and non-gamers collaborate. Both parties became invested in the outcome of the game based on their social interactions. While telling his story, he noted that “we get unstuck” and that “we follow the storyline from that point.” John’s girlfriend also became part of the gaming community and learned important gaming skills simply by watching him play and figuring out how to use a gaming tool to their collective benefit.

This kind of viewer-only interaction also seems to be an essential component to gaming, which further establishes the ingrained social nature of gaming literacy. Interacting with the people who play the game is more important than interacting with the technology required to
play it. For example, one of my research participants considered his first gaming experience to be the time he watched his brother play. While discussing his earliest memories of playing a video game, Sam explained, “I don’t remember the first one I played, but I do remember the first one I watched. It was my brother playing *Pokemon Blue*” (December 2014). Sam was three or four at the time of this interaction, so he wasn’t permitted to play with his brother’s technology; however, he was invited into the gaming community by being allowed to watch his brother level up Pokemon characters and battle other creatures. And because Sam sees this game and subsequent interaction with it as his indoctrination into gaming, we can mark watching someone else play a game as the start of his gaming literacy. Like other potential gamers who watch someone else play, Sam interacted with the game second-hand, allowing him to establish a social relationship with his older brother and a technological relationship with the game his brother played.

Shared access to technology also impacted the gaming experiences of the women whose literacy narratives I analyzed from the DALN. Jennifer spent time watching her brother play *Tink Tonk in Buddy Bot Land* before collaboratively playing games like *Spy Hunter* and *Frogger* with him later on (Herman, 2008). And Erika spoke about having to share time on the computer with her sister, so they used to cooperatively play some of the text-based games she enjoyed, including a *Lord of the Rings* game where they would play as a hobbit. Because their parents needed access to the computer for work, Erika and his sister’s time was even more limited, forcing them to share characters that may have otherwise been solo campaigns (Strandjord, 2008). Even though playing these games required full access to the computer keyboard, both of these women (and their siblings) were able to negotiate this shared space as they collaboratively made decisions and enjoyed they gameplay.
Watching others play is an integral part of the learning process for both gaming literacy and multimodal composition. Doing so not only enables players and composers a chance to interact with limited equipment, but also affords them an opportunity for social interaction when other cooperative options aren’t available. In our interviews, Tobias discussed how video games allowed him and his father to interact with each other. He explained, “Growing up we really didn’t have too many games to play together, so we would alternate. And he’d be there, and we’d watch each other play” (January 2015). Being able to interact with his father in this capacity helped Tobias develop a working relationship with his father—one that translated into collaborative online gaming when Tobias left for college. Players who can use these kinds of actor/spectator relationships can create more opportunities for social interactions and effective communication practices as well.

Playing cooperative games

Cooperative games weren’t commonly mentioned by my research participants; however, the cooperative interactions they had with friends entailed engagement with the game and the development of playful teasing. Tobias explained one such example:

> I remember in *WindWaker* you could have your GameBoy [and] be Tingle. . . . If you were being Link. . . and if your friend took the GameBoy and he was playing Tingle, he could just like wipe out your bank account and shoot bombs everywhere, give you potions you didn’t need. It was so great. Or you could actually be helpful and give them power-ups. It was kind of a neat little tidbit to put in. (Tobias, January 2015)

The playful animosity between the player controlling the main character and the player controlling the side character in this game allowed face-to-face friends a chance to develop inside jokes and playful banter. In Tobias’s case, he and his friends needed to learn when to be
helpful and when to tease the player controlling the main character. These interactions made the game “great” or fun, allowing players to develop a social awareness about their roles as supporters or antagonists.

In the multimodal composition classroom, students have to play many roles—from composers to critics and from students to teachers. While Tobias’s experience may not be exactly replicated in the multimodal composition classroom, it does help to illustrate the importance of dynamic relationships in digital technologies. As gamers collaborate with one another, they pick up on a variety of social cues to determine how to best interact with a player who can either help or hinder an in-game character. These kinds of in-game risks offer players a safe place to experiment with their roles as social collaborators. Being socially aware of one’s various roles and knowing when to offer blind support or guided recommendations can also help multimodal composition students transition into becoming useful peers.

In their work with sixth, seventh, and eighth grade girls at a digital summer camp, Kristine Blair, Katherine Fredlund, Kerri Hauman, Em Hurford, Stacy Kastner, and Alison Witte (2013) explained how multimodal composers benefit from dynamic social interactions. Addressing the collaborative learning that the girls employed, Blair et al. noted:

“[the] girls develop friendship groups and buddy systems to develop their computer skills and dispositions in safe, supportive spaces. . . . The relationships between new and returning campers allow the returning girls to inhabit the role of teacher, and this can be very empowering for them. Collaborative learning also allows the campers to draw on their individual knowledge and experiences to create a shared community of knowledge. (2013, p. 49)
Because the girls in this study were able to adjust their relationships to one another, they were able to create more exciting and detailed final projects. Students who enter the multimodal composition classroom with experiences like Tobias’s may, therefore, be well-positioned to forge the same kinds of productive partnerships.

Online Interactions

One of the biggest changes for the gaming industry over the past twenty years has been the addition of online gaming opportunities for the major consoles. With online gaming networks reaching 48 to 110 million users—for Xbox Live and PlayStation Network respectively (Burns, 2013, para. 1)—the world of online gaming contains ample opportunities for gamers to access each other and up-to-date digital content. Gamers who used to play in isolation from one another—only sharing information in-person or perhaps virtually on early internet spaces and bulletin board systems—can now play and interact with people from all over the world. This not only affords gamers an opportunity for maintaining relationships with friends and family but also exposes them to new cultures, offering them the chance to build transnational awareness and multicultural collaboration skills. By looking at how my research participants took advantage of online gaming, we can discover some of the literate social skills they obtained in order to assess how those skills could transfer to the multimodal composition classroom.

Maintaining relationships

During the interviews I conducted, the most commonly discussed practice of online gaming involved maintaining relationships. Research participants talked about playing with family members who no longer lived with them or friends whom they had known as children. Online gaming afforded my research participants with the opportunity to continue their offline relationships through a virtual world similar to the ways in which social networking systems like
Facebook are used to maintain once established face-to-face contacts. As Nicole Ellison, Charles Steinfield, and Cliff Lampe (2007) suggested in their article on the trends of Facebook use for college students: “Facebook represents an understudied offline to online trend in that it originally primarily served a geographically-bound community (the campus)” (p. 1144, emphasis in original). Because my research participants’ earliest gaming experiences were also geographically-bound to gamers who shared in face-to-face gaming, their move to online gaming simply reflected the relationships they had already spent time building.

For one of my research participants, the online maintenance of former face-to-face friends dictated most of his online gaming experiences. As Sam stated during our first interview, “I still play with my high school buddies a lot.” Having been out of high school for a few years, Sam used online gaming to maintain his social relationships with his friends. In fact, his gaming preferences relied heavily on his friends’ gaming habits. Even though he owned both Xbox One and PlayStation 4, he noted that he preferred the Xbox “because all [his] friends have that” (December 2014). Because social interactions with his friends were a primary part of his gaming experience, being able to play with them on a frequent basis was important to maintaining his gaming identity. Sam described how he and his friends developed teams and identities through online sports games:

And then for the sports games, I’ve been playing those for years. My friends get them every year, and we play online. We have people like a club where we control just one player on the field. So it’s like an actual team. We’re pretty good at that. . . . [we]’ve been doing that for years. So we’re getting pretty good together. (March 2015)

Dividing up the responsibilities of in-game team members and assigning them to one another, Sam and his friends functioned as a collaborative unit. These sports games, therefore, created a
space for them to develop interpersonal and team-building skills. And their continued commitment to playing the newest editions of these games together illustrates the longevity of maintaining social relationships through online gaming.

This dedication to social communication can also be seen between family members in the online gaming community. As a means to stay in touch with family, both John and Tobias used online gaming once they or their siblings left the house. John and his sister, for instance, still play together online. He reported that “As of right now she has her own gamer tag, and I connect with her on PlayStation Network” (February 2015). In a continuation of their offline gaming experiences together, they have played the games they used to play together as children:

Every once in a while we’ll play *Mortal Kombat* because we played *Mortal Kombat 3* [as kids], and what ended happening was that now there’s *Mortal Kombat X*, and so I want to show her the new characters... But the one that we kept playing was the rebooted *Mortal Kombat*. She was like, “Oh, I didn’t know this character existed!” or “Who is this?” And she’ll play as them and say, “I like them!” (February 2015)

In addition to fostering his social communications, reconnecting with his sister online has offered John the chance to nostalgically revisit his old gaming experiences, refreshing his skills and applying them to his new gaming habits.

Tobias has had similar experiences in developing his gaming skills by playing online with his family members. Expanding his online gaming network to include his parents, Tobias sees online gaming as an opportunity for developing new in-game literacy practices. He described a recent online gaming experience with his family involving a new game they were trying:
Like there’s one called *Evolve*, where there’s four hunters. . . . Where one of them is the attack specialist, one is the medic, one is the tracker and one is support, which is like your wild card. . . . And the four hunters team up to fight one giant monster. And the monster is trying to eat the wildlife and evolve into an unstoppable type beast. There’s just so much strategy to it, like team work. It’s really cool when you can get a bunch of people together and see their tactics. You can build tactics with them. My family plays that. . . even my mom and dad. (March 2015)

In a more traditional online game set-up with a four-person team working towards a common goal, *Evolve* offered Tobias’s family a chance to collaborate through both in-game tactics and out-of-game communication via headsets. Exemplifying Alexander and Rhodes’s (2014) idea that video games are “collaborative in nature” and “provide an opportunity to see [multiple] literacies in evolving communal contexts” (p. 129), these interactions allowed Tobias and his family to develop multimodal social skills as they balanced audio, visual, and kinesthetic practices during collaborative gameplay.

Beyond those multimodal skill sets, online gaming with family members offered Tobias and John opportunities to develop online social practices so that they could maintain their family relationships. This low-risk interchange between family members illustrates the effectiveness of online gaming’s social practices. Through an entertainment venue, family members are able to stay in touch without having to feel as though they are required to check in with each other, lessening the social strain that can sometimes occur within family circles. Writing about the Facebook Scrabble-like game Lexulous, Jane McGonigal explained:

> Playing Lexulous is checking in with our loved ones, but with a purpose. For anyone who has ever needed a gentle reminder to stay in touch, Lexulous provides a motivation. . . .
And when there’s a game on the line, suddenly staying in touch is not just pleasant and gratifying—it is also addictive. (2011, pp.78–79)

Because online games provide an outlet for social communication, they help players maintain healthy relationships with their loved ones. More importantly, they offer gamers a chance to enjoy maintaining a variety of relationships as players share in-game goals and real-world stories.

While multimodal composition practices don’t necessarily involve maintaining familial bonds, these social practices of gaming do represent two literate skills that are frequently needed in the multimodal composition classroom: audience awareness and group collaboration.

Appealing to one’s audience is a primary concern for a multimodal composer. In her chapter on “The Rhetorical Work of Multimodal Production Practices,” Jennifer Sheppard (2014) counseled, “the primary approach to any multimedia project should always begin with highlighting the needs, interests, and technical resources of the intended users” (p. 394). Digital audiences can vary greatly in respect to access and demographics, and having rhetorical skills for understanding one’s audience can make a project more effective. Because John and Tobias already had working relationships with their families, they understood how to appeal to their audiences and select games that everyone could enjoy. For John, this meant finding a game that he and his sister used to play together because she wasn’t as active in the modern gaming community as he. Tobias, on the other hand, had active gamers in his family, so he was able to appeal to everyone by locating a new game that made use of gaming skills they had already mastered and enjoyed implementing.

Multimodal composers need to be similarly aware of their audiences in order to utilize composing practices that not only make use of composers’ skills but also effectively engage the
consumption expectations of their audience members. As Sheppard (2014) noted after analyzing the changes she made to her multimedia website based on feedback she received from a student focus group:

while multimedia has the power to communicate serious information to users through multiple means, it also has the ability to entertain and engage users in novel ways. This more whimsical capability should not be ignored if it has the potential to make a text more attractive and ultimately more persuasive to its target readers/users. (p. 399)

In an attempt to appeal to her audience, Sheppard added sound effects to her multimodal text. With her knowledge of the software, she easily integrated the effects, yet she struggled to find rhetorically appropriate sounds that would satisfy her own desire to maintain clear rhetorical motives in the webtext. After receiving additional feedback from her users, however, she discovered that the specific sound effects didn’t matter as much as the simple inclusion of the sounds. While sound for sound’s sake seems to work against rhetorical effectiveness, for Sheppard and her focus group, adding sound clips made her webtext more engaging and fun, thus creating a more attractive and rhetorical piece that readers would want to revisit. Knowing one’s digital skills sets and the expectations of one’s readers can help a multimodal composer locate and utilize new technologies that can be used for innovative design, making the content more rhetorically effective.

Group collaboration can also help improve the rhetorical effectiveness of a multimodal text, as teams utilize each composer’s unique skill sets to create more exciting design opportunities. Similar to Tobias’s four-person gaming group that included niche-characters, a multimodal collaboration that utilizes the specific skills of its team members can tackle larger beasts—i.e., complete bigger projects—in more effective and exciting ways, especially when the
group communicates throughout the creation process. Writing about their collaborative efforts to create a multimodal text, Barbara Mirel, Susan Feinberg, and Leif Allmendinger (1995) explained how their multimodal project benefited from the differing perspectives of writers and graphic designers. They argued:

 when writers and graphic designers have an ongoing dialogue, as we did throughout the development process, they unite their distinct concerns to discover, create, and implement richer and more flexible designs than when they work alone or in assembly-line fashion. (1995, p. 260)

For Mirel et al., being able to communicate with people outside of their field allowed them to reimagine their multimodal text. Concerns were no longer limited to text or design. Instead, members of the team began to “harmonize [their] points of view, codeveloping new arrangements in symbols and words that reflected indivisible writing and design strategies” (Mirel et al., 1995, p. 284). While a single writer or designer could have completed this multimodal project alone, working with people who had different skills sets created a richer design space, where composers benefited from their relationships with other.

Building new relationships

Similar to modern social networking systems, the online gaming community provides a variety of opportunities for people to share information and communicate effectively. Writing about the experiences of adolescent gamer Josh Gardiner in their chapter “Computer Gaming as Literacy,” Cynthia Selfe and Anne Mareck (2007) suggested, “Young people’s literacy activities in the semiotic domain of gaming may prepare them to operate, communicate, and exchange information effectively in a world that is increasingly digital and transnational—and in ways that their formal school does not” (p. 30). As Gardiner’s experiences highlighted, online gaming
provides literacy opportunities that are difficult to cultivate in a traditional school setting. In their interviews with Gardiner, he explained how “[You can] learn another language, or pick up on dialects or ethnic backgrounds, or recent events in the news. You can learn lots from gaming in my opinion” (Selfe, Mareck, & Gardiner, 2007, p. 25, brackets in original). Because online gamers are provided with unfettered access to a global community, they have the opportunity to learn about digital communication practices and transnational perspectives.

Though none of my research participants discussed any transnational communication experiences—illustrating a potential limitation to the study—two of them shared stories about building relationships with people whom they met online. Utilizing social connections between offline friends, John and Sam both developed online relationships with their gaming partners’ family members. John started playing the collaborative game Champions of Norrath with his brother-in-law, and Sam added one of his friend’s brothers to his online sports gaming team. Because both of their new social relationships were built through established offline acquaintances, John and Sam illustrate how online gaming is more similar to social networking than it is to open chat rooms on the Internet. In fact, their online gaming routines mimicked the routines of the Facebook users in Ellison et al.’s (2007) study in that John and Sam used online gaming “to keep in touch with old friends and to maintain or intensify relationships characterized by some form of offline connection such as dormitory proximity or a shared class” (p. 1162). By establishing relationships with offline friends’ family members, John and Sam intensified their standing relationships with people whom they already knew. More importantly, they grew their gaming social network by establishing new connections through offline partnerships.

In the multimodal composition classroom, forging new relationships becomes part of the collaborative process. In their discussion on collaboration as “an act of excess,” Alexander and
Rhodes (2014) explored how multimodal collaboration not only offers the opportunity for a richer development of ideas, but also creates a network of digital collaborators. They postulated “that successful collaboration breeds more collaboration with more parties—not just the tightening of an initial collaborative relationship (though often that too).” Citing their own collaborative experience, Alexander and Rhodes elaborated, “In learning to collaborate with each other, we have also learned to collaborate with others, and we eagerly embrace the pleasures of multiple relationships” (2014, p. 122). For multimodal composers, new relationships offer opportunities for innovative communication practices and nuanced methods of meaning-making. Gamers like John and Sam, who already have experience collaborating with new peers, are positioned to make important contributions to the multimodal classroom. They already have experience in not only negotiating the development of a group voice but also expanding their collaboration circles to include new members, whose skill sets can lead to new projects and ideas.

Friendly Competition

Even though collaborative gaming has become more common over the past decade, competitive gaming still remains a popular form of engagement for gamers. Players compete not only for high scores on leaderboards but also against one another in fighting games series like Mortal Kombat or Smash Brothers and sports games series like FIFA and Madden NFL. Over the past two decades, there has also been an increase in competitive gaming with video game leagues and tournaments sprouting up all over the world. With all these opportunities for competition, one major component of gaming literacy is knowing how to challenge rivals and compete for fame or resources. As a social practice, this skill helps foster friendly competition amongst peers, allowing players to form strong bonds among teammates and even rivals. In the multimodal
composition classroom, these skills can be used to help students become more invested in their compositions or more dedicated to their collaborative assignments.

For my research participants, competitive gaming was a big part of their social lives. All three of them shared stories about their experiences with fighting games and the various competitive gaming challenges they encountered with friends. In fact, two of them were indoctrinated into gaming through competition—both through older siblings who would challenge them to versus competitions. These kinds of experiences helped shaped their relationships with games and fellow gamers, frequently creating a desire to want to play more. Sam explained by sharing his earliest hands-on gaming experiences:

The only time I got to play was when all the neighborhood kids came over and brought their controllers over. We played Super Mario Kart. . . . and generally I always lost so I had to give up the controller. I didn’t really get much time. (December 2014)

Because they employed the I-got-winner rule—where the winner gets to continue playing while the loser forfeits his or her controller—Sam spent most of his time watching others play. This somewhat high-stakes level of competition colored his adult views on gaming and encouraged him to increase his in-game skills. At one point in the interview he noted that he now preferred competitive gaming because as a child, “It was a lot more fun to whop someone’s butt” (December 2014), and this fulfillment created a more exciting game experience.

The desire to “whop someone’s butt” may seem like an antagonistic or a counterproductive motive (e.g., Joanne C.Y. Chan and Shui-fong Lam (2008) explained how competition in the classroom can lead to lower self-efficacy); however, for gamers, this kind of competitive edge is usually affable and playful. Players who consistently compete against one another frequently develop inside jokes and rules, creating a friendly environment where they
can vent their frustrations and solidify social bonds. As a young gamer, for instance, John established a social code with his friends based on a competitive game. During our conversation, he explained:

In high school there were two friends that I had that we played *Super Smash Bros.* together. It was competitive. We always had a little thing where if you knock someone off the screen and they’re taunting, you can’t hit them or else you leave yourself open to be knocked off. So once the time was over, you had to just stand there and take it because you weren’t supposed to hit them. (February 2015)

Instituting a “free shot” for someone who broke the rules, these players established a unique social practice. The collectively determined a system of rules outside of gameplay, and they invented a method of punishment that could potentially impact the final outcome of the game’s score. This innovation was a direct result of their gaming literacies as they combined their knowledge of the game’s rules, the characters’ functions and capabilities, and their own social codes.

While there’s no direct translation between John and his friends’ rule about taking a free shot and Sam’s desire to “whop someone’s butt,” the literate practices of competitive gaming do have potential benefits in the multimodal composition classroom—chiefly innovation and motivation. For example, innovation and invention play primary roles in the multimodal composition classroom. With a variety of media at their disposals, students are limited only by their imaginations and their abilities to make rhetorical connections between modalities. As John’s experience with *Super Smash Bros.* highlighted, gamers who frequently compete with one another in a social setting have the opportunity to design new ways of interacting with their technology. From taking free shots to instituting rules about which characters gamers can choose
or which levels will be played, gamers collectively maintain agency over their gaming experience by connecting their authority over social controls to their interaction with gameplay. In the multimodal composition classroom, this experience can translate into thinking about writing as a collection of ideas and texts.

In his chapter on rhetorical literacy, Stuart A. Selber (2004) cited Johndan Johnson-Eilola’s (1998) concept of *writing as connection* (as opposed to the more common idea of writing as production) in order to establish how twenty-first century literacies are more dependent upon making connections between genres and texts than they are on the simple production of alphabetic essays. Selber explained, “In [the connection paradigm], writers focus on reorganizing and rerepresenting existing (and equally intertextualized) texts—their own included—in ways that are meaningful to specific audiences” (2004, p. 135). Video games are marketed to wide audiences with the idea that they can generate similar experiences of fun and entertainment. In the hands of a small social group, however, each video game experience can be reinvented and reorganized into a unique experience. Drawing on those kinds of literacy experiences, gamers in the multimodal classroom have the opportunity to reimagine their relationship to the composing process as they determine new rules and expectations for their textual development.

In addition to the potential for rhetorical innovation, the gaming literacy of competitive games also brings with it an opportunity for individual motivation in the multimodal composition classroom. While many scholars have addressed the self-efficacy and confidence issues (Chan & Lam, 2008; Jackson, 2009; Ware, 2004) that arise through competition in the writing classroom, scholars like Susan Reese (2011) and Hodgson (2013) have more recently begun to explore how healthy competition can actually be beneficial to novice writers. If used properly, competition in
the classroom can help incite students to perform better. Explaining how the NCTE’s Achievement Awards in Writing are potentially beneficial to students, Reese wrote:

> Writing contests provide the opportunity for accolades from classmates, teachers, parents, and the community at large. Best of all, winning generates increased effort and more writing. Finally, the recognition students receive from the Achievement Awards in Writing is a highly desirable laurel wreath that offers students unfunded opportunity rather than exploitation. (2011, p. 132)

Though Reese was specifically writing about a sanctioned alphabetic-text writing context, her insights into the benefits of healthy competition can be easily translated into the multimodal composition classroom. Gamers who understand the value of competition and see it used effectively in the classroom can win the same kind of praise and accolades that make it, as Sam so succinctly put it, “more fun to whop someone’s butt.”

Along those same lines, students can find motivation whenever they are challenged to partake in common competitive gaming practices like earning a high score. In order to demonstrate some of the motivational benefits to including competition into the composition classroom, Hodgson (2013) incorporated competitive grading into his course on rhetoric. Designing his course on the video game *World of Warcraft* (*WoW*), Hodgson explained how competitive grading was useful in his game-based classroom: “I felt that healthy competition was not only a potential motivation... but it could also make the course grade system more transparent” (2013, p. 53). Even without leaderboards and high scores, students frequently feel the pressure of grades and the need to perform well in a classroom. They also unofficially compete with one another as whispers of “what did you get?” frequently radiate around the room whenever an instructor hands back a graded assignment. By drawing attention to these practices
and offering students a chance to transparently compete, Hodgson took the literate practices of gamers and made it possible for students to feel more comfortable with these unofficial grade competitions. More importantly, he offered a chance for students to feel more motivated to raise their scores and find ways to “‘play’ the system” (Hodgson, 2013, p. 55) in order to achieve their desired grades.

We need not apply Hodgson’s exact grading system, however, in order to realize the potential for competitive gaming literacy in the multimodal composition classroom. As Hodgson noted:

I think it is fair to say that this [competitive grading] approach isn’t as far off as it seems from what we are already doing. For example the measures we have instituted for determining levels of success in relation to one’s self and one’s peers and the way we reward educational achievement. . . indicate we are perhaps already more competitive than we would like to admit. (2013, p. 53)

Though the modern classroom tends to be collaborative and student-centered, competition still occurs on many levels. The (multimodal) composition classroom, for instance, is a place where students frequently share their works-in-progress, which can be seen as an unofficial competition between whose texts are “good” and whose need work, and make adjustments based on what their peers have done. Moreover, students in any classroom already see the quantification of grades with “high scores” ranging in the 90s (the most common denomination for what constitutes as an “A”) and “low scores” being less than 70 (the lowest “C” a student can receive). Because gamers already possess the literate skills for recognizing and investing in competition, they are well positioned to benefit from these kinds of competitive angles in the multimodal composition classroom.
The social innovation and individual motivation that stem from friendly competitive gaming environments are useful skills for gamers to possess. When transferred into the multimodal composition classroom, these kinds of literate practices are especially useful because innovation is frequently rewarded with praise and replication. Students who feel the freedom to make-up new rules to the composing process in order to create unique experiences for themselves and their friends have the potential to create more exciting multimodal projects. And those who simply want to outdo their peers (i.e., “whop someone’s butt”) can be motivated to embark on more challenging projects.

Literacy Sponsors

With an established discourse community, gamers have been able to share their literate practices with one another. Through interactive gameplay and asynchronous online discussions, gamers have illustrated how their community fosters interest in the success of its members. This mentorship has created a space where gaming literacy can grow and evolve as newer members learn from experts and make their own contributions to the social network of gamers. These kinds of personal connections between veterans and novices are also important in the multimodal composition classroom, where literacy sponsorship helps to determine the scope of students’ potential projects. As students with less digital experience learn from their peers who have more experience, the multimodal composition classroom transforms into web of digital knowledge.

With an established distribution of knowledge, the gaming community (and students within a multimodal composition classroom), essentially makes use of Brandt’s (1998) *sponsors of literacy*, or “any agents, local or distant, concrete or abstract, who enable, support, teach, and model, as well as recruit, regulate, suppress, or withhold, literacy—and gain advantage by it in some way” (p. 166). Because the gaming community gains access to the knowledge and
expertise of its collective members, literacy sponsors serve an important role in the development of gaming literacy: They offer novice gamers a gateway to this collective.

By creating this access point, gamers and non-gamers both act as literacy sponsors in the gaming community and help to establish a set of literacy practices that define how gamers create and share knowledge. As my research participants experienced, their gaming lives were mainly enriched by family members who played games or financially supported their gaming habits. All three of my participants also cited specific games that acted as abstract literacy sponsors by enticing them to play more often and seek out others who would join their campaigns. And though none of my research participants cited gaming experiences at school, the women from the DALN all shared experiences about how some of their first interactions with technology revolved around playing educational games in their elementary classrooms—further illustrating how gaming-literacy sponsors can come from a variety of access points.

These familial, technological, and educational sponsors of gaming-literacy form the social support system that allows gamers to develop literate skills, like knowing which buttons to push in order to win or knowing which potions to buy in order to survive the level. More importantly, these sponsors help make up the core of the gaming community, which affords gamers with indispensable access to social skills and practices that can help them succeed in other forums like a multimodal composition classroom. For instance, as novice gamers become experts, they transition into literacy sponsors as well, passing on their knowledge and enticing other people to join their discourse community. This transition from novice to expert not only offers gamers the chance to assume leadership roles in their community but also establishes the recursive and interconnected nature of the gaming community. Each gamer becomes a potential
sponsor for the next generation of gamers, creating potentially transferrable mentoring skills that can be used to sponsor literacies beyond gaming.

Understanding how literacy sponsorships work and why they develop is crucial in understanding the importance of gaming literacy in the twenty-first century, especially as it relates to multimodal composition. Both gaming literacy and multimodal literacy depend upon access to digital technologies, and as Brandt posited, “sponsors…set the terms for access to literacy” (2001, p. 19). Because sponsors encourage, provide, or even limit access to literate opportunities, they serve as critical gateways to literacy. For gaming, literacy access presupposes digital access as video games are, by definition, digital commodities. Each sponsor of gaming literacy, therefore, serves as a gatekeeper to digital skills that can be used in the multimodal classroom.

As supporters of access, sponsors provide gamers with opportunities to master digital technologies. When they deny or limit access, sponsors reinforce negative stereotypes that gaming literacy is unnecessary. By simply being part of this social network of sponsors and neophytes, however, gamers are given access to the social practices of sharing digital knowledge with others—a useful skill to have in the multimodal composition classroom, where students’ skill levels with technology can vary greatly.

Familial Sponsors

Similar to more traditional literacy sponsors, the primary gaming-literacy sponsors for my research participants involved family members. Each participant cited older siblings and parents who supported their gaming habits, either educationally or financially. From siblings who showed them how to hold a controller to parents who placed limits on the amount of time they could spend gaming, my participants enjoyed active social relationships with their family
members in order to gain access to and knowledge about gaming. Their stories help support Brandt’s claim that “Sponsors are a tangible reminder that literacy learning throughout history has always required permission, sanction, assistance, coercion, or, at minimum, contact with existing trade routes” (2001, p. 19).

While some family members were in charge of gatekeeping access to digital gaming devices, others were cited as coercers into trying new games or unlocking new challenges. Each participant’s specific experience with familial literacy sponsors varied slightly; however, they all noted the essential impact their families made on their gaming habits. Through interactions with their families, my research participants were granted financial access to video games, educational access to more skilled players, and limited access to technologies that ended up sparking a strong desire to play. And because the literate practices of gaming presuppose digital fluencies, the familial sponsorship of gaming literacies has the potential to influence the relationship players establish to other digital technologies. Essentially, by supporting their gaming habits, my research participants’ gaming-literacy sponsors also supported an invested interest in digital literacies that could prove to be useful in the multimodal composition classroom.

Funding opportunities

Financial access was a primary concern for all three of my research participants. As adult gamers, they researched games and systems in order to “get [their] money’s worth” (Tobias, January 2015). Looking back on their childhood gaming lives, however, money wasn’t as much of a concern because each of them had familial literacy sponsors who invested in their gaming habits. All three participants mentioned multiple gaming devices—from handhelds to consoles to gaming computers—and a variety of games that were shared with their siblings. This financial investment in gaming not only illustrates their unfettered access to developing the literate
practices of gaming, but also indicates a cultural climate where video game literacy is valued. As Brandt posited, “Analysis of sponsorship exposes the ways that individual acts of literacy learning partake of social and economic conditions around them and pinpoints the changing conditions of literacy learning across time” (2001, p. 27). That is, by looking at how the families of my research participants financially sponsored their gaming habits, we can begin to see how gaming literacy has become a valuable skill set in the modern world.

Financial investment in gaming marked the beginning of two of my research participants’ gaming lives: Sam and John. In response to my opening interview question, “What got you started into video gaming?” both participants recalled moments of video game gift-giving. As a brother who is five years younger than his sibling, Sam’s earliest memory involved a gift to his brother: “My parents bought my older brother a GameBoy and Super Nintendo. That’s where I started” (December 2014). What’s interesting about this example is that Sam marked this moment as the start of his video game career. Though he was only three at the time and merely a party to the video game gift-giving, Sam saw this exchange of goods as his first-step into gaming. The value his parents placed on video games for his older brother translated into an important lesson in valuing video games for him.

Similarly, John’s gaming identity started with the familial purchase of two systems. During our interview he recalled, “My video game experience started with my family buying a Super Nintendo and PlayStation all in one Christmas session. The Super Nintendo given to me, which I didn’t play very much, but my sister got the PlayStation” (February 2015). Unlike Sam, John received direct financial sponsorship for his introduction into gaming. This allowed him to have a gaming console to himself. However, with a sister who was 10 years older than him, John saw more value in his sister’s console, and his earliest memories involved playing games with
her on the PlayStation. Because they developed a social repertoire through gaming, his sister became a secondary financial gaming-literacy sponsor when, just a few years later, she gave up her PlayStation so that he could continue playing. John explained:

Well, what ended up was that she graduated out of high school. When she left . . . she left both of those systems there for me to play with . . . and I ended up playing those games. Then my parents started buying more games, and then eventually it just kept on going from there. (February 2015)

Between his parents’ and sister’s financial sponsorships, John’s early gaming life was continually supported by his family. This granted him access to a variety of games and systems, and led to his adult gaming identity as “a PlayStation, a Sony person” (John, February 2015).

What John and Sam’s experiences illustrate is how pervasive financial literacy sponsorship can be. Because they had funding to support their gaming habits, John and Sam were able to play games throughout their childhoods, developing passions for gaming that continued into their adulthoods. In this way, their parents functioned as benefactors in their gaming literacy development. As Jane Blakelock, Jená Burges, Gail Hawisher, Cynthia Selfe, and Janice Walker (2004) described in their chapter “Inspiring Women: Social Movements and the Literacies of Technology,” literacy sponsors can sometimes be seen as “benefactors or supporters who give little thought to the recompense of benefits that they may receive in return” (p. 174). While literacy sponsors frequently develop reciprocal relationships with their beneficiaries, familial literacy sponsors sometimes offer support without knowing the full impact of their gestures. Because their parents—who did not play video games themselves—were willing to spend money on gaming, John and Sam were instilled with a gaming literacy value from a young age.
More importantly, by virtue of spending money on video games, John and Sam’s parents saw some kind of value in gaming literacy. We cannot know that exact value because my research did not include interviews of parents. However, as Ann M. Lawrence (2015) explained in her discussion of Brandt, literacy sponsors can serve as “conduits of economic and political forces... establishing and regulating the value of literacy” (p. 305). We can, therefore, compare John and Sam’s parents’ views on gaming to national trends. For instance, according to the Entertainment Software Association’s 2015 Sales, Demographic and Usage Data: Essential Facts about the Computer and Video Game Industry, “63% of parents say video games are a positive part of their child’s life” (2015, p. 9). As financial sponsors of their gaming literacies, John and Sam’s parents helped to uphold the growing value placed on gaming literacy.

With gaming literacy increasing in cultural value, financial issues of access are important to consider, especially in the twenty-first century landscape where digital fluencies are greatly valued and highly priced. As digital technologies including video games grow in number, their cultural significance becomes greater, and more money is set aside for their consumption. For instance, $22.41 billion dollars was spent on the gaming industry in the United States in 2014 (ESA, 2015, p. 13). By looking at this financial footprint, we can see the cultural significance of gaming and infer the importance of knowing how to communicate about and with video games. Moreover, as game studies becomes a more popular and widely-accepted field, more sponsors of gaming-literacy are required to offer access and fund the research and development of digital studies.

This increase in the cultural and economic importance of gaming can also help highlight Brandt’s original concept of literacy sponsors and their investment in specific forms of literacy. In a 2015 update on literacy sponsors, Brandt clarified:
Sponsors are entities who need our literacy as much or more than we do. They are investors, cultivators, exploiters, proselytizers, innovators, and they are in competition with other sponsors for the formidable powers and benefits that can come their way via our literacy. (p. 331)

Though I align myself with other scholars who have taken up the term in order to examine “the relationship [I took] toward research participants” (Brandt, 2015, p. 332), I think it’s important to examine Brandt’s focus on the advantages that literacy sponsors enjoy by virtue of fostering the literate skills of their beneficiaries. Doing so can allow us to understand why gaming-literacy sponsors reinforce the value of gaming literacy, even when they have no experience with the technologies themselves. Essentially, literacy sponsors who offer financial support for digital technologies—like video games—can help modern communicators become more proficient at composing in the (digital and multimodal) twenty-first century. For parents of gamers, this financial investment can be seen as an important investment in their child’s twenty-first century success.

Understanding the economic trends of financial gaming-literacy sponsorship not only helps reveal the value being placed on new kinds of literacies but also allows us analyze the importance of digital access in the twenty-first century. In her discussion on sponsors of literacy, Brandt directly mentioned the importance of economics: “Economic changes create immediate needs for students to cope with gradual and sometimes dramatic alterations in systems of access and reward for literacy learning that operate beyond the classroom” (2001, p. 44). Since her book was written, vast changes in the economies of technology have occurred. These changes to the importance of digital access and reward for being able to communicate digitally have significantly changed the literate practices of the twenty-first century. Multimodal composition
students who receive financial support for digital literacies, therefore, gain significant advantages for coping with these alterations and communicating in the twenty-first century landscape.

Because my research was limited to three students who came from households with multiple video game consoles and individual games, a possible limitation to this study is rooted in socio-economical bias. Though I did not probe for this kind of information from my research participants, their similar literacy narratives and unfettered access to video games as children (and the fact that all three of them were somewhat traditional college students ranging from 19 to 23 years in age) leads me to believe that they came from similar socio-economic roots. Considering these similarities, it’s possible that their experiences are missing the potential struggles that gamers can face while developing gaming literacies through literacy sponsorship.

As Brandt noted, “sponsors are an especially tangible way to track connections between literacy as an individual development and literacy as an economical development because of how closely literacy in the twentieth century grew integral to the interests of corporate capitalism” (2001, p. 26). To help establish whether or not gaming literacy is reflective of the economical practices of the twenty-first century, further investigation into the impact of socio-economic class on gaming literacy would be warranted, especially considering that finances play a pivotal role in access to digital composing technologies as well. Students with limited access to digital gaming devices may be at just as much of a disadvantage in the multimodal composition classroom, where digital proficiencies are somewhat dependent upon childhood access to digital technologies.

Teaching each other

Based on my research participants’ experiences, familial gaming-literacy sponsors also play an active role in teaching novices how to play. In these social interactions between experts
and neophytes, Brandt’s original ideas about literacy sponsors gaining advantage from their beneficiary’s literate skills is most evident. Because the gaming community is reliant upon collaboration and the sharing of ideas, indoctrinating new members into the community is essential and important work. For my research participants, family members frequently served as guides through gaming literacy practices, and new members were then added to the collective gaming force as family members continued to play games with one another over the years.

One of my research participants and his family seemed to benefit the most from this kind of familial gaming-literacy sponsor relationship. The third of four children, Tobias learned how to play video games through direct instruction from his older brother. During our first interview, he recounted his earliest gaming memories:

My older brother was playing his *Teenage Mutant Ninja Turtles* games, and I was like, “Hey, that looks cool! I want to be like big brother.” And he was like, “Yeah sure” [It was cooperative,] so he had to carry me a lot! . . . It was definitely that he taught me to play that one. . . . He didn’t teach me to play all my games, but that one he was like, “This is how you don’t die.” (January 2015)

Tobias’s brother served not only as a mentor and someone to emulate but also as an instructor and someone to heed. Being taught “how you don’t die” allowed Tobias to engage with the game and quickly adapt to in-game proficiencies like getting his characters to move or interact with the environment.

As a gaming-literacy sponsor, Tobias’s brother also seemed to take his role seriously in order to ensure that his siblings would become proficient gamers. Recalling those first moments playing *Teenage Mutant Ninja Turtles*, Tobias admitted that he struggled to master the game’s basic functions like moving his character and getting it to punch (January 2015). However,
because playing video games requires hands-on practice and skills, his brother allowed Tobias to fall and make in-game mistakes in order to help Tobias gain the necessary skills for playing games together. With the patience of a skilled teacher, his brother was able to help foster a passion for gaming in Tobias and their youngest brother. Working together, Tobias and his older brother shared sponsorship of their youngest brother’s gaming life, allowing all three of them to enjoy playing Nintendo’s *Smash Bros.* together.

Representing the cyclical and recursive nature of gaming-literacy sponsorship, Tobias’s family highlights how sponsors share knowledge and grow the community, allowing novices to take on the roles of sponsors for the next generation. These sponsor-beneficiary relationships help support the intricate social network of gaming. After sharing their knowledge and encouraging one another to develop the literate skills of gaming, Tobias, his siblings, and his parents continue to play games together online. For them, gaming became a platform for continued social interaction. This interaction also served as a forum for more gaming-literacy sponsorship as family members coached one another and shared ideas for collaboration. For instance, Tobias shared how his mother sometimes needed the collective’s help during gameplay: “My mom really likes [video games] but . . . she’s not obsessed with them as we are. So a lot of times we’ll be in the middle of the fight, and she’ll have us remind her about the basic mechanics” (March 2015). With her family supporting her success in the game, Tobias’s mother was able to collaborate with them and offer her own in-game assistance. The lines between sponsor and beneficiary become blurred at this point, further illustrating Brandt’s notion that literacy sponsors benefit from their positions.

Writers of multimodal compositions benefit from these same kinds of interactions as lines between expert and novice frequently blur and overlap. Because students sometimes have more
experience with digital technologies than their instructors, both parties share the responsibility of producing rhetorically effective projects. More importantly, as with gaming-literacy sponsorship, the recursive relationships between experts and novices in the multimodal composition classroom help define the potential projects that can be created. In her section of “e pluribus plures: DMAC and its Keywords,” Laura Micciche (2015) wrote that “doing digital work in classrooms and in the profession can’t wait for experts. Novices bring excitement, curiosity, and productive worry to the institute experience, valuable assets for innovation and site-specific adaptation” (Boyle et al., p. 8). While the knowledge of experts is indispensible in the multimodal classroom (or institute in Micciche’s case), the innovative creativity of novices who aren’t bound by digital conventions makes the composing process more dynamic. Micciche clarified, “As a novice, you operate without the habitual physical orientation to a task or cognitive routines you might otherwise draw on for quick retrieval of a knowledge set” (Boyle et al., 2015, p. 7). Without the muscle memory of routine, novices can support the literacy of their sponsors, enabling both parties share in literacy development.

Creating a desire

One final way for familial gaming-literacy sponsors to take an active role in sponsoring the literacy development of new gamers is through the creation of desire. Because they define access to the technology and its literate practices, gaming-literacy sponsors can directly impact the relationship gamers come to have with technology. That is, young gamers who are given time constraints or “rewarded” with gameplay are taught that gaming is a valuable commodity—one to be desired and valued. As Brandt wrote in her original text on sponsors of literacy, “sponsors nevertheless set the terms for access to literacy and wield powerful incentives for compliance and loyalty” (1998, pp. 166–167). In the case of my research participants, these incentives were
based on offering gaming as a reward for completing household chores or homework or being
denied the opportunity to play when older siblings dominated screen time. Through these direct
and indirect methods, familial gaming-literacy sponsors created a clear desire for gameplay,
allowing my research participants to both value and interact with gaming literacy.

Considering that 79% of parents place time limits on gaming (ESA, 2015, p. 8), looking
at the impact of parental control on gaming-literacy sponsorship is important. As Brandt has
continually argued (1998, 2001), access to literacy tends to indicate a cultural climate for the
value of literacy. Brandt’s discussions may have focused on more traditional forms of reading
and writing; however, we can see how the cultural value of gaming literacy changes depending
upon the context. Though parents tend to offer financial sponsorship of gaming literacy, they
send mixed messages about gaming literacy’s value when it comes time to offer hands-on access.
By setting time constraints on gaming, parents establish a value system that opposes gaming to
various activities. This may conflict with other interpretations of sponsorship for gaming
literacy; however, it still positions parents as gaming-literacy sponsors because being in control
of access affords them with the power to create desire in their children.

All three of my research participants mentioned how their parents set specific restraints
on gaming. When I asked him how often he played as a child, for instance, Tobias responded,
“Way too much! [laughs] My mom would have to set limits on how long we could play.” He
elaborated, “[A]fter two hours we would have to clean for an hour or something to play more. . .
. Or we could, like, exercise. So, they got that into us, so we wouldn’t be fat and lazy on the
couch” (January 2015). Illustrating some of the stereotypes associated with gamers, Tobias’s
recollection of his parents’ limitations on gaming highlight the opposition he faced in developing
his gaming literacy. Gaming was seen as a reward for completing chores or as a hindrance to
healthy living. Because it was treated as a reward, however, gaming became a prized way to spend time, leading Tobias to reflect, “I couldn’t imagine my childhood without video games.” (January 2015). Even though he had specific limits to the amount of gaming he was allowed to do, playing video games remained an important part of his childhood. Because they were used both as a reward and in opposition to seemingly more productive activities, video games became a central focus. This allowed Tobias, and the other research participants, to desire fluency in gaming so that they could enjoy their gaming moments when given the chance.

One of the most common methods for creating a desire to play in my research participants’ lives stemmed from older siblings not sharing gaming devices. During my initial coding of the data, these social interactions came up more often than any other. While this could be based on the fact that all three participants had at least one older sibling, it still indicates that sibling rivalry with video games can play an important role in gaming-literacy sponsorship. John highlighted this with insights on his sister:

My sister had [a Super Nintendo], but she didn’t let me play that one. That was hers. . . .

Before she had that, she had the Atari from my parents. I was really jealous. I was like, “I want it!” (February 2015)

Ten years his senior, John’s sister had accumulated gaming devices before he was old enough to play. This created admitted jealousy as John grew up watching her play and wanting to join in. Because she denied him access to the technology, John’s sister indirectly sponsored his intrigue in gaming and created a space for him to desire fluency in gaming.

Sam had similar experiences with an older brother who didn’t share gaming devices. These interactions revolved around watching his brother play while he gleaned what skills he could from the sidelines. While talking about his earliest interactions with different consoles,
Sam noted, “[My brother] had a GameBoy. He never let me play that. I never played that. He’d let me watch” (December 2014). Even if it wasn’t the gaming experience for which he had hoped, watching his brother played allowed Sam the opportunity to experience gaming and created a desire to want to play the games himself. During our initial interview, I asked Sam when he found time to start playing video games. He responded, “When I was older, when I was allowed to start playing, when he was gone. So I guess I snuck time in.” (December 2014). For Sam, his earliest gaming experiences involved either watching his brother play or sneaking around his brother in order to play a game by himself. These small windows of opportunity created a desire for gameplay that lasted throughout most of Sam’s childhood, sponsoring a drive to game often and quickly develop in-game skills.

Desire for digital access can be a necessary tool for developing digital literacies like gaming and multimodal composing. For my research participants, this desire created an environment where they sought ways to learn whenever and however they could. In Sam’s case, this required patience and waiting for his brother to give up control over shared devices. Though he was able to watch his brother play and learn the intricacies of game dynamics, he ensured his gaming-literacy development by circumnavigating his brother and gaining access—essentially becoming his own gaming-literacy sponsor. John had less involvement in gaining access as his sister eventually conceded to his desires and let him play video games with her. John’s gaming-literacy development was no less rigorous than Sam’s as both participants were ultimately in control of acquiring skills: Sam while his brother was away and John when his sister left for college.

While I certainly do not advocate denying access to those who would produce multimodal compositions, I think it’s important to address the idea that access to digital
composing technologies is sometimes limited. Even in the multimodal composition classroom, access can sometimes be limited to only a few computers with the proper hardware or a few cameras with digital recording capabilities. What we can learn from these limitations is that desire can harness one’s literacy development. The more my research participants watched their siblings play video games, the more they wanted to learn how to play themselves. This created a space for them to find ways to either share time or collaborative with other players. Students in the multimodal composition classroom who analyze multimodal projects and have time to experiment with digital composing technologies may experience similar desires for digital fluency. By developing creative solutions to sharing technology or collaborating with others, students in the multimodal composition classroom can also find ways to share sponsorship of their burgeoning digital literacies.

Technological Sponsors: Creating Incentives and Excitement

Besides family members who offer tangible representations of gaming-literacy sponsors, certain games and gaming systems can also be seen as sponsors of gaming literacy. By acting as agents of support and recruitment in the gaming lives of my research participants, video games and consoles functioned as technological sponsors of gaming literacy, gaining advantage through the replication of their ideas and continued gameplay. Though specific games don’t necessarily translate into multimodal composition literacy sponsors, the relationships that my participants built with these technological sponsors helped acclimate them to digital incentives. These kinds of incentives can prove to be useful in the multimodal composition classroom as well, as students can be encouraged to learn about new program functions and features.

As I coded my interview transcripts, specific games and consoles popped up frequently for my participants. More importantly, however, video game franchise loyalty with my
participants became apparent as each person recalled playing a game and its sequels or buying each new generation of a specific gaming console. Because those franchises became sought after commodities for each gamer, they represent the desire for access caused by video games themselves. Acting more like commercial sponsors, which feature non-human products, video games and the devices on which they were played continually drove desire for gameplay and created incentive for my research participants to develop their gaming literacies.

As a cross between a tangible human sponsor and an abstract product sponsor, Nintendo’s Mario featured as an important technological gaming-literacy sponsor for my research participants. Video games within the Mario franchise—including Super Smash Bros, MarioKart, and Super Mario World—were mentioned by all three participants, highlighting Mario’s permeation into the gaming community. For my participants, Mario (and the games in which he was featured) served as a literacy sponsor who “deliver[ed] the ideological freight that must be borne for access” (Brandt, 2001, p. 20 to gaming literacy. That is, Mario epitomized the gaming industry by illustrating the allure of gaming’s rewards, enticing players to continue their pursuit of gaming skills. In fact, one of my research participants cited how playing a Mario franchise game enticed him to pursue other games:

I played a lot of Smash Bros, and one of the characters was Shulk. I was like, “Who on Earth is this Shulk guy?” But I liked his play mechanics. I looked it up, and the game he was from was Xenoblade Chronicles. (Tobias, March 2015)

Having played all installments in the Smash Bros series, Tobias began trusting this Mario franchise game to lead him to other enjoyable video games. In this sense, Mario via Smash Bros sponsored his recruitment into other video games and his deep-rooted connection into the gaming community.
Pulling players into the social world of the gaming community is another way that video games and consoles act as technological sponsors of gaming literacy. Video games that rely on multiple players easily entice gamers to seek out the social community of gaming, allowing them to develop the social literacy practices of gaming. From MMOs to competitive team games, multiplayer options in the gaming industry create a space for players to access each others’ skills and knowledge. For instance, joining other players’ *Borderlands 2* campaigns through an online connection offered me the opportunity to see how players interacted in small four-person groups online. Having never played an online video game that had voice chat capabilities, I assumed that players could only interact through the headset. As our group made it through missions and eliminated in-game rivals, I quickly realized, however, that voice chat was not necessary. When I later started hosting my own online campaign drives, I simply let players follow me in silence as we completed our missions together. As a gaming-literacy sponsor, *Borderlands 2* not only offered me the opportunity to learn how to communicate with fellow gamers online but also enticed me to try other online games like *Call of Duty: Modern Warfare 3*.

In addition to games that rely heavily on multiplayer communication, many modern games often require insider knowledge about a game or include difficult levels that entice players to seek out assistance from other gamers. For my research participants, games that led them to consult the gaming community included *The Legend of Zelda* series, *Final Fantasy* games, *Grand Theft Auto 5*, and *Dragon Age: Inquisition*. While looking up tips for beating a level on a game used to be thought of as “cheating” to many players (hence the terminology “game cheats”), going online for help with certain in-game missions has become more commonplace and less stigmatized. When I asked Tobias about his gaming habits and how he went about overcoming an obstacle he couldn’t circumnavigate, he admitted, “Yeah, I just look it up. I’m
not ashamed at all just going on line” (March 2015). Going online to access gaming forums or walkthroughs has become a common practice for gamers. And because certain games almost require outside-of-game assistance, they function as gaming-literacy sponsors that create an opportunity for players to access the social network of gaming.

When considering the multimodal composition class, these kinds of technological sponsorships are important. Because digital multimodal composition depends upon technological contact and proficiency, having access to technology is a given. With this access, however, comes the opportunity for literacy sponsorship as students begin to favor specific composing technologies. For instance, my experience with Dreamweaver from a computer-mediated writing course I took inspired me to use Dreamweaver to develop my professional website. Though I knew there were other, potentially-easier methods for creating a website, my experience with Dreamweaver made me feel comfortable and eager to use this program outside of a classroom setting. Like Tobias, I searched through online forums whenever I encountered a digital obstacle and sought help from my peers who had similar training with the program. By tapping into the social network of website developers, I was able to increase my multimodal competency. The more coding options I uncovered while working with Dreamweaver, the more I was driven to find better ways to digitally represent myself.

Similar to the ways in which Nintendo’s Mario served as a technological literacy sponsor who enticed my research participants to try new games, getting to experiment with different multimodal composing technologies can entice students to seek out new technologies or more information about the tricks to using specific programs more effectively or innovatively. For me, Dreamweaver led to work with Adobe Photoshop, Illustrator, and Acrobat as my digital compositions became more intricate and dynamic. Access to one program led to accessing the
others and created an opportunity to develop more literate skills. In their chapter on the impact of technology access on the development of digital literacies Cynthia Selfe, Gail Hawisher, Dean Woodbeck, and Dennis Walikainen (2004) observed, having “access to computers plays a key role in when, how, if, and to what extent students acquire and develop those skills and values associated with digital, or electronic, literacy” (p. 83). Because access to multimodal composing programs can have such an intricate relationship to the kinds of digital literacies one develops, technological literacy sponsors can occur quite often in the multimodal composition classroom.

Educational Sponsors: Access to Computer Games

As epicenters of knowledge creation and distribution, schools are frequently entwined with the business of traditional literacy development. At the end of the twentieth century, however, they began to play a hand in the development of gaming literacy as more and more schools began offering their students opportunities to play educational games like *Fraction Munchers, The Oregon Trail,* and *Where in the World is Carmen Sandiego?* Though none of my research participants mentioned playing video games at school, educational gaming-literacy sponsors are important to reference considering that all three of the literacy narratives from the DALN included gamers who had direct contact with video games through school computers. As my representative female voice, the women from the DALN helped highlight a potentially meaningful literacy sponsor relationship. Because schools function as “institutional. . . supports that [cultivate] and [subsidize]” (Brandt, 1998, p. 171) the acquisition of literacy, analyzing their sponsorship of gaming literacy can help reveal how the social construction of the gaming community is institutionally sanctioned. More importantly, this analysis can reveal how institutional gaming sponsorship can parallel the institutional sponsorship of multimodal composing literacies.
As sponsors of gaming literacy, schools serve a pivotal role in highlighting the pervasiveness of video games over the past few decades. Somewhat paralleling private-home video game development and sales, educational video games began to hit their peak in the 1980s as more and more school districts began to update their facilities to include computers in the classrooms. This created a technological access point for students who may not have had digital technologies at home, allowing them to cultivate new digital literacies like the literate practices of gaming. For the women whose DALN literacy narratives I studied, playing video games at school counted as noteworthy moments in their digital literacy developments. Erika mentioned playing *Oregon Trail* and *Where in the World is Carmen Sandiego* in elementary school (Strandjord, 2008), and Erin noted playing *Family Feud* in high school. For both of these women, school became a place where gaming could happen. While talking about her earliest memories of games and game play, Erin explained how gaming developed into a social practice for her:

> When I got to high school it really took off. I remember it would be, like, a thing to do. Everyone’s going to the computer lab; we’re going to all play *Family Feud* and, like, see who could get the most points. (Price, 2010)

These small windows of access created a place for Erin to develop her gaming skills, partake in the community of gaming, and desire to increase her gameplay. Though her adult gaming life revolves around playing solo games that require little community interaction, her gaming community access offers her continued appreciation of gaming and insights into which new games to check out.

Digital access through school computers also creates a space for the educational sponsorship of multimodal composing. Because students may not be given access to multimodal
composing programs at home, educational sponsorship grants them the opportunity to harness multimodal skill sets. This is especially the case when commonly-used multimodal composing programs, like PowerPoint, are taught in the classroom. Schools that require PowerPoint presentations or offer the chance for students to experiment with using the internet to find images or videos to accompany their research projects poise students to be prepared for and excited by multimodal composing practices. These digital interactions can foster a life-long relationship with digital literacies that go on to benefit both the school and its graduates. Considering the literate lives of the women from the DALN and their experiences with video games at school, the educational sponsorship of literacy is important for many students. By providing access to digital technologies, schools easily sponsor the digital literacies of their students.

As a possible limitation to considering educational gaming-literacy sponsors, it’s important to note that the research subjects addressed in this section were all women. While it’s possible that men have similar experiences with playing video games in elementary and secondary schools, further investigation into potential gender biases on gaming-literacy access would be conducive to studying the impact of the educational sponsorship of gaming literacy and how it can relate to student success. In her discussion of school-related literacy sponsorship, Brandt noted:

Recent literacy studies have drawn attention to how middle-class students enjoy a higher congruity between the literacy practices of their home and the literacy practices of their school, an advantage that is less often in place for poor and working-class students.

(2001, p. 185)

Though Brandt was looking more exclusively at potential socio-economic biases, these congruities also seem evident in the gaming lives of women and men: where men enjoy access to
video games both in school and at home. The potential (lack of) connection between at-home and school literacies may affect how students approach educational video games or digital technologies.

Over the past 30 years, schools have become a place where twenty-first century literacies, like gaming and multimodality, are nurtured and inspired. This privileging of digital literacies reflects a cultural climate that privileges technology and digital communication and illustrates the cyclical relationship between educational sponsorships and their communities. As more schools offer technological access and opportunities for gaming and multimodal literacies, more students will enter into their communities with these skills and call for more technological instruction for the next generation. Brandt explained, “Sponsors of literacy leave their mark not only on individual learners but also on whole communities, regions, economies, and social eras in ways that linger, for better or worse, for subsequent generations” (2015, p. 331). Because students have been given access to school-endorsed video games like Oregon Trail and ABCMouse.com, gaming literacy has become a sanctioned set of literate practices, potentially contributing to the billion-dollar video game industry that has now become part of the U.S.

Conclusion

Modern gamers no longer function individually or in isolation. Instead, they are part of a collective network of individuals who share “similar patterns of language use, shared assumptions, common knowledge, and parallel habits of interpretation” (Deans, 2003, p. 136). Through social practices, gamers have been able to establish a group identity that affords them with opportunities for more access to knowledge and skill. As Gee (2007) noted, gamers make use of *distributed* knowledge by establishing a clear social network of gaming literacy. To clarify, he wrote:
The really important knowledge is in the network—that is, in the people, their texts, tools, and technologies, and crucially in the ways in which they are interconnected—not in any “node” (person, text, tool, or technology), but in the network as a whole. (p. 197)

As they participated in social practices and helped build their communities, my research participants helped establish this networked community of game-savvy individuals. More importantly, my participants revealed how the literate skills they obtained from gaming could be made useful in the multimodal composition classroom, where collaboration and innovation help drive the rhetorical effectiveness of digital projects.

With a social network to help guide them through digital technologies, gamers are poised to be effective members of a multimodal composition classroom because they already make use of digital proficiencies, online collaborations, and shared responsibility for the success of their teams. For instance, collaborating with other players allowed my research participants to hone their communication skills as social interactions required them to balance audio, visual, and kinesthetic practices. In the multimodal composition classroom, these skills become invaluable as students are expected to analyze and interact with texts that combine similar multimedia features. Similarly, the collaborative relationships my participants developed through face-to-face and online gaming showcase important team-building experiences that can make multimodal collaborations more fruitful and exciting. As players become more adept at sharing digital spaces and negotiating a group voice, they are better equipped for collaborating on multimodal assignments that require similar levels of technology sharing and remediation. Through collaboration, friendly competition, and literacy sponsorship, my research participants supported the success of fellow gamers and obtained transferrable skills for multimodal communication in the twenty-first century.
In the following chapter, I explore those technological proficiencies by re-examining the literacy narratives of my research participants. Focusing more on my research participants’ uses of technology, chapter four highlights the ways in which gamers develop their technological skills to help them become stronger players, more efficient internet users, and more effective technicians. Throughout the chapter, I once again explore how game-based literacy practices can be transferred to the multimodal composition classroom in order to set-up my final chapter’s synthesis of pedagogical frameworks for the multimodal composition classroom.
CHAPTER 4: EXAMINING THE TECHNOLOGICAL SKILLS OF GAMERS AND THEIR
POTENTIAL APPLICATIONS IN THE MULTIMODAL COMPOSITION CLASSROOM

“By the late twentieth century, our time, a mythic time, we are all
chimeras, theorized and fabricated hybrids of machine and organism;
in short, we are cyborgs”
–Donna Haraway (1991, p. 150)

“In interviews my research team and I have conducted with video-game
players, we have found a number of young people who have used the
domain of video games as a fruitful precursor domain for mastering other
semiotic domains tied to computers and related technologies”
–James Gee (2007, p. 40)

By their very nature, video games expose users to digital technologies. Though digital
interactions vary as players access different devices for gameplay, interfacing with gaming
technologies creates a fun and safe space for gamers to interact with multiple modalities and
technological hardware. While playing, gamers interpret graphics, sounds, and texts. Moreover,
they learn how to manipulate hardware like keyboards, touch screens, and controllers in order to
make their avatars complete missions and overcome obstacles. Like the video-game players that
Gee mentioned in his epigraph, my research participants also used their gaming experiences to
drive interactions with computers and digital technologies. These interactions allowed them to
hone their digital proficiencies as they played games on multiple platforms, used digital devices
for a variety of purposes, and experimented with hardware upgrades.

Interacting with digital technologies also creates a space for gamers to develop rich
relationships to their devices. As new gaming experiences occur across platforms and utilize a
variety of digital outlets for player success, gamers begin to embody Haraway’s concept that “we
are cyborgs.” With a 22% increase in smartphone gaming and a 37% increase in wireless device
gaming from 2012 to 2013 (ESA, 2014, p. 2), gamers are beginning to take their gaming
technologies with them. This portability creates the potential for cyborgian relationships as video games become an extension of a player’s body. Essentially, modern gamers’ experiences with gaming technologies—from consoles, to smartphones, to computers, etc.—expose them to a variety of digital technologies and create a level of technological comfort for them. This comfort creates not only a space for identity-formation, but also an opportunity to play with new methods of digital interfacing.

In this chapter, I explore how such digital exposure affected my research participants and created opportunities for multimodal composition skill development. Analyzing their proficiencies with and reliance upon technology, I first explore the notion that gamers can be conceived as cyborgs, hybrids of machine and organism. I then explain how this cyborgian existence dictates their social collective, allowing technology to drive social interactions and expand knowledge in ways that develop useful technological skills for the multimodal composition classroom. In the next section of the chapter, I examine how gamers can be seen as technological engineers and analyze their proficiencies with hardware design and manipulation—highlighting the experiences of both my research participants and the women from the DALN. Similarly, I explore how a willingness to experiment with those hardware skills can benefit students in a multimodal composition classroom. I end the chapter with a brief discussion about the economics and gendering of technology in order to fully highlight the relationship gamers have with the digital technologies that define their community, effectively illustrating some of the limitations students and instructors may have to overcome in the multimodal composition classroom as well.

4 Because their discussion of video games was limited, the women from the DALN did not at length discuss the technological skills they gained from playing video games. However, both Jennifer and Erika mentioned how games helped foster their computer literacy, which is addressed in this chapter under “Gamers as Technological Engineers.”
Gamers as Cyborgs

In 1991, Donna Haraway wrote “A Cyborg Manifesto: Science, Technology, and Socialist-Feminism in the Late Twentieth Century.” In this seminal text, Haraway explained how, in the wake of modern warfare and political rivalry, everyone in the Western world could be seen as a cyborg—“a cybernetic organism, a hybrid of machine and organism, a creature of social reality as well as a creature of fiction” (p. 149). More importantly, she established how likening modern humans to cyborgs allows us to deconstruct false binaries and dismantle the notion of universality (1991, p. 181). Because cyborgs reconcile multiple binaries like nature/technology, mind/body, and maker/made, they offer an essential way of knowing that blurs the boundaries of self and other. Gamers, similarly, dismantle false binaries between virtual worlds and reality as they invest equally in both realms. Therefore, using the cyborg metaphor to examine the relationships gamers have to each other and to technology allows us to better understand the literate practices of gaming and the possibilities for transferrable skills. Because digital devices were essential to their gaming lives, my research participants effectively illustrate the cyborgian nature of gaming, where digital devices stimulate their technological experiences.

My research participants also used gaming technologies as extensions of their bodies, relying on them to gather information while simultaneously interfacing with the video game itself. At any given time, each of my participants had instant access to the gaming collective of information, people, skills, and technology. As their relationships linked to one another, they further embodied the metaphor of a cyborg, helping to establish one of Haraway’s main arguments that “taking responsibility for the social relations of science and technology. . . means embracing the skilful task of reconstructing the boundaries of daily life, in partial connection with others, in communication with all of our parts” (Haraway, 1991, p. 181). Essentially, the
cyborgian nature of my research participants and their fellow gamers dismantles the false binary between human and machine and allows us to focus on the holistic picture of a gamer. Gamers are not simply lone humans struggling through gameplay; instead, they are tapped into the nexus of gaming culture, which links them to digital technologies and socially established information. These intense technological connections can be useful in the multimodal composition classroom as well, where fluency with multiple devices can allow students to explore a variety of technological options and increase the rhetorical effectiveness of their compositions.

Technology Cyborgs

Using multiple devices

One of the most important ways my research participants embodied cyborgs was through their pervasive relationships with technology. All three of my research participants, for instance, spoke about actively using multiple gaming devices. While they cited owning up to nine different gaming consoles, each participant discussed how he actively played on no less than two different systems on a frequent basis. Sam gamed on a PlayStation 4, Xbox One, his phone, and his computer; Tobias gamed on his phone, a PlayStation 3, and his laptop; and John gamed on his PlayStation 3 and PlayStation Vita. Compared with the statistic that “51% of U.S. households own a dedicated game console, and those that do own an average of 2” (ESA, 2014, p. 2), my research participants seem to reflect a common technology-saturated trend in the gaming community. This enriched experience with technology highlights the research of Flis Henwood, Gwyneth Hughes, Helen Kennedy, Nod Miller, and Sally Wyatt (2001) who explained that when technology becomes “central to our everyday lives. . . it is useful to conceive of ourselves as cyborgs” (p. 16). For my research participants, technology defined their gaming lives, creating an opportunity for us to view them as cyborgs.
With access to all of these digital devices, my participants also explained how they compartmentalized the primary function of each device—similar to how a cyborg would use specific cybernetic implants for particular functions. Tobias’s gaming habits, for example, illustrate this organization of technologies. He explained:

I’d say usually on consoles I’ll play first person/RPG style games. . . . On my phone it kind of varies because I play a lot of minesweeper on there. A lot of, like, simple RPGs that aren’t really RPGs. . . . For the most part, I just play the little time wasters when I have nothing better to do. (March 2015)

Tobias went on to mention that he was currently using his laptop to play a shooting game with his family, indicating that different devices were used to distinguish between not only game genres but also gaming interactions. Sam also explained how he preferred Xbox One because all his friends had it, but he enjoyed the performance capabilities of PlayStation 4 (March 2015).

Because different devices were used for specific types of gaming, my research participants’ gaming habits illustrate how a cyborgian existence can grant more systematic experience with digital technologies. That is, each participant was aware that his gaming identity was not reliant upon a single game or device. Instead, experiences with all of their devices created more dynamic and technologically-enriched gaming identities. Tobias and Sam, for instance, didn’t see themselves as “Xbox gamers” or “laptop gamers.” Instead, they let their gaming desires dictate which system they would use. More importantly, interactions with all of these devices increased their gaming literate practices, offering them the opportunity to become fluent in multiple technologies and digital interfaces. Though their fluencies varied according to which systems they used, each participant grew comfortable switching between technologies and maintaining his agency over his digital interactions.
John seemed to benefit most from these multi-device interactions as he was able to appreciate the cross-compatibility of his gaming systems. In fact, his main reason for being loyal to the PlayStation brand was the cross-compatibility between devices. He explained, “You get to take a game on the PS3 and transfer it over to the Vita and keep on playing it” (April 2015). The fluidity offered by his gaming systems allowed him to make technology even more central to his daily life as games played on his television were able to be downloaded onto a portable device and played elsewhere. John even noted the upgraded Bluetooth compatibility between the Vita and PlayStation 4 (i.e., games can be transferred between the PlayStation Vita and PlayStation 4 wirelessly), even though he did not yet own the PlayStation 4. By staying abreast of PlayStation’s new and emerging interfaces, John illustrated his deep-rooted connection to the technology, further indicating his cyborgian relationship with gaming devices.

Staying current with technology and being proficient with multiple technological devices can potentially benefit gamers in the multimodal composition classroom, where multiple modes of expression require a variety of devices and tools. A simple alphabetic essay with supporting images, for instance, requires a student to utilize a word processor and an adequate image editor. Managing an image search or envisioning a photo shoot while writing an alphabetic text can quickly become overwhelming for a student who has no experience working with multiple technologies. In her chapter “Learning Digital Literacies,” Marilyn Cooper (2007) shared a story about the difficulties a student’s mother had when faced with digital composition: “As one woman commented on her mother’s attempts to learn a word program, ‘even though she’s taken I don’t know how many computer classes, she still [struggles]’ (p. 182). Though this student’s mother represents a non-traditional learner in the classroom, she still illustrates the impact digital experience can have on a person’s ability to master digital composing practices. Because gamers
already have a level of comfort interacting with technologies—to the point that we can conceive
them as cyborgs—they are poised to more easily adapt to the technological needs of a
multimodal composition classroom.

Similarly, gamers who have experience in compartmentalizing multiple devices can
translate their organizational practices into the multimodal composition classroom, where
different devices offer unique composing opportunities. For instance, while video editing can be
done on most digital cameras and smart phones, editing software like iMovie and MovieMaker
offer composers a wider range of tools and editing capabilities. Jennifer M. Bogard and Mary C.
McMackin (2012) described:

With iMovie, users can browse for photos, scanned pictures, or video clips that are on
their computers and drop them into frames on an iMovie screen. The images can easily be
rearranged by dragging them from one frame to another. (p. 321)

Knowing when to rely on devices that are better equipped for digital manipulation can help
students produce more effective and engaging multimodal projects. For Bogard and McMackin,
the capabilities of iMovie allowed them to engage their third-grade students in digital
storytelling, offering students the opportunity to expand their views on composition. Citing Jason
Ranker’s (2008) article “Composing Across Multiple Media,” Bogard and McMackin explained
the effects of using iMovie in their classroom:

Moving from a traditional literacy practice to the iMovie provided [students] with what
Ranker (2008) referred to as a moment of “textual punctuation” (p. 214), that is, natural
stopping points that provide authors with opportunities to reflect on what they need to do
to achieve their goals. Having the visuals clearly aided some children in the sequencing,
revision, and elaboration of ideas. (2012, p. 321)
Because they were able to transition between the images they wanted to include and the movie they were producing, students continually reflected upon their goals of the project and were able to manipulate the software into creating meaningful multimodal texts. Essentially, experience with both technologies (i.e., representations of the images and the video editing software) created an opportunity for critical reflection.

Extrapolating these experiences and thinking about how these critical reflections on design can make the multimodal composition process more effective, we can see the potential benefits of gaming literacy. For instance, because Bogard and McMackin’s students weren’t limited to one tool, they were able to see how design options could be compartmentalized into different devices—just as gamers recognize that different devices serve different functions. As these students further develop their multimodal literacies, they may potentially redefine how they use specific devices so that they can more effectively participate in digital rhetoric. Gamers, however, already critically reflect upon technology and use their experiences to redefine how they interact with specific devices. Sam, for instance, explained how he used his smartphone to game: “I used to [play games] back when I first got it, but I outgrew it. I just use it as a phone now” (December 2014). Because his gaming experiences on the phone weren’t as poignant as the ones on his consoles, he turned his phone back into a communication device instead. This dissociation allowed him to dedicate more time to console- and computer-gaming and freed up the smartphone for other purposes.

More importantly, Sam’s experience with the smartphone illustrates the cyborgian nature of gamers’ literacies, epitomizing Haraway’s ideas about the cyborg body: “The machine is us, our processes, an aspect of our embodiment” (1991, p. 180). Essentially, Sam’s phone had become an extension of his technological skills and permeated his gaming identity. Even though
he rarely used it to play video games, the phone became an access point for gaming-related information and was used concurrently with other gaming devices. In fact, smartphones and laptops both played important roles in my research participants’ gaming lives, where they were used as extensions of my participants’ gaming libraries and skills. As technological cyborgs, my research participants frequently employed their smartphones and laptops while playing video games on gaming consoles in order to research how to defeat specific enemies or overcome certain levels.

Epitomizing the cyborgian nature of their relationship to their technological devices, John explained how he determined whether to use his laptop or his smartphone to look up video walkthroughs: “Whichever, my PC or my phone. Whichever device is closest to me at the moment” (April 2015). As an almost physical extension of his body (i.e., he chose the device closest to him), John’s multimedia devices became natural gaming accessories. Like other gamers, John became fluent in navigating two technological devices at once so that he could more quickly overcome gameplay trials. With these machine extensions in place, gamers like John further embody Haraway’s cyborg metaphor as their relationship to the game becomes multimedia-based. By playing the game with unfettered access to technological devices that can support gameplay, gamers experience a video game through the gaming collective and with the experience of gamers from all over the world.

This kind of cyborgian relationship with technology can prove useful in the multimodal composition classroom as well, where students can benefit from concurrently manipulating a variety of devices and software. For instance, students working on a visual assignment can take advantage of different devices for capturing images—like smartphones, digital cameras, or tablets—allowing them to test the possibilities and limitations of each device. Then while editing
those images, students can tap into community knowledge on one screen—like a video from Adobe Support, 2013, that teaches them how to dissociate a person from the background in order to relocate him or her into other photos—and make immediate and rhetorically effective changes to their project on another screen. Having unfettered access to digital writing tools and a community of multimodal composers who have tackled similar projects, students in the multimodal classroom can be well-suited to produce rhetorically inventive and effective texts.

While it’s important to avoid technological determinism and the idea that equal access to digital technologies can erase political, social, economic, and cultural relations, understanding the rhetorical power of technological connectivity can allow us to see how multimodal composition can be made easier by being fluent with multiple digital devices. As college campuses continue to offer wireless capabilities, the opportunities for multiple-device-interactions become greater. Writing about the effects of wireless technologies on writing classrooms, Will Hochman and Mike Palmquist (2009) posited, “the portability and flexibility afforded by devices such as wireless laptops support group work, small group discussion, and project-based learning” (p. 110). As their research showed, collaborative work in the composition classroom can be enhanced when students use personal devices to help contribute to a communal task. Students who can move around the room and share their screens are better able to communicate in a more “natural” fashion (Hochman & Palmquist, 2009, p. 121) and more likely to interact with both their peers and the instructor (Hochman & Palmquist, 2009, p. 125).

Hochman and Palmquist may have been looking at traditional writing classrooms in their study; however, we can translate their lessons about increased peer-to-peer interactions and student confidence (2009, p. 111) to the multimodal composition classroom. For example, though access to a group multimodal project is frequently limited to one computer (i.e., only one
person modifies a webpage or PowerPoint project at a time), students in the group can still contribute to the project by using personal devices to research information or make small adjustments to specific components (e.g., specific images, body text, etc.) that will later be integrated into the final product. In these kinds of collaborations, students who function as cyborgs can greatly benefit the overall rhetorical effectiveness of the project because they can operate as mediators between devices. Gamers, who already have fluency with this kind of mediation between devices, therefore, can be poised to make significant contributions to group dynamics.

Being exposed to multiple devices and knowing when to use specific devices for optimal effect were important aspects of my research participants’ gaming identities. All three of them started playing video games on Super Nintendos and kept up with four generations of gaming console technologies. Exposure to each gaming device allowed them to feel more comfortable with gaming technologies, creating an opportunity for all three of them to grow into gamers who used more than one digital gaming device on a frequent basis. As technological cyborgs, they readily integrated new devices into their daily lives and critically assessed which devices were best suited for specific literate practices. In the multimodal composition classroom, where digital fluencies can make it easier to complete projects, these kinds of technological skills can be indispensible.

Using multimedia devices

In addition to using multiple devices on a frequent basis, my research participants also illustrated how using devices for multiple purposes became part of their gaming literacies. So while different devices were used for specific gaming experiences, multimedia devices (e.g., smartphones, Xbox 360 and Xbox One, PlayStation 3 and 4) were used to accomplish a variety
of tasks in addition to gaming. All three participants, for example, had experience using their phones to play games. Similarly, Sam and Tobias both used their personal computers to play games on occasion, even though the computers were primarily used to complete school-related work and correspondence. So while gamers are able to compartmentalize and know which devices are best suited for specific tasks, they are also able to experiment with technological options and applications in order to challenge the functionality of their devices. In the multimodal composition classroom, where time and access play pivotal roles in composing possibilities, being able to interface with devices beyond their primary functions can create new rhetorical possibilities.

Though the primary function of gaming consoles has always been to play games, modern consoles are now being marketed as multimedia devices (see Greenwald, 2013). It is, therefore, not surprising that my research participants talked about using their consoles for a variety of applications. Both John and Sam used their devices to watch streaming services like Netflix and Amazon Prime. Sam even admitted that he no longer gamed on his consoles as often as he once did: “I spend more time on Netflix than playing games” (March 2015). John’s experiences with his console were even more revealing of the multimedia opportunities afforded by modern gaming consoles. He highlighted, “[On] the PS3 I watch Amazon Prime and Netflix, and I listen to Spotify and then sync them to the Vita. That has cross compatibility as well” (April 2015). For John, his gaming devices not only offered him the chance to consume streaming content, but also provided an opportunity for increased portability and technological prowess as cross-compatibility options allowed him to experiment with wireless technologies.

Similar to my research participants’ increased literacy with the potential uses of technological devices, students in the multimodal composition classroom can experience at least
two benefits to experimenting with multimedia technologies. First, increased opportunities for critical reflection and composition easily stem from access to these kinds of multimedia devices. That is, students who are predisposed to experiment with technology and the functions of multimedia devices are given the opportunity to discover new ways of creating. For example, one of the first “photo-editing” programs I ever used was Microsoft’s Paint—a program that came equipped on my first home computer. Though my computer wasn’t designed to be a device for graphic-design, I used Paint for years to edit photos and create digital images for my multimodal projects. Once I gained access to a more advanced program (i.e., Adobe Photoshop), I did not entirely forsake Paint. Instead, because of my experience with Paint and the ease of pixel-by-pixel modifications that it provides, I now use the tools concurrently to modify images for all my digital composing needs. Essentially, experimenting with the default programming on my multimedia device (i.e., my home computer) allowed me to create a better system for interacting with digital visual production, which I now employ when composing multimodally.

A second potential benefit of the multimedia experimentation that arises from gaming literacy can be seen in mobile technologies. As was the case with John’s PlayStation Vita, multimedia devices are frequently portable, offering students increased access to the benefits of mobile technologies. Though scholars have debated the potential pros and cons of mobile technologies in the classroom (Jackson, 2013; Tindell & Bohlander, 2012), research has shown how experience with mobile devices can enhance learning. Agnes Kukulska-Hulme (2013), for instance, noted how the “use of mobile phones and other mobile devices can have a positive impact on education by facilitating student learning” (p. 12). She further explained, “The unprecedented opportunity to experiment with any number of free and inexpensive mobile apps means that teachers and learners can now participate more actively in the quest to crystallize
what is actually needed for effective learning” (2013, p. 14). As Kukulska-Hulme illustrated, mobile devices offer students the chance to engage in the learning process by providing a hands-on, student-centered learning opportunity, where instructors and students can co-create knowledge.

In the multimodal composition classroom, these kinds of cyborgian devices (i.e., digital technologies that can operate as extensions of the body) offer even more pedagogical possibilities as they can be used in the creation of multimodal projects. For example, in their case study on a Year 8 English classroom in an Australian high school, Georgina Willmett and Jen Curwood (2014) highlighted student reactions to mobile devices—iPads in this case—in a multimodal composition classroom. One of the biggest benefits they noted was the use of options provided by mobile technologies:

[W]hen students were working on a brainstorming activity at least three different apps were being used including PDFExpert, uPad and Inspirations. Some students would work with simple text, whilst others would integrate clipart or photos, or a combination of both. This allowed students to derive greater meaning from their work and greater significance to their lives through the inclusion of technology. (Willmett & Curwood, 2014, p. 253)

Similar to the deep-rooted connection that John felt to PlayStation and the options its cross-compatibility provided for his gaming style, students in Willmett and Curwood’s case study enjoyed the ability to use familiar apps that significantly represented their relationships to technology. Essentially, students were able to maintain agency over their projects and claim ownership “in the types of multimodal productions that they under[ook]” because the projects were “gear[ed] towards their own interests or strengths” (Willmett & Curwood, 2014, p. 254).
As gaming literacy creates a space for players to develop cyborgian relationships with their digital devices, it affords gamers with the opportunity to safely experiment with digital technologies. For all three of my research participants, this experimentation led to identities that were richly defined by technological prowess and comfort. Each participant was able to more seamlessly between devices, and one participant—John—even had the opportunity to directly move his gaming experiences between compatible devices. In the multimodal composition classroom, fluidity between devices can create a space for students to feel more comfortable with their projects—creating the opportunity for more rhetorically effective products that make use of the best design features of each device they use.

Becoming proficient with software

Continually interfacing with devices not only defines gamers’ cyborgian nature but also creates a space for them to become more proficient with technological software. Players who handle digital technologies and use them for gaming purposes—like searching for a walkthrough to a challenging level—obtain useful and transferrable skills that can help prepare them for a variety of contexts, including work in the multimodal composition classroom. For my research participants, their Internet searches and webpage navigation skills prospered throughout their gaming lives. Being able to quickly navigate to a useful website was important to their troubleshooting, and each participant noted having specific websites dedicated to specific gaming needs. In the multimodal classroom, knowing where to go to troubleshoot technologies and which websites to preference can be essential to effective production, offering a prime example of a practical and transferrable skill between gaming literacy and multimodal composition.
Website navigation was one of the most referenced software skills noted by my research participants. Based on their experiences, gaming-related Internet searches could be categorized into two major patterns: looking for help on missions and looking for new games. Each of these activities required different search methods and websites. To look for help on new missions, all three participants noted using Google as a potential search engine; however, each participant primarily approached the search differently. John, for instance, started his search with popular search engines, using descriptions of the mission and questions about next steps. He explained his approach during our interview:

I just kind of type it into Bing or Google: “I’m stuck here. Where do I go?” It’s like, “If you look at that little thing on the wall and press on this and then press on that, it’ll unlock the door.” I’m like, “Oh.”

By using his preferred search engines, John located text-based assistance in the form of walkthroughs or gaming forums that helped him move on with game missions. Similarly, Tobias used a Google search, but only after an initial search on GameFAQs.com did not yield the desired results. After having years of experience using GameFAQs.com for gaming-related assistance, Tobias began to trust the website and the content it provided.

Having more than one approach to locating digital information not only indicates an expertise with online content navigation, but also illustrates the close relationship gamers can have with technology. Like John and Tobias, Sam frequently used Google to find video clips to help him through difficult missions. During our interview, he recounted the last time he used the Internet for help with a game:
It was a mission in *Dragon Age*. You had to connect stars; it was like connect the dots, and you couldn’t go back over a section. So I just Googled that with the name of the mission. It just popped up a YouTube video and got me through there. (March 2015)

By using the mission title as his search term, Sam was able to easily locate a video that another user had uploaded to YouTube. Sam noted his affinity for Google searches, yet he also explained how he relied upon other websites for more specific games. He explained, “I usually just Google [the problem]. I like GameFAQs.com, but that’s mostly for when I play Pokemon games” (March 2015). As an avid gamer and online researcher, Sam had clear experience with website navigation. In fact, his relationship to the technology was extensive enough to warrant organizing his searches into specific types so that he could yield the desired results.

While searching for new games to try, all three participants also employed a variety of online tactics. Because he was loyal to PlayStation gaming, John searched for most of his games through the PS Store—“an online computer software that. . .takes you online. It’s like an app store” (John, April 2015). Tobias, on the other hand, employed a variety of venues in his searches. For games on his phone, he used an app store, where he would look for “related” games to ones he had already purchased. For console and computer games, he again relied upon GameFAQs.com, interacting with the website in a variety of ways. In addition to looking at recommended or popular games, Tobias used the website polls to find new games to check out. He explained:

sometimes in their polls they’ll be like, “How many games out of this game series have you played?” and I’ll be like “I’ve never heard of this game series.” And I’ll look it up, and it looks pretty cool. Surprising amount of games come from references in other games, you know? (March 2015)
Tobias’s unique interactions with GameFAQs.com illustrate his diverse literate practices. That is, though the website is traditionally used as “an online archive of video and computer game information, codes, walkthroughs, hints, message boards, save games files, and of course, FAQs” (GameFAQs, 2015), Tobias used his relationship with the website to reappropriate its information into new gaming suggestions.

The online search techniques of my research participants illustrate the individual literate skill development that arises from playing video games and navigating through gaming paratexts. Even though each research participant developed a unique method for software interfacing, all three of them used video games as *technology gateways*—to borrow a term from Selfe et al. (2004). Video games created “places and situations in which individuals typically gain access to computers for the purpose of practicing digital literacy” (Selfe et al., 2004, p. 84). Because video games inspired my participants to go online and look for assistance, the games created safe technology gateways that encouraged and rewarded increased digital literacy. As Selfe et al.’s study suggested, “the more of these gateways that are open to people, the more likely they are, over their lifetimes, to acquire and develop a robust set of digital literacy practices and to value digital literacy” (2004, p. 104). Due to the ubiquity of video game technology, the development and value of digital literacies caused by gaming’s technology gateway can be indispensible.

In the multimodal composition classroom, these kinds of digital experiences can transfer into pathways that students use to search for assistance or discover new composing trends. More specifically, students’ experiences with video game technologies create opportunities for the transfer of at-home literacies into the academic classroom. As the NCTE’s Position Statement on Multimodal Literacies (2005) has indicated:
In digital forms, students, even very young students, are often more literate in the technical aspects of digital production than many of their teachers. Many students are frequently exposed to popular technologies, have the leisure time to experiment with their own production...and may have access to more advanced technology than is available at school. The “definitions” of multimodal composing may be written by educators, but they will most likely have first been pioneered by these young people.

Being exposed to digital technologies does not necessitate expertise in those digital technologies. However, having engrained access to digital technologies can foster a reliance on those technologies, creating a space for students to treat multimodal communication as their cyborgian right to understanding of the world. Because students in the multimodal composition classroom—especially gamers who have intimate relationships with technology—frequently possess a technological fluency that allows them to consume multimodal texts, this consumption offers a technological gateway to creating rhetorically effective texts.

Social Cyborgs

With digital technologies being central to their gaming lives, gamers occupy a liminal space between virtual worlds. In a cyclical relationship, gamers are unified by their interests in digital technologies, and they use those digital technologies to stay connected to one another. While it’s important to address the social skills and practices developed from this discourse community—as I addressed in chapter three—understanding how these social practices help gamers develop digital skills establishes the technological advantages afforded by being social cyborgs. In their article, “Definition and Genesis of an Online Discourse Community,” Marcella Kehus, Kelley Walters, and Melanie Shaw (2010) posited, “As fluid and dynamic entities, discourse communities continually define and redefine themselves through communications...
among members” (p. 68). As members of this discourse community, my research participants illustrated this dynamic nature of the gaming discourse community as they used their technological communication skills to tap into an online social community. The digital social practices used by my participants and the gaming community at large continue to illustrate important crossover skills between gaming literacies and the multimodal composition classroom.

Digital communities

As part of establishing their discourse community, gamers use their social network to communicate and continually redefine their commonalities. For my research participants, digital communications within the gaming discourse community were seen as natural extensions of their social lives. Tobias, for instance, enhanced his offline communications about games by using online videos to share gameplay. During our interview, he shared a story about how his brother used an online video to convince him to buy a new game. Tobias explained the process:

There’s videos online, before the game came out, with missions from *Dying Light*. This dude jumping through, trying to play this game. He was honestly not that great. He didn’t explore or actually fight any of the zombies or use any of the cash. . . [T]here was this really suspicious area with blockers or whatnot, and he just runs past it. He then makes the comment that, “They probably don’t give you a lot of money because they want you on the crafting system.” And I was like, “No. You just don’t get a lot of money because you don’t play right.”

Tobias’s experience highlights two important points about his gaming identity. First, from this video-watching experience, Tobias decided to purchase the game and start playing it with his brother. This indicates how Tobias’s trust in the game depended on his cyborgian relationship to video games (i.e., his brother acted as a human link, and the video acted as a machine link).
Secondly, watching the video allowed Tobias to tap into the more digital community of gamers, where he was able to not only watch someone else play the game but also judge that person’s skills. As consumers of digital texts, gamers have the opportunity to critically analyze video games and gameplay skills. Their experience with digital technologies offers them expertise in judging the worthiness of a game and how well other players perform. In Tobias’s case, he found the game to be worthy of his investment, even though the player he watched lacked skill and insight. Similarly, Sam decided to purchase a video game based on his rhetorical assessment of another player. He elaborated:

Then there’s Twitch. I haven’t used that in a while. I used to get on there and check out—you can watch people play the game. So I can judge whether or not I want to get it. . . . I did that with *South Park: The Stick of Truth*. It looked like a sweet game. It’s turned-based like *Final Fantasy* was, and I watched someone play on Twitch and was like, “Okay, now I have to play this.” (March 2015)

With the addition of “social video platforms” like Twitch, the gaming community has created more reflective space for gamers to gather and assess video games and gameplay. These unique digital social spaces have afforded the digital community of gamers with the chance to further engage in digital literate practices as they share and consume videos.

Critically assessing digital texts is an important component for multimodal composition, making it a useful skill in the multimodal composition classroom. As Sonya C. Borton and Brian Huot (2007) expounded in their chapter on multimodal assessment, “When we help students learn to *assess* their own compositions and the compositions—the texts—that others create, we are teaching them valuable decision-making skills they can use when *producing* their own texts” (p. 99, emphasis in original). Knowing which multimodal texts are “good” and which are in need
of improvement can help students critically reflect on their own texts, allowing them to avoid the pitfalls or mimic the successes of others. Though Tobias and Sam did not create video games based on the assessments of the games they watched, their experiences illustrate the inherent analysis that accompanies a well-integrated attachment to technology. That is, because they were fluent in video game consumption, both participants were able to apply a set of criteria by which to judge a game after locating an applicable video of gameplay interaction.

By watching gameplay clips on social video platforms like YouTube and Twitch, Tobias and Sam also illustrated the complexity of video game rhetorical analysis—offering another useful literate practice in the multimodal composition classroom. While players’ game analyses used to be limited to video game commercials, which are largely based on the cinematic cut scenes of a game instead of interactive gameplay, modern technologies allow players to watch actual gamers playing the game. This digital social construction allows players to apply not only common rhetorical lenses of textual, video, and audio analyses, but also less-common rhetorical lenses like kinesthetic and procedural analyses (Bogost, 2007), as players are offered the chance to see how they can interact with the game. With more tools in their multimodal assessment tool belt, students who learn how to rhetorically analyze a text on more than level can be better prepared to create complex multimodal projects. Borton and Huot elaborated how “people who understand a wide range of constraints, demands, and principles of effective communication in both digital and nondigital environments” (2007, p. 100) can embody Selfe’s (1999) call for critical users of technology and “connect their understandings with the rhetorical principles that guide all language use” (Borton & Huot, 2007, p. 100).
Social networks

The discourse community of gamers is largely dependent upon digital technologies, which operate as social conduits between gamers. While activity theorists (Dean, 2010; Kohn, 2015) argue that discourse community analysis offers only a limited view of the ways in which a community functions, looking exclusively at a static snapshot of the gaming discourse community can offer us a more concrete picture of the digital social network of gaming. Essentially, this network is defined by gaming’s reliance on technology and its interconnected methods of communication that transfer between gamers’ offline and online lives. Understanding how this individual discourse community operates and communicates allows us to better examine how gamers develop technological skills through online interactions. And because multimodal literacies also rely on exposure to digital technologies and the development of social connections through digital venues, peering into the discourse community of gamers can help explain how multimodal composition students can benefit from assessing their relationship to technology and blurring the lines between their digital and non-digital lives.

Intercommunication skills for gamers are frequently developed through the technologies they use for gaming. Offline relationships call attention to online gaming possibilities (as was the case when Tobias’s brother asked him to watch an online video of Dying Light in order to be able to play together online), and online relationships are fostered even with the absence of a common gaming goal. For instance, Sam used the group chat feature on his Xbox to talk to his friends, even though they were playing different games. When I asked him to elaborate on this communication practice, he explained:
If I’m playing solo and I hop on and they invite me to their party, I’ll join and we’ll figure out what we’re going to play while I’m playing the solo game, and then I’ll jump onto something else.

Most of the time we just stay and party chat, and [we] can always put a few friends [in] that we don’t play with ever. But they join our party because we’re friends in real life, and we talk to them while they’re playing a different game. (March 2015).

For Sam, part of the gaming experience was simply socializing with his friends. His conception of the gaming discourse community included a shared interest in gaming and not necessarily an interest in a specific game. Though there were times when he switched his gaming habits to appeal to the group, communicating with the group was the most important tenet of online gaming.

While it may be easy to write-off Sam’s experience as simply an informal social interaction with his friends, looking at the literate practices this experience allowed him to develop effectively illustrates how gamers can become social cyborgs. By using his Xbox as a communication device, Sam created a space to develop the skills associated with N. Lamar Reinsche, Jr., Jeanine Warisse Turner, and Catherine H. Tinsley’s (2008) concept of multicommunicating: “the use of technology to participate in several interactions at the same time” (p. 391). As he visually and physically interacted with a video game, Sam audibly socialized with other gamers. His intimate relationship with the digital software allowed him to continually interface with both parties and establish a rewarding experience. Further studies would be necessary to discern whether the rhetorical effectiveness of gameplay or social interaction was affected by this kind of multitasking; however, when I asked him whether or not
it was distracting to interact with two different stimuli, he explained, “I’m pretty good at being able to talk and play at the same time I guess” (March 2015). As a social cyborg whose communication practices were enhanced by technology, Sam was able to establish concurrent interactions with confidence.

These multicomunication skills, according to Reinsche et al., are “an increasingly common occurrence in the technology-enriched workplace” (2008, p. 391), making them increasingly important in the multimodal composition classroom, where instructors are looking to help students develop twenty-first century communication practices. Students who adopt multicomunication skills, like the ones Sam obtained through socializing on his Xbox, can learn how to digitally interact with multiple devices and make more rhetorically effective choices. This can translate to more effective communication practices within and beyond the classroom. For instance, students who can manage multiple conversations during group projects not only benefit from the shared knowledge of the group, but also gain invaluable experience for workplace scenarios that require them to tend to multiple clients while maintaining team interactions.

Creating another method for cyborgian existence and blurring the lines between technology and society, gamers also use their social network affiliations to contribute to and learn from the gaming community. Citing a variety of online social interactions, John seemed to be the most connected to the digital social networks of gaming. During our interview he explained how he used more traditional social networking practices to stay abreast of gaming information: “I’m connected to IGN and also PS through my Facebook. So I’ll get little updates. Like Mortal Kombat X came out. . . . I haven’t bought it yet, but I’m thinking I’m going to go get it” (April 2015). John’s technological skills were only minimally enhanced through these kinds
of social network interactions as online communiqués inspired him to seek out more technology; however, these interactions help to illustrate the impact of gamers blurring their offline and online identities. Because he subscribed to online notifications from game-related companies, John acted as an offline cyborg who stayed immersed in the gaming world.

More importantly, online interactions with the social network of gamers inspired John to test the procedural rhetoric of various video games. As an active member of online gaming forums, John had read and responded to various players’ queries. He shared the process by which he answered a particular question on a gaming forum:

It’s Tactics Ogre—I remember it now. The question was, “How do you keep the princess from committing suicide in front of you?” You have to choose the right options, and I went through so many options. I saved it right before and was like, “If I press this then this, she kills herself. So it’s not that one. If I press this and this, okay, she kills herself. Not that one. The key to the right combination was that you have to talk down to her. Tell her like, “Without you, your kingdom will fall. Without you, they will look to the wrong person and your kingdom will fall to darkness. Everything will fall to chaos.” And the poster [of the question] tries it and goes, “Oh thanks!” And he tries it and comes back and goes, “It worked! Thank you so much!”

Responding to this post on the Tactics Ogre forum increased not only John’s participation in the social network of gamers, but also his technological prowess as he tested and retested multiple paths for the video game’s character.

In the multimodal composition classroom, procedural analytical skills like John’s can help students pay attention to the process of multimodal composing. Because it involves a variety of media, multimodal composing creates a more complicated space for writing than
traditional alphabetic composing. Students who have little to no experience with these kinds of complex writing tasks can quickly become overwhelmed by the procedures for writing with multiple modes. Learning to analyze the *processes* of multimodal composition, however, can create opportunities for students to be more rhetorically aware of their projects and the multimedia choices they make. As Bogost (2007) argued, “verbal, written, and visual rhetorics inadequately account for the unique properties of procedural expression. . . . Procedural rhetorics afford a new and promising way to make claims about how things work” (Kindle locations 715–718). Because audio, images, and text work together to create a single multimodal text, Bogost’s claims are important considerations for any multimodal composer.

Essentially, multimodal texts are procedural expressions that engage users/readers in specific ways. Because they offer non-linear ways of consumption, multimodal texts use process and procedure to define how an audience learns. Knowing how media interact with one another and their audiences can, therefore, create more rhetorical power for multimodal composers, who can use their knowledge to develop meaningful interactions between audiences and texts. Through their technological connections, gamers already possess a procedural literacy in that they “recognize both the specific nature of a material concept [i.e., video games are designed to be played] and the abstract rules that underwrite that concept [i.e., how to play]” (Bogost, 2007, Kindle Locations 4801-4802). As a result, gamers—like John with his procedural test of *Tactics Ogre* and Tobias and Sam with their rhetorical analyses of the gaming procedures of *Dying Light* and *South Park: The Stick of Truth* respectively—can utilize their technological skills by assisting in the rhetorical analysis of process-based multimodal texts.

Because multimodal composition, by definition, includes being able to communicate using multiple modes of expression, having the ability to mingle offline and online
communication practices and analyze the interactions between multiple forms of communication are almost necessities. As Reinsche et al. also established, however, “Multicommunicating is facilitated by technologies. . . . But technologies do not determine behavior” (2008, p. 391). Echoing Wacjman’s (2004) warning against technological determinism, Reinsche et al. further established how human agency helps to define the cyborgian social structure of multicommunicating. While digital fluencies can make technological interactions smoother, these fluencies do not necessitate rhetorical awareness. It is increasingly important, therefore, for students to heed Cheryl Ball’s (2012) advice and “choose their technology depending on what arguments they want to make” (p. 70). Gamers who adapt digital technologies to suit their social needs are making rhetorical use of their access, and these practices can further illustrate the significance of their literate skills in the multimodal composition classroom.

Gamers as Technological Engineers

Related to their cyborgian relationship with technology, gamers spend a considerable amount of time coming into close contact with technological hardware. This creates opportunities for games to develop hardware skills like typing, networking, wiring, and even computer repair. As Gee noted in the epigraph, video games can be “a fruitful precursor domain for mastering other semiotic domains tied to computers and related technologies” (2007, p. 40). For one of my research participants, working with refurbished gaming consoles provided him with a low-risk setting for hardware experimentation. Similarly, two of the women from the DALN used games as gateways to learning how to use a computer. Though their engineering experiences are limited, all three of these subjects illustrate how gamers can be inspired to become technological engineers who can manipulate the technological hardware around them. Because multimodal composition students can also benefit from hardware experimentation,
learning how gamers embrace technological engineering can help explain the potential benefits of gaming literacy in the multimodal composition classroom.

Video game consoles are essentially mini-computers specially designed for video game interfacing (Tyson, 2015, p. 2). When curious gamers come into contact with these devices, some are inspired to take them apart and make upgrades. Such was the case for my research participant John, who explained how his experience with a refurbished gaming console inspired him to experiment with hardware design:

I bought the PS3... refurbished. Someone didn’t want it anymore. I ended up buying it. I didn’t know until I looked at its hardware. I took a few pieces out that are useless. They need more capacity. So I plugged in a little something that gave it 32G. (April 2015)

When I asked him to explain this process and how he knew which pieces were useless, John elaborated:

There were some land routers the person put into that were unnecessary, so I just got rid of it because I have wireless... . . . What happened was I was looking at it, and I thought, “Well, I have WiFi, so why would I need a land router anymore?” So I took the land pieces out. (April 2015)

John knew that technicians had already manipulated the device (as is the case when a console is sold as “refurbished”), so he felt comfortable opening up the console to investigate. His knowledge of the technological components allowed him to not only determine which parts were necessary but also make necessary changes and upgrades.

According to John, because gaming consoles tend to have fewer components than modern computers and tablets, they offer gamers a less-risky platform for hardware experimentation. Gamers who, therefore, decide to experiment with technological engineering
can more easily navigate a video game console, which includes not only fewer components than a computer but also more working space than a traditional laptop. Even though he felt confident in his abilities to upgrade his PlayStation 3, John admitted that his computer hardware experimentation was somewhat limited: “I haven’t really done that with a computer yet because I’m afraid to be like, ‘I took out this part and, oh no, now the thing doesn’t work’” (April 2015). While John was able to effectively engineer his gaming console and make hardware upgrades, working on a computer held some technological intimidation. During our interview, however, he mentioned how he was still considered the “tech guy” in his social circles because he was willing to experiment with minor computer issues by rebooting and redownloading software.

In the multimodal composition classroom, being able to troubleshoot technological problems is essential. As John Branscum and Aaron Toscano (2007) warned in their chapter on multimodal experimentation, “There are sure to be times in the multimodal classroom when digital technologies do not work as planned.” When these problems arise, Branscum and Toscano suggested using “the class as a whole to identify some collective problem-solving approaches” (p. 88). Even though computer programming skills are not necessary in the multimodal composition classroom, students with technological experience can help lessen the pressure of these trouble-shooting sessions. For instance, students working with a website design program like Dreamweaver can copy each other’s code when what-you-see-is-what-you-get (WYSIWYG) options don’t provide the necessary results. Students need not be computer-programming experts to help in these kinds of situations; therefore, the rudimentary engineering and programming skills associated with gaming literacy can allow gamers to make effective contributions to these problem-solving approaches.
Similar to John’s experience with gaming acting as an outlet for technological engineering, “games [have] served as a primary gateway to learning programming” for other gamers as well (Keller et al, 2007, p. 77). More importantly, video games have frequently served as inspirations for learning how to manipulate the basic controls of a computer. Two of the women from the DALN, for instance, mentioned how video games helped foster their computer literacy. Jennifer’s first computer interactions happened while playing games on her family’s Commodore 64 (Herman, 2008), and Erika’s initial computer skills developed while playing on her family’s Zenith. Erika shared her earliest computer memories:

At home we had, I think it was a Zenith. . . . It used DOS commands, so you’d have to insert the two floppy disks and type in the DOS commands to get it to do anything, and so I learned some of my initial computer stuff on that because we had some very, very early computer games on there. Like we had Space Invaders. We had some just text-based games, like one that was vaguely based on Lord of the Rings. (Strandjord, 2008) Though her time on the computer was limited, Erika was able to learn how to navigate a DOS-driven computer program in order to play early video games. Simple gameplay command functions helped start her technological experiences, offering her rudimentary computer engineering skills in the process.

Once again, though computer programming skills are not essential in the multimodal composition classroom, being able to complete simple computational tasks (e.g., turning a computer on, opening a program, saving a file, etc.) can help make the transition into the multimodal composition classroom easier for students. As Selber (2004) touted, “Of course knowing how to operate a computer is one important aspect of teaching and learning in the contemporary instructional contexts” (p.1). Students in a multimodal composition classroom are
especially impacted by this contemporary educational pattern as they are expected to manipulate a variety of digital tools, from word processors to image and video editors to website designers.

While it’s important to address the idea that knowing how to manipulate technology does not equate knowing how to effectively compose with technology, having basic computer literacies (like those gained through gaming) can provide students with more opportunities for multimodal experimentation. Students like John, Jennifer, and Erika—who have technological engineering and programming experience from playing video games—can use their literate skills to operate classroom computers, manipulate computer programs, and potentially trouble-shoot problems based on their digital experiences.

Access and Economics with Technology

Because my research relies heavily on the development of technological and digital literacies, it’s important to end this chapter with a brief discussion of access and economics, especially when we consider the idea that video games are frequently considered a superfluous entertainment expense. Similar to the ways in which technological access can be indicative of a person’s cultural and economic background, access to video games can reveal potential community and socioeconomic biases as well. As Sidler, Morris, and Smith (2008) wrote in their edited collection *Computers in the Composition Classroom: A Critical Sourcebook*, “It is no exaggeration that, while women and other marginalized groups have participated in the rise of the digital age, the Internet revolution has largely been the domain of straight, white, able-bodied, middle-class males.” They also warned that “when minority students come into our computer-netted composition classroom, they may well bring along the baggage of the culturally dispossessed” (p. 181). Technological access, therefore, can frame students’ experiences in the multimodal composition classroom. By examining my research participants’ and the women
from the DALN’s access to gaming technology, we can more fully explore the relationships they had with digital literacies, potentially highlighting some of the literacy limitations of gamers and multimodal composition students.

Though gaming has become widely popular over the past few decades, economic factors still limit access and potentially influence the diverse cultural values of video games. These values can reveal how gaming literacy varies among players and the potential biases gamers face within their discourse community. While my research participants had largely similar backgrounds, economic factors still dictated their gaming experiences. In addition to having to share games and consoles with their siblings when they children, all three participants mentioned how economic factors played a role in their adult gaming lives. Tobias, for example, shared this story about “getting his money’s worth” from games he purchased:

[W]e have all four Devil May Cries; we got them all for 20 bucks. And we’re like, “Oh my god! This is like the best deal ever. . . . [O]ne of these days we’re going to get our money’s worth because that was a good deal. (January 2015)

He then later shared how financial investment in a game should be proportional to the game’s interface and gameplay, taking a stance against developers who charge too much:

There’s games that I play where I actually like the game so much that to support the developers I’ll say, “Okay. I’ll buy this little part or add-on pack just because they’ve earned that.” And then I’ll look at what they have to purchase, and it’s like you can spend 80 dollars to get 80,000 coins in the game. Like that doesn’t fit. It’s not proportional. You’re trying to squeeze people dry. (March 2015)
Because the *Devil May Cry* series was purchased as a “good deal,” Tobias valued his investment. The game that required him to spend 80 dollars, however, was not as valued because it seemed to cheat players out of money.

Tobias’s experiences with these two games illustrate important issues about his gaming literacy and access. First, monetary investment was a factor in determining the value of a game. While this value may not be specifically related to his ability to play the game, it does reflect his literacy about the gaming community and its technology—some technologies are worth more than others. In the multimodal composition classroom, these kinds of monetary judgments can reflect the cultural biases students may have when it comes to technology. Some students may be more willing to invest in personal copies of software, while others may see this investment as an inconvenience or waste of resources. Student versions of the Adobe Suite, for instance, range from $19.99 to $49.99 per month (Adobe, 2016). While instructors may rationalize that a monthly subscription would be equivalent to the cost of a textbook, the financial infrastructure required to maintain a monthly subscription fee fails to acknowledge students who either don’t have valid debit/credit cards or don’t trust the security of online shopping. This can lead to a need for more proactive and adaptable instructors who can suit the needs of diverse student populations.

Instructors who are aware of students’ cultural values on technology can also more easily adapt to the technological compatibility concerns caused by different versions of similar programs. Addressing the compatibility problems that arise when students work on multimodal projects at home, Branscum and Toscano (2007) explained how it is important for multimodal composition instructors to be aware of the composing strategies of their students. They offered
Students who do want to work in different environments [and invest in personal composing software] might benefit from trying out a mini project early in the term. . . . Students who do not want to deal with compatibility problems [or do not want to invest in the software] . . . can be encouraged to work in a lab context. (p. 90, emphasis in original)

While Branscum and Toscano were specifically addressing whether or not students wanted to confront compatibility problems, we can easily translate these concerns to financial investments. Digital technologies frequently cost money. Students who value software and have the funds to purchase technology may react differently to the multimodal composition classroom than students who either don’t value the software or don’t have the funds to purchase it.

Secondly, Tobias’s experiences with purchasing games reflect the cultural significance of gaming in the United States. While he was unwilling to purchase 80,000 in-game coins for 80 dollars, the game designers were willing to charge players that amount of money. Similarly, the newest generations of gaming consoles range from $249.99 for a Nintendo Wii U to $449.99 for a special edition Xbox One (GameStop, 2015). These high prices frequently determine which people in a society are able to access the technology. Moreover, as Erin shared in her literacy narrative at the DALN, gaming preferences and experiences can be dependent upon players’ socioeconomic status:

I kind of fell out of love with console games after Sega Genesis. It got a little too much—just too complicated, I think, after Sega Genesis. And I think it also has to do with my income level of my family. We couldn’t afford it. [So I play] mostly PC games, downloading games, things on CD. (Price, 2010)
Though her family couldn’t afford to keep up with the prices of newer gaming consoles, Erin continued to play video games. However, she shifted her gaming trajectory to focus on more affordable games like open-access online games and less-expensive CD-ROMs.

Outside of these socioeconomic concerns, Erin’s experience with gaming also hints at another issue of access when it comes to gaming literacy (and, by extension, multimodal composition skills): gender biases and barriers. Though video game franchises are beginning to recognize the growing force of female gamers (e.g., the newest *Tomb Raider* features a more relatable and realistic female protagonist—Lara Croft—when compared to the original game’s scantily-clad and disproportionately-busty avatar), the treatment and lack of representation of women in video games can still raise gender-related flags. More importantly, well-funded games like the *Call of Duty* or *Grand Theft Auto* franchises highlight more masculine-based themes like competition and violence. Consequently, the market for female and cooperative players who, like Erin, play games because they like “the interaction between people” (Price, 2010) is restrictive and potentially less appealing. While female gamers still develop the literate practices of gaming, their experiences may differ from their male peers who have felt welcomed and catered to by the industry.

In the multimodal composition classroom, where gaming literacies can help students transition into digital composing practices, students’ complicated relationships with technologies and merchandising can pose challenges to instructors. Women and minorities are especially at-risk when assumptions about technological literacies are based on common white-male-

5 See Becky Chambers’ (2012) editorial “Why Games With Female Protagonists Don’t Sell, and What is Says About the Industry” and Ben Kuchera’s (2012) report “Games with Exclusive Female heroes Don’t Sell (Because Publishers Don’t Support Them)” for more insights about the lack of female representation and the impact of financial investment on gender relations in the gaming industry.
dominated experiences. As Blair et al. (2013) established in their article “Cyberfeminists at Play: Lessons on Literacy and Activism from a Girls’ Computer Camp”:

Ironically, despite the technological advancement that has led to an era of iPods, texting, and social networking, girls don't receive the same message about technology-based career options that boys do, and not all children have the same ubiquitous access to technology. (p. 44)

While the multimodal composition classroom can be seen as a leveling-field where students from a variety of disciplines work together to complete assignments, it’s important for instructors to still recognize the ways in which digital technologies are marketed and accessed. For instance, if young girls are subconsciously receiving the message that “computer geeks” and “gamers” are white males (Blair et al., 2013, p. 43), then they are potentially limiting the influence technology has on their identities and knowledge creation. It is, therefore, important for multimodal composition instructors to not only be aware that such biases can exist but also be sensitive to students’ frustrations and animosity.

In the multimodal composition classroom, students will come to class with a variety of cultural and economic experiences, and how they interact with technology can frequently reflect the roles it has played in their lives. Even gamers’ experiences vary as their access to technology determines how they developed their literate skills. As students learn to navigate the multimodal composition classroom, it’s important for them to be able to critically assess the roles technology has played and will play in their lives. Writing about the technological experiences of two diverse individuals, Selfe et al. (2004) explained:

Perhaps most important, these case studies demonstrate how racism and poverty, literacy and illiteracy, money and access to technology are linked in the complex cultural ecology
that characterizes the United States of America—and how inventive individual people can be in shaping the conditions under which their access to technology can work most effectively. (p. 107)

Because each student can bring his or her unique technological perspective to the multimodal composition classroom—regardless of his or her gaming literacies—the entire class can benefit from the individual inventiveness to which Selfe et al. refers. And while economic access can determine the diverse rhetorical values of technology on an individual’s life, acknowledging these differences in the multimodal composition classroom setting can stimulate fruitful discussions about the nature of multimodality in our society.

Conclusion

Writing over a decade ago, Lester Faigley (2003) warned, “I can think of no scenario for the revival of public discourse that does not involve digital media. The technical barriers are quickly diminishing” (p. 179). With software programs like Dreamweaver, online website builders like Weebly, and opportunities for online social networking, Faigley’s prediction is certainly holding up. Though there are some limitations in place on the power of design (see Arola, 2010), free programs are making it easier to access multimodal composition technologies, and public discourse is using these multimodal texts to define the communication practices of the twenty-first century. As my research participants have shown through their intricate relationships with technology, gamers are poised to make significant contributions to the realm of multimodal composition. Specifically, my research participants have illustrated how their experiences with digital technologies have honed literate skills that can be used to make more meaningful and rhetorically effective multimodal texts.
Through cyborgian relationships with technology and social networks, my research participants gained valuable insights into the capabilities of digital design tools. Sam and Tobias’s compartmentalization of websites, for instance, allowed them to hone their research skills in order to more effectively find useful information online. John’s comfort with gaming technologies granted him the confidence to troubleshoot technological problems that occurred outside of gaming. And all three participants’ experiences with multiple gaming consoles granted them the ability to easily shift between digital devices and concurrently use multiple technologies to make meaning. And even though their gaming stories were somewhat limited, the women from the DALN effectively illustrated how video games provided them with invaluable connections to the technological world, offering basic digital skills that could prove to be useful in the multimodal composition classroom. With each exposure to the literate practices of the gaming community, my research participants illustrated the complex nature of gaming literacy and its potential applications to the technological needs of the multimodal composition classroom.

In my final chapter, I offer a culminating pedagogical framework that considers how the social and technological skills of gamers can be effectively utilized in the multimodal composition classroom. More specifically, I offer practical course goals and objectives—designed to build upon the literate skills of gamers—for the multimodal composition classroom. Including skills like collaboration, traditions like familial literacy sponsors, and opportunities like technological engineering, the framework functions as a guide for instructors of composition who want to include multimodal composing in their classrooms. Keeping issues of access and diversity in mind, I highlight the common literacy practices of gamers while still prioritizing the success of all students—gamers and non-gamers alike.
“Literacies have life spans linked to the cultural ecology of a specific time and place. Depending on a complex of circumstances, literacies emerge, accumulate, compete, and fade at varying rates. English–composition teachers and programs need to acknowledge, understand, and respond to this dynamic”

–Dânielle Nicole DeVoss, Joseph Johansen, Cynthia L. Selfe, and John C. Williams Jr. (2003, p. 168)

I suggest that to move forward in our consideration of repurposing and expansive learning [i.e. “transfer”], we might look beyond one task, one setting, or one individual to consider the habitus of the educational systems that encourage particular dispositions in individuals.

–Elizabeth Wardle (2012, para. 7)

As the DeVoss et al. epigraph indicates, the lifespan of a literacy is linked to a “specific time and place.” With 72–97% of youths (Lenhart, et al., 2008; Lenhart, Smith, Anderson, Duggan, & Perrin, 2015) playing video games, it is easy to mark the United States at the start of the twenty-first century as an important space for gaming literacy. Average citizens (adults and youths) are playing video games on their phones, computers, and gaming consoles, and they are sharing these experiences with one another by inviting friends to play games through social media sites like Facebook. By recognizing the importance of this literacy and the potential pedagogical applications of gamers’ literate skills, composition instructors and programs can answer DeVoss et al.’s call and respond to the dynamic nature of literacy in the twenty-first century. More importantly, utilizing the literate practices of gamers can offer composition instructors the opportunity to address growing demands for digital literacies as communication practices now include multimodal fluency.

To be literate in the modern era no longer merely entails one’s ability to read and write alphabetic text. According to a Pew Internet Research Study, 83% of Americans use the internet
at least occasionally, and 60% of them use social networking sites like Facebook and Twitter (Pew, 2011). In fact, 62% of American workers are using the internet at their workplaces (Madden & Jones, 2008). As institutions designed to prepare students for work beyond the classroom, universities must, therefore, begin to include courses that can meet the digital composing expectations of students and demands of the workplace. To best prepare students for these post-graduation communication practices, digital literacy scholars (e.g., DeVoss et al., 2010; Gee, 2007; Lutkwitte, 2014; Selber, 2003; Selfe, 2007) have argued that multimodal composition instruction is an essential addition to traditional alphabetic writing programs. By granting students experience in digital composing practices, multimodal composition instructors can ensure effective exposure to the twenty-first century literacies required to become successful professionals. Moreover, by designing courses that take students’ at-home digital literacies into consideration, instructors can benefit from the digital expertise that students bring to the classroom.

Throughout my research, I have stressed important crossover skills that students gain through the literate practices of gaming. For instance, my research participants cited experiences with collaboration, community-based problem solving, and technological expertise. In this final chapter, therefore, I address the possible transfer of gaming literacy into multimodal proficiencies by exploring pedagogical goals and objectives for the multimodal composition classroom. Citing research from transfer studies scholars, the chapter begins with a brief discussion about the process of literacy transfer in the composition classroom. The rest of the chapter is divided into prospective course goals and objectives that are based on the experiences of my research participants. Relying on the multimodal and twenty-first century literacies position statements developed by the NCTE’s Executive Committee in 2005 and 2013, I explore
course requirements that capitalize on collaboration, (gaming-)literacy sponsorship, competition, and cyborgian initiatives. Through this exploration, I establish how multimodal composition instructors can help students develop the tools of play needed to become proficient twenty-first century communicators. More importantly, I establish a pedagogical framework that any multimodal composition instructor, even those unfamiliar with video games, could implement into his or her classroom.

Literacy Transfer

Kathleen Blake Yancey, Liane Robertson, and Kara Taczak (2014) posited in *Writing across Contexts: Transfer, Composition, and Sites of Writing*, “we know that students call on prior knowledge as they encounter new writing demands” (p. 105). As they and other transfer studies scholars (Adler-Kassner & Wardle, 2015; Nowacek, 2011; Salomon & Perkins, 1989; Schwartz, Bransford, & Sears, 2005) would argue, students come to the classroom with an expanse of knowledge while instructors try to provide students with skills that can be used beyond a particular course. The transfer of knowledge in the classroom can be as basic as utilizing sentence creation skills to write an essay in an advanced writing course, or as complex as applying reader-response criticism to better understand word problems in a mathematics class.

Because the field of knowledge transfer is so vast and intricate, this chapter will be limited to a discussion of the skills gamers bring into the multimodal composition classroom. Borrowing the terms *backward-reaching transfer* from Gavriel Salomon & David N. Perkins (1989) and *transferring-in* from Daniel L. Schwartz, John D. Bransford, and David Sears (2005), this final chapter re-examines the crossover literacies between gaming and multimodal composition that were discussed in chapters three and four. Specifically, the chapter highlights how an acknowledgement of backward-reaching transfer can help improve the learning
experiences of students in the multimodal composition classroom. Given my project’s reliance on technofeminist methodologies, this exploration of transfer is especially important as it calls attention to students’ past relationships with technology and illustrates how “users can radically alter the meanings and deployment of technologies” (Wajcman, 2004, “Beyond Technological Determinism”). Essentially, how students view technology can have profound effects on their digital outputs.

Though writing across and into the disciplines is an important issue facing composition instructors who want to ensure student success beyond the classroom, equally—and I’d argue even more—important is ensuring student success and comfort within the classroom. Once again, a technofeminist focus on the relationships that students have to technology can help multimodal composition instructors better understand the ways in which students digitally compose. Academically, student comfort and success can lead to more thoughtful projects as students are less likely to fear failure and more likely to engage with the learning process. If students can learn how to apply previous knowledge to the multimodal composition classroom, in particular, where anxieties about digital representation and navigation abound, then they will be not only better prepared for multimodal composing but also more confident in their abilities to compose meaningful projects.

As Wardle’s epigraph indicates, writing instructors who want to draw upon the effective use of transfer in the classroom need to “look beyond one task, one setting, or one individual” in order to more fully understand how students approach course objectives and assignments. Though it is possible to recognize skill transfer between individual assignments or within classroom walls, understanding transfer as “creative repurposing for expansive learning” (Wardle, 2012, para. 7) can better prepare instructors to effectively utilize students’ dispositions
towards education. For instance, a composition instructor who asks students to reflect upon past writing experiences may ascertain the kinds of writing genres with which students are familiar. This knowledge can allow the instructor to make essential comparisons between course assignments and previously-experienced writing.

Similarly, composition students who are given multimodal assignment options can draw upon previous experiences and implement high-road transfer—“the mindful abstracting of knowledge from a context” (Salomon & Perkins, 1989) —in order to develop rhetorically-effective projects. To illustrate, Wardle cited an example of a student group’s response to the public health concern that teens were drinking and driving to get takeout food late at night:

“[students] mounted a ‘Don’t Drink and Drive Through’ campaign that entailed doorknob hangers with the phone numbers of restaurants that delivered after midnight” (2012, para. 11). Because they were collectively familiar with doorknob hangers, the group was able to transfer-in their knowledge of these flyers and offer an effective and implementable solution. More importantly, their project illustrated how they “grasp[ed] the relationship between the decontextualized representation [i.e., the usefulness of doorknob takeout menus] and the ‘raw’ instances of which it is an abstraction [i.e., the effectiveness of using a doorknob hanger as a public service announcement]” (Salomon & Perkins, 1989, p. 126). This example of a high-road, backward-reaching transfer illustrates the creative possibilities students can encounter when they are encouraged to reflect upon what they already know.

By offering an outlet for nonacademic educational systems—like the literacies of gaming—multimodal composition instructors can open a space for students to make use of at-home literacies in the design and completion of digital projects. The transferring-in of applicable gaming skills like collaboration and digital fluency, for instance, can allow students to more
easily adjust to communicating in an online environment. Becoming aware of the transferrable skills between gaming literacy and the multimodal composition classroom, instructors offer students the opportunity to approach course projects and objectives from the position of expert.

In the sections that follow, I provide a list of course goals and objectives for the multimodal composition classroom that make use backward-reaching transfer skills from gaming literacy. This pedagogical framework is designed to help composition instructors develop meaningful and rhetorically-effective multimodal composition courses. These courses would not only help students meet the growing demands of twenty-first century literacies, but also appeal to the NCTE’s (2005) Position Statement on Multimodal Literacies and the idea that the “integration of multiple modes of communication and expression can enhance or transform the meaning of the work beyond illustration or decoration.” Essentially, classrooms that make effective use of these multimodal course goals and objectives will be well-suited to help students experiment with a variety of composing mediums in order to enhance their communication skills.

Collaborative Skills in the Multimodal Composition Classroom

As a transferrable skill, collaboration is often cited as an important dimension for student success. Group projects and in-class activities depend on collaborative efforts, and students who can work well with others find themselves more at ease in composition classrooms, which draw heavily on student-centered learning and cooperative arrangements. As my research participants’ experiences highlighted, collaboration is also an essential component of gaming literacy. All three participants cited times when they shared technologies with their siblings or peers, and all three used online forums as guides through difficult in-game missions. The importance of collaboration in gaming is also consistently applauded by gaming scholars (Alexander & Rhodes, 2014; Gee, 2007; McGonigal, 2011; Prensky, 2006; Selfe & Hawisher, 2007) who want
to show how video games can be effective tools for learning. Because collaboration is inherent in so many different literate practices of gamers, it marks an important transferable skill for the multimodal composition classroom.

In fact, highlighting the importance of collaboration in the multimodal classroom, the NCTE’s (2005) Position Statement on Multimodal Literacies declared that “Because of the complexity of multimodal projects and the different levels of skill and sensitivity each individual brings to their execution, such projects often demand high levels of collaboration and teamwork.” Though it can be done in isolation, multimodal composing is most effective when it is shared with others and collaborated upon. Collaboration allows composers to not only utilize the skills sets of their peers but also trouble-shoot potential technology issues that may occur. More importantly, collaboration in a multimodal classroom allows students to test their interfaces and appeal to wider audiences. Considering that digital compositions are designed with diverse (and potentially global) audiences in mind, exposure to group work and team input can make students more rhetorically aware of the messages that their multimodal projects convey.

The following sections are divided into offline and online collaboration opportunities in order to best highlight how multimodal composition instructors could effectively invoke student proficiencies with collaboration. By addressing a variety of course goals and objectives for collaboration, these sections set the tone for a proposed pedagogical framework that utilizes gaming literacy in the multimodal composition classroom.

Offline Collaborations

Though video games frequently call to mind digital technologies and online communication, face-to-face communication skills are also developed through gaming literacy
practices. My research participants, for instance, explained how they developed lasting relationships with people by sharing controllers and playing split-screen—i.e., two or more players share the same television screen, which is digitally divided so that each player can control his or her avatar’s environment. Sam even mentioned how he built many offline friendships during high school by playing video games (March 2015). Essentially, video games, though digital in nature, create opportunities for players to develop non-digital skills and relationships. In the multimodal composition classroom, experience with these literate practices can allow students to more easily adapt to the kinds of offline teamwork common to multimodal projects.

To appeal to the NCTE’s (2005) call for increased collaborative skills and achieve a multimodal composition course goal of becoming proficient in offline collaborations, students will complete a variety of learning objectives designed to enhance their learning and make use of the literate practice of offline collaborations in the gaming community.

Sharing technology

Learning objective: Over the course of the term, students in a multimodal composition course will complete projects that require them to share technological devices with their peers.

In addition to developing collaborative skills, sharing technology allows for

- sharing the responsibility of learning a technology,
- low-risk learning while watching others “play” or complete tutorials, and
- increased support for less-skilled composers, who have more experienced peers able to offer assistance.

One of the cornerstones of the gaming community is sharing technology. For example, all three of my research participants explained how they had to share gaming consoles with older
siblings, two out of three women from the DALN mentioned sharing computer games with others, and my first video-game experiences resulted from sharing my sisters’ Atari and friend’s Nintendo. Sharing is so inherent in video game tradition that Microsoft redacted its original plan to limit video game sharing options on Xbox One after fans of the console rallied together to complain (Xbox Wire, 2013). Because gamers are used to sharing technologies, they are poised to adapt easily to multimodal composition classrooms, where limited resources can sometimes dictate course objectives.

With the expense of digital technologies and the budgetary concerns of most institutions, access to digital devices sometimes requires sharing. While this lack of resources can lead to frustration from students who want to work individually on projects, it also provides a pedagogical opportunity for instructors, who can use limited resources as a means to establishing meaningful group work. For instance, an instructor who can only obtain video recording devices for half of the students in his or her class can have students pair up to learn the technology. Students can then share responsibility for learning how to operate the devices and troubleshoot problems together. Additionally, if they have personal video recording devices, students can supplement the recording and provide their peers with more exposure to alternative recording practices.

While building a rapport with their peers, students in the multimodal composition classroom who have to share technologies can also benefit from secondhand-exposure to technologies. Gamers, for instance, spend a significant time watching others play—as evidenced from my research participants’ gaming literacy narratives and social video platforms like Twitch. While watching others play, gamers learn about in-game mechanics and gameplay possibilities. Even if they have no experience with the game, this secondhand-exposure offers them the chance
to know which questions to ask (e.g., How did you get the avatar to run?). In the multimodal composition classroom, watching others complete tutorials or manipulate software can expose students to the possibilities of multimodal design. Therefore, even if they are too afraid to play with the technology or unsure about what the software can do, students can gain valuable insights into the rhetorical elements of composing.

Finally, sharing technology allows multimodal composition students the chance to develop their collaboration skills by offering them opportunities for one-on-one instruction. Just like Tobias whose brother “had to show [him] what the buttons were” (January 2015), less-experienced multimodal composers learn well from the hands-on experience of veteran composers. When students are forced to share technology and take turns manipulating devices, they are given opportunities to take up the roles of teacher or student. This provides “students” with essential one-on-one assistance and “teachers” with instructional experience that can enhance their understandings of the technology.

In what he calls communities of practice, Richard J. Selfe (2007) explains how “students, technical staff members, administrators, and fellow teacher/scholars. . . can share expertise support, and strategies” for building a sustainable environment for multimodal composition instruction (p. 168). This environment will vary per institution; however, these communities are most important in schools with limited access to resources. Selfe went on to describe the potential benefits to multimodal composition students who would become privy to or partners with these communities of practice: “When students have a chance to become involved in [communities of practice], what they can gain are. . . new strategies for learning and new appreciations of interpersonal connections with faculty and others” (2007, p. 179). Because students, staff, administrators, and instructors all share investment in multimodal composition
development, they create a network of practitioners who can explore the possibilities of an institution’s technological infrastructure.

Identity assessment

Learning objective: Over the course of the term, students in a multimodal composition course will assess their own and each other’s projected identities through guided assessment and peer review.

Effective collaboration entails group assessment and reflection. As students work together to complete course goals and group projects, they naturally evaluate one another and reflect upon the project (e.g., this person is doing all the work, that person isn’t helping enough, etc.). By offering students opportunities to formally address these kinds of assessment practices, composition instructors can help students be more articulate and purposeful about their peer analysis. This is especially important in a multimodal composition classroom, where course projects have the ability to be published for a global audience. In order to meet the demands of a course goal that requires students to become proficient in offline collaborations and best prepare students to analyze multimodal texts, instructors can implement a learning objective that calls identity formation into play.

As the NCTE’s (2005) Position Statement on Multimodal Literacies highlighted, the creation of a multimodal text relies heavily on the identity of its composer: “Creating images, sounds, designs, videos and other extra-alphanumeric texts is an aesthetic, self-originated, self-sponsored activity for many writers.” With these kinds of intricate connections to the self, the multimodal composing process can be daunting to those students who may fear how others view their projects: A rejection of the project can be seen as a rejection of the person.
In a similar vein, gamers frequently grapple with identity-driven positioning in digital environments. Using the term *projective identity*, Gee (2007) explained how gamers *project* their identities onto their avatars. As a gamer, he clarified his desire “to project one’s values and desires onto the virtual character” and “[see] the virtual character as one’s own project in the making, a creature whom I imbue with a certain trajectory through time defined by my aspirations for what I want that character to be and become” (p. 50). Through these projected identities, gamers create formal bonds to their avatars and make in-game choices based on the kinds of people/creatures they want those characters to be. This practice leads to players who show off their characters to one another and make in-game choices based on the outward projections of their avatars. For example, I once had a friend spend 10 minutes showing me his *Fable* character’s avatar while explaining why he chose certain pieces of armor, and I used to forego putting a helmet on my *EverQuest* avatar because I wanted other players to see her pink hair.

In the multimodal composition classroom, experience with these projected identities (and the reactions other players have to them) can help students adjust to peer analysis and review. To build upon collaborative feedback and an awareness of how projects are interpreted by others, multimodal composition instructors can create opportunities for students to exhibit their projects and catalog their reactions to their peers’ projects. Studio review sessions (i.e., peer editing sessions that involve digital exhibits of students’ work), for instance, can allow students to engage in informal assessment of their work. As Sonya C. Borton and Brian Huot (2007) explained:

Even students who feel comfortable with new approaches to composing digital video or audio essays can use these more frequent formative assessment opportunities to make
sure they are staying focused—in terms of their rhetorical goals—and that the projects are developing effectively as communicative texts. (p. 104)

Guided, collaborative assessment allows students to not only share developed projects to which they have devoted much time and energy but also receive peer feedback about the possibilities for continued revision and expression.

In-class group work

Learning objective: Over the course of the term, students in a multimodal composition course will work with one another to complete in-class assignments and activities. These groups will vary throughout the term in order to expose students to new ways of thinking.

As an essential component to achieving course goals for offline collaboration, in-class group work offers multimodal composition students opportunities to build “buddy systems” and “friendship groups” (Blair, et al., 2013, p. 49) and incorporate a variety of meaning-making practices into short in-class activities.

Because gamers frequently collaborate to complete in-game objectives, they have valuable experience working with others to complete short-term goals and projects. This experience lets them rely on others’ expertise and points-of-view. John, for instance, used his girlfriend’s textual fluency to help navigate through *Grand Theft Auto* missions as she used the game’s guide to research while he played (April 2015). Similarly, Erika and her sister would work together to determine which course of action to take in their text-based computer games (Strandjord, 2008). These kinds of collaborative experiences can prepare gamers for the collaborative learning practices that enhance multimodal composing. As Blair et al. explained:

Collaborative learning also allows [students] to draw on their individual knowledge and experiences to create a shared community of knowledge. . . . [C]ollaborating with each
other and with the co-facilitators models the ways knowledge is created in the larger
digital world through exchanges of information and the building of relationships.
Collaborative learning also provides a model for the ways in which people combine a
variety of identities, knowledges, and experiences to compose in digital spaces. (2013, p.
49)
By working together multimodal composition students can effectively challenge themselves to
rethink the composing practice. This process can allow for new ideas and methods for effective
communication skills.

Online Collaborations

In addition to the offline collaborations in which gamers partake, multimodal
composition instructors can also harness the online collaboration practices of gamers. Besides
playing video games in person with friends, modern gamers enjoy a variety of online gaming
options. All three of my research participants shared stories about online interactions, and the
newest generations of gaming consoles include Wi-Fi capabilities and social networking
opportunities. For some gamers, like Josh Gardiner, online gaming creates a strong appeal to the
gaming industry, extending opportunities for transnational communications and audience
awareness (Selfe, Mareck, & Gardiner, 2007). The transferring-in of gaming literacies that rely
upon digital collaboration can help multimodal composition students become more rhetorically
aware of communication practices that lie beyond the classroom.

To achieve a the course goal of becoming proficient in online collaborations, multimodal
composition students will complete a variety of learning objectives designed to enhance their
learning and make use of the digital skills of online collaborations in the gaming community.
Extended group work

Learning objective: Over the course of the term, students in a multimodal composition course will complete at least one group project that will require work outside of the classroom.

Included in the multimodal classroom’s demand for collaboration and teamwork addressed in the previous section on offline collaboration is the need for students to understand how collaboration can be carried across multiple mediums. To best prepare for digital work, students in the multimodal composition classroom need to be aware of collaborative opportunities that lie beyond the classroom walls. Extended group work that needs to be completed outside of class can help expose students to possible outlets for digital collaboration.

In the gaming community, online collaboration affords players with the chance to work in groups to maintain on-going objectives. Players of MMORPGs, for instance, frequently establish long-term groups or guilds whose members are dedicated to similar gaming strategies and goals. In these groups, players learn about the strengths and weaknesses of its members. Moreover, players work together to ensure that each member’s skills are being used to their potential to ensure the team’s overall success. Tobias’s experience playing *Evolve* with his family, for instance, illustrated the camaraderie and specialization that occurs within these groups. As described in chapter three, Tobias’s familial group would assign players specific in-game specializations (e.g., attack, medic, etc.). And because his mother was less experienced with the game, Tobias would answer her game-mechanics questions as they battled together online.

In the multimodal composition classroom, these skills—of being able to assign teammates specific jobs and supporting those who are inexperienced—can help students complete long-term group projects like a web-design assignment or a team-taught technology demonstration. More importantly, these kinds of multimodal assignments that move beyond
simple in-class activities can increase the rhetorical effectiveness of the projects and even increase student awareness of digital communication practices. NCTE expounded, “When students produce brochures, literary magazines, books, videos, or greeting cards, collaboration improves the product and helps all students involved learn more” (2005). Essentially, because they can rely on one another for support and information, students within long-term group projects have the opportunity to reap the benefits of each individual member’s expertise.

Relationship maintenance

Learning objective: Over the course of the term, students in a multimodal composition course will read and respond to one another through at least one online venue (e.g., forums, social networking site, etc.).

Because multimodal composition courses are designed to help students become more effective twenty-first century communicators, exposure to digital communication practices is essential. In order to appeal to these communication needs, classroom objectives should include opportunities for online collaborations.

Based on my research participants’ experiences and the countless video game forums and social networking sites that currently exist online, we can safely say that gamers are using the Internet to maintain personal relationships. In fact, all three of my participants addressed how they used online gaming to maintain relationships that started through offline venues. Even gaming studies scholars like McGonigal (2011) have explained how video games offer players the chance to be gratified by staying in touch with loved ones online (p. 79). Relationship maintenance functions as a common side effect to online gaming.

Considering that many professional and academic correspondences require effective use of online communication skills, experience in maintaining personal relationships online can offer
students useful backwards-reaching transfer skills in the multimodal composition classroom. As DeVoss et al. (2010) posited, “Equipping students to work across and within contemporary networked spaces . . . will serve students in their higher education experiences and in the workplaces of the future” (p.5). Conversations that start in the classroom can be taken outside with opportunities for online discussion and vice versa. These digital spaces for communication can provide not only an archive of class-related information, but also a repository for the sharing of new multimodal composing strategies and programming.

Audience awareness

Learning objective: Over the course of the term, students in a multimodal composition course will read and analyze digital texts in order to better appeal to and understand various types of audiences. Students will also have the opportunity to interact with these audiences in order to gain more experience with online communication.

According to the NCTE (2005), audience plays a pivotal role in the dissemination of multimodal texts. When it comes to interpretation, “[t]here are increased cognitive demands on the audience to interpret the intertextuality of communication events that include combinations of print, speech, images, sounds, movement, music, and animation. Products may blur traditional lines of genre, author/audience, and linear sequence” (NCTE, 2005). To best prepare for online communication, students must, therefore, gain an increased sense of how others perceive their texts. In addition to the collaborative benefits of online communication practices, using the Internet to communicate can offer students an opportunity to develop these audience-awareness skills. This competency can translate into forging new relationships and using community knowledge to problem solve and develop ideas.
Digital communities vary greatly in terms of audience expectations and relationships. To best prepare students for twenty-first century communication practices, multimodal composition instructors should find ways to help students become aware of those audiences and protocols for communication in each setting. For instance, gamers’ awareness of online audiences tends to be evident in the games they play and the kinds of interactions they expect. Tobias knew what kind of game to suggest to his family so that each member could enjoy gameplay. And John stopped using his headset while gaming online because the audience no longer appealed to him. He mused, “It’s just every time I get on there, there’s just someone, like a little kid, just cursing up a storm. I’m like, ‘Why do your parents let you on here? Like why?’” (April 2015).

By analyzing those kinds of online interactions and the communiqués between members of online communities, multimodal composition students can learn the importance of audience awareness. More importantly, they can learn how to appeal to a variety of audiences in order to ensure the rhetorical effectiveness of their projects. Perhaps an image of a cartoon cat blurting out expletives wouldn’t appeal to a more adult, academic audience, but it could appeal to a group of tweens who think swearing is funny or a mark of maturity.

As a communication tool, the Internet can also offer students a larger community with which to collaborate. Just like gamers who use forums, wikis, and discussion threads to share ideas and ask for assistance, students who use online communities can learn to tap into a larger collective of rhetorical insights and ideas. Citing their own experience with collaborative exercises, Alexander and Rhodes (2014) explained:

We find collaboration itself an act of excess, and necessarily so. . . . Our collaboration has come to depend on the availability of that excess, on the meeting of minds with
numerous thoughts and desires that become entangled with one another in the production of thoughts and texts that could not otherwise exist individually. (p. 122)

By creating a space for *excess*, online collaborations offer students the opportunity to see how rhetorical acts get revised and reworked for various audiences. Great ideas about expression are sometimes thrown in “digital trash cans” (Alexander & Rhodes, 2014, p. 122) because they don’t appeal to specific groups; however, core issues can remain the same across contexts as different media are used to fill rhetorical purposes.

(Gaming-)Literacy Sponsors in the Multimodal Composition Classroom

One’s epistemic relationship to literacy can help determine his or her disposition towards a set of literate practices. By defining our acquisition of literacy, we are better able to assess the role literacy plays in our lives and, potentially, the role literacy plays in our identity formation. James Phelan (2013) and other literacy narrative scholars have contended that literacy narratives allow:

- the storytellers seek to come to terms with their experiences with various forms of literacy as a way of understanding who they are now, why they did what they did and do what they do, what they might do next, and so on. (para. 7)

Knowledge about how we came to make meaning within a specific literacy can make us better critical thinkers and communications; therefore, it is important for students to analyze their literacy histories. To achieve a multimodal composition course goal of literacy-sponsor awareness, students will complete learning objectives designed to enhance their epistemic awareness.
Literacy Analysis

Learning objective: Over the course of the term, students in a multimodal composition course will compose a technology literacy narrative that explores when, where, why, how, and with whom they were exposed to technology. Similarly, students will be asked to assess their own sponsorship of literacy and how they have (or have not) taught others about technology use.

Though most of my learning objectives invoke general course goals and achievements, the learning objective linked to literacy awareness needs to be more explicitly linked to a concrete assignment like a technology literacy narrative in order to ensure that all multimodal composition students have the opportunity to assess how technology has impacted their communication practices. Writing about their own experiences using technology literacy narratives in the composition classroom, Karla Kitalong, Tracy Bridgeford, Michael Moore, and Dickie Selfe (2002) explained:

Writing technology autobiographies encourages [students] to reflect upon their own (and sometimes upon other people's) experiences with technology, which leads them to think critically about technology. In the process, the invisibles can become visible, the implicit can be made explicit. Useful and engaging writing often results from such reflection. (p. 219)

By critically reflecting on the process by which they obtained their digital literacies, multimodal composition students can be better poised to make effective rhetorical choices about how and why they have chosen specific modes for communication.

As detailed in chapters three and four, gamers have established a diverse community that shares knowledge and information with one another. This community operates largely through Brandt’s (1998) concept of sponsors of literacy as incoming neophytes are schooled in the
literate practices of gaming by veteran gamers. This exchange continues with each generation of gamers and creates a growing collective of gaming skills and knowledge. By analyzing one’s gaming-literacy sponsor, gamers are more aware of their rhetorical choices to select certain games or frequent specific websites. Both Tobias and John, for example, knew that some of their gaming choices were based on their siblings’ gaming preferences.

In the multimodal composition classroom, an awareness of (technological-)literacy sponsors can allow for critical assessment of digital choices and dispositions. In “Growing Up in the Belly of the Beast,” Sally Wyatt (2001) highlighted how her parents’ understandings of technology impacted her own relationship to technology. She explained:

My parents and I write different sorts of cyborg stories, but they are all fables arising out of the socio-technical conditions of the later part of the twentieth century. From our different but overlapping perspectives, we are each attempting to make sense of our worlds. (p. 90)

From this confession, Wyatt highlights how she came to realize the impact her technological-literacy sponsors had on how she viewed the world. By invoking her parents’ experiences along with her own, she was better able to define her interests in technology.

In a similar vein, multimodal composition students who complete technology literacy narratives can better understand their relationships to digital technologies. This can allow them to overcome (or at least recognize) potential biases they may have. Additionally, knowing the process by which they came to technology can help them become part of a technological sponsorship cycle, whereby they pass on their technological expertise to less-experienced peers and add to the class’s collective of digital information.
Assessment in the Multimodal Composition Classroom

Assessment is a commonly debated topic in academia, especially when it comes to multimodal composition where assignments vary greatly between mediums, length, and overall commitment of time. For the gaming community, in-game assessment is rather easy: Game mechanics and algorithms determine characters’ score and success. Objective out-of-game assessment, however, can yield just as many hurdles as multimodal composition assessment as players can redefine rules and reestablish motivation for continued enjoyment of the game. To best serve the needs of their students and incorporate the practice of innovative game design, instructors can ask students to participate in defining assessment criteria. This practice allows students to become more invested in their learning outcomes and more active in their approach to assignments. To achieve a multimodal composition course goal of analyzing multimodal compositions, students will participate in assessment practices.

Assessment

Learning objective: Over the course of the term, students in a multimodal composition course will help determine how their work will be assessed.

In his text *Teaching and Evaluating Writing in the Age of Computers and High-Stakes Testing*, Carl Whithaus (2005) explained, “By asking themselves and their students questions about the criteria for assessing writing, teachers can provide a means of situating assessment not only in local classroom practice but also in an authentic communicative environment” (p. 59). When instructors open a dialogue about assessment, they invite students into an important communicative environment—one where students become agents of their education. As other digital scholars have noted (Selfe, 2007), student investment in assessment can create a critical
space for rhetorical awareness. By defining how their projects will be graded, students are better equipped to analyze other multimodal texts for meaning and readability.

In the gaming community, players participate in assessment through competition. That competition, however, isn’t limited to in-game, player-versus-player scenarios that are defined by games’ programming. Instead, players develop new rules for assessment by inventing competitions and rules for punishments and rewards. Sam, for instance, explained how he and his friends once spent a summer competing for the highest achievement score—i.e., a number generated by gaming consoles for completing specific in-game challenges (March 2015). By creating this competition, Sam and his friends repurposed Microsoft’s Gamerscore into a new form of assessment that inspired all of them to play more. As I noted in chapter three, John also mentioned an innovative assessment practice related to his experience with Nintendo’s *Smash Brothers*: Players were given a “free shot” if they interrupted someone’s in-game taunt (February 2015). Through this scenario, John and his friends agreed to use in-game punishments whenever someone broke the “house rules.”

As Sam and John’s experiences illustrate, when given the opportunity to participate in assessment, gamers develop new possibilities for motivation and innovation. In the multimodal composition classroom, these skills can transfer into new ways of approaching assessment and determining methods of punishment and reward. More importantly, multimodal students who participate in assessment practices become more aware of the rhetorical nature of their texts. Borton and Huot (2007) clarified: “Creating a collaboratively constructed rubric. . . helps to make classroom expectations, including the newer elements of multimodal texts, more apparent for both teachers and students. Such activities also harness the opportunity to use assessment to *teach* composition” (p. 101, emphasis in original). By using transparent grading practices and
involving students, instructors place students in the roles of teachers. This creates an opportunity for students to determine the rhetorical weight of each textual component, allowing them to see how an overall text projects meaning to an audience.

Cyborgian Initiatives in the Multimodal Composition Classroom

A significant transferrable skill obtained through gaming literacy is that of technological comfort. As all three of my research participants’ gaming-literacy narratives indicated, each player was very comfortable around digital technology and employed its use on a frequent basis. In many cases, my research participants indicated how gamers’ relationships to technology mimic that of a cyborg. That is, technological devices frequently acted as extensions of their bodies and were used to absent-mindedly search for assistance, access games, and develop partnerships. In the multimodal composition classroom, this level of technological comfort can serve as an important backwards-reaching transfer skill that allows gamers to take design and composing risks. Additionally, this cyborgian relationship to technology can help lessen the pressure for instructors to act as the sole expert in the classroom.

One of the fears that instructors and students face in the multimodal composition classroom is that of inexperience. In fact, many instructors who shy away from multimodal work in the classroom are simply concerned that they don’t know enough about digital technologies to serve as meaningful guides for their students. The NCTE’s (2005) Position Statement on Multimodal Literacies potentially amplifies this fear by stating, “With the development of multimodal literacy tools, writers are increasingly expected to be responsible for many aspects of the writing, design, and distribution processes that were formerly apportioned to other experts.” With a lack of those *experts* in the classroom, instructors and students can be intimidated by the prospect of multimodal composition. However, exposure to technologies and the creation of a
safe space for students to “play” can alleviate much of the pressure from students and instructors, creating a space for cyborgian relationships to develop.

Because digital technologies range from WYSIWYG software to portable and lightweight devices, the following section is divided into software and hardware proficiencies. To achieve a multimodal composition course goal of being comfortable with digital technology, students will complete a variety of learning objectives designed to expose them to different technological software and devices.

Software Proficiencies

Learning objective: Over the course of the term, students in a multimodal composition course will be exposed to a variety of technological software. These technological tools will be used to complete in-class activities and course assignments.

Exposure to a variety of technological software creates a space for students to experiment with design and determine which sources best suit their rhetorical needs. The benefits of experimentation are expressed as students use multiple resources to complete a task and research new technologies.

Software exposure is a common occurrence for gamers. In addition the myriad of games they play across multiple devices, gamers also frequently find themselves searching the Internet for gaming-related information. All three of my research participants, for instance, had systematic methods for looking up gaming related information like tips on completing an in-game mission or ratings for new video games. Tobias even explained how he used information from gaming websites in nontraditional ways when he would look at video game polls to determine which new games to check out (March 2015). With this intricate exposure to websites
and gaming software, gamers are frequently prepared for the kinds of software experimentation that defines rhetorical acts in the multimodal composition classroom.

A significant part of gaming literacy is defined by the gaming community and its use of digital technologies to share information. Though each of my participants had a slightly different strategy for locating assistance, all three relied on multiple resources (e.g., video clips, FAQs, discussion boards, walkthroughs, etc.). In the composition classroom, these kinds of comprehensive searches can prove to be useful as students engage with unfamiliar technologies. For example, a student looking for help on creating *div* tags (i.e., a container within a website that holds specific content) with Dreamweaver can find assistance from the Adobe website, YouTube, or programmer forums. More importantly, working with this software and these websites can expose the student to more design possibilities as users within those sites frequently provide links for further consideration.

Students who are encouraged to continue their relationship with these sites are also poised to benefit from this exposure as they learn about new technologies or potential upgrades. Just as John expanded his knowledge with gaming technologies by researching the PlayStation 4 before purchasing it (April 2015), multimodal composition students can learn more about the rhetorical possibilities of the software from perusing these sites. For example, for its new list of updates, Adobe (2015) published a “New Features Summary” for Dreamweaver CC. This report explained how enhancements were made to the Quick Property Inspector for text: “You can now use the Quick Property Inspector for text in Live view to quickly format, indent, and hyperlink text” (Adobe, 2015). These changes illustrate rhetorical choices that can be made in regards to the function of a text. Though seemingly simple design choices, this update lets composers know that they can modify their text by formatting, indenting, or hyperlinking it.
Hardware Proficiencies

Learning objective: Over the course of the term, students in a multimodal composition course will be exposed to a variety of technological devices. These technological tools will be used to complete in-class activities and course assignments.

One of the tips Branscum & Toscano (2007) shared about experimenting with multimodality in the classroom was “Put explicit value on creativity, and open the door for experimentation” (p. 87). By encouraging students to use digital composing tools in creative ways, instructors can inspire more exciting and rhetorically engaging projects. Becoming proficient with technology, however, requires time and access. Providing ample time and opportunity for access to a variety of technological devices is essential in the multimodal classroom, where student exposure to tools can create more opportunities for creative experimentation.

In chapter four I reflected on Haraway’s (1991) “Cyborg Manifesto” and explained how gamers frequently function as cyborgs by using technological devices in a variety of ways. This experience with technology can translate to an increased level of comfort in the multimodal classroom where digital devices are used to make meaning and convey ideas. Frequent exposure to these devices can also help multimodal composition students feel more comfortable with technology, thereby accentuating their cyborgian potential. This human-meets-machine concept can potentially create more engaging multimodal projects as students begin to think about composing through the lenses of multiple mediums. That is, instead of limiting themselves to communicating solely through alphabetic texts that have images thrown in to meet multimodal requirements, students who think like cyborgs can better appreciate the nuances that videos, sounds, and images can bring to their projects. Similarly, offering students the opportunity to
experiment with a variety of technological devices also creates opportunities for critical reflection as students are able to analyze the capabilities of each device.

Future Research

Throughout my study, I addressed my research questions in order to determine how composition instructors could effectively use the literate practices of gamers in the multimodal composition classroom. Based on the work of gaming-studies and multimodal composition scholars, I began this research with the recognition of overlap between the literate practices of gamers and the kinds of skills needed to create meaningful and rhetorically-effective multimodal projects. Drawing from my own experience and the experiences of my research participants I uncovered potential backwards-reaching transfer skills—like collaboration, literacy sponsorship, assessment, and technological proficiency—in order to explore potential applications of at-home literacies in the academic classroom.

To better determine the effects of transfer between gaming literacy and multimodal composition skills, future teacher research would be warranted. As Salomon and Perkins noted, “Identifying a case of transfer requires no more than documenting the side effect of learning something on a different performance or context” (1989, p. 116). Though the side effects of gaming literacy can be easily theorized into multimodal composing skills, research that looks systemically at multimodal-composition students’ reactions would offer a means for testing my pedagogical framework. Specifically, asking student gamers to reflect upon their literate skills (through literacy narratives and reflective journaling) while completing multimodal assignments would allow scholars to put the theories of my research into practice.
Conclusion

In her concluding chapter of *Writing and the Digital Generation: Essays on New Media Rhetoric*, Heather Urbanski (2010) explained, “The Digital Generation see texts as more interactive than perhaps previous generations and are less content to merely receive messages, being intent on participating in the creation of those messages” (p. 239). Texts in the twenty-first century are, therefore, already conceived as multimodal as students expect to engage with the content. In the multimodal composition classroom, this need to interact with and participate in the creation of messages can harness student expectations to communicate in digital environments as well. As digital scholars have attested, multimodal composition is a necessary component for writing studies in the twenty-first century. NCTE even established that “Because technology has increased the intensity and complexity of literate environments, the 21st century demands that a literate person possess a wide range of abilities and competencies, many literacies” (2013, emphasis added). Though producing and implementing these kinds of multiliteracies courses into our curricula can seem daunting, making use of students’ backward-reaching transfer skills can help make the transition into the multimodal classroom smoother for both students and instructors.

Throughout this dissertation, I have highlighted the ways in gaming literacy can better prepare students for multimodal composing. With the growing popularity of gaming as an entertainment venue, the literate practices of gamers are permeating larger communities and creating an opportunity for composition instructors to capitalize on more common at-home literate practices. As my research participants have shown, gamers’ experiences vary between players; however, tapping into the collective knowledge of the gaming community can create a space to access each player’s unique area of expertise. In the multimodal composition classroom,
this collective can not only be accessed but also mimicked as students are encouraged to seek opportunities for collaboration and online assistance.

Though not everyone in a multimodal composition course will have had extensive experience playing video games, the course goals and learning objectives put forth in this final chapter can be met by all students in multimodal composition courses. Those who have experience with gaming literacy may have skills to transfer in to meet course objectives more easily; however, students with other at-home literacies can still be encouraged to find ways to apply those skills in similar manners. My course goals and objectives frequently reflect the recursive sociotechnical relationship that users have with the digital devices they use so that students can call to question their choices about specific rhetorical moves. These kinds of rhetorical analyses can be mastered by any student, regardless of his or her background with video games.

Throughout my work, I have considered technofeminist concerns about access and power, and I encourage those who would embark on instructing a multimodal course to maintain open lines of communication so that students need not feel alienated or ostracized by their past relationships to technology. As my work with my research participants indicated in chapters three and four, having these kinds of open-ended relationships between researcher and researched (or instructor and student) can allow for more meaningful and deeper kinds of conversations about how and why we know what we know about literacy.

As Gee noted in the epigraph of chapter one, “Video gaming…is a multimodal literacy par excellence” (2007, p. 18, emphasis in original). Video games provide an essential pathway for understanding multimodal literacy because they make systematic and simultaneous use of multiple modes of communication. Gamers interact with games and other players through audio,
visual, textual, and kinesthetic mediums. By questioning and analyzing their potential uses in the classroom, composition instructors can continue to challenge epistemic notions about writing and traditional meaning-making practices. In the multimodal composition classroom, these new notions about what it means to write and communicate are even more important. If video games can provide students with literate skills that can better prepare them for these communication practices, then composition instructors should find ways to make use of those skills in the classroom.
REFERENCES

LaVaque-Manty, D. (2013). Drag and drop: Teaching our students things we don’t already know. In R. Colby, M.S.S. Johnson, & R.S. Colby (Eds.), *Rhetoric/composition/play*

Carbondale, IL: Southern Illinois University Press.

APPENDIX A: STUDENT SURVEY

The following is the list of questions asked by the online survey. Students were given the option to fill in the blank for the “I use the follow gaming-related web-content” question by choosing “Other (please specify).” Following the list of questions is a screenshot from the survey, which was housed on the Survey Monkey website.

Gender:

- Male
- Female
- Choose not to answer

Race:

- White
- Black or African American
- American Indian or Alaska Native
- Asian
- Native Hawaiian or Other Pacific Islander
- Some Other Race
- Two or More Races
- Choose not to answer

Age (in years):

- Fill in the blank
- Choose not to answer

I play video games

- Never
- Less than one day a week
- 1-2 days a week
- 3-4 days a week
- 5-6 days a week
- 7 days a week

I use the follow gaming-related web-content (check all that apply)

- Walkthroughs
- FAQs
- Forums
☐ Videos (from Youtube, Vimeo, etc.)
☐ Information Websites (e.g., IGN, GamesRadar, etc)
☐ Gaming Websites (e.g., Kongregate, Addicting Games, etc.)
☐ Blogs (e.g., Kotaku, Joystiq, etc.)
☐ Online Gaming Magazines (e.g., Game Informer, @Gamer, etc.)
☐ Game reviews (from an app store, online department store, etc.)
☐ Other (please specify)
☐ None

When using walkthroughs, I prefer

☐ Text-only walkthroughs
☐ Text and image walkthroughs
☐ Video walkthroughs
☐ I don’t use walkthroughs

I have done the following (check all that apply)

☐ Asked a question on a gaming forum
☐ Answered a question on a gaming forum
☐ Moderated a gaming forum
☐ Created a text-only walkthrough for a game
☐ Created a text and image walkthrough for a game
☐ Created a video walkthrough for a game
☐ Created a gaming-related blog
☐ Created a gaming-related video
☐ None of the above

I am willing to be contacted for further participation in this research project by participating in two 30-minute interviews based on my gaming experience.

☐ Name
☐ Email address
By completing this survey you are indicating your consent to participate in the study.

This survey is designed to fulfill the needs of my (Tina Arduini) dissertation research project. I am a third-year PhD student in Bowling Green University’s English: Rhetoric and Writing Program. This survey is designed to help me answer the following research question: what happens when students use video game literacy (i.e., their ability to play video games and their proficiency navigating and using video game-related information: websites, walkthroughs, internet forums, etc.) in the composition classroom to create multimodal compositions (i.e., compositions that require the use of a variety of mediums: audio files, videos, pictures, alphabetic text, etc.)?

Purpose: By relying on your experience, I will be able to determine possible ways in which gamers use different kinds of communication during their gaming experiences. This will allow me to look for similar skills required for multimodal composing. Since gaming has become such an immense force in modern American society, being able to identify and utilize gaming skills can benefit a composition instructor who is looking to use multimodal composition in his or her classroom. Besides being able to analyze your own composition skills, there are no direct benefits to you, the survey taker.

Procedure: For the purpose of this research, I will be conducting a brief (eight question) survey. The survey will take approximately 7 minutes to complete. At the end of the survey, you will also be asked about your willingness to continue your participation in the study by letting me interview you on two separate dates at a later, agreed-upon time. If you choose to not be interviewed, your survey results will still be considered in the study. Should you agree to be interviewed, your name and email address will appear on the list of results. This will eliminate your anonymity; however, I will ensure that your results remain confidential by keeping the results in a password-protected folder on my computer. Your interview data will also be published under a pseudonym to help ensure your confidentiality as well.

Figure 1: A screenshot from the online survey created with Survey Monkey.
APPENDIX B: STUDENT EMAIL INQUIRY

The following is the email that was sent to students, asking them to participate in my survey. The hyperlinks were made active so that students could simply click on the link to access the survey.

Dear Student,

My name is Tina Arduini, and I am inviting you to participate in a research study. I am a third-year PhD student in BGSU’s Department of English’s Rhetoric and Writing program, and the research is to help me complete my dissertation. To participate in the study, you will complete a brief survey.

You are being contacted because your GSW instructor has given me permission to solicit you for information. Your grade in GSW, however, will not be affected by your participation or not in this survey. And your relationship with BGSU will also not be affected by your participation. By completing and submitting this survey, you are simply giving your consent to participate in the study, and you are giving me permission to use your responses to help me answer my research question: what happens when students use video game literacy (i.e., their ability to play video games and their proficiency navigating and using video game-related information: websites, walkthroughs, internet forums, etc.) in the composition classroom to create multimodal compositions (i.e., compositions that require the use of a variety of mediums: audio files, videos, pictures, alphabetic text, etc.)?

The survey will take approximately 7 minutes to complete. At the end of the survey, you will also be asked about your willingness to continue your participation in the study by letting me interview you on two separate dates at a later, agreed-upon time. If you choose to not be interviewed, your survey results will still be considered in the study. Should you agreed to be interviewed, your name and email address will appear on the list of results. This will eliminate your anonymity; however, I will ensure that your results remain confidential by keeping the results in a password-protected folder on my computer. Your interview data will also be published under a pseudonym to help ensure your confidentiality as well.

There are no foreseeable risks associated with this survey. And though there are no direct benefits to you for completing the study (besides experience with completing surveys and assessing your literacy skills), the information I gather from this study may help benefit future students and teachers of writing.

As I noted earlier, your participation in the survey will remain anonymous unless you indicate that you wish to be interviewed, at which point it will become confidential. Once I obtain your data (from the survey and/or interview), I will protect your confidentiality so that only my dissertation committee and I will have access to your information. All hard copy data will be stored in a locked filing cabinet, and all electronic data will be saved in a password-protected folder on my personal password-protected laptop. I will also use a pseudonym when publishing your interview data.

Your participation is completely voluntary. You are free to withdraw at any time. You may
decide to skip questions or a discontinue participation at any time without penalty. Deciding to participate or not will not affect your relationship with Bowling Green State University, nor will it affect your grades or academic standing.

If you have questions or concerns about this project or your participation in my research, you may contact me (Tina Arduini) at any time via email at tarduin@bgsu.edu or my advisor (Dr. Kristine Blair) at kblair@bgsu.edu. You may also contact Bowling Green State University’s Human Subjects Review Board (HSRB) for information regarding questions about participant rights at 419-372-7716 or hsr@bgsu.edu. Thank you for your time and consideration in helping me complete this research.

By following the link to the electronic survey below, you acknowledge that you have read and understood the above information, are at least 18 years old, and give your consent to participate in this study. As a note, some employers use tracking software to monitor and record keystrokes, mouse clicks, and web sites visited. This could impact the confidentiality of your responses. Therefore, you may wish to complete the survey on a home computer. Do not leave the survey open if using a public computer or a computer others may have access to. Once you submit your final answers to the survey, please clear your web browser’s cache and history page in order to protect your privacy. To continue on to the survey, please click on the link below:

[https://www.surveymonkey.com/s/W5DN7JQ]

Thank you for your consideration!
-Tina Arduini
APPENDIX C: INTERVIEW SCRIPT

The following is the interview script I provided (via email) to each of my interviewees prior to our first meeting. I also brought a copy of this script with me to share to both interviews.

For the purpose of this research, I will be conducting two interviews. Each interview will last approximately 30 minutes and will take place at an agreed upon location. I have set-up the interviews to flow more like a conversation than a typical question and answer interview so that your experiences will be better highlighted. This will allow us to follow conversational tangents and topics related to my project; while at the same time, I will be able to share some of my own relatable experiences as a gamer to help validate and clarify my meanings.

The first interview will ask questions that help you explain and establish how you started gaming, and the second interview will look at your current relationship with gaming. Though our conversation may drift as we discuss gaming, here are the core interview questions that we will answer:

Interview one:
- How did you get started into video gaming?
- How old were you when you played your first video game?
- What was the first game you played, and on what platform did you play?
- Who (if anyone) taught you to play?
- How often did you play as a child?
- With whom (if anyone) did you play video games as a child?
- What was the first game you beat? Describe that experience.
- Is there anything else you want to share about how you learned to play videogames?

Interview two:
- What kinds of devices do you use for gaming?
- What else do you use those devices for?
- What kind of games do you play? What are the last three games you played?
- How do you decide what new games to check out? (i.e., where do you go, what resources do you use?)
- What would you do if you were confronted by a level you couldn’t beat? How do solve problems when gaming?
- Have you ever used game FAQs or used walkthroughs? What gaming websites, if any, do you consult?
- When do you play?
- How often do you play?
- Do you play with other people or mainly solo?
- Is there anything else about videogames you would like to share?
APPENDIX D: HSRB APPROVAL LETTERS

The following are copies of my HSRB approval letters.

BGSU
Bowling Green State University
Office of Research Compliance

DATE: October 3, 2014
TO: Tina Arduini
FROM: Bowling Green State University Human Subjects Review Board
PROJECT TITLE: [658107-4] Gaming Literacy and Multimodal Composition
SUBMISSION TYPE: Revision
ACTION: APPROVED
APPROVAL DATE: October 3, 2014
EXPIRATION DATE: September 22, 2015
REVIEW TYPE: Expedited Review
REVIEW CATEGORY: Expedited review category # 7

Thank you for your submission of Revision materials for this project. The Bowling Green State University Human Subjects Review Board has APPROVED your submission. This approval is based on an appropriate risk/benefit ratio and a project design wherein the risks have been minimized. All research must be conducted in accordance with this approved submission.

The final approved version of the consent document(s) is available as a published Board Document in the Review Details page. You must use the approved version of the consent document when obtaining consent from participants. Informed consent must continue throughout the project via a dialogue between the researcher and research participant. Federal regulations require that each participant receives a copy of the consent document.

Please add the text equivalent of the HSRB IRBNet approval/expiration date stamp to the “footer” area of the electronic consent document.

Please note that you are responsible to conduct the study as approved by the HSRB. If you seek to make any changes in your project activities or procedures, those modifications must be approved by this committee prior to initiation. Please use the modification request form for this procedure.

You have been approved to enroll 220 participants. If you wish to enroll additional participants you must seek approval from the HSRB.

All UNANTICIPATED PROBLEMS involving risks to subjects or others and SERIOUS and UNEXPECTED adverse events must be reported promptly to this office. All NON-COMPLIANCE issues or COMPLAINTS regarding this project must also be reported promptly to this office.

This approval expires on September 22, 2015. You will receive a continuing review notice before your project expires. If you wish to continue your work after the expiration date, your documentation for continuing review must be received with sufficient time for review and continued approval before the expiration date.

Good luck with your work. If you have any questions, please contact the Office of Research Compliance at 419-372-7716 or hsr@bgsu.edu. Please include your project title and reference number in all correspondence regarding this project.

This letter has been electronically signed in accordance with all applicable regulations, and a copy is retained within Bowling Green State University Human Subjects Review Board's records.
DATE: September 3, 2015
TO: Tina Arduini
FROM: Bowling Green State University Human Subjects Review Board
PROJECT TITLE: [658107-5] Gaming Literacy and Multimodal Composition
SUBMISSION TYPE: Continuing Review/Progress Report
ACTION: APPROVED
APPROVAL DATE: September 23, 2015
EXPIRATION DATE: September 22, 2016
REVIEW TYPE: Expedited Review
REVIEW CATEGORY: Expedited review category # 7

Thank you for your submission of Continuing Review/Progress Report materials for this project. The Bowling Green State University Human Subjects Review Board has APPROVED your submission. This approval is based on an appropriate risk/benefit ratio and a project design wherein the risks have been minimized. All research must be conducted in accordance with this approved submission.

Please note that you are responsible to conduct the study as approved by the HSRB. If you seek to make any changes in your project activities or procedures, those modifications must be approved by this committee prior to initiation. Please use the modification request form for this procedure.

All UNANTICIPATED PROBLEMS involving risks to subjects or others and SERIOUS and UNEXPECTED adverse events must be reported promptly to this office. All NON-COMPLIANCE issues or COMPLAINTS regarding this project must also be reported promptly to this office.

This approval expires on September 22, 2016. You will receive a continuing review notice before your project expires. If you wish to continue your work after the expiration date, your documentation for continuing review must be received with sufficient time for review and continued approval before the expiration date.

Good luck with your work. If you have any questions, please contact the Office of Research Compliance at 419-372-7716 or hrsb@bgsu.edu. Please include your project title and reference number in all correspondence regarding this project.

This letter has been electronically signed in accordance with all applicable regulations, and a copy is retained within Bowling Green State University Human Subjects Review Board's records.