THE ROLE OF ACCOUNTABILITY AND COMPENSATION IN ASSESSOR DECISION-AID NEGLECT

Thaddeus B. Rada

A Thesis
Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

December 2013

Committee:
Scott Highhouse, Advisor
Christopher D. Nye
Mary L. Hare
ABSTRACT

Scott Highhouse, Advisor

A paradox in industrial and organizational (I-O) psychology continues to be preferences for using unstructured selection methods and clinical data integration strategies when making selection decisions, despite the well-documented limitations of these methods. In few areas of I-O practice is this paradox more evident than in individual psychological assessment (IPA). This study evaluated some of the factors that may contribute to this neglect of mechanical decision aids in the context of IPA; specifically, the impact that accountability and compensation, two key features of IPA practice, had on decision strategy preference in a hypothetical hiring scenario was examined. Results indicated that neither of these variables were related to decision strategy preference. Individual differences in preference for intuitive hiring significantly explained variance in decision strategy preference, such that people who had more positive attitudes towards intuitive hiring were less likely to use the formula to arrive at their recommendation in the hiring scenario.
Dedication

To Mom, Dad, and Sequoia: Your ceaseless love and support mean so much to me
ACKNOWLEDGMENTS

First and foremost, I wish to extend my sincere gratitude to my advisor, Scott Highhouse, for his ongoing instruction and direction as I completed my thesis; his guidance was invaluable to both the project and my development as a scholar in general. I also wish to thank Chris Nye and Mary Hare, the other members of my thesis committee, for offering their insights to the project, which improved the final manuscript. Finally, many thanks to my fellow graduate students, who answered my questions, provided motivation, and encouraged me throughout the completion of this project.
TABLE OF CONTENTS

CHAPTER I. INTRODUCTION .. 1
 Assessor Self-Presentation ... 3
 Accountability .. 5
 Compensation .. 6

CHAPTER II. METHOD.. 9
 Participants .. 9
 Materials and Design ... 9
 Measures .. 11
 Procedure .. 12

CHAPTER III. RESULTS .. 13
 Hypothesis Tests .. 13
 Exploratory Analyses ... 14

CHAPTER IV. DISCUSSION.. 16

CHAPTER V. REFERENCES ... 19

APPENDIX A. MEASURES.. 24

APPENDIX B. HSRB FORM .. 26
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manipulation Checks</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Descriptive Statistics and Intercorrelations among Study Variables</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Individual Difference Predictors of Decision Strategy Preferences</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The moderating effect of need for approval on the relationship between</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>accountability and decision strategy preferences</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The moderating effect of quantitative self-efficacy on the relationship</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>between compensation and decision strategy preferences</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1. INTRODUCTION

Individual psychological assessment (IPA) is a common service that many industrial and organizational (I-O) psychologists perform. With roots stretching back to the early assessment procedures designed to evaluate military personnel before and during World War II (Highhouse, 2002; Jeanneret & Silzer, 1998; Prien, Schippmann, & Prien, 2003), IPA remains popular among many I-O practitioners, recently being characterized as a “core competency” in I-O psychology (Jeanneret & Silzer, 2011, p. 342). As practiced today, IPA typically involves assessing candidates for high-level positions using multiple assessment tools, such as interviews, pencil-and-paper tests, and job-related exercises (Silzer & Jeanneret, 2011).

One of the defining features of IPA is the method’s reliance on “clinically” or “holistically” integrating information about job candidates (Kwaske, 2004; Prien et al., 2003; Ryan & Sackett, 1998), as opposed to relying on a mechanical formula or algorithm. For many assessors, this feature of the IPA process appears to be at the heart of the assessment, being variously defined as a “hallmark of the individual assessment practice” (Prien et al., 2003, p. 123) and “a critical defining characteristic of IPA” (Jeanneret & Silzer, 2011, p. 345). This preference for clinical assessment and data integration is not unique to practitioners who conduct IPA. One of the most consistent findings in research on personnel selection in general is that virtually all organizational actors, from hiring managers, to recruiters, to applicants themselves, prefer unstructured selection methods that typically allow raters to make evaluations without the aid of formal scoring or assessment systems (Highhouse, 2008; Lievens, Highhouse, & De Corte, 2005; Mast, Bangerter, Bulliard, & Aerni, 2011). This preference is also reflected in the consensus judgment process commonly used in assessment centers (ACs), whereby the assessors each make individual ratings about all the candidates on a variety of dimensions, and
then come together to discuss the ratings and achieve consensus about what each candidates’
score ought to be. Sackett and Wilson (1982) questioned the validity of this method, noting that a
mechanical formula could predict the consensus ratings of the assessors almost 95% of the time,
thus making the time-consuming (and, in practice, expensive) consensus process superfluous.
More recently, Dilchert and Ones (2009) found that mechanically combining individuals’
dimension scores from ACs added incremental validity to a battery of standardized cognitive
ability and personality tests; however, this incremental validity disappeared when overall AC
ratings were obtained via clinical data combination.

The major problem with this preference for clinical assessment and information
integration is that the clinical perspective runs counter to our understanding of accurate judgment
and prediction. The first recognition of the strengths of the mechanical approach to personnel
selection occurred early in the history of I-O psychology. Freyd (1925) noted that the mechanical
approach to collecting and integrating selection information was superior to the clinical method,
as it helped to minimize the impact of biases and improve prediction. Similarly, one of the
earliest, direct, comparisons of the clinical and mechanical methods of prediction was performed
by Meehl (1954). Across 20 studies, Meehl found that the two methods were approximately
equally effective half of the time; in the other half, the mechanical method was clearly superior
(Meehl, 1954). Over 30 years after Meehl first wrote about the overall superiority of the
mechanical method over the clinical method, he concluded that no more than 5% of his original
conclusions needed to be retracted (Meehl, 1986). More recently, a meta-analysis comparing the
efficacy of mechanical and clinical strategies found that mechanical methods are equal or
superior to clinical methods in a vast majority of cases, across a wide variety of settings and
samples (Grove, Zald, Lebow, Snitz, & Nelson, 2000). Hence, additional research in this area
has done little to dispute the conclusions reached by the early pioneers in this area: mechanical methods are rarely outperformed by clinical methods, while they frequently outperform clinical methods themselves.

A common justification for the continued use of the clinical method in IPA is that IPA involves judgments that are too complex and idiosyncratic to make using only a formula (Silzer & Jeanneret, 2011). Here again, research does not support this notion. Dawes (1979) found that even linear models that are not optimally developed (i.e. created with information that is gathered intuitively, etc.) outperform clinical integration and analysis. Similarly, Kuncel and Highhouse (2011) noted that humans struggle to make accurate predictions even for very simple phenomena; thus, the argument that a complicated selection scenario warrants the use of clinical data integration appears erroneous.

Although it is well-recognized that mechanical methods of integrating assessment information are neglected in IPA, little research has been done to evaluate the factors surrounding IPA that might contribute to this neglect. Meehl (1986) noted that the continued preference for unstructured methods and clinical data integration/analysis is likely due to a number of factors, including the “dehumanizing flavor” (p. 374) of equations and the fact that part of an expert’s self-concept may be linked to use of his or her own intuition when making judgments and decisions. The present study focuses on the latter. That is, one might expect that the desire to appear like an expert is one of the reasons for a resistance to mechanized assessment procedures. Moreover, this desire to appear expert is likely exacerbated by accountability and compensation demands.

Assessor Self-Presentation
A number of authors have noted that many experts dislike decision aids and avoid using them (Arkes, 2008; Lahdelma, Salminen, & Hokkanen, 2000; Pezzo & Pezzo, 2006). Arkes, Shaffer, and Medow (2007) found that physicians who used a computer-based diagnostic support system (DSS) were rated by patients as having poorer diagnostic ability, as well as lower professionalism and other qualities, than physicians who did not use a DSS. It is not much of a stretch to suggest that physicians (and other experts) neglect decision aids or reject their use on the grounds that they do not want their professional image to suffer negative consequences.

Hastie and Dawes (2001) surmised from the accumulated evidence on prediction that experts rely on few cues, lack insight into their own policies, and become overconfident when presented with nondiagnostic cues. Sieck and Arkes (2005) found that such overconfidence can be associated with decision aid neglect. They also found that it was very difficult to reduce this overconfidence and encourage decision aid use. The authors suggested that one reason why experts, in particular, may reject decision aids is because they feel it is their professional obligation to make assessments based on their own knowledge and experience.

In essence, experts want to be seen as experts. They want to be seen as competent, knowledgeable individuals who can make a unique contribution to prediction. In an IPA setting, this contribution is typically a hiring recommendation, and a formula or decision aid does not allow the assessor to appear to make a unique contribution. (“Anyone can use a formula.”) In contrast, collecting a lot of information about job candidates and then integrating it into a holistic judgment contributes to an aura of assessor mystique (see Young, Morris, & Scherwin, 2011).

Tetlock’s (1991) political perspective on judgment and choice suggests that two motives dominate self-presentation concerns of decision makers: desire for approval, and desire for status. Particularly relevant to the individual assessment context is desire for status, which is
striving for power and respect, and avoiding embarrassment (Highhouse, Kirkendall, Withrow, and Kostek, 2012). Tetlock (1991) based his perspective on a body of research showing that (a) accountability of conduct is a relevant characteristic of the decision environment, and (b) individuals seek approval and respect from those to which they are accountable.

People with a strong need for status often engage in behaviors that make themselves look impressive to others and demonstrate their own innate skills. As such, it is likely that individuals who are high in need for status will be less likely to rely on decision aids.

Hypothesis 1: Self-reported need for status will be negatively related to decision-aid use.

Accountability

Very often, an individual assessment is carried out by only one assessor, and the I-O psychologist performing the assessment is typically evaluating the capabilities of only a few applicants for a single position, as opposed to implementing a large-scale hiring system. As such, the “hands-on” function of the assessor in the assessment process is readily observable to organizational actors, and the assessor is typically in the position of needing to communicate the results of the assessment process (and possibly how the assessment was carried out) to the leaders of the organization for which he or she is working (Prien, Schippmann, & Prien, 2003). Obviously, an assessor in such a situation is accountable to the employing organization for his or her performance. This evaluation includes the process the assessor uses to carry out the assessment, as well as the final results of the assessment.

As a construct, accountability itself can be organized by a number of different facets, such as (a) whether or not the views of the audience to whom a person is accountable are known to the person or not, (b) whether a person is accountable for the *process* of making a decision or the *outcome* of the decision itself, or (c) whether or not a person knows he or she will be
accountable for the decision he or she makes prior to making the decision (Lerner & Tetlock, 1999). The presence or absence of each of these facets in a given situation can have important impacts on the behavior of decision-makers.

Shafir, Simonson, and Tversky (1993) suggested that decision makers seek reasons to justify the decisions they make. And it has been found that accountable people will often make ill-advised choices when such choices are easier to justify (Simonson & Nye, 1992). In the context of IPA, an assessment based on holistic integration may be easier to justify to a client than one based on a mathematical formula. For instance, research on the dilution effect (Tetlock & Boettger, 1989; Lerner & Tetlock, 1999) has shown that accountability can lead to greater use of irrelevant information in making a prediction—presumably because the nondiagnostic information made the prediction easier to justify. Data gathered in a clinical, intuitive manner, can make for compelling stories, which have been noted to be very persuasive to others (Highhouse, 1997).

On the basis of this logic, it is hypothesized that:

Hypothesis 2: Decision makers told that their decision process will be evaluated by others will be less likely to use a decision aid than decision makers told that their decision process will be confidential.

Although accountability is a relevant aspect of IPA that may lead to a reliance on intuition instead of formulas, there are other aspects of this practice that may also contribute to decision aid neglect. Specifically, past research suggests that compensation may impact assessors’ use of decision aids.

Compensation
Compensation is a relatively unique feature of IPA that distinguishes it from other selection scenarios. Specifically, IPA tends to be an expensive service; Ryan and Sackett (1987) noted that the mean cost of an upper management assessment was $723 in 1987; simply accounting for inflation (and not the fact that the cost of assessments may have increased since 1987 due to other reasons as well), the average cost for an upper management assessment in 2011 would be over $1400 (Bureau of Labor Statistics, n.d.)

Equity theory provides one way to understand why high compensation may contribute to neglect of mechanical decision aids. One of the basic tenets of equity theory is that individuals who perceive overpayment will feel dissonance, due to the individual’s perception that he or she is receiving payment that outweighs the contributions they are making (or, in the original language of the theory, their outcomes outweigh their inputs; see Adams, 1963). The effect of overpayment inequity on both individuals and groups has been found to be a robust effect. For example, Wann, Fortner, Schrader, and Rosenberger (1997) found that overpayment motives could be used to explain the improved performance of baseball teams who received a new stadium. Similarly, Greenberg (1988) found that employees who were temporarily relocated to high-status offices raised their performance to cope with the overpayment inequity they perceived.

One of the main ways in which individuals cope with such overpayment is by increasing their inputs (i.e. doing more work; Adams, 1963). DeVoe and Pfeffer (2011) found that people who were instructed to bill their time at a rate of $1.50 per minute were more likely to experience time pressure than people who billed their time at a rate of $0.15 per minute. For individual assessors, one way in which they might increase their inputs would be to go “above
and beyond” the formal selection methods they are using to inject some of their own intuitive perceptions about an applicant into the assessment process.

Arkes, Dawes, and Christensen (1986) found that participants who had the opportunity to gain compensation for a decision task changed their decision strategy more frequently than participants who had no opportunity to obtain compensation. This “strategy switching” resulted in poorer performance. For most decision tasks, some degree of inaccuracy, regardless of the specific decision strategy that is used, is inevitable. However, paid participants seem not to recognize this fact, and instead employ a “win-stay, lose-shift” strategy that can lead them to stray from the optimal strategy—in the case of this experiment, a provided decision aid.

With this evidence regarding compensation in mind, it is hypothesized that individuals who experience overpayment will be less likely to make use of a decision aid than individuals who do not feel overpaid.

Hypothesis 3: Decision makers in a high payment condition will be less likely to use a decision aid than decision makers in a low payment condition.

In sum, it is possible that using information beyond that gathered by formal assessments, and combining this information in a clinical or holistic fashion, may serve self-presentation functions for individual assessors. Assessors may feel compelled to demonstrate their expertise when they feel a greater sense of accountability and when they feel more compensated for their assessments.

Together, these hypotheses regarding decision aid use were investigated among the U.S. working population using simulated hiring scenarios.
CHAPTER 2. METHOD

Participants

Participants from the United States were recruited using Amazon.com’s Mechanical Turk (MTurk) service. This service provides “requesters” (in this case, the researcher) the ability to compensate individuals (known as workers) for completing tasks assigned by the requester. Early quality evaluations of data collected using MTurk samples have been favorable (Buhrmester, Kwang, & Gosling, 2011).

Materials and Design

A 2 accountability (high versus low) x 2 compensation (high versus low) factorial design was utilized in this study. Hiring scenarios used by Diab, Pui, Yankelevich, and Highhouse (2011) were modified and used as the stimuli. Participants were told to imagine that they, along with two other people, had been asked to help choose a new chief financial officer (CFO) for a Fortune 100 computer manufacturing company. All participants were presented with the following scenario:

You are probably aware of the television show “The Apprentice.” In each episode, Donald Trump puts finalists through a series of work simulations, and evaluates the degree to which each one has the qualities needed to be successful as his apprentice. In the real world, however, businesses do not have the luxury of putting finalists through weeks of grueling tasks. In most cases, businesses must use less elaborate methods for assessing their qualities.

Now imagine you are an independent consultant with experience doing executive assessments. You have been hired to provide a CEO with your independent assessment of
finalists for new chief financial officer (CFO). She has also hired two other consultants to do the same thing—indeed, independently of you.

In making the assessments, you can use two main strategies to help you arrive at an overall score for each finalist.

1. You may gather information about each finalist (through interviews, tests, writing samples of case studies), and then combine each finalist’s scores into an overall score using a computer formula.

2. You may gather information about each finalist (through interviews, tests, and writing samples of case studies) and then combine each finalist’s scores into an overall score using your professional judgment.

After this introductory information, participants were randomly assigned to read additional information corresponding to one of the four conditions presented in Table 1 below:

Table 1

<table>
<thead>
<tr>
<th>Accountability</th>
<th>Compensation</th>
<th>High</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>You will personally explain your overall scores and how you arrived at them to the CEO, during an individual face-to-face meeting. You will be paid $500 for your recommendation, which is considered a very large consultation fee.</td>
<td>You will personally explain your overall scores and how you arrived at them to the CEO, during an individual face-to-face meeting. You will be paid $500 for your recommendation, which is considered a very small consultation fee.</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>You will anonymously provide your recommendation, with no information on how you arrived at it, to the CEO. You will be paid</td>
<td>You will anonymously provide your recommendation, with no information on how you arrived at it, to the CEO. You will be paid</td>
<td></td>
</tr>
</tbody>
</table>
A manipulation check of the accountability and compensation variables was given after participants respond to the dependent measure. To assess the accountability manipulation, participants were asked, “If I were actually in this situation, I would have felt like my recommendation was anonymous.” To assess the compensation manipulation, participants were asked, “If I were actually in this situation, I would have felt appropriately paid for making my hiring recommendation.” Both manipulation checks utilized a 5-point (1 = strongly disagree; 5 = strongly agree) response scale.

Measures

The dependent variable, decision strategy preference, was assessed immediately after the presentation of the scenario with the following item: “How likely would you be to arrive at your judgment using the computer formula?” Participants responded to the item using a 5-point (1 = definitely unlikely; 5 = definitely likely) response scale.

Desire for status was assessed using a self-presentation motives measure developed by Highhouse et al. (2012). The scale consists of twenty-one items, thirteen desire for approval items and eight desire for status items (see Appendix A); all items utilize a 5-point (1 = strongly disagree; 5 = strongly agree) response scale. Highhouse et al. (2012) reported strong reliability for both the desire for approval ($\alpha = .91$) and desire for status ($\alpha = .85$) items.

Inter-mixed with the need for approval items was a “quality check” question that asked participants to simply respond “Strongly Agree” to the item. This item was included as a convenient tool to identify respondents who were not paying close attention to the questions.
Participants were also asked about their attitudes towards intuition-based hiring. Participants responded to six items (see Appendix B) developed by Lodato, Highhouse, and Brooks (2011); all items are answered using a 5-point (1 = strongly disagree; 5 = strongly agree) response scale.

Finally, participants were asked to provide basic demographic data (age, gender, race, etc.), and to complete a short scale assessing quantitative self-efficacy (Fagerlin et al., 2007; see Appendix C).

Procedure

Participants were recruited with a posting on MTurk asking them to complete a simulated hiring scenario and several other questionnaires, in exchange for $0.20 compensation through their MTurk worker account. Those interested in participating were provided with a hyperlink to take them to the survey. The first page of the survey was an informed consent form; after providing consent, participants completed the hiring scenario and the other questionnaires discussed above. The order of the need for status, need for approval, and quantitative self-efficacy scales was randomized. As a control for reactivity, the preference for intuition-based hiring items were the last scale presented for all participants. At the end of the survey, participants were provided with a code to enter on MTurk, to confirm their completion of the survey.
CHAPTER 3. RESULTS

Results of the manipulation checks for the accountability and compensation manipulations are presented in Table 1. The manipulation checks revealed that both of the experimental manipulations were effective.

The sample initially consisted of 512 people. Twenty-nine people answered the “quality check” question incorrectly, and were dropped from further analysis. In addition, ten people identified themselves as non-U.S. citizens residing in the United States; they were also dropped from further analysis, resulting in a final sample of 473 people. The majority of participants were White (80.8%), and 74.6% of participants were between the ages of 18 and 34. Over half of the sample identified themselves as male (60.7%).

Descriptive statistics, scale reliabilities, and intercorrelations between the study variables are presented in Table 2.

Hypothesis Tests

Simple linear regression was used to test Hypothesis 1. Results of the regression analysis indicated that need for status was a significant predictor of decision strategy preference, \(\beta = .12, t(438) = 2.59, p < .05 \). Note that the direction of this relationship was in the opposite direction of the hypothesized relationship: people higher in need for status were more likely to support use of the computer formula than people who were lower in need for status. Thus, Hypothesis 1 was not supported.

Hypotheses 2 and 3 were tested with a one-way analysis of variance (ANOVA). The results of this analysis indicated that accountability had no effect on decision strategy preference, \(F(1, 467) = .03, ns; \) likewise, compensation had no effect on decision strategy preference, \(F(1, \)
The interaction between accountability and compensation was also non-significant, $F(1, 467) = .49, ns$. Thus, neither Hypothesis 2 nor Hypothesis 3 was supported.

Exploratory Analyses

Although no relationships between the other measured variables (need for approval, preferences for intuitive hiring, and quantitative self-efficacy) and decision strategy preference were hypothesized, a multiple regression analysis using these variables was conducted for exploratory reasons. These variables (along with need for status) significantly predicted variance in decision strategy preference, $R^2 = .08, F(4, 370) = 8.28, p < .001$. Individually, only need for status and preferences for intuitive hiring were significant predictors of decision strategy preference, $\beta = .14, t(370) = 2.8, p < .01$ and $\beta = -.27, t(370) = -5.21, p < .001$, respectively, such that people with a lower need for status and more positive attitudes towards intuitive hiring were less likely to use the formula to arrive at their recommendation in the hiring scenario. The results of this analysis are presented in Table 3.

Although not hypothesized, exploratory analyses were also conducted to examine the potential moderating role of the individual difference variables on the relationship between accountability/compensation and decision strategy preferences. Two significant interactions emerged: 1) need for approval moderated the effect of accountability on decision strategy preferences, $B = .39, t(410) = 2.02, p < .05$; and 2) quantitative self-efficacy moderated the effect of compensation on decision strategy preferences, $B = .38, t(444) = 2.89, p < .01$. These interactions suggest that individual differences only had an impact on decision strategy preferences when situational demands were low. Specifically, in the low accountability condition, low need for approval was associated with greater support for the computer formula, while people high in need for approval were less supportive of the formula. Similarly, in the low
compensation condition, low quantitative self-efficacy was associated with greater support for the formula, while people high in quantitative self-efficacy were less supportive of the formula.

Graphs of these interactions are presented in Figures 1 and 2.
CHAPTER 4. DISCUSSION

The goal of this study was to examine the role that two variables unique to IPA, accountability and compensation, have on individuals’ decision strategy preferences. Specifically, based on established theoretical frameworks and past empirical findings, it was hypothesized that people exposed to higher levels of these variables (that is, people made to feel highly accountable, and/or highly paid) would be less likely to support the use of a computer-based formula for combining selection assessment information. Findings from the current study suggest that these variables do not appear to impact decision strategy preferences in the expected manner. It was also hypothesized that participants with a high need for status would be less likely to support the use of a computer-based formula. Findings from this study suggest that the opposite effect may be true: participants who reported a higher need for status were more likely to support the use of a computer formula.

The finding that accountability and compensation seem not to have an impact on individuals’ decision strategy preferences may be due to a number of factors. First, the participants in this study were naïve laypersons, and the benefits that computer formulas offer over intuitive judgment for decision making were not well-explained to participants. Conversely, many I-O psychology practitioners are likely to be aware of the benefits that such mechanical combination strategies bring to a selection system (e.g. a reduction in the impact of judgmental biases, enhanced legal defensibility, etc.), and, even though this awareness may not always spur practitioners to actually use such strategies, they are nonetheless more informed of the strengths of such approaches than the participants in this study were.

It may also be the case that accountability and compensation influence decision strategy preferences in a different way than there were operationalized in this study. For instance, in this
study, accountability was influenced by manipulating the extent to which people felt that they were directly accountable to the CEO for their hiring recommendation. However, in actual IPA settings, it is possible that practitioners feel accountable, not to an organization’s CEO, but to their own peers and the area of practice that they work in; if the standard professional practice in IPA is to use intuitive strategies for combining selection information, practitioners may feel a sense of duty or obligation to use this strategy themselves.

The results of this study did indicate that the self-report measure of intuitive hiring attitudes developed by Lodato, Highhouse, and Brooks (2011) was a good predictor of decision strategy preferences. Thus, although the variables assessed in this study do not appear to have an influence on decision strategy preferences, there clearly are individual differences in these preferences. This finding suggests that research in this area should continue to assess how a combination of individual and environmental factors may make the use of structured decision strategies (e.g. computer formulas) more or less likely.

As with any study, this research has a number of limitations. The participants were U.S. adults, not actual IPA practitioners; thus, it is possible that many of the participants had no experience making hiring recommendations, so the nature of the study task may have seemed foreign to many of them. Even if participants understood the task itself, they were still not a part of the IPA community, so they are unlikely to have known about standard practices in this area, or sufficiently understood how the structured and unstructured decision modes differed from one another. In addition, although participants’ accountability was manipulated, the hiring scenario was still completely hypothetical, and participants did not have any personal or professional pride at stake when making their decision.
In addition to these sample-related issues, all data were collected via self-report measures, making common method bias a potential concern (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003); however, as this bias typically inflates correlations, it is not of major concern to the present study. It is also possible that the measure of the dependent variable was not sensitive enough to detect an effect from the accountability and compensation manipulations. Future research in this area might address this issue by using a more sophisticated research design that would ask people to actually review hypothetical applicant profiles. People would be provided with a formula that they could enter into a computer to obtain total scores for each applicant, or they could use their own judgment to come up with total scores; in such a scenario, utilization of the computer formula could serve as the dependent variable, to see if people in different conditions have different usage rates of the formula.

Although the results of this study suggest that accountability and compensation may not directly impact decision strategy preferences, the neglect of mechanical decision strategies in IPA remains a pressing issue in I-O psychology. Practitioners who work in this area can have a direct influence in determining the people who are selected to lead and manage multi-million dollar corporations. This type of high-stakes selection situation makes the need for structure and mechanical prediction even more important than in other selection situations; thus, research should continue to examine the disturbing gap between research and practice that exists in this area.
REFERENCES

10.1111/j.1754-9434.2008.00058.x

APPENDIX A: MEASURES

Desire for Approval & Status Scale Items

Desire for Approval
1. I am concerned that others see me as a good person.
2. I want people to think of me as an honorable person.
3. I strive to have an honorable reputation.
4. It is important that people admire me as a person of integrity.
5. I want to be seen as trustworthy.
6. I want to be seen as an upstanding citizen.
7. I want to be recognized for my kindness.
8. I want to be admired for my honesty.
9. It is important for me to be viewed as a virtuous person.
10. I want others to see me as a decent person.
11. I want others to admire me as a principled person.
12. I want others to admire my loyalty.
13. I want to be admired as a generous person.

Desire for Status
1. I want people to envy me.
2. I am concerned about impressing others.
3. I want people to think I am important.
4. I want to be seen as a person of importance.
5. I want to be impressive.
6. I want to achieve a high-status reputation.
7. It is important that people envy me.
8. It is important to me that I impress others.

Preferences for Intuition-Based Hiring Scale Items
1. I believe it is important to rely on your “gut” when hiring employees.
2. It is important to rely on your instincts when hiring an employee.
3. I believe it is important to rely on your intuition when hiring employees.
4. Hiring an employee is more of an art than a science.

5. You can’t always explain why a candidate is the best one – you just know it.

6. You can “read between the lines” to detect whether someone is suitable to hire.

Quantitative Self-Efficacy Scale Items

1. How good are you at working with fractions?

2. How good are you at working with percentages?

3. How good are you at calculating a 15% tip?

4. How good are you at figuring out how much a shirt will cost if it is 25% off?

5. When reading the newspaper, how helpful do you find tables and graphs that are parts of a story?

6. When people tell you the chance of something happening, do you prefer that they use words (e.g. “it rarely happens”) or numbers (e.g. “there’s a 1% chance”)?

7. When you hear a weather forecast, do you prefer predictions using percentages (e.g. “there will be a 20% chance of rain tonight”) or predictions using only words (e.g. “there is a small chance of rain today”)?

8. How often do you find numerical information to be useful?
APPENDIX B: HSRB FORM

DATE: December 17, 2012
TO: Thaddeus Rada
FROM: Bowling Green State University Human Subjects Review Board
PROJECT TITLE: [934518-2] The Role of Accountability & Compensation in Assessor Decision
Aid Neglect
SUBMISSION TYPE: Revision
ACTION: APPROVED
APPROVAL DATE: December 10, 2012
EXPIRATION DATE: November 27, 2013
REVIEW TYPE: Expedited Review
REVIEW CATEGORY: Exempt review category # 2

Thank you for your submission of Revision materials for this project. The Bowling Green State University Human Subjects Review Board has APPROVED your submission. This approval is based on an appropriate risk/benefit ratio and a project design wherein the risks have been minimized. All research must be conducted in accordance with this approved submission.

The final approved version of the consent document(s) is available as a published Board Document in the Review Details page. You must use the approved version of the consent document when obtaining consent from participants. Informed consent must continue throughout the project via a dialogue between the researcher and research participant. Federal regulations require that each participant receives a copy of the consent document.

Please note that you are responsible to conduct the study as approved by the HSRB. If you seek to make any changes in your project activities or procedures, those modifications must be approved by this committee prior to initiation. Please use the modification request form for this procedure.

You have been approved to enroll 1,000 participants. If you wish to enroll additional participants you must seek approval from the HSRB.

All UNANTICIPATED PROBLEMS involving risks to subjects or others and SERIOUS and UNEXPECTED adverse events must be reported promptly to this office. All NON-COMPLIANCE issues or COMPLAINTS regarding this project must also be reported promptly to this office.

This approval expires on November 27, 2013. You will receive a continuing review notice before your project expires. If you wish to continue your work after the expiration date, your documentation for continuing review must be received with sufficient time for review and continued approval before the expiration date.

Good luck with your work. If you have any questions, please contact the Office of Research Compliance at 419-372-7710 or hsr@bgusu.edu. Please include your project title and reference number in all correspondence regarding this project.
Informed Consent

The purpose of this study is to improve our understanding of how hiring decisions for jobs are made. This study is being conducted by Thaddeus Rada, a graduate student in the psychology department at Bowling Green State University (BGSU), for his Master’s thesis. This project is being advised by Dr. Scott Highhouse, a psychology professor at BGSU.

Research on personnel hiring is important for several reasons. Research in this area can help make hiring more efficient, so that more people are hired into jobs they will enjoy and be successful at. Research in this area also helps to make hiring more fair, helping to ensure that discrimination does not occur. Finally, research on hiring can help us understand more about limitations in human judgment and the impact that biases can have on decision making. In short, while you will not receive any direct benefits for participating in this research, you are helping to increase our understanding of the hiring process, which is beneficial to society in general. The risks associated with participating in this study are no greater than those encountered in daily life. You will be asked to complete a short survey consisting of a hiring scenario and three other short questionnaires. It should take less than 10 minutes to answer the questions, and you will be paid $0.20 for your participation through Amazon’s Mechanical Turk service.

WARNING: The researchers will carefully review every line of the data and participants who are found to have carelessly responded will not be paid (i.e., marking all of the same response; responding in ways that are identifiably contradictory).

You must be 18 years old to participate in this study. Your participation in this study is completely voluntary, and you are free to discontinue participation in this study at any time. Deciding to participate or not will not affect any relationship you may have with Bowling Green State University. You may also freely decline to respond to any questions without loss of credit. Declining to respond to particular questions is not the same thing as carelessly responding (see above) and will not be penalized. Completing the survey indicates your consent to participate in this study.

To protect your anonymity, your data will be stored on password-protected laptops of the researchers involved in the project. In addition, your anonymity will be protected through the MBurk system, which does not allow us to contact you directly. For your security, after you finish making and submitting your choices, please clear your browser history and page cache. In addition, you may want to complete the survey on a personal (non-public) computer.

If you have any questions or comments regarding this study or your participation in it, you may contact the principal investigator, Thaddeus Rada, at trada@bgsu.edu or (419) 372-4417, or the principal investigator’s advisor, Dr. Scott Highhouse, at shighho@bgsu.edu or (419) 372-8078. If you have any questions about the conduct of this study or your rights as a research participant, you may contact the Chair of Bowling Green State University’s Human Subjects Review Board at (419) 372-7718 or hsrc@bgsu.edu.

By clicking “next,” you are consenting to participate in this study.
Table 1

Manipulation Checks

<table>
<thead>
<tr>
<th></th>
<th>Accountability Condition</th>
<th>Compensation Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accountability</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>2.21 (1.05)</td>
<td>2.74 (1.13)</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note.*** = *p* < .001. Standard deviations appear in parentheses following means.*
Table 2

Descriptive Statistics and Intercorrelations among Study Variables

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Formula</td>
<td>3.16</td>
<td>1.13</td>
<td>-</td>
<td>.01</td>
<td>.12**</td>
<td>.04</td>
<td>-.24**</td>
</tr>
<tr>
<td>2. NFA</td>
<td>4.23</td>
<td>.58</td>
<td>(.92)</td>
<td>.22**</td>
<td>.02</td>
<td>.24**</td>
<td></td>
</tr>
<tr>
<td>3. NFS</td>
<td>2.93</td>
<td>.96</td>
<td>(.93)</td>
<td>.1*</td>
<td>.1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. QSE</td>
<td>4.7</td>
<td>.83</td>
<td>(.67)</td>
<td></td>
<td>-.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. PIH</td>
<td>3.62</td>
<td>.74</td>
<td>(.88)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Formula = Likelihood of using the computer formula to arrive at a recommendation; NFA = need for approval; NFS = need for status; QSE = quantitative self-efficacy; PIH = preference for intuitive hiring. Scale reliabilities are in parentheses along the diagonal. * = p < .05. ** = p < .01.
Table 3

Individual Difference Predictors of Decision Strategy Preferences

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE (B)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td>3.89</td>
<td>.57</td>
<td>.57</td>
</tr>
<tr>
<td>NFS</td>
<td>.17</td>
<td>.06</td>
<td>.14**</td>
</tr>
<tr>
<td>NFA</td>
<td>.08</td>
<td>.1</td>
<td>.04</td>
</tr>
<tr>
<td>PIH</td>
<td>-.41</td>
<td>.08</td>
<td>-.27***</td>
</tr>
<tr>
<td>QSE</td>
<td>-.01</td>
<td>.07</td>
<td>-.01</td>
</tr>
</tbody>
</table>

Note. NFS = need for status; NFA = need for approval; PIH = preference for intuitive hiring; QSE = quantitative self-efficacy

** = p < .01. *** = p < .001
Figure 1. The moderating effect of need for approval on the relationship between accountability and decision strategy preferences.
Figure 2. The moderating effect of quantitative self-efficacy on the relationship between compensation and decision strategy preferences.