EXAMINING DIFFERENCES IN STARTERS AND NON-STARTERS AND SCHOLARSHIP STATUS ON PERCEIVED COMPETENCE, LIFE SATISFACTION, GOAL ORIENTATION, PERCEIVED MOTIVATIONAL CLIMATE, AND MOTIVATION IN DIVISION I SOFTBALL PLAYERS

Margaret L. Tudor

A Thesis
Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of

MASTER OF EDUCATION

December 2009

Committee:
Dr. David Tobar, Advisor
Dr. Bonnie Berger
Dr. Geoffrey Meek
ABSTRACT

Dr. David Tobar, Advisor

Purpose: The purpose of this study was to examine goal orientation, perceived motivational climate, perceived competence, and motivation in collegiate softball starters and non-starters and collegiate softball players with full, partial, and no scholarships. **Method:** Division I college softball player \(N = 52; \) ages 18-22) at three Mid-American Conference programs were categorized by player role (starter vs. non-starter) and scholarship status (full, partial, or none). Players completed surveys to assess perceived competence, satisfaction with life (Satisfaction with Life Scale), goal orientation (Task and Ego Orientation in Sport Questionnaire), perceived motivational climate (Perceived Motivational Climate in Sport Questionnaire-2), and motivation (Sport Motivation Scale). The surveys were completed towards the end of the softball season (April, 2009). Perceived competence and life satisfaction were analyzed using independent t-tests and ANOVA. Goal orientation, perceived motivational climate, and motivation were analyzed using one-way MANOVAs. **Results:** Significant findings for player role and perceived motivational climate, as well as scholarship status and perceived motivational climate were found \(p < .05 \). Although there was no significance between motivation and player role, follow-up univariate tests found significance in amotivation for starters and non-starters \(p < .05 \). **Conclusion:** College softball players differed in perceived motivational climate according to player role (starter vs. non-starter) and scholarship status (full, partial, or none). Contrary to expectations, perceived competence, satisfaction with life, and motivation did not differ in starters or non-starters or in full, partial, or no scholarship holders. This investigation has provided evidence for the need to further explore relationships including starters and non-starters and differences in scholarship status.
ACKNOWLEDGMENTS

Several people contributed to the successful completion of my thesis, of whom I would like to acknowledge. I would like to first thank my committee members for their knowledge, discussion, and effort throughout the entire process. These important individuals included Dr. Bonnie Berger and Dr. Geoffrey Meek, who, without which, this development would not have come to completion.

My committee chair and advisor, Dr. David Tobar, has been the most important part of my growth and fulfillment of this thesis. I would like to thank him for his direction, patience, knowledge, and understanding throughout the entire process. His leadership and guidance means a great deal to me and was appreciated to no end.

Lastly, I would like to thank my Mom and Dad for their support, understanding, and assistance throughout the total development of this thesis. They have been behind me the entire way, and have allowed me to gain confidence in my completion of the process. I appreciate this more than could be explained.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter I. INTRODUCTION</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Competence</td>
<td>1</td>
</tr>
<tr>
<td>Satisfaction with Life</td>
<td>2</td>
</tr>
<tr>
<td>Goal Orientation</td>
<td>3</td>
</tr>
<tr>
<td>Perceived Motivational Climate</td>
<td>4</td>
</tr>
<tr>
<td>Motivation</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter II. LITERATURE REVIEW</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Competence, Goal Orientation, Motivational Climate</td>
<td>8</td>
</tr>
<tr>
<td>Satisfaction with Life, Goal Orientation, Motivational Climate</td>
<td>15</td>
</tr>
<tr>
<td>Motivation, Goal Orientation, Motivational Climate</td>
<td>18</td>
</tr>
<tr>
<td>Research in Achievement Goal Theory</td>
<td>24</td>
</tr>
<tr>
<td>Considerations in Gender</td>
<td>29</td>
</tr>
<tr>
<td>Conclusion</td>
<td>30</td>
</tr>
<tr>
<td>Research Questions</td>
<td>31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter III. METHODS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>32</td>
</tr>
<tr>
<td>Measures</td>
<td>34</td>
</tr>
<tr>
<td>Background Information</td>
<td>34</td>
</tr>
<tr>
<td>Perceptions of Competence</td>
<td>34</td>
</tr>
<tr>
<td>Satisfaction with Life</td>
<td>35</td>
</tr>
<tr>
<td>Sport Goal Orientations</td>
<td>35</td>
</tr>
<tr>
<td>Perceived Motivational Climate</td>
<td>36</td>
</tr>
</tbody>
</table>
APPENDIX B. TASK AND EGO ORIENTATION IN SPORT QUESTIONNAIRE 82
APPENDIX C. PERCEIVED MOTIVATIONAL CLIMATE IN SPORT QUESTIONNAIRE .. 84
APPENDIX D. SPORT MOTIVATION SCALE .. 87
APPENDIX E. RECRUITMENT SCRIPT .. 90
APPENDIX F. INSTRUCTIONS FOR ADMINISTERING QUESTIONNAIRES 92
APPENDIX G. PARTICIPANT INFORMED CONSENT FORM 94
APPENDIX H. MEANS AND STANDARD DEVIATIONS FOR ALL VARIABLES
STRATIFIED BY TEAM.. 96
LIST OF FIGURES/TABLES

Figure/Table Page

Figure 1. Perceived Competence for Starters and Non-Starters .. 44
Figure 2. Perceived Competence for Full, Partial, and No Scholarship Holders 45
Figure 3. Satisfaction with Life for Starters and Non-Starters .. 46
Figure 4. Satisfaction with Life for Full, Partial, and No Scholarship Holders 47
Figure 5. Task Goal Orientation for Starters and Non-Starters... 48
Figure 6. Ego Goal Orientation for Starters and Non-Starters .. 48
Figure 7. Task Goal Orientation for Full, Partial, and No Scholarship Holders 49
Figure 8. Ego Goal Orientation for Full, Partial, and No Scholarship Holders 49
Figure 9. Task Motivational Climate for Starters and Non-Starters 51
Figure 10. Ego Motivational Climate for Starters and Non-Starters 51
Figure 11. Task Motivational Climate for Full, Partial, and No Scholarship Holders 52
Figure 12. Ego Motivational Climate for Full, Partial, and No Scholarship Holders 52
Figure 13. Intrinsic Motivation for Starters and Non-Starters .. 54
Figure 14. Extrinsic Motivation for Starters and Non-Starters ... 54
Figure 15. Amotivation for Starters and Non-Starters .. 55
Figure 16. Intrinsic Motivation for Full, Partial, and No Scholarship Holders 56
Figure 17. Extrinsic Motivation for Full, Partial, and No Scholarship Holders 56
Figure 18. Amotivation for Full, Partial, and No Scholarship Holders 57

Table 1. Frequency Intervals in Years of Overall Softball Participation 32
Table 2. Player Role Distribution by Team .. 32
Table 3. Scholarship Status Distribution by Team ... 33
Table 4. Age Distribution in the Total Sample ... 33
Table 5. Year in School Distribution in the Total Sample ... 33
Table 6. Means and Standard Deviations for all variables in Player Role 42
Table 7. Means and Standard Deviations for all variables in Scholarship Status 43
Table 8. Means and Standard Deviations for all variables Stratified by Teams 97
CHAPTER I: INTRODUCTION

Collegiate athletics has become an integral part of the student experience. In particular, the student athlete experience has received considerable attention. Some studies have explored the athletic environment in terms of the emergence of leadership, team dynamics, team cohesion, and the motivational climate (Medic, Mack, Wilson, & Starkes, 2007; Tsang, 2007; Adie, Duda, & Ntoumanis, 2008; Allen, & Howe, 1998; Balaguer, Duda, & Crespo, 1999). Other studies have focused more on individual attributes such as motivation to perform and participate, perceived ability, perceived competence, personal satisfaction, enjoyment, social status, and intrinsic motivation (Hollembeak, & Amorose, 2005; Sheldon, & Eccles, 2005; Reinboth, & Duda, 2004; Amorose, & Horn, 2001; Van-Yperen, & Duda, 1999; Ommundsen, & Pederson, 1999).

There are several areas of individual attributes that have shown promising results in the area of sport. These are perceived competence, satisfaction with life, goal orientation, and motivation of the athlete. In addition, the athletic environment (e.g., perceived motivational climate) shows further promising results. Although these concepts have been studied extensively in other areas of behavior, fewer studies have examined these variables with college student-athletes. Thus, it would seem important to advance our understanding of these attributes within the collegiate student-athlete population.

Perceived Competence

According to Harter (1978), individuals are innately motivated to be competent in all areas of human achievement. Most individuals primarily participate in sport for intrinsic reasons, such as enjoyment in the activity, and the pleasure and sense of mastery
that comes from learning and improving skills. To satisfy the urge to be competent in
sport, the athlete attempts to master the sport. Perceptions of competence then lead to
subsequent motivation. As competence motivation increases, the athlete is encouraged to
make further mastery attempts. Thus, perceived competence can be defined as how the
individual views his/her ability to master the skill successfully.

Moreover, Harter (1978) views competence motivation as a multidimensional
construct that influences domain-specific (sport) mastery attempts and the development
of achievement cognitions (e.g., perceived competence) and behaviors. Perceived
competence will vary as a function of the achievement domain (sport) in which the
individual attempts mastery behaviors. She found that success at any type of task or
activity is not sufficient to alter competence motivation. An unsuccessful attempt of a
difficult task is not necessarily discouraging, and may be associated with a gain in
competence due to the experience itself. ‘Competence’ is a perception of success based
on the individual’s belief in his/her ability to perform. However, perceived competence
itself may in fact change over time if an individual’s goal orientation is threatened by
situational cues, such as player role (starter vs. non-starter), and/or scholarship status
(full, partial, or none).

Satisfaction with Life

An individual has a standard of living that s/he sets in all aspects of life (Diener,
E., Emmons, R., Larsen, R., & Griffin, S., 1985). Most individuals strive for a sense of
satisfaction in his/her standard of living. Thus, satisfaction with life is the sense of
feeling good about all aspects of life. While the individual can assess his/her satisfaction
in each area of his/her life, the level of satisfaction in a certain area might ‘spillover’ onto
other areas (Kabanoff, 1980). That is, an athlete’s satisfaction in his/her respective sport might spill over onto his/her overall life satisfaction. For example, a softball player who is satisfied and feeling good about softball will have the satisfaction spilled over onto her entire life, thus feeling satisfied with life. In contrast, a softball player who is not satisfied with softball might feel dissatisfied in life as well. The individual will evaluate his/her life as whole (Diener, 2006). Thus, the many realms of one’s life will help to shape life satisfaction. A softball player, therefore, will feel certain levels of satisfaction in softball, which will help shape her overall satisfaction with life.

Goal Orientation

Perceived competence and life satisfaction in athletes can be affected by other motivational factors such as the individual’s goal orientation and perceived motivational climate. Nicholls (1984) presents a paradigm of achievement motivation. He defines achievement motivation as a way for an individual to develop or demonstrate high ability in two ways: reference to one’s own performance or mastery, or reference of oneself relative to others. Individuals perceive success as localized within the task itself or within their own ability. In other words, the task-involved person will define success through the mastery of skills and will therefore gain a sense of competence upon the successful accomplishment of the task. This individual therefore shows characteristics of a task-orientation. The ego-involved person will define success when s/he demonstrates superior performance to others and will also gain a sense of competence when this is achieved. Thus, the athlete shows characteristics of an ego-orientation.
Perceived Motivational Climate

Nicholls’ (1984) theory of achievement motivation has been widely accepted in the educational setting; further research has been done to relate this paradigm to athletics (Duda, 1989; Duda & Nicholls, 1992). Thus, the task-oriented individual will believe that sport is a way to gain personal growth by working hard and learning new skills. The ego-oriented individual will believe that superiority in sport will give them success through improved social status.

Nicholls (1989) also found that perceptions of the motivational climate and individual goal orientation interact to influence successful behavior. Although peers and parents may contribute to the motivational climate, the coach is often the major influence of the motivational climate and for determining successful performance. When the environment is task-involved, the focus is on the athlete’s improvement and successful performance is determined through mastery of the skill. When the environment is ego-involved, the focus is on winning, and athletes may try to avoid punishments, and sometimes cheat due to the emphasis on winning. However, an individuals’ goal orientation may moderate the influence of motivational climate on goal involvement or behavior due to the individual’s belief regarding successful performance. Thus, it would seem that goal orientation and perceived motivational climate are crucial determinants of perceived success of the individual. Goal orientation is deemed to be a relatively enduring personality characteristic, and motivational climate, often reflects a coach’s philosophy on success.
Motivation

The concept of intrinsic and extrinsic motivation is frequently associated with success in the educational setting. Deci and Ryan (1985; Ryan & Deci, 2000) define intrinsic motivation as doing an activity for its own sake, whereas extrinsic motivation refers to doing an activity to achieve an instrumental goal, such as a championship trophy. Furthermore, the authors postulate that all intrinsically and extrinsically motivated individuals have an innate sense towards personal growth.

Although Nicholls’ (1984) concept of achievement motivation and the concept of intrinsic and extrinsic motivation are theoretically related, the two variables are conceptually distinct. In other words, it is too simplistic to consider a task-oriented individual as exclusively intrinsically motivated and an ego-oriented individual as exclusively extrinsically motivated. Thus, further research is needed to clarify this issue in the sport setting.

Few studies have examined the relationship among goal orientation, motivational climate, perceived competence, and motivation to perform. For example, Papioannou, Bebetsos, Theodorakis, Chistodoulidis, & Kouli (2006) explored causal relationships of sport and exercise participation in physical education. These researchers measured goal orientation, perceived athletic competence, and intrinsic motivation in Greek students (N=882) over the course of an academic year. They found that task-oriented participants and intrinsic motivation predicted continued involvement in sport and exercise. Ego-orientation did not predict any involvement, however. Perceived athletic competence was also a positive predictor of continued involvement in sport and exercise. While this study highlighted the relationship between task-orientation, intrinsic motivation, and
perceived athletic competence regarding adolescent involvement in sport and exercise, this study was conducted in the physical education setting. Further research is needed to examine these variables in sport-specific domains. Since collegiate athletics is such a visible sport domain, it would seem important to increase our understanding of the student-athlete.

Waldron and Krane (2005) examined motivational climate and goal orientation in female adolescent softball players ($N = 62$), at the beginning and end of the softball season. It was found that athletes with a task-orientation who perceived a task-involved motivational climate showed a focus on improving and mastering skills. An ego-oriented athlete who perceived an ego-involved motivational climate were focused on winning and proving his/her success. Although this research addressed important factors in sport, the study was based on a younger population and did not take into account other variables such as perceived competence and motivation between individuals with different situational factors such as player role and scholarship status.

Another factor to consider regarding motivation is scholarship status. Early research reported that scholarship recipients often reported lower intrinsic motivation (Amorose, & Horn, 2000). However, more recent research suggests that other factors may confound this relationship. Amorose and Horn (2001) examined pre- to post-season changes in intrinsic motivation in Division I college athletes ($N = 72$), coaching behavior, and scholarship status. It was found that coaching behavior was a significant influence on intrinsic motivation. Scholarship status and time was not associated with significant change in intrinsic motivation ($M_{change} = -.09 \pm 1.37$). Similar findings were reported by Hollembeak and Amorose (2005). While motivation may be mediated by coaching
behavior, a player’s role (e.g., starter or non-starter), which can be comparable to previous research on scholarship status, may have an effect on motivation. There is a theoretical appeal to include other variables such as achievement motivation and perceived competence as well as the player’s role.

In conclusion, it would appear that perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation are key dimensions in collegiate athletics. While there is abundant research in the educational setting, there is less research on these variables within the student-athlete population. Moreover, these variables have not been collectively examined in a Division I college athletic domain. Given the theoretical relationship of these variables, it would be of interest to simultaneously measure these variables and the effect of player role and scholarship status.

Previous research has not taken into account the player’s role within the team structure. Therefore, this study examined the effects of the athlete’s role (starter vs. non-starter) and scholarship status (full, partial, none) on perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation. The significance of this study was to help coaches and athletes become aware of personal and situational factors that are influenced by the player’s role and scholarship status on the team, which are related to other variables such as team cohesion, individual performance, and ultimately team performance.
CHAPTER II: LITERATURE REVIEW

The areas of perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation are individual attributes that have shown promising results in the sport domain. Each variable can be affected by outside factors such as the individual’s role on the team (starter or non-starter) and/or scholarship status (full, partial, or none). Although few studies have examined the relationship among goal orientation, motivational climate, perceived competence, and motivation, current research tends to focus on such variables alone or through an interaction between some variables. Thus, it is important to appreciate the current understanding of such factors as it relates to variables examined by researchers in the past, as well as adding situational factors such as player role and scholarship status.

Perceived Competence, Goal Orientation, Motivational Climate

Perceived competence can be defined as an innate drive to reach desired competence levels. Horn (2002) suggests that perceived competence is a mediator of the achievement outcomes. The level of perceived competence (high or low) is a strong predictor of achievement-related cognitions. Thus, when a task-involved athlete 1) desires to gain in skill and knowledge, 2) performs at an acceptable level of self-rated competence, and 3) experiences personal involvement, then s/he reports a high level of competency and successful performance. When an ego-involved athlete is preoccupied with the adequacy of his/her ability and demonstration of superior competence as compared to others, the resulting perceptions of competence and achievement are due primarily to social comparison. The athlete therefore focuses on whether s/he are good enough (if their perceived competence is lower) and to prove (instead of improve) a
higher level of competence (if they have higher perceptions of competence). In other words, the task-oriented athlete will be motivated regardless of his/her level of perceived competence, and the ego-oriented athlete will be motivated as long as s/he remains convinced of his/her ability to perform well. Thus, an individual’s goal orientation and perceived motivational climate can influence perceptions of competence.

The perceived motivational climate can cause perceptions of competence in athletes to fluctuate. For example, the interaction of the motivational climate and perceived ability with perceived competence was studied by Reinboth and Duda (2004) using adolescent male athletes (N = 265) in soccer and cricket (which is similar to softball). Specifically, they found that for those athletes in an environment where task goals were the focus (M = 3.97 ± 0.49), perceptions of competence were positively correlated (r = .23; p < .01). For those athletes in an environment were ego goals were the focus (M = 2.67 ± .83), perceptions of competence were not correlated (r = .04). Perceived competence and self-esteem were positively correlated with a task-involved motivational climate (r = .23 and .29). Perceived ability (ability to perform the task) did not significantly play a part in the perceived task environment, whereas it did contribute to the regulation of self-esteem and perceived competence (ability to perform the task better than others). When goal orientation was paired with high perceptions of competence, performance goals were met effectively. Moreover, athletes in a task-involved climate tended to perceive their competence as high regardless of how they initially perceived their competence. On the other hand, athletes in the ego-involved motivational climate tended to differ in their perceptions of competence depending on their initial perceptions of competence. In other words, athletes who began with high
perceptions of competence tended to be unaffected by the ego-involving climate ($R^2_{\text{change}} = .08$), and athletes who began with lower perceptions of competence tended to decrease perceptions of competence in the ego-involving climate ($R^2_{\text{change}} = -.20$). Thus, perceptions of competence may vary depending on an individual’s goal orientation and feedback in the motivational climate.

In another study done to assess perceived competence as a possible result of the motivational climate, Allen & Howe (1998) assessed female hockey players ($N=123$) from ten teams and seven coaches on the afore-mentioned variables. Specifically, the effect of coaches’ feedback was related to individuals’ self-perceptions and motivation. The results supported the claim that ability and the motivational climate affected the athletes’ perceived competence. When individuals perceived the coaches as giving more positive reinforcement ($M = 3.83 \pm 1.55$) as opposed to negative reinforcement (or none at all; $M = 6.01 \pm 0.88$), higher perceptions of competence followed ($M = 4.66 \pm 1.25, 1.70 \pm 1.11$, respectively). Thus, athletes’ perceptions of competence were higher when the coach emphasized a more positive climate. This can relate to the task-oriented climate in that positive reinforcement is usually linked to improvement of the task, which then leads to higher levels of perceived competence. Furthermore, when coaches tended to give more negative reinforcement or more feedback when errors occurred, perceptions of competence decreased. In addition, athletes with higher ability tended to show a higher level of perceived competence. Thus, perceived competence can be related to both motivational climate and ability.

In their sample of male and female ($N=280$) student-athletes in Division I sports, Hollembeak and Amorose (2005) found that perceived competence was influenced by
intrinsic motivation \((r = .78, p < .05) \). When positive feedback from the coach was perceived to be the highest level of feedback, perceived competence increased \((p < .05) \). The authors suggested that perceived competence is an internal variable and linked to the athlete’s intrinsic motivation to perform. An athlete with a high level of perceived competence shows continual high levels of perceived competence when reinforced by positive feedback from the coach. Thus, the motivational climate exhibited by coach’s feedback can relate to fluctuating levels of perceived competence.

The influence of coach feedback on perceived competence have been reported in other studies. Allen and Howe (1998) found that positive reinforcement encourages motivation to perform well and reinforced the improvement of the skill level, and this consequently contributed to higher levels of perceived competence. However, it is noted that positive feedback in some instances can result in low perceived competence. That is, positive reinforcement without meaningful feedback can become redundant and lose its effectiveness (Horn, 2002 in Hollembeak & Amorose, 2005).

In further support of the perceived motivational climate playing a role in perceived competence, Balaguer, Duda, & Crespo (1999) conducted a study including male and female \((N=219) \) Spanish tennis players. Subjects tended to perceive the motivational climate to be task-involved \((M = 3.99 \pm 0.55) \), as opposed to subjects perceiving the motivational climate to be ego-involved \((M = 2.62 \pm .70) \). Those who perceived the motivational climate to be task-involved showed significant correlations with psychological improvement \((r = .26; p < .005) \), and those who perceived the motivational climate to be ego-involved show no significant correlations with psychological improvement \((r = -0.05) \). Subjects also had high perceptions of
psychological improvement ($M = 4.98 \pm 1.33$) and feelings of physical improvement ($M = 5.50 \pm 1.23$), regardless of the motivational climate. These scores were measured on a 7-point Likert scale. In contrast, those subjects who perceived an ego-involving motivational climate reported lower perceived competence (by 30%). Therefore, perceived motivational climate may predict levels of perceived competence in the athletes and supports research in determining how a task-involved climate is beneficial to the perceived competence of athletes (Nicholls, 1989; Dweck, 1986).

Male athletes attending a soccer school were assessed on how they attribute successful performance (goal orientations), perceived ability and perceived competence, and the motivational climate at the beginning and end of the soccer season (Van-Yperen, & Duda, 1999). The results found that throughout the program, athletes tended to attribute their successful performance through higher perceptions of self-reported performance levels ($M = 7.15 \pm 0.46$) as opposed to the support they were receiving from adults ($M = 3.81 \pm 1.07$) or coaches ($M = 6.54 \pm .48$). In other words, these athletes used a more internal measure of rating performance level. Moreover, the ego-oriented athletes tended to exhibit higher levels of perceived ability at the end of the season ($M = 3.84 \pm .65$) as opposed to the beginning of the season ($M = 3.43 \pm .73$). This finding suggests that perceived ability may fluctuate more for ego-oriented athletes than task-oriented athletes.

Furthermore, Van-Yperen & Duda (1999) supported that athletes with task- or ego-orientations tended to directly relate their attribution of success to their perceptions of competence. Thus, in reviewing the particular achievement orientations, it was found that athletes with a high task-orientation believed that working hard and improving
resulted in successful performance and high perceptions of competence. Ego-oriented athletes believed that proving their ability by outperforming others resulted in successful performance and high perceptions of competence. These findings directly support Nicholls’ theory of achievement motivation (Nicholls, 1984). Task-oriented athletes who sought to improve over the course of the season actually showed improvement as rated by themselves (16%) and coaches (29%). The achievement goal of improving was the focus for the individual and s/he rated performance through this personal goal. These athletes tended to out-perform their counterparts (namely the ego-oriented athletes) by 20% as rated by coaches. This may be attributed to the motivational climate, which was perceived as a mastery (task) climate. In addition, the task-oriented athletes perceived their competence at high levels, which altogether led to higher motivation. Thus, such variables as goal orientation and perceived motivational climate are different for each individual, thereby causing individual perceptions of competence to fluctuate accordingly.

Harwood, Hardy, and Swain (2000) reviewed previous findings and noted that “learning and effort are not the same as mastery and improvement in sport” (p. 252). In other words, athletes’ perceptions of their competence and motivation were more important than the actual act of improving and learning. Harwood and Hardy (2001) interpreted achievement goal theory by stating that task involvement is directly linked to “self-referent perceptions of learning, working hard (effort), understanding something more fully, mastery, improvement, and progress” (p. 336). They explained that an athlete may attempt to improve and perceive the situation as one in which s/he may put forth effort, but may also fail to achieve mastery at the same time. However, the importance is
that the athlete has internal measures of competence and wishes to continue to learn and improve. The failed mastery attempt will not deter his/her effort. Thus, it may be important to separate the perceptions of competence and the perceptions of the actual mastery of the task-involved individual. An athlete’s perceptions may be specific to differences in motivational climate and/or individual differences in goal orientation.

Other research has focused on other variables that may influence perceived competence such as perceived ability and anxiety levels. In a study of adult male (n=143) and female (n=323) tennis players who were assessed on their perceived competence and ability (Sheldon, & Eccles, 2005), age (19 to 74 years) was found to be a specific predictor of perceived ability and therefore perceived competence (p < .01). For example, an individual who perceives him/herself as less competent or unable to perform the task well, because of diminished physical functions associated with aging, may also tend to report lower perceived ability (or the ability to perform the task at all). Therefore, perception of competence was directly related to one’s perception of ability. It is important to note that these findings might vary for different sports as this study only looked at tennis players. Since tennis requires refined motor skills (e.g., serving), other sports with fewer refined skills may not find similar results regarding the relationship between perceived ability and perceived competence in performance.

In a sample of youth male and female athletes (N = 136), Ommunsen & Pederson (1999) examined the interaction between achievement goal orientation and perceived competence with cognitive and somatic anxiety. The results of this study showed that task-oriented athletes who perceived themselves as competent did not exhibit high cognitive or somatic anxiety (p < .001). Thus, when an athlete has higher perceived
competence and has a task-orientation, s/he is not as anxious in competition presumably because s/he is comfortable in his/her ability to perform the task well. This is consistent with previous research on the beneficial effects associated with a task-involved motivational climate (Nicholls, 1989; Ames, 1992). Conversely, it was found that ego-involved athletes with low perceptions of competence reported 17% higher anxiety than those with high perceptions of competence in competition presumably because s/he is not completely comfortable in his/her ability to perform well ($p < .001$). However, an athlete with high perceptions of competence (or think s/he can perform well no matter what) in an ego-involved environment showed no effect on competitive anxiety. Having higher perceived competence with either achievement goal orientation seems to be most beneficial for athletes because s/he will be confident in his/her own ability. However, achievement goal orientation and perceived motivational climate help shape an individual’s definition of success, which subsequently influences perceptions of competence.

While there are inter-individual differences in perceived competence, perceived competence can change across time leading to intra-individual differences. No longitudinal studies have been found which examines changes in perceived competence in a sport setting. Therefore, it is important to assess perceived competence, goal orientation, and perceived motivational climate, and its relationship to other factors such as player role and scholarship status.

Satisfaction with Life, Goal Orientation, Motivational Climate

The concept of life satisfaction explains that an individual has a standard of living that s/he sets in all aspects of life (Diener, E., Emmons, R., Larsen, R., & Griffin, S.,
This standard of living is a way the individual will find fulfillment in all areas of life. The individual will evaluate his/her life as whole (Diener, 2006). Thus, the many realms of one’s life will help to shape life satisfaction. As Shin and Johnson (1979) explain, satisfaction is an overall assessment of one’s life according to the criteria one focuses on. That is, if an athlete focuses much of his/her life on sport, life satisfaction might be reciprocal to satisfaction relative to his/her sport.

While there are several aspects of life an individual deals with, the motivational climate can affect how the individual is satisfied in the sport domain. Further, when the coach puts an emphasis on task-involvement (e.g., improvement) or ego-involvement (e.g., winning and performance), the athlete would also need to value this to feel satisfied. If there is a contradiction in standards of living between the coach and the athlete, the athlete might show lower levels of life satisfaction.

To demonstrate the criteria an athlete will focus on, Balaguer, Duda, & Crespa (1999) investigated male and female Spanish tennis players ($N = 219$), satisfaction with competition, level of play, and his/her coach. Athletes tended to perceive more of a task-involving motivational climate ($M = 3.99 \pm .55$) than an ego-involving motivational climate ($M = 2.62 \pm .70$). Therefore, satisfaction with level of play ($M = 4.85 \pm 1.37$) and satisfaction with results ($M = 4.45 \pm 1.57$) were moderate, as scored on a 7-point Likert scale. In addition, players in this investigation scored high levels of satisfaction with his/her coach ($M = 5.66 \pm 1.39$). Thus, the players who perceived a motivational climate that coincided with his/her goal orientation, had high levels of satisfaction. Moreover, the players in the investigation perceived their coaches to put an emphasis on
improvement and mastering skills, and therefore had levels of life satisfaction that were high.

Another study assessed perceived competence and satisfaction with motivational climate (Allen & Howe, 1998). This study assessed female hockey player ($N = 123$) from ten teams and seven coaches. Specifically, the effect of coaches’ feedback was related to individuals’ self-perceptions and satisfaction. The results supported that life satisfaction might be affected by the motivational climate, using a 7-point Likert scale from *very dissatisfied* (1) to *very satisfied* (7). When positive and critical feedbacks were given to players, satisfaction with the coach was high ($M = 6.21 \pm .91$). In turn, players reported high levels of satisfaction with the team ($M = 6.01 \pm .88$). Thus, the athletes in general were satisfied with their coach and with their involvement on the team. It should follow, then, that the players in general were satisfied in life.

The perceived motivational climate can cause differences in self-esteem and self-worth. For example, Reinboth and Duda (2004) investigated the interaction of the motivational climate and self-worth using adolescent male athletes ($N = 265$) in soccer and cricket (which is similar to softball). Athletes in an environment where ego goals were the focus ($M = 2.67 \pm 0.83$) exhibited significant correlations with contingent self-esteem ($M = 2.64 \pm .75$), emotional/physical exhaustion ($M = 2.43 \pm .80$), and physical symptoms ($M = 2.67 \pm 1.08$). That is, the players who perceived an ego-involved climate had significant levels of contingent self-esteem, emotional and physical exhaustion, and physical symptoms. Moreover, when an athlete perceived an ego-involved motivational climate, self-esteem and perceived ability interacted to show negative effects.
Athletes at the Division I level assume a certain standard of living. Namely, the role of being a student-athlete means that the individual attends practices, games, and work-out schedules. In addition, this individual assumes a certain level of academic achievement. As Diener, et al. (1985) demonstrate, the individual sets a certain standard of living in order that life satisfaction is sufficient. Further, an athlete’s satisfaction in his/her sport could ‘spillover’ and determines satisfaction in life as a whole. Life satisfaction is ultimately determined by the individual (Diener et al., 1985), but the satisfaction an athlete feels in his/her sport could determine overall life satisfaction. Moreover, if the standards of living the athlete sets in his/her life is parallel or unparallel with the standards of living the coach sets in the motivational climate, life satisfaction of the athlete could be affected forthwith. Thus, if the athlete is satisfied in the sport domain (which s/he believes is important), then satisfaction with his/her life will be prominent.

Motivation, Goal Orientation, Motivational Climate

In the concept of intrinsic motivation, the reward of any activity is found in the activity itself, as opposed to extrinsic motivation, which is a reward in the external environment (Harter, 1978). Although intrinsic and extrinsic motivation is frequently associated with success, intrinsic motivation is an attribute within the control of the behavior of the individual. However, there are internal and external factors that influence the athlete in the sport domain, and as such, motivation can be influenced by internal variables such as goal orientation and perceived motivational climate or external variables such as player role or scholarship status.

Amorose and Horn (2001) tested pre- to post-season changes in motivation. This study measured the relationship between coaching behavior and scholarship status on
intrinsic motivation in male and female \((N = 72)\) first year Division I athletes, using the Intrinsic Motivation Inventory (IMI; Ryan et al., 1983). The results indicated that athletes’ perceptions of coaching behaviors resulted in predictions of levels of intrinsic motivation from pre-season to post-season \((\Lambda = .45, F(25, 231) = 2.20, p < .001)\). In other words, these athletes believed in the ability to improve and exhibit a sense of success through mastery of skills in the future and were motivated to work towards improvement. In contrast, those who perceived the climate to be ego-involved differed in intrinsic motivation because the coach was putting an emphasis on external factors such as winning. Therefore, a task-involved climate, which emphasized individualized improvement, may be more beneficial to the athlete, by maintaining or enhancing intrinsic motivation in the athlete.

It is important to note that this study predicted a change in intrinsic motivation between pre- and post-season based on scholarship status (Amorose & Horn, 2001). However, there were no differences found \((M_{\text{change}} = -.09 \pm 1.37)\) among the scholarship \((M_{\text{pre}} = 5.95 \pm .73; M_{\text{post}} = 5.66 \pm .96)\) and non-scholarship players \((M_{\text{pre}} = 5.41 \pm 1.05; M_{\text{post}} = 5.48 \pm 1.25)\). This may be due, in part, to the lack of discrimination between full-scholarship players and partial-scholarship players.

Another prominent study in motivation included male and female scholarship basketball players \((n=46)\) and a group of non-scholarship basketball players \((n=70)\) (Medic, Mack, Wilson, & Starkes, 2007). Differences in motivation were shown to be dependent on athlete scholarship status for non-self-determined types of motivation, such as perceived future motivation. Although there were no initial effects of scholarship status and intrinsic motivation, \((\text{Non-scholarship}, M = 4.92 \pm 1.08; \text{Scholarship}, M = \)
intrinsic motivation was thought to decrease if the athlete perceived a change in scholarship status in the future \(F(1,44) = 9.10, p < .01; ES = .35 \). Male athletes with scholarships \((M = 4.83 \pm 1.01)\) reported higher extrinsic motivation than females with scholarships \((M = 3.60 \pm 1.51; ES = .95)\). Moreover, although scholarship status did not affect present motivation, it was found that intrinsic motivation decreased when scholarship status was subject to change (a scholarship would become available or unavailable). Therefore, the scholarship status (an external factor) was determined to be a negative controller of intrinsic motivation across the athletes’ behavior.

Intrinsic motivation in this study decreased when the athlete was introduced to an external factor, such as a scholarship being taken away or becoming available (Medic, et al., 2007). External factors (e.g., scholarship status) may prohibit an individual from focusing on their intrinsic motivation for success. This conclusion is similar to Amorose and Horn’s (2001) findings that intrinsic motivation decreased when there was an emphasis on external factors like winning or when a scholarship could be taken away from an athlete. Thus, several variables in the sport domain can affect an individual’s motivation, which is important to consider with player role as well.

In a related study linking perceived motivational climate to intrinsic motivation, Hollembeak and Amorose (2005) studied the relationship between coaching styles and intrinsic motivation, using male and female student-athletes. They found that there was a strong correlation between coaching style and players’ motivation. Namely, all types of coaching styles positively predicted intrinsic motivation because the perceptions of the motivational climate can influence the athlete’s perception of ability to perform well, which is an internal factor in motivation. Scholarship status was also a strong predictor
of intrinsic motivation. Specifically, non-scholarship athletes reported lower intrinsic motivation ($M = 3.86$) relative to partial scholarship ($M = 4.08$) and full scholarship athletes ($M = 4.13$), including low levels of perceived competence ($M_{non} = 3.86; M_{partial} = 4.08; M_{full} = 4.13$). These findings support the importance of athletes’ high levels of motivation and the factors that relate to intrinsic motivation. The motivational climate created by the coaching style was shown to have the strongest effect on intrinsic motivation, thus emphasizing the importance of perceived motivational climate on an athlete’s intrinsic motivation.

Other factors such as an individual’s goal orientation may affect changes in intrinsic motivation. In an attempt to link achievement goals to perceived competence and intrinsic motivation, Ntoumanis (2001) studied goal orientations and perceived competence in male and female ($N=247$) British university students. It was hypothesized that a task-oriented individual would exhibit more intrinsic motivation and higher perceived competence. The results, as scored on a 5-point Likert scale, showed that males tended to have more ego-orientations than females (by 8%), but ego-orientation in males and females ($M = 3.13 \pm 0.85$) was found to be lower than task-orientation in males and females ($M = 4.07 \pm 0.44$). On a 7-point Likert scale, participants also tended to have high intrinsic motivation to accomplish the task ($M = 5.07 \pm 0.92$) and high perceived competence ($M = 5.12 \pm 0.88$). Task-oriented individuals (male and female), on the other hand, possessed both high intrinsic motivation and perceived competence. This finding is consistent with Deci and Ryan’s (1985) concept that individuals have an innate need to be competent in attempts of success, and therefore tended to be intrinsically motivated. Ego-oriented individuals tended to be motivated more by
extrinsic reasons such as demonstrating competence, superiority, and the outcome of winning. Ego-orientation was therefore not a positive predictor of intrinsic motivation. Thus, by examining individual attributes, motivation could be seen to change according to the standards of success an individual holds, as well as the situational factors involved.

When other variables are examined for the individual, an understanding of what keeps an individual motivated may emerge. To examine the relationships of the goal orientations, perceived competence, and motivation, Papaioannou, Bebetsos, Theodorakis, Chistodoulidis, & Kouli (2006) performed a longitudinal study with Greek students ($N=882$). Individuals with a task orientation, high perceived competence, and intrinsic motivation were likely to further participate in sport and exercise. In contrast, the ego-oriented individual did not exhibit the same motivation to further participation. Therefore, task orientation and perceived competence played a positive role for enhancing intrinsic motivation and continuing sport participation in this particular group ($p < .001$). This relationship between perceived competence and intrinsic motivation can therefore relate to continued participation in sport and physical activity. It is important to note, though, that this finding was found in those individuals with a task orientation, and no findings supported those of an ego-oriented individual because s/he tends to be motivated by more external factors. Papaioannou et al. (2006) therefore noted that further research could be done to determine whether perceived competence alone could be a motivator in both task- and ego-involved individuals.

While the effects of individual variables on intrinsic motivation can provide insight, the interaction effect of variables on intrinsic motivation can provide a clearer picture. In a study of male and female ($N = 2,202$) secondary school children in Hong
Kong ($M_{age} = 13.55 \pm 2.15$ years), Tsang (2007) found that “task goal orientation was able to influence perceived sport competence only through the moderators of intrinsic motivation and extrinsic motivation” (p. 48). Although most of the findings did not find a significant correlation between the task goal orientation and perceived competence, the most prominent findings were between the three variables of task orientation, intrinsic motivation and perceived competence. Intrinsic motivation was found to directly relate to high levels of competence ($p < .01$). Tsang also reported that athletes with a high ego-orientation (association with success by outperforming others) are not likely to develop their perceived competence in a positive manner with intrinsic motivation. For example, the athlete with an ego-orientation might have high perceived competence due to other factors such as proof of superiority (e.g., a record-holder), and as such, intrinsic motivation does not influence perceived competence in this case. Thus, intrinsic motivation can also fluctuate when the interaction between goal orientation and perceived competence fluctuates.

Athletes who are intrinsically motivated tend to perform at higher levels because they are motivated by themselves to continue to play, improve, and perform well (Amorose & Horn, 2001; Medic, et al., 2007; Papaioannou, et al., 2006). More research is needed on intrinsic motivation in athletes as relatively few studies have examined intrinsic motivation in the sport setting. For example, intrinsic motivation may change over time but how does the interaction of factors such as goal orientation and perceived motivational climate influence changes in intrinsic motivation. Moreover, other situational cues such as player status may impact perceived competence and intrinsic
motivation, and should be examined in conjunction with goal orientation and perceived motivational climate.

Research in Achievement Goal Theory

Research over a number of years has supported Nicholls’ (1984, 1989) Achievement Goal Theory influence of a task- or ego-orientation in an achievement domain. As the concept began in the educational setting, it is important to examine each orientation and its affect on the individual in the sport setting. Adie, Duda, and Ntoumanis (2008) conducted a study of experienced male and female athletes (N = 424; $M_{\text{age}} = 24.25$) that participated in team sports, namely cricket, hockey, netball, football, basketball, and rugby. Athletes with high task-orientation ($M = 6.02 \pm 0.88$) were motivated to participate in competition due to a desire for personal improvement, personal accomplishment, and personal growth ($p < .001$). On the other hand, highly ego-oriented athletes ($M = 4.26 \pm 1.44$) who believe they could prove excellence by outperforming others in sport competition were not only highly motivated to achieve success but also viewed sport competition as a means to increase personal growth. This study demonstrates that male and female athletes from six different sports can develop either type of achievement orientation. By focusing on experienced athletes, the goal orientation in either task-oriented or ego-oriented, or can be both, as the athlete is experienced in knowing what drives him/her towards success.

According to Nicholl’s theory (1984, 1989), achievement goal orientations may be categorized as task- and ego-oriented. Nicholls viewed each goal orientation as a representation of the theory of success for the individual athlete in a particular achievement domain (e.g., sport). Since goal orientations are orthogonal (e.g.,
independent and uncorrelated), individuals can vary in their levels of each goal orientation. For example, an individual could possess a high level of task-orientation and a high level of ego-orientation, or any other combination (e.g., high task and low ego, low task and high ego, low task and low ego). Athletes with a task-orientation are assumed to be working to improve, attempt mastery, and rate successful performance through personal growth. Athletes with an ego-orientation works to prove their ability and superiority, value success as being the “top” athlete, and rate success through demonstrating that they are “better than everyone else.” As athletes become experienced in their particular sport, achievement goal orientation becomes more stable over time.

In a different population, young male and female basketball players \((N=55) \) recruited to participate in a summer camp were measured on their goal orientations and beliefs about success, ability, and competence (Hom, Duda, & Miller, 1993). The results demonstrated that task-oriented athletes believed that success was the result of motivation and hard work \((r = .34, p < .01) \), and were concerned more with the “task at-hand” and favored the importance of motivation and effort. Ego-oriented athletes, on the other hand, believed that success was the result of having high ability (compared to others) and deception (or somehow proving that they were better athletes; \(r = .31, p < .05 \)). These athletes valued winning and proving their competence. Levels of perceived ability and competence were also found to be high in both task-orientation and ego-orientation. Ability can be thought of as an ability to perform the task, and competence as an ability to perform the task well. Each athlete measures his/her ability and competence through the perceptions of his/her adopted goal orientation. As long as athletes are able to achieve the standards through which they define success, then perceived ability and
competence will be high. It should be noted that the development of skills and enjoyment in the activity were encouraged. In addition, the competition was structured in way to focus on success. Thus, the motivational climate exhibited both mastery (task) and performance (ego) involvements. This study provides support for Nicholls’ (1984, 1989) Achievement Goal Theory, and illustrates the relationship between goal orientation and motivational climates.

It has been argued that the motivational climate could also affect an athletes’ behavior toward developing achievement goals more congruent with that of the climate or environment (Nicholls, 1984, 1989). Specifically, a task climate emphasizes personal improvement while an ego climate emphasizes social comparison and competition (Ames, 1992). In other words, an athlete may typically be motivated to achieve in one way (i.e., orientation) yet behave in a different manner (i.e., involvement) based on the motivational climate. Congruence and incongruence between achievement goal orientation and perceived motivational climate can have positive and negative consequences on variables such as perceived competence and intrinsic motivation. The coach is typically a strong influence for establishing the motivational climate.

Fry and Newton (2003) studied achievement goal theory and its relationship to perceived motivational climate in male and female youth tennis players (N = 167) in a Star Search funded tennis class. Results indicated that those athletes who perceived the motivational climate as task-involving (M = 3.5 ± 1.72) had positive attitudes (p < .01) towards their instructors (r = .51), fellow players (r = .26), and for sportspersonship (r = .32). The coach’s and/or instructors encouraged athletes to improve and master skills instead of having an emphasis on winning and being better than others, allowing the
athlete to focus on his/her motivation to improve. Thus, when the athletes perceived their instructors to focus on task goals, their attitudes ($p < .01$) towards their instructors were more positive. When the athletes perceived their instructors to focus on ego goals (Ego-Involving Climate; $M = 3.82 \pm 1.82$), their attitudes towards their instructor ($r = -.27$), their fellow players ($r = -.24$), and sportspersonship ($r = -.32$) were negative. Thus, when the motivational climate was ego-involved, participants had less positive attitudes. The emphasis was on being better than others and errors were discouraged (i.e. ego-involved motivational climate), causing the athletes to steer away from a motivation to improve. The authors concluded that a task-involved setting might be more beneficial for intrinsically motivated athletes.

A study of adolescent female softball players ($N = 62$) examined influence of the motivational climate on achievement goal orientations (Waldron, & Krane, 2005). Participants as a whole were found to be “high in task orientation and moderate in ego orientation; perceived high task motivational climates and moderate ego motivational climates” (p. 384). The results indicated an athlete who initially had high task orientation ($M = 4.39 \pm 0.44$) and perceived the motivational climate to be task-involving subsequently showed late season task orientation ($M = 4.28 \pm 0.52; p < .001$). Athletes who focused on improving and mastering skills were encouraged to do so, which reinforced their task-orientation. In contrast, athletes who had high ego orientation in the early season ($M = 2.67 \pm 0.97$) showed continuation of ego-involvement in late season ($M = 2.40 \pm 0.90; p < .001$). The continuation of ego-involvement may be explained by the perceived moderate ego motivational climate or the ego-involvement of the coach, which was consistent with the athletes’ ego orientation. This provides some support that
achievement motivation remains stable over time. However, the ego-oriented athlete tended to show decreases in motivation by the end of the season ($M = 2.67 \pm .97$ in early season, $M = 2.4 \pm .90$ in late season), and the perceived task-involved motivational climate may have accounted for this finding. Thus, the interaction between perceived motivational climate and an individual’s goal orientation may be affected over time in younger athletes.

In contrast, Kaye, Conroy, and Fifer (2008) assessed college students ($N = 372$) in the physical activity setting. Other variables in relation to the perceived motivational climate and goal orientation may be influential in an individual’s motivation. They found that an ego-involved motivational climate causes individuals to avoid feelings of incompetence by showing some sensitivity to punishments ($M = 3.05 \pm 0.85$; on a 5-point Likert scale) due to a fear of shame and embarrassment. In the ego-involved motivational climate, the emphasis is on winning and performance-based. Often times, this motivational climate involves punishment when participants do not perform well. Thus, someone with either task- or ego-orientation and with low perceived competence will adopt avoidance strategies in ego environments where they may feel like they will be punished for poor performance ($p < .01$). Kaye et al. (2008) therefore identified that situational cues such as the individual’s desire to be perfect ($M = 4.51 \pm 1.04$) may in fact affect perceived competence in either achievement goal orientation. When the motivational climate is ego-involved and the emphasis is on winning, not making errors and proving superiority, athletes are less inclined to improve and feel uneasy about performing due to fear of losing and actually making errors. They also noted, however, that individual differences, such as intrinsic motivation, may play a part in this function.
Other research with student populations and in physical activity settings have reported similar findings about the differences between a task- or ego-involved motivational climate and how an individual’s goal orientation is stable over time in experienced athletes. (Ntoumanis & Biddle, 1998; Theeboom et al., 1995; Lloyd & Fox, 1992; Solmon, 1996). More research is needed to clarify the interaction of the motivational climate and the individual’s goal orientations in sport-specific settings.

Considerations in Gender

Research tends to show that there are not many differences between males and females in elite sport (Chalabaev, Sarrazin, Stone, & Cury, 2008; Abrahamsen, Roberts, & Pensgaard, 2008). However, gender stereotypes exist in competitive sport, and these stereotypes can affect perceived competence, life satisfaction, and motivation. In other words, female athletes may be less motivated to compete in competitive sports and have lower perceived competence due to a belief that such sports are male-dominated. Recent research by Chalabaev, et al. (2008) examined perceived ability and competence as well as motivational orientations in female soccer players ($N = 51$). The results indicated that women tended to perceive their ability and competence as low and tended to show poor performance in overall athletic ability and technical skills.

Abrahamsen et al. (2008) found that male and female elite athletes tended to view the motivational climate in similar terms. In other words, elite athletes are aware of the differences between a task-involved motivational climate and an ego-involved motivational climate (although they may not know the specific names of each). Females were more impacted by the motivational climate than their male counterparts in that it
caused them to lose concentration more. This may show that the motivational climate does in fact play a larger role in female athletes as opposed to male athletes.

In addition, ego orientation was negatively correlated with perceived ability in the female athlete (Abrahamsen, et al., 2008). This finding may be due to the perceptions of female sports and how they may be associated with less competition than male athletes. However, females who exhibited a task orientation also reported a higher level of perceived ability than their male counterparts. Furthermore, mastery (task) climate was associated with a high level of perceived ability for both male and female athletes, although females tended to show lower perceptions of ability than their male counterparts. There were no gender differences in the interaction between perceived performance climate and perceived ability.

Ntoumanis (2001) found that males tended to have more ego-involved orientations than females. Males also tended to have higher intrinsic motivation and higher perceived competence. Task-involved individuals (male and female), on the other hand, possessed both high intrinsic motivation and perceived competence. Allen and Howe (1998) suggested that adolescent females might be more sensitive to coaching feedback, which then influences perceived competence.

Conclusion

While the above studies have addressed perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation, there is little research that assesses the interaction of all factors with situational factors such as player role (starter vs. non-starter) and scholarship status (full, partial, or none). The current study was designed to examine the effects of player role and scholarship status on
perceived competence, satisfaction with life, achievement motivations (goal orientation), perceived motivational climate, and motivation during a softball season. Classifying athletes as “starter” or “non-starter” is rarely taken into account in studies of student athletes. Based on theoretical rationale and empirical evidence (Amorose & Horn, 2001; Medic, et al., 2007), it was hypothesized that perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation are influenced by variables such as player role (starter vs. non-starter) and scholarship status of the athlete. The primary purpose of this study was to examine goal orientation, perceived motivational climate, perceived competence, and motivation in collegiate softball starters and non-starters and collegiate softball players with full, partial, and no scholarships.

Research Questions:

1) Do starters and non-starters differ on goal orientation, perceived motivational climate, perceived competence, and/or motivation?

2) Do players varying in scholarship status (full, partial, or none) differ on goal orientation, perceived motivational climate, perceived competence, and/or motivation?
CHAPTER III: METHODS

Participants

Fifty-two \((N = 52)\) Division I collegiate softball players ages 18-22 \((M = 19.81 \pm 1.10)\) were contacted to participate in the study. Players from three MAC softball teams were recruited. Players were part of the team for 1-5 years \((M = 2.25 \pm 1.03)\). Players participated in softball overall for 4-14+ years (See Table 1). Each player was categorized as either a starter or non-starter (See Table 2) by her own perception of playing status, as well as scholarship status (full, partial, or none; See Table 3), as reported by the athlete.

Table 1: Frequency Intervals in Years of Overall Softball Participation

<table>
<thead>
<tr>
<th>Interval (years)</th>
<th>Frequency ((n))</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-6</td>
<td>2</td>
<td>3.8</td>
</tr>
<tr>
<td>7-9</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>10-13</td>
<td>21</td>
<td>40.4</td>
</tr>
<tr>
<td>14+</td>
<td>28</td>
<td>53.8</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2: Player Role Distribution by Team

<table>
<thead>
<tr>
<th>Player Role</th>
<th>Team 1</th>
<th>Team 2</th>
<th>Team 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starters</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>Non-Starters</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>11</td>
<td>22</td>
<td>52</td>
</tr>
</tbody>
</table>
Table 3: Scholarship Status Distribution by Team

<table>
<thead>
<tr>
<th>Scholarship Status</th>
<th>Team 1</th>
<th>Team 2</th>
<th>Team 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Partial</td>
<td>10</td>
<td>8</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>None</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>11</td>
<td>22</td>
<td>52</td>
</tr>
</tbody>
</table>

Table 4: Age Distribution in the Total Sample

<table>
<thead>
<tr>
<th>Age</th>
<th>Frequency (n)</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.00</td>
<td>5</td>
<td>9.6</td>
</tr>
<tr>
<td>19.00</td>
<td>17</td>
<td>32.7</td>
</tr>
<tr>
<td>20.00</td>
<td>18</td>
<td>34.6</td>
</tr>
<tr>
<td>21.00</td>
<td>7</td>
<td>13.5</td>
</tr>
<tr>
<td>22.00</td>
<td>5</td>
<td>9.6</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 5: Year in School Distribution in the Total Sample

<table>
<thead>
<tr>
<th>Year in School</th>
<th>Frequency (n)</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>13</td>
<td>25.0</td>
</tr>
<tr>
<td>Sophomore</td>
<td>21</td>
<td>40.4</td>
</tr>
<tr>
<td>Junior</td>
<td>10</td>
<td>19.2</td>
</tr>
<tr>
<td>Senior</td>
<td>8</td>
<td>15.4</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Measures

Background information

Each participant completed a brief demographic questionnaire (See Appendix A). Questions assess the participants’ age, year in school, scholarship status, player role, number of years participated in her sport, and number of years participated on her current team.

Perceptions of Competence

Perceived competence is assessed using three items developed by Amorose (2003; See Appendix A). The items included: (a) “How good do you think you are at your sport?”; (b) “When it comes to your sport, how much ability do you think you have?”; and (c) “How skilled do you think you are at your sport?” The athletes were asked to respond by “circling the response that best reflects how you feel about your current ability in your current sport.” Response options for the three items ranged from not good at all to very good, not much ability at all to a whole lot of ability, and not skilled at all to very skilled. Each response was scored on a five-point Likert scale, with higher scores reflecting higher or more positive perceptions of competence.

This measure possesses strong face validity, and was easily modified to create the reflected appraisal measure. In Amorose’s (2003) assessment, internal consistency was relatively low (r = .52) between the items for perceived competence. However, the current study demonstrated a high internal reliability (a = .831). Amorose (2003) reported initial evidence of reliability and validity with a sample of male and female college athletes. The reliability of this scale is thought to be low due to the number of
questions in the survey. Since there are only three questions, reliability of the scale would be difficult to raise.

Satisfaction with Life

To measure life satisfaction of the athlete, the Satisfaction with Life Scale (Diener et al., 1985) was used (See Appendix A). This five-item questionnaire were measured on a 7-point Likert scale, from strongly disagree (1) to strongly agree (7), with higher scores reflecting more life satisfaction. The Satisfaction with Life Scale asked players how they currently feel in their life as a whole. The items were scored by finding a mean level of satisfaction with life for each athlete. This measure possesses reliability with a level of 0.87, and a test re-test correlation coefficient of 0.82 (Diener et al., 1985).

Sport Goal Orientations

To measure player’s endorsement of task-orientation or ego-orientation, players completed the 13-item Task and Ego Orientation in Sport Questionnaire (TEOSQ; Duda, 1989, 1991, 1992; See Appendix B). The TEOSQ asks players to think about when they feel most successful in sport (e.g., softball). The stem of the questions was slightly re-worded to be pertinent to softball. Responses were recorded on a five-point Likert scale from strongly agree (1) to strongly disagree (5). The task-oriented endorsement (e.g. “I learn something that is fun to do”) and the ego-oriented endorsement (e.g. “I can do better than my friends”) defined the player’s subjective success in softball. The stem for each item was “I feel most successful in softball when…” The TEOSQ was scored by calculating a mean score for each of the two subscales. The player was given a mean score for both task-orientation and ego-orientation to ensure the orthogonal structure of achievement motivation.
Evidence for the validity and reliability of the TEOSQ has been reported in previous research (Duda, 1989, 1992). Task and ego orientation subscales are found to be independent \((r = .05, p > .05) \). Internal reliability demonstrated by Cronbach’s coefficient alpha in task orientation \((a = .79) \) and ego orientation \((a = .81) \) to demonstrate acceptable internal consistency (Duda, 1992). Thus, predictive validity is present and the results indicated that the structure of the TEOSQ is stable.

Perceived Motivational Climate

To measure players’ perceptions of the motivational climate on each team, the Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2; Newton et al., 2000) was used (See Appendix C). The 33-item PMCSQ-2 was designed to assess players’ perceptions of the motivational climate as either task-involving or ego-involving climates in a multi-dimensional hierarchical structure. The two respective climates are composites of six underlying characteristics (three characteristics for each climate). Task-involving climate items refer to a sense that learning is encouraged, each player has important roles on the team, and effort and improvement is the emphasis of the climate. Ego-involving climate items refer to a sense that mistakes are punished, recognition by the coach is reserved for top athletes, and that rivalry to perform well among players on the team exists. Participants are asked to think about what the environment is like on their team in general. The stem for each question was “On this team…”. Responses were indicated on a five-point Likert scale ranging from *strongly disagree* (1) to *strongly agree* (5). Results were scored by calculating the mean score for the two respective climates. Thus, athletes were categorized as perceiving the motivational climate as either
task-involving and/or ego-involving by reporting a mean score for each subscale, to further consider the orthogonal structures of perceived motivational climate.

Adequate internal consistency of each subscale was demonstrated (Newton et al., 2000). The task-involving climate had a Cronbach alpha of 0.88 and the ego-involving climate of 0.87. Correlations of the task-involving climate and ego-involving climate to subscales were found to be significant (Task-Involving $r = .80-.88$; Ego-Involving $r = .49-.90$). Concurrent validity from previous drafts was found for the PMCSQ-2 to support hypotheses of significance among motivational climate and subscales. Thus, the PMCSQ-2 has been found to have adequate internal reliability and factorial validity (Newton et al., 2000).

Motivation

To assess the level of motivation experienced by an athlete, the sport motivation scale (SMS; Pelletier et al., 1995) was used (See Appendix D). The SMS consists of seven subscales that measures three types of intrinsic motivation (IM to know, IM to accomplish, and IM to experience satisfaction), three types of extrinsic motivation (external, introjected, and identified regulation), and amotivation for sport participation. Responses were assessed using a 7-point Likert scale ranging from *does not correspond at all* (1) to *corresponds exactly* (7). To make the scale specific for softball, the priming statement was modified from “why are you presently practicing your sport?” to “why are you presently practicing/playing softball?”

Pelletier et al. (1995) provided support for construct and discriminant validity as well as internal consistency for the SMS. The subscale “amotivation” has often been excluded due to the low number of questions in the SMS (Medic, et al., 2005; Martens &
Webber, 2002), but may be kept in place. In the current study, amotivation was used in the SMS, and showed high internal reliability ($\alpha = .865$). In previous research, internal consistency reliability ranged from .72 to .85 for present motivation and .67 to .86 for perceived future motivation. Test-retest correlations ranged from .58 to .84 with a mean of .70. Alpha values also showed to be acceptable with variations from .71 to .85 at the pretest, and from .69 to .85 at the posttest.

Procedures

This study was administered through the Spring semester to Division I Mid-American Conference (MAC) softball programs. The student-athletes were asked to complete questionnaires during the “heart” of the softball season (i.e., April, 2009). Contact information was obtained through the perspective collegiate websites for the coaches and athletic departments. Each perspective coach was contacted to obtain verbal consent and a letter of consent was sent to explain the purpose of the study. The Human Subjects Review Board and the BGSU Athletic Department was then contacted to obtain permission to conduct the study. In addition, protocols for collecting data from student athletes at other universities IRB were followed and the procedures approved before contact with any subject. Upon receiving permission, meeting dates and times were then arranged with the coaches and players. The primary researcher then administered the questionnaires using a recruitment “script” (See Appendix E).

The team that chose to have the surveys sent directly to their respective universities received instructions (See Appendix F) and the recruitment script for the person who administered the questionnaires to the players. This survey administrator was someone other than the coach (e.g. the athletic trainer), who was established (via
telephone) before sending the questionnaires. This individual hand-delivered the completed questionnaires to the primary researcher when visiting Bowling Green State University to compete. Informed consent was obtained from all willing participants (See Appendix G). After reading the informed consent document, participants were asked if they had any questions or needed clarification about the questionnaires involved in participation in the study. Upon satisfactorily answering questions or clarifying any issues, the participant was asked to complete and initial the informed consent document. Upon receiving informed consent, questionnaires were given to the athletes in an envelope for each individual (see Appendices A-D).

All questionnaires (Appendices A-D) and informed consent documents (Appendix F) were given to participants in individual envelopes labeled by number and grouped by school. Following completion of each questionnaire packet, participants were asked to place questionnaires and informed consent documents back into the envelopes and seal the envelopes. All questionnaires in the envelopes were kept in a locked file cabinet in a locked room (Sport and Exercise Psychology Laboratory). When data was entered for computer analysis, the number/code on the envelope was then used to determine each participant in the computer file.

Analyses

The purpose of this study is to examine the effects of the athlete’s role (starter vs. non-starter), and scholarship status on perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation. The athlete’s role was categorized by perceptions of the athlete. Specifically, the athlete was asked what she considered herself to be: starter or non-starter. In addition, the athlete was asked what
type of scholarship she is currently holding: full, partial, or none. The dependent variable of life satisfaction was assessed using the Satisfaction with Life Scale. The dependent variable of perceived competence was assessed using the three items developed by Amorose (2003). The dependent variables of goal orientation was assessed and was determined through a score on the TEOSQ, and perceived motivational climate for each individual was determined by a score on the PMSCQ-2. The dependent variable of motivation was assessed using the SMS.

Player Role (Starter or Non-starter)

For each of the dependent variables of perceived competence and satisfaction with life, an independent t-test was performed. For the dependent variables of goal orientation (task and ego), perceived motivational climate (task and ego), and motivation (intrinsic, extrinsic, and amotivation), a one-way MANOVA was performed. For all analyses, effect sizes (n^2, d) were calculated for significant findings when appropriate. Alpha levels were set at 0.05.

Scholarship Status (Full, Partial, or None)

For each of the dependent variables of perceived competence and satisfaction with life, a one-way ANOVA was performed. For the dependent variables of goal orientation (task and ego), perceived motivational climate (task and ego), and motivation (intrinsic, extrinsic, and amotivation), a one-way MANOVA was performed. For all analyses, effect sizes (n^2, d) were calculated for significant findings when appropriate. Alpha levels were set at 0.05.
CHAPTER IV: RESULTS

Analysis/Descriptive Statistics

Participants in this study consisted of three softball teams, totaling 52 participants (N=52). Participants consisted of starters (n=31, 59.6%) and non-starters (n=21, 40.4%). Participants also consisted of three levels of scholarship status: full scholarship (n=13, 25%), partial scholarship (n=32, 61.5%), and no scholarship (n=7, 13.5%). For the three softball teams assessed, complete data was found. See tables 1 and 2 in Chapter III: Methods.

The main set of analyses within this investigation focused on the differences between player role (starter vs. non-starter) and scholarship status (full, partial, or none). Results pertaining to the independent variables (player role and scholarship status) are analyzed with each dependent variable (perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation) separately to show effects of each. The means and standard deviations for each dependent variable are presented based on player role (see Table 6) and scholarship status (see Table 7). The means and standard deviations for each dependent variable, stratified by teams, are presented in Table 8 (See Appendix H).
Table 6: Means and Standard Deviations for all variables in Player Role

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Player Role</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Competence</td>
<td>Starter</td>
<td>4.08</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>4.19</td>
<td>0.61</td>
</tr>
<tr>
<td>Satisfaction with Life</td>
<td>Starter</td>
<td>5.06</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>4.94</td>
<td>1.30</td>
</tr>
<tr>
<td>GO Task</td>
<td>Starter</td>
<td>4.08</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>4.10</td>
<td>0.64</td>
</tr>
<tr>
<td>GO Ego</td>
<td>Starter</td>
<td>2.89</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>3.02</td>
<td>0.61</td>
</tr>
<tr>
<td>PMC Task</td>
<td>Starter</td>
<td>3.97</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>3.45</td>
<td>0.64</td>
</tr>
<tr>
<td>PMC Ego</td>
<td>Starter</td>
<td>3.39</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>3.90</td>
<td>0.58</td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>Starter</td>
<td>4.81</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>4.75</td>
<td>1.21</td>
</tr>
<tr>
<td>Extrinsic Motivation</td>
<td>Starter</td>
<td>4.39</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>4.38</td>
<td>1.38</td>
</tr>
<tr>
<td>Amotivation</td>
<td>Starter</td>
<td>2.88</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>Non-Starter</td>
<td>3.88</td>
<td>1.88</td>
</tr>
</tbody>
</table>

Note: N = 52; Starters n = 31, Non-Starters n = 21
Table 7: Means and Standard Deviations for all variables in Scholarship Status

<table>
<thead>
<tr>
<th>Scholarship Status Statistics</th>
<th>Dependent Variable</th>
<th>Scholarship Status</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Competence</td>
<td>Full</td>
<td>4.18</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>4.08</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>4.19</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Satisfaction with Life</td>
<td>Full</td>
<td>5.08</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>5.16</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>4.20</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>GO Task</td>
<td>Full</td>
<td>4.26</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>3.99</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>4.23</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>GO Ego</td>
<td>Full</td>
<td>3.28</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>2.88</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>2.60</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>PMC Task</td>
<td>Full</td>
<td>3.84</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>3.80</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>3.44</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>PMC Ego</td>
<td>Full</td>
<td>3.70</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>3.48</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>3.93</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>Intrinsic Motivation</td>
<td>Full</td>
<td>5.22</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>4.61</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>4.81</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>Extrinsic Motivation</td>
<td>Full</td>
<td>4.82</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>4.20</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>4.43</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>Amotivation</td>
<td>Full</td>
<td>3.52</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial</td>
<td>3.05</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>3.93</td>
<td>4.18</td>
<td></td>
</tr>
</tbody>
</table>

Note: N = 52; Full Scholarship n = 13, Partial Scholarship n = 32, Non-Scholarship n = 7
Perceived Competence

Players were asked three items assessing perceived competence. The responses were scored on a five-point Likert scale, with higher scores reflecting higher or more positive perceptions of competence. The mean of the three responses were found for each individual to assign a mean perceived competence score. Means and standard deviations for each team are provided in Tables 6 and 7.

An independent-samples t test comparing the mean scores on perceived competence between starters and non-starters was performed. No significant difference was found, $t(50) = -0.736, p = .465$. Mean and standard errors for starters and non-starters are illustrated in Figure 1.

Figure 1: Perceived Competence for Starters and Non-Starters

![Figure 1: Perceived Competence for Starters and Non-Starters](image)

The perceived competence means of players who had a full scholarship, partial scholarship, and no scholarship were compared using a one-way ANOVA. No significant difference was found ($F(2,49) = .204, p = .816$, partial $n^2 = .008$). The
scholarship status did not differ significantly for perceived competence. Mean and standard errors for starters and non-starters are illustrated in Figure 2.

Figure 2: Perceived Competence for Full, Partial, and No Scholarship Holders
Satisfaction with Life

Players were asked 5 items assessing satisfaction with life. The responses were scored on a five-point Likert scale, with higher scores reflecting higher or more positive feelings of satisfaction with life. The mean of the responses was found for each individual to assign a mean satisfaction with life score. Means and standard deviations for all scores are provided in Tables 6 and 7.

An independent-samples t test comparing the mean scores of the player role (starter, non-starter) and satisfaction with life was calculated. No significant difference was found ($t(50) = .374, p = .710$). Mean and standard errors for starters and non-starters are illustrated in Figure 3.

Figure 3: Satisfaction with Life for Full, Partial, and No Scholarship Holders

![Satisfaction with Life Graph](image)

The satisfaction with life means of players who had a full scholarship, partial scholarship, and no scholarship were compared using a one-way ANOVA. No significant difference was found ($F(2, 49) = 2.444, p = .097$, partial $n^2 = .091$). The scholarship status did not differ significantly for satisfaction with life. Mean and standard errors for starters and non-starters are illustrated in Figure 4.
Goal Orientation

Each player responded to the 13-item Task and Ego Orientation in Sport Questionnaire (TEOSQ) to measure the players’ endorsement of task-orientation and/or ego-orientation. A mean score on the five-point Likert scale was found for each subscale (task or ego). The mean score for task-orientation was found for each individual as well as the mean score for ego-orientation for each individual. Means and standard deviations for all scores are provided in Tables 6 and 7.

A one-way MANOVA was calculated examining the role of the player (starter, non-starter) on task and ego goal orientations. No significant effect was found ($\Lambda = 0.992, F(2, 49)=0.20, p > .05$, multivariate $n^2 = .008$), indicating that starters and non-starters did not differ on the combined set of dependent variables. For completeness, follow-up univariate ANOVAs indicated that task orientation was not significantly influenced by player role ($F(1, 50) = .006, p = .941$, partial $n^2 = .000$) illustrated in Figure 5. Follow-up univariate ANOVAs indicated that ego orientation was not significantly
influenced by player role ($F(1, 50) = .407, p = .526$, partial $n^2 = .008$), illustrated in Figure 6.

Figure 5: Task Goal Orientation for Starters and Non-Starters

![Figure 5: Task Goal Orientation for Starters and Non-Starters](image)

Figure 6: Ego Goal Orientation for Starters and Non-Starters

![Figure 6: Ego Goal Orientation for Starters and Non-Starters](image)

A one-way MANOVA was calculated examining the scholarship status (full, partial, none) on task and ego goal orientations. No significant effect was found ($\Lambda = 0.874, F(4, 96) = 1.672, p > .05$, multivariate $n^2 = .065$), indicating that full scholarship, partial scholarship, and no scholarship holders did not differ on the combined set of dependent variables (See Figures 7 and 8). For completeness, follow-up univariate
ANOVA indicated that task orientation was not significantly influenced by scholarship status ($F(2, 49) = 1.125, p = .333$, partial $n^2 = .044$). Follow-up univariate ANOVAs indicated that ego orientation was not significantly influenced by scholarship status ($F(2, 49) = 2.404, p = .101$, partial $n^2 = .089$).

Figure 7: Task Goal Orientation for Full, Partial, and No Scholarship Holders

Figure 8: Ego Goal Orientation for Full, Partial, and No Scholarship Holders
Perceived Motivational Climate

Players’ perceptions of the motivational climate on each team were measured. The players answered questions on a five-point Likert scale to assess the players’ perceptions of the motivational climate as either task-involving or ego-involving. A mean score for both task-involving and ego-involving motivational climate was calculated for each individual. Means and standard deviations for all scores are provided in Tables 6 and 7.

A one-way MANOVA was calculated examining the role of the player (starter, non-starter) on task and ego perceived motivational climates. A significant effect was found ($\text{Lambda} = 0.857, F(2, 49) = 4.08, p < .05$, multivariate $n^2 = .143$). Follow-up univariate ANOVAs indicated that a task-involved perceived motivational climate was significantly influenced by player role ($F(1,50) = 8.128, p = .006$, partial $n^2 = .140$). Starters perceived a more task-involved motivational climate compared to non-starters (See Figure 9). The magnitude of this effect was large ($d = 0.80$). Ego-involved perceived motivational climate was also significantly influenced by player role ($F(1, 50) = 5.226, p = .027$, partial $n^2 = .095$). Non-starters perceived a more ego-involved motivational climate compared to starters (See Figure 10). The magnitude of this effect was large ($d = 0.87$).
A one-way MANOVA was calculated examining the scholarship status (full, partial, none) on task and ego perceived motivational climates. No significant effect was found ($Lambda = 0.927, F(4, 96) = 0.391, p > .05$, multivariate $n^2 = .037$). For completeness, follow-up univariate ANOVAs were performed and indicated that a task-involved perceived motivational climate was not significantly influenced by scholarship status ($F(2, 49) = .904, p = .411$, partial $n^2 = .036$; see figure 11). Ego-involved perceived
motivational climate was not significantly influenced by scholarship status ($F(2, 49) = 1.033, p = .364$, partial $n^2 = .040$; see figure 12).

Figure 11: Task Motivational Climate for Full, Partial, and No Scholarship Holders

![Figure 11: Task Motivational Climate for Full, Partial, and No Scholarship Holders](image)

Figure 12: Ego Motivational Climate for Full, Partial, and No Scholarship Holders

![Figure 12: Ego Motivational Climate for Full, Partial, and No Scholarship Holders](image)
Motivation

Intrinsic motivation, extrinsic motivation, and amotivation was assessed for each individual by answering questions using a 7-point Likert scale. A mean score was found for each individual on intrinsic motivation, extrinsic motivation, and amotivation. Means and standard deviations for all scores are provided in Tables 6 and 7.

A one-way MANOVA was calculated examining the effect of the role of the player (starter, non-starter) on intrinsic motivation, extrinsic motivation, and amotivation. No significant effect was found (Lambda = 0.919, F(2, 49) = 1.41, p > .05, multivariate $n^2 = .081$). Follow-up univariate ANOVAs indicated that neither intrinsic motivation ($F(1, 50) = .031, p = .860$, partial $n^2 = .001$; see figure 13), nor extrinsic motivation ($F(1, 50) = .001, p = .978$, partial $n^2 = .000$; see figure 14) was significantly influenced by player role. Amotivation, however, was significantly influenced player role ($F(1,50) = 4.191, p = .046$, partial $n^2 = .077$). Non-starters reported higher levels of amotivation than starters (See Figure 15). The magnitude of this effect was moderate ($d = 0.53$).
Figure 13: Intrinsic Motivation for Starters and Non-Starters

![Bar chart showing Intrinsic Motivation for Starters and Non-Starters](image)

Figure 14: Extrinsic Motivation for Starters and Non-Starters

![Bar chart showing Extrinsic Motivation for Starters and Non-Starters](image)
A one-way MANOVA was calculated examining the effect of scholarship status (full, partial, none) on intrinsic motivation, extrinsic motivation, and amotivation. No significant effect was found ($\Lambda = 0.90$, $F(6, 94) = 0.844, p > .05$, multivariate $n^2 = .051$). For completeness, follow-up univariate ANOVAs were performed and indicated that intrinsic motivation ($F(2, 49) = 1.264, p = .291$, partial $n^2 = .049$; see figure 16), extrinsic motivation ($F(2, 49) = 1.380, p = .261$, partial $n^2 = .053$; see figure 17), and amotivation ($F(2, 49) = .846, p = .435$, partial $n^2 = .033$; see figure 18) were not significantly influenced by scholarship status.
Figure 16: Intrinsic Motivation for Full, Partial, and No Scholarship Holders

![Intrinsic Motivation Chart]

Figure 17: Extrinsic Motivation for Full, Partial, and No Scholarship Holders

![Extrinsic Motivation Chart]
Figure 18: Amotivation for Full, Partial, and No Scholarship Holders
CHAPTER V: DISCUSSION

The focus of this study was to investigate starters and non-starters and full, partial, and no scholarship holders in Division I softball on perceived competence, satisfaction with life, goal orientation (task and ego), perceived motivational climate (task and ego), and motivation (intrinsic, extrinsic, and amotivation). It was hypothesized that starters and non-starters would show significant differences on each variable. This discussion focuses on perceived competence, satisfaction with life, goal orientation, perceived motivational climate, and motivation as variables that were thought to differ in starters and non-starters. In addition, scholarship status (full, partial, none) also was examined as a potential influential factor on each of the dependent variables.

Perceived Competence

Individuals are often driven by an urge to be competent in human achievement (Bandura, 1977). Athletes attempt to satisfy this urge by attempting to master the sport, leading to a view of his/her ability to master the skill successfully (Harter, 1978). In addition, perceived competence varies among individuals as a function of his/her domain. Every individual can participate in several domains to define his/herself. By choosing to participate, the individual would assume a level of competence. One might assume ability to perform the task or skill associated with a particular domain. That is, a softball player at the collegiate level might assume her ability to perform is at a college level, but perceived competence could vary when comparing herself to the entire population of softball players. Therefore, if the individual’s domain is softball, this would indicate that the individual attempts to master skills associated with softball. For example, a softball player might believe that her ability to throw a softball is very high. Thus, she has
mastered this skill. Her perceptions of competence in this area can be high if she believes her mastery of the skill is done relatively well. Views of one’s competence can therefore vary according to perceptions of mastery. In the current study, it was hypothesized that there would be differences in perceived competence levels among players who were self-rated as starters or non-starters and held different scholarship statuses (full, partial, or none).

In contrast to the hypothesis proposed, perceived competence of Division I softball players was not significantly different between starters and non-starters. In addition, scholarship status (full, partial, or none) did not show significant differences in perceived competence either. Relative to previous findings, the means of perceived competence were relatively high (i.e., $M > 4$), which are comparable to perceived competence scores reported by Hollembeak and Amorose (2005; $M = 3.86-4.13$) and Amorose and Horn (2001; $M = 5.41-5.95$ on the Intrinsic Motivation Inventory). Although outside factors can cause perceptions of competence to fluctuate (Reinboth & Duda, 2004; Allen & Howe, 1998; Hollembeak & Amorose, 2005), the results of this study illustrate that an individual’s views of mastering the sport are less subject to contextual factors (e.g., playing role or scholarship status) at this skill level (i.e., Division I softball).

At the Division I level, the skill of these “elite” softball players may have been a contributing factor to the lack of differences in perceived competence among starters and non-starters. Harter (1978) found that success at any type of task or activity is not sufficient to alter competence motivation. An attempt of a difficult task may be associated with a gain in competence due to the experience itself. The Division I softball
player associates success with being able to play at this “elite” level, thus demonstrating high perceptions of competence independent of the player role and/or scholarship status. Moreover, the high skill level associated with playing at the Division I level indicates that the athlete has a high perception of competence. Differences in player role and scholarship status do not play a part on perceived competence. When the individual believes in her ability, her perceptions of competence follow. Thus, the softball players had high perceptions of competence regardless of player role and scholarship status.

Satisfaction with Life

It was hypothesized that player role and scholarship status would influence participants’ satisfaction with life. Specifically, a player who is a starter is able to play and realize her dream; having a scholarship means the player does not have to worry about finances as much as a player without a scholarship. Starters and scholarship holders may be able to focus more on important life issues (e.g., degree, family, etc.) that may influence satisfaction. In the current study, there was no significant difference between starters and non-starters on satisfaction with life. In addition, no significant differences were found in scholarship status, either.

Brown and Frankel (1993) found that life satisfaction and physical activity were significantly correlated in all age groups except for 18-24 year old adults. They explained among 18-24 year olds, life satisfaction may be derived from other “spheres” or life issues such as personal relationships and work. That is, a Division I softball player may feel the competitive nature to be higher than a more “amateur” level (e.g., high school or travel teams) and feel as though she is working to earn her scholarship and starting role. The responsibilities Division I athletes have are much different and more
demanding than any other level in softball. For example, the amount of time a softball player spends in practice and training is close to a daily commitment.

Further, Kabanoff (1980) and Muchinsky (1993) explain that experiences during participation in a job can “spill over” onto other spheres of life. At the Division I level, athletes may consider participation in sport as a “job,” due to the demands and constraints s/he might feel. Satisfaction with a job can affect life satisfaction and vice versa (Judge & Watanabe, 1993). Thus, the Division I softball player’s satisfaction in softball could affect satisfaction in life as a whole. Satisfaction with life tends to be more associated with well-being and leisure activity (Brown & Frankel, 1993) and an athlete may not view Division I athletics as a leisure activity, rather an activity that the individual must participate in (i.e., a job).

In contrast, the situational factor of being a starter or non-starter was hypothesized to affect a player’s life satisfaction. In the current study, there was no difference in satisfaction between starters and non-starters. Every player participates in physical activity (e.g., practice, conditioning, and weight-lifting), which, when differentiating between starters and non-starters, there are no differences in commitment, and therefore satisfaction. Players assume a certain schedule of physical activity, which, in turn, accounts for equal levels of physical activity and satisfaction.

It should be noted that although there was not a significant difference in neither player role nor scholarship status, the mean of players with no scholarship ($M = 4.20 \pm 1.21$) was lower than the means of players with a full scholarship ($M = 5.08 \pm 1.01, d = 0.87$) and a partial scholarship ($M = 5.16 \pm 1.04, d = 0.92$). Thus, with a large effect size, these findings would indicate that a player with no scholarship has relatively lower
perceptions of satisfaction. It appears to follow a trend of higher satisfaction being found with having a scholarship and lower satisfaction when the player has no scholarship which is consistent with the hypothesized direction.

As Brown and Frankel (1993) explain, an individual in this age group can associate life satisfaction with “work.” Players at the collegiate level with scholarships are essentially paid for participating in her sport. Thus, the athlete may feel more satisfied because she has success at her “job” when she has earned a scholarship. A player with no scholarship may need to take on other roles and responsibilities (e.g., financially) that detract from demands of athletics and academics. These other roles may cause conflict, which may affect satisfaction with life. For example, the softball player with no scholarship is not rewarded (paid) for success at her job (softball). She therefore must get finances for school and daily living elsewhere. This player has the pressure of providing for herself in addition to the demands of being a college athlete. Heller, Judge, and Watson (2002) found that “situational factors play an important role in people’s feeling of satisfaction both on the job and in life in general” (p. 830). In the current study, situational factors include scholarship status and player role. Further investigation is needed as the lack of statistical significance may have been due to the small sample size of the no scholarship players ($n = 7$).

Goal Orientation

An individual seeks to achieve attainment of success through his/her goal orientation (Nicholls, 1984). In sport, this individual will measure this achievement according to his/her value of success (Duda, 1989; Duda & Nicholls, 1992). Goal orientations are thought to be orthogonal (e.g., independent and uncorrelated), allowing
individuals to vary in their levels of each goal orientation. For example, an individual could possess a high level of task-orientation and a high level of ego-orientation, or any other combination. Athletes with a task-orientation are assumed to be working to improve, attempt mastery, and rate successful performance through personal growth. Athletes with an ego-orientation works to prove their ability and superiority, value success as being the “top” athlete, and rate success through demonstrating that they are “better than everyone else.” It was therefore hypothesized that starters and non-starters would show differences in task- and ego-orientations. In addition, players with different levels of scholarship status (full, partial, or none) were hypothesized to show differences in task- and ego- orientations.

In the current study, no significant difference was found between player role (starters and non-starters) and goal orientation. These findings were consistent with those found by Hom, Duda, and Miller (1993), who reported that an individual can have a strong ego orientation when s/he perceives a high ability and/or an individual can have a strong task orientation when s/he believed success was the result of hard work. Thus, athletes at the college level, whether starters or non-starters, believe in their ability and work hard to be on the team. In addition, “both goal orientations of ego and task tended to report perceived ability to be high in that activity” (Hom, Duda, & Miller, 1993, p. 172), further exemplifying that player role should not show differences in goal orientation if every player perceives her ability to be high. Players will attribute success in some way, whether ego-oriented, task-oriented, or both. Moreover, scholarship status did not show a significant difference in goal orientation among players, which further
supports previous findings that goal orientation is orthogonal and players at this skill level have determined how she attributes success.

Although goal orientation was not different based on player role or scholarship status, the current study only investigated Division I athletes at a single assessment point (i.e., April, 2009). Differences may have emerged at other times. For example, task and ego orientations were found to change from early to late season in high school athletes (Waldron & Krane, 2005). However, in accordance with mean scores on the TEOSQ in previous findings (Waldron & Krane, 2005; Ntoumanis, 2001) task orientation tended to be relatively higher than ego orientation in all athletes.

On the other hand, Adie, Duda, and Ntoumanis (2008), found that focusing on experienced athletes, such as collegiate softball players, may be associated with goal orientations that the athlete has already determined through experience of playing. That is, the athlete at the collegiate level have found reasons to attribute success through both or either goal orientations. This may be because the athlete is experienced in knowing what drives him/her towards success. Thus, a Division I athlete may constantly be driven by either personal improvement and growth or by proving excellence to others. In addition, this stability may also come from the orthogonal structure of goal orientation of the athlete (Duda, 1989; Nicholls, 1992). This means, for example, that the experienced Division I athlete may prove excellence by outperforming others (ego orientation) and through personal growth (task orientation).

Perceived Motivational Climate

Perceptions of the motivational climate are also an influence on the athlete’s determination of success (Nicholls, 1989). Much like goal orientation, the motivational
climate can be either task or ego. When the climate is task-involved, the focus is on the athlete’s improvement and successful performance is determined through mastery of the skill. When the climate is ego-involved, the focus is on winning, and athletes may try to avoid punishments. The motivational climate often reflects a coach’s philosophy on success, thus persuading an athlete to perceive the motivational climate based on the emphasis of success. In the current study, it was hypothesized that player role and scholarship status would influence a player’s perceived motivational climate. Since the coach is the main influence on the team, the individual could link her perceptions of the motivational climate according to how she categorizes herself (i.e., starter or non-starter). In addition, the scholarship status of the individual is determined in part by the coach, thus causing perceptions of the motivational climate to be linked to the scholarship amount she receives.

In support of the hypothesis, a significant effect was found between player role (starter or non-starter) and perceived motivational climate. It was found that non-starters perceived the motivational climate as less task-involved and more ego-involved compared to starters. Thus, the starters on the team viewed the coach(es) to put an emphasis on improvement and mastery more than that of winning or outperforming their counterparts when compared to non-starters. The non-starters view the coaches to put an emphasis on winning and outperforming teammates. This follows the hypothesized trend that a non-starter would believe she is not starting because the coach believes that she is not outperforming other players on the team. In general, however, players in the current study did not show different levels of task-involved ($M = 3.45-3.97$) or ego-involved ($M = 3.39-3.93$) motivational climates. These findings differ from normative
values of previous findings, where athletes in general perceive a higher task climate than ego climate (Waldron & Krane, 2001; task-involved $M > 4.3$, ego-involved $M < 2.7$; Hollembeak & Amorose, 2005; task-involved $M > 3.78$, ego-involved $M < 2.8$).

Hollmbeak and Amorose’s (2005) findings emphasized the importance of perceived motivational climate on an athlete’s motivation. A non-starter’s perception of the motivational climate could significantly influence her motivation which could have implications for a player’s role on the team. Fry and Newton (2003) found that those athletes who perceived the motivational climate as task-involving had better attitudes and were more motivated to improve in their sport. Those athletes who perceived the motivational climate as ego-involving had more negative attitudes and were less motivated to improve in their sport. Further, as Kaye et al. (2008) found, when the motivational climate was ego-involved and the emphasis was on winning, not making errors and proving superiority, athletes were less inclined to improve and feel uneasy about performing due to fear of losing and actually making errors. Thus, an athlete who perceives a more ego-involving and less task-involving motivational climate may be less motivated and fears failure, which may affect playing status. This research, along with findings from the current study, may provide insight as to what is driving the non-starters’ performance levels. Moreover, the perceptions of the motivational climate in the non-starters may give insight into perceptions of oneself.

Consistent with Amorose and Horn’s (2001) investigation, scholarship status revealed no significant difference. However, Amorose and Horn (2001) explained that the lack of discrimination between full-scholarship players, partial-scholarship players, and non-scholarship players may have contributed to the lack of significance in their
study. The current study did categorize players based on full-, partial-, and no scholarship status and found similar results. There appears to be a slight trend, however, in differences in perceived motivational climate between scholarship holders and non-scholarship holders. Those players with no scholarship appeared to perceive a higher ego-involved motivational climate than those players with scholarships. Further investigation involving multiple sports over time or better internal analyses of the independent variables would be needed to draw more firm conclusions and any possible trends and/or differences in scholarship status.

Motivation

Motivation is frequently associated with success, and success contributes towards personal growth (Deci & Ryan, 1985; Ryan & Deci, 2000). Behavior, as explained by Deci and Ryan (1985), can be intrinsically motivated, extrinsically motivated, or amotivated. An athlete is motivated towards personal growth in his/her chosen sport, which in turn is associated with personal success. Thus, it was hypothesized that players who are starters and non-starters and players with different scholarship statuses would show differences in intrinsic motivation, extrinsic motivation, and amotivation.

In contrast with the hypothesis, this study found that intrinsic and extrinsic motivation were not significantly affected by player role. In accordance with previous research (Hollenbeck & Amorose, 2005; Medic et al., 2007), mean scores were comparatively high in the sample of Division I softball players (intrinsic motivation $M > 4.66$, extrinsic motivation $M > 4.13$). This also compares to mean scores of intrinsic and extrinsic motivation in all university students (Ntoumanis, 2001; intrinsic motivation $M = 4.89$, extrinsic motivation $M = 3.96$). There were, however, slight differences in
amotivation between starters and non-starters. Amotivation was higher in non-starters as opposed to starters. Since amotivation refers to a relative absence of motivation (Deci & Ryan, 1985) it is understandable that non-starters would score higher than starters. According to previous research in amotivation, it be be assumed that these individuals felt more of a sense of discouragement and disinterest in softball compared to the starters. When an athlete is amotivated, behavior is done for neither intrinsic nor extrinsic reasons. It therefore makes it difficult for the amotivated athlete to come up with reasons to continue to train (Pelletier et al., 1995). It can be concluded, therefore, that a non-starter may not be able to validate any reasons to be motivated to play. This might be a cyclical affect, where the non-starter becomes less motivated and performance levels decrease, and vice versa.

Scholarship status did not show significant differences in intrinsic motivation, extrinsic motivation, or amotivation. Thus, the players’ status of having a full, partial, or no scholarship was not a contributing factor in motivation. This finding is consistent with Amorose and Horn’s (2001) examination of Division I college athletes as well as Hollembeak and Amorose’s (2005) findings from college athletes that scholarship status was not a contributing factor in motivation. Therefore, athletes playing at the collegiate level do not show significant differences in motivation levels when scholarship status is taken into account. Players participate on the team for their own reasons, whether intrinsic or extrinsic reasons.

Since intrinsic and extrinsic motivation are both associated with feelings of personal growth (Deci & Ryan, 1985; Ryan & Deci, 2000), it follows that player role and scholarship status would not affect intrinsic or extrinsic motivation. The athlete is
choosing to participate in his/her sport, creating a sense of motivation, whether it be doing the activity for its own sake (intrinsic) or doing an activity to achieve an instrumental goal (extrinsic). Reasons for motivation may vary among starters and non-starters. Amotivation, however, can cause an individual to feel as though they have no purpose or expectations for participation (Fortier, Vallerand, Briere, & Provensher, 1995). They can feel incompetent and out control (Deci & Ryan, 1985). Individuals who are non-starters at the time of assessment may associate these feelings with sport. However, some motivation must be present since the player is still participating, which explains levels of intrinsic and extrinsic motivation being present in the athlete as well. Levels of motivation and how each athlete is motivated to be on the team should be explored further to draw more firm conclusions. In addition, it might be interesting to associate motivation levels in non-starters and reasons for drop-outs in college athletes.

Implications

This study provides support for the need to monitor the self-perceptions and motivation of collegiate athletes and their perceptions of the motivational climate. Each member of the team contributes to the success of the team and the reality of the athlete’s player role can affect motivation to contribute to the success of the team. In addition, the motivational climate can affect a player’s perceptions of the environment. While this study focused on the coach in the motivational climate, taking into account the entire team in the motivational climate may bring a better understanding to the findings. While competing at the collegiate level, there seems to be some differences between starters and non-starters. In particular, differences in perceived motivational climate, and individual motivation should be monitored to help make appropriate adjustments to
ensure meeting player and team goals. Thus, coaches and athletes need to be aware of the differences among individuals and valuing the contributions of each player. The interaction of the coach and players on the team plays a large part in perceived motivational climate. This evaluation may be essential to improving the performance and overall success of the team by focusing on and celebrating individual differences among players. In addition, the overall satisfaction and sense of well-being of the athlete might improve the environment of practices and games as well as higher physical and psychological levels.

Limitations and Future Directions

Several limitations were present within the study that should be noted. One important limitation is the sample size of the study. The study began with six Mid-American Conference (MAC) softball teams who agreed to participate, but three of the teams did not return surveys mailed to them. For the teams that did not participate, lack of time was cited as the reason. While the single assessment point was during the “heart” of the season (i.e., April, 2009), all teams became very busy in travel and competition schedules. Moreover, this investigation included only MAC schools which are located in the Midwest. Results based on a small number of MAC teams may limit the generalizability of the findings. Teams in different areas and conferences with players of varying skill levels may differ for each variable tested. In addition, the masking of the participant groups could have been a limiting factor. In particular, team effects on perceived motivational climate could be explored more carefully. In addition, player role and scholarship status were investigated separately. It would be interesting to explore individuals with scholarships who are non-starters, or individuals with no
scholarships who are starters. Exploring these groups and labels of participants more carefully might bring more insight into the current research.

While there were only three teams in the sample, this limits the variability in motivational climates. The influence of the team in the motivational climate is also important. To explore this factor, along with the coach in the motivational climate might bring a better understanding to the effects of player role and/or scholarship status. In addition, justification of categorizing participants as starters and non-starters may be enhanced by defining the groups more carefully. These may be major confoundings that would limit the main effects.

Another limitation of the study was the time period of assessment. This was a cross-sectional study, and data were collected near the end of the season to provide perspective on individual athletes’ role on the team, scholarship status, and for the dependant variables. However, this period of time in often busy softball schedules (e.g., travel, preparation for tournament play), probably accounts for the first limitation of a small sample size. Collection of data at other time points during the season would have allowed an examination of how the variables interacted over time. For example, does motivation decrease over time when goal orientation and perceived motivational climate are incongruent? In addition, player role and/or scholarship status could change over a playing season, which could contribute to significant changes in the dependent variables. Further investigation into the interaction between player role, scholarship status, and the dependent variables would allow for more clarification on application and implications.
Conclusion

This examination of Division I college softball players has revealed that starters and non-starters differ in perceptions of the motivational climate. Starters and non-starters also differ in amotivation. Although there were no significant differences between starters and non-starters in perceived competence, satisfaction with life, goal orientation, intrinsic motivation, and extrinsic motivation, mean scores would indicate that expected directionality might still exist. Results also indicated that differences might exist between athletes with full scholarships, partial scholarships, or no scholarships.

While there is limited research being done in examining differences in starters and non-starters and in scholarship statuses among athletes, this study provided some evidence for the need to continue examining these factors. Further investigation could provide researchers and coaches with a better understanding of how to maximize the potential of athletes on college teams. Honing in on an individual collegiate athlete and his/her roles in athletics might provide an enhanced perspective in the team(s) as a whole. By focusing on player role and scholarship status and their interactions with the dependent variables, a more complete understanding of individual players’ perceptions and motivations in college athletics could be achieved.
References

Advances in sport psychology (pp. 309-354). Champaign, IL: Human Kinetics.

Psychological Bulletin, 88, 60-77.

incompetence avoidance. Journal of Sport & Exercise Psychology, 30, 110-132.

Education Research Supplement, 11, 12-16.

scale: An evaluation with college varsity athletes for the U.S. Journal of Sport &
Exercise Psychology, 24, 71-91.

Publishing Company.

properties of the Perceived Motivational Climate in Sport Questionnaire-2 in a

Appendix A

Demographics, Perceived Competence, and Satisfaction with Life Questionnaires
Directions: Please answer the following questions by circling the best answer based on your opinion and understanding of your role on the team at the present time.

What is your age? ___________ years old

What year in college are you? Freshman Sophomore Junior Senior

Have you been red-shirted? Yes No

What is your MAIN position? ____________________

What is your current scholarship status? Full Partial None

How many years have you participated in organized softball? 1-3 4-6 7-9 10-13 14+

How many years have you played on this team? 0-1 2 3 4 5+

How would you classify your role on this team? Starter Non-Starter

Perceived Competence
Directions: Please respond to the following questions by circling the response that best reflects how you feel about your current ability in softball.

How good do you think you are at softball? Not good at all Very Good

1 2 3 4 5

When it comes to softball, how much ability do you think you have? Not much Ability A lot of Ability

1 2 3 4 5

How skilled do you think you are at softball? Not skilled at all Very Skilled

1 2 3 4 5

Satisfaction with Life
Directions: Please indicate your agreement with each item by circling the appropriate number for each item. Please be open and honest in your response.

Strongly Disagree Neutral Strongly Agree

1. In most ways, my life is close to my ideal. 1 2 3 4 5 6 7

2. The conditions of my life are excellent. 1 2 3 4 5 6 7

3. I am satisfied with my life. 1 2 3 4 5 6 7

4. So far, I have gotten the important things I want in life. 1 2 3 4 5 6 7

5. If I could live my life over, I would change almost nothing. 1 2 3 4 5 6 7
Appendix B

Task and Ego Orientation in Sport Questionnaire (TEOSQ)
Task and Ego Orientation in Sport Questionnaire (TEOSQ)

Directions: Please read each of the statements listed below and indicate how much you personally agree with each statement by circling the appropriate response.

Note: Each item is responded to on a 5-point Likert-type scale (SD=strongly disagree, D=disagree, N=neutral, A=agree, SA=strongly agree).

When do you feel most successful in softball? In other words, when do you feel an activity has gone really well for you? I feel most successful in softball when

1. I'm the only one who can do the play or skill.
 SD D N A SA
 1 2 3 4 5

2. I learn a new skill and it makes me want to practice more.
 SD D N A SA
 1 2 3 4 5

3. I can do better than my teammates.
 SD D N A SA
 1 2 3 4 5

4. The others can't do as well as me.
 SD D N A SA
 1 2 3 4 5

5. I learn something in softball that is fun to do.
 SD D N A SA
 1 2 3 4 5

6. Others mess-up and I don't.
 SD D N A SA
 1 2 3 4 5

7. I learn a new skill by trying hard.
 SD D N A SA
 1 2 3 4 5

8. I work really hard.
 SD D N A SA
 1 2 3 4 5

9. I score the most or have the highest stats.
 SD D N A SA
 1 2 3 4 5

10. Something I learn makes me want to go and practice more.
 SD D N A SA
 1 2 3 4 5

11. I'm the best on the team.
 SD D N A SA
 1 2 3 4 5

12. A skill I learn really feels right.
 SD D N A SA
 1 2 3 4 5

13. I do my very best.
 SD D N A SA
 1 2 3 4 5
Appendix C

Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2)
Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2)

Directions: Please think about how it has felt to play on your team this season. What is it usually like on your team? Read the following statement carefully and respond to each in terms of how you view the typical atmosphere on your team. Perceptions naturally vary from person to person, so be certain to take your time and answer as honestly as possible. Circle the number that best represents how you feel.

Note: Each item is responded to on a 5-point Likert-type scale (1=strongly disagree, 2=disagree, 3=neutral, 4=agree, 5=strongly agree).

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. On this team, the coach wants us to try new skills.</td>
<td>SD</td>
<td>N</td>
<td>SA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. The coach gets mad when a player makes a mistake.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. The coach gives most of his or her attention to the stars.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Each player contributes in some important way.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. The coach believes that all of us are crucial to the success of the team.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. The coach praises players only when they outplay teammates.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. The coach thinks only the starters contribute to the success of the team.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Players feel good when they try their best.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Players are taken out of a game for mistakes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Players at all skill levels have an important role on this team.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Players help each other learn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Players are encouraged to outplay the other players.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. The coach has his or her own favorites.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. The coach makes sure players improve on skills they’re not good at.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. The coach yells at players for messing up.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Players feel successful when they improve.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEE REVERSE SIDE
Note: Each item is responded to on a 5-point Likert-type scale (1=strongly disagree, 2=disagree, 3=neutral, 4=agree, 5=strongly agree).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Only the players with the best ‘stats’ get praise.</td>
<td>SD</td>
<td>N</td>
<td>SA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Players are punished when they make a mistake.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Each player has an important role.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Trying hard is rewarded on this team.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. The coach encourages players to help each other.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. The coach makes it clear who s/he thinks are the best players.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Players are ‘psyched’ when they do better than their teammates in a game.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. If you want to play in a game you must be one of the best players.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. The coach emphasizes always trying your best.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Only the top players ‘get noticed’ by the coach.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Players are afraid to make mistakes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Players are encouraged to work on their weaknesses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. The coach favors some players more than others.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. The focus is to improve each game/practice.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. The players really ‘work together’ as a team.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Each player feels as if she is an important team member.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33. The players on this team help each other to get better and excel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix D

Sport Motivation Scale (SMS)
Sport Motivation Scale (SMS)

Why Do You Practice/Play Softball?
Using the scale below, please indicate to what extent each of the following items corresponds to one of the reasons for which you are presently practicing/playing softball.

<table>
<thead>
<tr>
<th>Does not Correspond At All</th>
<th>Corresponds moderately</th>
<th>Corresponds exactly</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

1. For the pleasure I feel in living exciting experiences.
2. For the pleasure it gives me to know more about softball.
3. I used to have good reasons for doing sports, but now I am asking myself if I should continue.
4. For the pleasure of discovering new training techniques.
5. I don’t know anymore; I have the impression that I am incapable of succeeding in softball.
6. Because it allows me to be well regarded by people that I know.
7. Because, in my opinion, it is one of the best ways to meet people.
8. Because I feel a lot of personal satisfaction while mastering certain difficult training techniques.
9. Because it is absolutely necessary to do sports if one wants to be in shape.
10. For the prestige of being an athlete.
11. Because it is one of the best ways I have chosen to develop other Aspects of myself.
12. For the pleasure I feel while improving some of my weak points.
13. For the excitement I feel when I am really involved in the activity.
14. Because I must play softball to feel good about myself.
15. For the satisfaction I experience while I am perfecting my abilities.
16. Because people around me think it is important to be in shape.

-SEE REVERSE SIDE-
Does not Correspond At All	Corresponds moderately	Corresponds exactly
17. Because it is a good way to learn lots of things which could be useful to me in other areas of my life. | 1 2 3 4 5 6 7
18. For the intense emotions that I feel while I am doing a sport that I like. | 1 2 3 4 5 6 7
19. It is not clear to me anymore; I don’t really think my place is in softball. | 1 2 3 4 5 6 7
20. For the pleasure that I feel while executing certain difficult movements. | 1 2 3 4 5 6 7
21. Because I would feel bad if I was not taking time to do it. | 1 2 3 4 5 6 7
22. To show others how good I am at softball. | 1 2 3 4 5 6 7
23. For the pleasure that I feel while learning training techniques that I have never tried before. | 1 2 3 4 5 6 7
24. Because it is one of the best ways to maintain good relationships with my friends. | 1 2 3 4 5 6 7
25. Because I like the feeling of being totally immersed in the activity. | 1 2 3 4 5 6 7
26. Because I must do sports regularly. | 1 2 3 4 5 6 7
27. For the pleasure of discovering new performance strategies. | 1 2 3 4 5 6 7
28. I often ask myself; I can’t seem to achieve the goals that I set for myself. | 1 2 3 4 5 6 7
Appendix E

Recruitment Script for Athletes
Recruitment Script for Athletes

Research Group: Margaret Tudor, Graduate Student, Developmental Kinesiology
David Tobar, Assistant Professor, School of HMSL

I am conducting a research study about goal orientation, motivational climate, perceived competence, motivation, life satisfaction, and affect. The study will be comprised of a sample of MAC softball players. Names will not be used and participation will be completely voluntary. The procedure of this study involves a one-time series of questionnaires and will take about 20-30 minutes to complete. The benefit of this study will be to raise awareness of any personal or situational characteristics that are related to the athletic experience.

All data that you provide will be kept in a locked file cabinet in a locked room, and only the researchers will see the data that you provide. Fellow players or coaches will not see responses to any questionnaires. Any reference or identifying feature to you will be solely through the number on your envelope and questionnaire packet. Your participation in this study is entirely voluntary, and you may withdraw consent and terminate participation at any time during the project without penalty. Your decision to participate or not participate in this study will have no impact on your playing status or coach in any way.

Student-athletes participating in this study will remain anonymous and confidential by keeping questionnaires in the envelopes given to you. Once you are finished, you may seal the envelope with questionnaires inside to ensure safety of your answers. If you would like more information about this study, please contact Margaret Tudor by phone (419-308-4630), or e-mail (mtudor@bgsu.edu).
Appendix F

Instructions for Administering Questionnaires
Instructions for Administering Questionnaires

Research Group: Margaret Tudor, Graduate Student, Developmental Kinesiology
David Tobar, Assistant Professor, School of HMSL

1. Locate Recruitment Script for Athletes, and all envelopes to be given to athletes.

2. Hand each athlete ONE envelope filled with Informed Consent Form and Questionnaire Packet.

3. Read Recruitment Script for Athletes BEFORE any individual opens her envelope.

4. Tell individuals to open their envelopes and take out Participant Informed Consent Document.

5. Have each individual read and initial her Participant Informed Consent Document and replace in envelope.

6. Tell individuals to take out the Questionnaire Packet. Ask them to read carefully and answer each question openly and honestly.

7. Allow individuals to fill-out questionnaires.

8. When individuals are finished completing their questionnaires, make sure they have replaced the packet into the envelope and sealed the envelope.

9. Collect all envelopes and keep in a safe place until visiting BGSU to compete.

10. Meet the primary researcher at the predetermined time and site, and hand all envelopes to her.
Appendix G

Participant Informed Consent Form
Project Title: Goal Orientation, Perceived Motivational Climate, Perceived Competence, Motivation, Life Satisfaction, and Affect in Collegiate Softball Athletes

Participant Informed Consent Form

Researcher: Margaret L. Tudor, Graduate Student, Development Kinesiology
David A. Tobar, Assistant Professor, School of HMSL

I have been asked to participate in a research study examining goal orientation, motivational climate, competence, motivation, life satisfaction, and affect in a sample of Division I MAC softball players. My involvement in this study includes filling out questionnaires included in the packet given to me. The estimated completion time of all questionnaires is about 20-30 minutes. This is a one-time completion of the questionnaires, and my participation is voluntary.

All data that I provide as a participant in this study will be kept in a locked file cabinet in a locked room to protect the confidentiality of my identity, and only the researchers will see the data that I provide. It has been explained that any reference or identification to me is only through the number given to me on the envelope of the packet of the questionnaires. I have been informed that there is minimal or no risk associated with participation in this study, and a goal of this study is to provide information on personal characteristics of collegiate softball players, which may be used to make the athletic experience in college more positive.

If I have any questions about this study, I may contact Margaret Tudor (419-308-4630 or mtudor@bgsu.edu), or David Tobar (419-372-6914 or dtobar@bgsu.edu). I may also contact the Chair, Bowling Green State University’s Human Subjects Review Board, 419-372-7716 or hsrb@bgsu.edu, with questions or concerns about my rights as a research participant.

My initials below indicates that I have been informed:

- I must be over the age of 18 in order to participate in this study,
- All information that I provide will be confidential,
- My decision to participate in this study is entirely voluntary and will have no impact on my coach or playing status on this team,
- I may withdraw consent and terminate participation at any time during the project,
- I have been informed of the procedures that will be requested of me,
- A copy of this informed consent document will be provided to me, and
- Upon request, I will receive a summary of the finding of this study.

___ ______________
INITIALS Date
Appendix H

Means and Standard Deviations for all variables Stratified by Teams
Table 8: Means and Standard Deviations for all variables Stratified by Teams

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Teams</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Team 1</td>
<td>19</td>
<td>3.96</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>Team 2</td>
<td>11</td>
<td>4.24</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Team 3</td>
<td>22</td>
<td>4.19</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>4.12</td>
<td>0.54</td>
</tr>
<tr>
<td>Satisfaction</td>
<td>Team 1</td>
<td>19</td>
<td>4.76</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>Team 2</td>
<td>11</td>
<td>5.09</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Team 3</td>
<td>22</td>
<td>5.18</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>5.01</td>
<td>1.08</td>
</tr>
<tr>
<td>GOTask</td>
<td>Team 1</td>
<td>19</td>
<td>4.02</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Team 2</td>
<td>11</td>
<td>4.18</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Team 3</td>
<td>22</td>
<td>4.09</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>4.08</td>
<td>0.62</td>
</tr>
<tr>
<td>GOEgo</td>
<td>Team 1</td>
<td>19</td>
<td>2.88</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Team 2</td>
<td>11</td>
<td>3.15</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Team 3</td>
<td>22</td>
<td>2.89</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>2.94</td>
<td>0.73</td>
</tr>
<tr>
<td>PMCTask</td>
<td>Team 1</td>
<td>19</td>
<td>3.52</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Team 2</td>
<td>11</td>
<td>3.90</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>Team 3</td>
<td>22</td>
<td>3.90</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>3.76</td>
<td>0.69</td>
</tr>
<tr>
<td>PMCEgo</td>
<td>Team 1</td>
<td>19</td>
<td>3.81</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Team 2</td>
<td>11</td>
<td>3.81</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Team 3</td>
<td>22</td>
<td>3.30</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>3.60</td>
<td>0.81</td>
</tr>
<tr>
<td>SMIntrins</td>
<td>Team 1</td>
<td>19</td>
<td>4.47</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>Team 2</td>
<td>11</td>
<td>4.65</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Team 3</td>
<td>22</td>
<td>5.13</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>52</td>
<td>4.79</td>
<td>1.18</td>
</tr>
<tr>
<td>SMEExtrins</td>
<td>Team 1</td>
<td>19</td>
<td>4.37</td>
<td>1.16</td>
</tr>
<tr>
<td>SMAmotiv</td>
<td>Team 1</td>
<td>Team 2</td>
<td>Team 3</td>
<td>Total</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Team 1</td>
<td>19</td>
<td>11</td>
<td>22</td>
<td>52</td>
</tr>
<tr>
<td>Team 2</td>
<td>19</td>
<td>11</td>
<td>22</td>
<td>52</td>
</tr>
<tr>
<td>Team 3</td>
<td>19</td>
<td>11</td>
<td>22</td>
<td>52</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>3.47</td>
<td>4.06</td>
<td>4.57</td>
<td>4.39</td>
</tr>
<tr>
<td></td>
<td>1.63</td>
<td>1.01</td>
<td>1.21</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>3.52</td>
<td>3.00</td>
<td>3.00</td>
<td>3.28</td>
</tr>
<tr>
<td></td>
<td>1.54</td>
<td>2.05</td>
<td>2.05</td>
<td>1.79</td>
</tr>
</tbody>
</table>