THE RELATIONSHIP OF A PERFORMER’S VISUAL COMMUNICATION TO EVALUATIONS OF MUSIC PERFORMANCE QUALITY BY EXPERT AND NOVICE JUDGES

Kristin Gailliard

A Thesis

Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of

MASTER OF MUSIC

May 2006

Committee:

Joyce Eastlund Gromko, Advisor

Myra Merritt
ABSTRACT

Joyce Eastlund Gromko, Advisor

The purpose of this study was to investigate the relationship of a performer’s visual communication (e.g., nonverbal communication, attractiveness, and facial expressions) to evaluators’ judgments of music performance quality. A secondary purpose was to investigate whether characteristics of the evaluators (e.g., expert vs. novice) would influence judgments of performance quality. The music evaluators consisted of music experts and novices drawn from college age students (163 undergraduates and 16 graduates) enrolled in music classes during Fall 2005. Experts were music students (N = 80) majoring in music performance and music education; novices were non-music students (N = 99) majoring in early childhood education. Experts judged technical proficiency to be higher under the casual condition when compared to the formal condition; novices judged technical proficiency to be lower under the casual condition when compared to the formal condition. Novices judged musical understanding more highly than expert judges, regardless of performance condition. The level of music experience of the judges may have affected their evaluations of the formal performance condition and may have created an expectation for higher accuracy in technical proficiency and musical understanding. From this finding, I concluded that music expert judges do take physical attractiveness, performing by memory, and nonverbal and verbal communication into consideration when evaluating performance quality and these are accompanied by higher expectations.
To my late grandmother, Dr. Helen Glenn, who inspired and encouraged me in my pursuit of my personal and educational goals.
ACKNOWLEDGMENTS

I wish to first acknowledge God for being my spiritual guidance. Secondly, I would like to thank my parents for their love and support, and also my family for their continuing encouragement in my pursuit of my educational goals. Special thanks is extended to Ms. Myra Merritt, a superb vocal instructor, who has encouraged me while challenging my vocal capabilities, and expecting nothing less than excellence. Lastly, special thanks is given to Dr. Joyce Eastlund Gromko for her support, expertise, and dedication to the field of music education research.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER I. INTRODUCTION</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II. REVIEW OF LITERATURE</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Purpose of the Study</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER III. METHOD</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Subjects</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER IV. RESULTS</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER V. DISCUSSION</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Implications for Music Education</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Recommendations for Further Research</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>REFERENCES</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX. Music Performance Evaluation</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Means and Standard Deviations for Criterion by Condition (Casual vs. Formal)</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Means and Standard Deviations for Criteria by Level of Musical Expertise</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Analysis of Variance for Technical Proficiency</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Analysis of Variance for Communicative Ability</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Analysis of Variance for Musical Understanding</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Analysis of Variance for Overall Quality</td>
<td>19</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

LIST OF FIGURES

1. Technical Proficiency
2. Communicative Ability
3. Musical Understanding
4. Overall Quality
CHAPTER I. INTRODUCTION

The level of communication between a vocalist and the audience is an essential aspect of a quality music performance. The level of communication that the vocalist exudes can captivate, or lose, an audience. To convey the meaning of a song, experienced vocalists will not only communicate vocally, but also in their facial expressions and body movements. Referred to as non-verbal communication, these gestures convey defined musical responses and enhance the interpretation of a song through the performer’s movements (Ristad, 1982). Ristad goes on to say, “The music moves the listener. But first the music must move the mover - must move the performer” (p. 33). Birdwhistell, Professor of Research in Anthropology at Temple University, believes that you cannot fully determine the meaning of what individuals say by their voice only or by just their body language (Fast, 1970). Psychiatrists, interviewers, and judges evaluate individuals on the basis of both their spoken language and their body language. The facial expressions and body movements of politicians, for example, can have a major influence on their ability to communicate with their audiences (Ristad, 1982). Therefore, if the body movements and gestures of leaders have been shown to heighten the effect of their message, then vocalists’ nonverbal communication may have a similar impact on their audiences.

One factor thought to contribute to the effectiveness of communication is that of physical attractiveness. How attractive performers are perceived to be may affect the overall evaluation of their performances by their audiences. That is, vocalists may not be judged merely on their vocal abilities alone, but on their physical attractiveness and on how well they communicate expressivity and musicality to their audiences. Research
from the field of communication suggests that nonverbal communication and physical attractiveness may work together to influence judges’ evaluations of the quality of a performance.

According to Sabatelli and Rubin (1986), nonverbal communication and physical attractiveness have a positive effect on the formation of initial interpersonal impressions. Forty judges viewed and rated the physical attractiveness of 30 individuals using 7-point rating scales (1 = very unattractive to 7 = very attractive). The judges rated the individuals on their likeability. The results showed that nonverbal communication in conjunction with physical attractiveness influenced judgments of likeability. Individuals who were more expressive in their nonverbal cues were rated as more interpersonally attractive. In a subsequent study conducted by Friedman, Riggio, and Casella (1988), judges rated individuals for likeability and physical attractiveness. The results revealed that perceptions of initial likeability were related to individuals’ expressiveness, self-monitoring, and physical attractiveness. Those that were more physically attractive tended to be judged as more expressive, to possess greater social skill, and to be more likable than unattractive persons.

Mueser, Grau, Sussman, and Rosen (1984) determined that individuals’ facial expressions, in particular, affected judgments of attractiveness. Two hundred male undergraduate judges rated 15 females on their facial attractiveness. The results showed that the main effect of facial expression was significant, that is, the sad expression was less attractive than the neutral expression. The results in the second phase of the study indicated that facial attractiveness explained judgments of overall attractiveness.
Walster (1972) investigated the notion that “what is beautiful is good.” Sixty judges recorded their judgments of several individuals. The results showed that attractive persons were judged to have a more socially desirable personality when compared to unattractive and average individuals. According to the judges, attractive persons were thought to have better prospects for happy social and professional lives and to be more likely to find an acceptable partner when compared to average or unattractive individuals. Therefore, if what is perceived to be beautiful is also thought to be good, then musicians and other performers may be judged or evaluated not only on their musicality and performance ability, but also on their attractiveness.

According to Afifi and Burgoon (2000), judgments of social attractiveness may also be influenced by judges’ uncertainty, which can occur when an individual deviates from behavior that is normal or expected. According to the uncertainty reduction theory, when uncertainty increases for judges, the attractiveness of the individual tends to diminish. The expectancy violations theory suggests that violations trigger an interpretation-evaluation process that labels behavior as negative. The results of this study showed that “individuals behaving unpleasantly during the initial portion of the interaction were able to ‘repair’ their attractiveness by positively violating observers’ expectations later in the interaction” (p. 228). In other words, individuals seemed to be ‘forgiven’ for a poor interaction performance initially if they were able to significantly improve upon it at a later point in the interaction.

Therefore, research from the field of communication studies has shown that verbal and nonverbal communication play an important role in judges’ evaluation of individuals' communication effectiveness, expressivity, and physical attractiveness.
Extending this logic to musical performers suggests that nonverbal and visual communication may also play a significant role in judgments of performance quality. The physical attractiveness, facial attractiveness, body language, gestures, and level of and perceived appropriateness of a performer’s social interactions in the context of a performance may all contribute to judgments of quality in musical performance.
CHAPTER II. REVIEW OF LITERATURE

Ultimately, if nonverbal and visual communication between performer and audience are heightened when the performer is more expressive, then anything obstructing the view of the audience may influence their judgments of the quality of a musical performance. Singing by memory allows for an unobstructed performance. Although vocalists typically perform songs from memory, playing by memory only became an accepted performance practice in the 19th century when Clara Schumann performed Beethoven’s *Appassionata* sonata without music, and Franz Liszt gave approximately 50 performances of different works by memory. In performing by memory, Schumann and Liszt opened the door for other pianists and musicians to perform music by memory (Vining, 2001). Kenney (1979) believes that although students would rather not use music in order to have more expressive freedom, they may feel more at ease with the music present. Nevertheless, vocalists are often required to perform from memory and many vocalists sing from memory in order to be more expressive.

According to Willamon (1999), musicians and nonmusicians rated visual communication and quality of musicality higher when the performer played from memory and without the obstruction of a music stand. One cellist with 15 years of experience was judged by observers (e.g., musicians \(n = 50 \), and nonmusicians \(n = 36 \)). The cellist performed J.S Bach’s *Prelude Cello Suites I, II* and *III* under five conditions. The five conditions under which the cellist’s performance was judged were as follows: (a) the prelude was performed as soon as the cellist was able to do a satisfactory job for the initial performance without the music being memorized, (b) the cellist performed the preludes by memory one month later with an empty music stand in the
performance to appear as if reading it, (c) the cellist played by memory without a music
stand, (d) the cellist played the preludes again with music and a music stand two days
later, and (e) the cellist played the preludes again using music and a music stand but
excluding the stand from the videotape picture for the audience. The cellist’s
performance was judged with four criteria: overall quality, musical understanding,
technical proficiency, and communicative ability. The ratings indicated that (a)
performing from memory was superior to playing from the score, (b) visibility of the
performer influenced audiences’ ratings of performances in a favorable direction, (c)
extra time spent preparing for the memorized performances was beneficial for the
audiences judgments of music quality, and (d) musician judges favor performances
without a music stand. If musicians’ and nonmusicians’ ratings of visual communication
and quality of musicality were rated higher for memorized musical performances, then
nonmemorized performances might put the performer at a disadvantage when being
judged or evaluated.

Davidson (1993) investigated whether the audience could perceive differences in
performance manners (e.g. deadpan, projected, or exaggerated). Musician judges ($N = 21$
in phase one and $N = 34$ in phase two) were asked to describe their visual perception of
performance manner in the movements of five solo musicians. In the first phase of the
study, four senior undergraduate violinists performed for 21 undergraduate music student
judges. Using the point-light technique, the violinists were videotaped while performing
as deadpan-minimizing expressive movement, projected-normal interpretation of music
and exaggerated-overstating expressive movement. The judges were asked to describe the
movements under three conditions: visual only, aural only, and audiovisual using a 7-
point rating scale. The results of phase one showed that among all of the performance manners, “exaggerated” was rated the highest for ease of visual perception and “deadpan” was rated the lowest. In second phase, one pianist performed for 34 music student judges. Using the same point-light technique as was used in the first phase, the pianist was video-taped while performing deadpan, projected and exaggerated performance manners for 7-19 bars of Promenade from Mussorgsky’s Pictures at an Exhibition. The rating scale used by the judges ranged from inexpressive to highly expressive. The results indicated that for aural only, projected and exaggerated manners were rated similarly. That is, judges did not differentiate between the quality of sound when visual images were not present. However, judges distinguished each of the performance manners clearly under the visual only and audiovisual conditions when compared to aural only. Therefore, if ratings of musical performances are positively influenced by the manner of performance (e.g., projected or exaggerated) under the visual condition, then objects that obstruct the audience’s view of the performer may result in lower ratings of performance quality by judges or evaluators.

In a similar study, Davidson (1994) investigated whether movement of certain parts of the body enhanced expressiveness. In phase one of the study, a professional pianist, using the point-light technique, performed Beethoven’s Bagatelle No. 11 in Bb Major using three performances manners: deadpan, projected, or exaggerated. The results of the movement-tracking device indicated the head conveyed the most expressiveness. In the second phase, 33 music student judges assessed pianist’s expressivity. The results indicated that the exaggerated performance manner received the highest score for
expressiveness, while “deadpan” received the lowest score. Among all of the parts of the body assessed, the head showed the most expressive information.

Wapnick, Darrow, Kovacs, and Dalrymple (1997) investigated the effects of physical attractiveness on judges’ ratings of vocal performance quality. Eighty-two musicians (41 male and 41 female; 33 undergraduate music majors, 32 graduates in music, and 17 music faculty majors) were judges. The performers included 14 vocalists (six male and eight female). Each vocalist was recorded on audiovisual tape and audiotape. Judges were assigned to one of three groups: visual only \((N = 25) \), aural only \((N = 26) \), and audiovisual \((N = 31) \). The visual group rated the performers for attractiveness \((1 = \text{extremely unattractive}, 5 = \text{neither attractive nor unattractive}, 9 = \text{extremely attractive}) \). The audiovisual and audio only groups rated the performance with six of the 14 items from a vocal evaluation form, which included color/warmth, diction, efficient breath management, intonation accuracy, musical phrasing, and overall performance. The results showed that female singers were rated more highly than male singers. However, the performance quality of attractive females was rated more highly than less attractive female singers. Thus, perceptions of physical attractiveness affected the ratings of performance quality.

In a follow up study, Wapnick, Mazza, and Darrow (1998) looked at the effects of performer attractiveness, stage behavior, and dress on violin performance evaluation. The performers were 12 violinists (six females and six males) ranging from ages 17-38 with an average of 19 years of experience. The judges included graduate students and university faculty members (33 male and 39 female) in music. The 12 violinists were videotaped performing one musical selection of their choosing. The camera first viewed
the performers close up and then zoomed out to view the entire body. The judges were first placed in one of three groups: visual \((n = 20)\), audio \((n = 24)\), or audiovisual \((n = 28)\). The visual only rated the performers on attractiveness using a 9-point scale \((1 = \text{extremely unattractive} \text{ to } 9 = \text{extremely attractive})\). The results for this study indicated that judges gave higher ratings for performance quality when watching video than when listening to audio only performance. Male performers were rated significantly higher than female performers. Attractive male violinists were rated higher than unattractive male violinists. Behavior and dress of the performers were deemed significant influences on ratings of performance quality by evaluators.

In another study, Wapnick, Mazza, and Darrow (2000) investigated the effects of performer attractiveness, stage behavior, and dress on ratings of piano performance quality. The performers were 20 sixth-grade children (10 girls and 10 boys) who had studied piano for two years. The judges \((N = 123)\) were undergraduates and graduates in music or amateur musicians. The performers were videotaped as they approached the piano, bowed to the audience, performed, and bowed at the end of the entire performance during their piano recital. The judges were assigned to one of three groups: visual only \((n = 43)\), audio only \((n = 40)\), and audiovisual \((n = 40)\). The visual only group rated each performer on a 9-point scale \((1 = \text{extremely unattractive} \text{ to } 9 = \text{extremely attractive})\) and answered the following questions: (a) In your opinion, how important is external appearance in the evaluation of musical performance? and (b) How successful do you think you would be if asked to rate the musical quality of a performance while consciously disregarding the appearance of the performer? The visual group ratings for the attractiveness questions indicated external appearance to be important. The visual
group also indicated that they would be somewhat successful in rating musical quality while consciously disregarding the appearance of the performer. Audio only and audiovisual judges rated performers on performance quality based on 9-point scale. Music qualities evaluated by these groups included: rhythmic accuracy, dynamic range, phrasing, overall performance, and talent level. The audiovisual group answered the following questions: (a) Although, you were asked to rate the musical quality of each performance, how much do you think your ratings were influenced by the physical appearance of the performer? and (b) In your opinion, how important is external appearance in the evaluation of musical performance? The results showed that girls were rated more highly for their performance quality than boys. Female judges rated boy performers significantly higher than male evaluators. Male and female judges did not differ in ratings of girl pianists. Girls were rated equally among all categories while boys were rated higher on dress and behavior than physical attractiveness. The audiovisual group stated that external appearance was important to a moderate degree and they agreed physical appearance played a part in their ratings. Therefore, attractiveness, stage behavior, and dress of the performer influenced performance quality ratings, as well as characteristics of the evaluators.

According to Ryan and Costa-Giomi (2004), attractiveness affected evaluations of young pianists’ performance quality. The judges \((N = 75)\) were non-music undergraduate students (10 men and 14 women) taking an introductory piano class, undergraduate music education students (10 men and nine women), and 12-year old children completing elementary school (18 boys and 14 girls). The performers were 10 young pianists (five girls and five boys) approximately ages 11-12 with three years of piano lessons. The
pianists were videotaped while they approached the piano, faced the audience, sat down to play, and performed. The attractiveness of the performers was rated by the visual only group based on a 7-point scale (1 = not attractive to 7 = very attractive). Both audio-only and audiovisual groups were rated for their performance quality. The attractive females were rated more highly for their performances than were unattractive females, but performance quality ratings did not differ for males based on their attractiveness. In this study, the highest performance ratings were for the unattractive male players, whereas the unattractive females were rated the lowest.

Purpose of the Study

Based on the research that I reviewed, the evaluation of performance quality and expressivity were influenced by performers’ attractiveness, stage behavior and dress. Non-musical behaviors were perceived to impact the overall visual communication between the performer and the audience. The results of the research support the theory that “what is beautiful is good” (Walster, 1972). Therefore, performers that are highly attractive may be rated more on the quality of their performance regardless of similarities in musical quality. Because nonverbal and visual communication between performer and audience are essential for a performer to communicate expressivity and musicality, characteristics of the audience, or the evaluators, may also influence judgments of performance quality. The purpose of this study was to investigate the relationship of a performer’s visual communication (e.g., nonverbal communication, attractiveness, and facial expressions) to evaluators’ judgments of music performance quality. A secondary purpose was to investigate whether characteristics the evaluators (e.g., expert vs. novice) would influence judgments of performance quality.
CHAPTER III. METHOD

Subjects

My study was designed to investigate the relationship of a performer’s visual communication to the evaluations of music performance quality by expert and novice judges. In October 2005, I selected a male graduate vocal performance major with more than ten years of experience as the performer. The vocalist sang a short song selection, *Penguin Geometry* by John Duke, which exhibited strong text, was vocally demanding, and was musically challenging, under two performance conditions. Under the casual performance condition, the vocalist sang with music and a music stand in dressed-down casual attire. Under the formal performance condition, the vocalist sang the same song without music or a music stand and in formal dress attire.

The music evaluators consisted of music experts and novices drawn from college age students (163 undergraduates and 16 graduates) enrolled in music classes during Fall 2005. Experts were music students \(N = 80\) were majoring in music performance, music education; novices were non-music students \(N = 99\) majoring in early childhood education majors.

Materials

I developed a performance evaluation rubric with four criteria: technical proficiency, communicative ability, musical understanding, and overall performance quality (see Appendix). The evaluators rated the vocalist on a seven-point rating scale and circled the rating number that best applied for each of the four criteria. Technical accuracy ranged from 1 = inaccurate to 7 = accurate in performance; communicative ability ranged from 1 = unclear to 7 = clear communication; musical understanding
ranged from 1 = unexpressive to 7 = expressive in performance; and overall performance ranged from 1 = low to 7 = high. The evaluation form also included a space to indicate the major of the evaluator.

Procedure

I recorded the vocal performances in an empty classroom on a digital video camcorder and created a DVD from the video footage. One hundred and seventy-nine college age student judges (66 undergraduates and 14 graduates) viewed the DVD that lasted two minutes and twenty-six seconds. After viewing the performance, the judges completed an evaluation form. The total estimated time of their participation was approximately ten minutes. After the data were collected, the evaluation sheets were coded on the basis on the performance condition viewed (1 = casual; 2 = formal) and level of music experience of the judge (1 = novice; 2 = expert).
CHAPTER IV. RESULTS

The purpose of this study was to investigate the relationship of a performer’s visual communication (e.g., nonverbal communication, attractiveness, and facial expressions) to evaluations of music performance quality by expert and novice judges. I first calculated means and standard deviations for each criterion (e.g., technical proficiency, communicative ability, musical understanding, overall quality) by condition (e.g., casual vs. formal). The means for conditions were less than one decimal point different from each other, as shown in Table 1.

<table>
<thead>
<tr>
<th>Music Performance Criterion</th>
<th>Casual M</th>
<th>SD</th>
<th>Formal M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Proficiency</td>
<td>5.61</td>
<td>(1.16)</td>
<td>5.49</td>
<td>(0.87)</td>
</tr>
<tr>
<td>Communicative Ability</td>
<td>5.55</td>
<td>(1.14)</td>
<td>5.68</td>
<td>(1.09)</td>
</tr>
<tr>
<td>Musical Understanding</td>
<td>5.95</td>
<td>(0.91)</td>
<td>5.91</td>
<td>(0.96)</td>
</tr>
<tr>
<td>Overall Performance Quality</td>
<td>5.84</td>
<td>(0.74)</td>
<td>5.76</td>
<td>(0.77)</td>
</tr>
</tbody>
</table>

I calculated means and standard deviations for each criterion by level of musical expertise (e.g., novice vs. expert). The means for expertise were similar to each other with a slightly higher score for musical understanding by novice judges as shown in Table 2.
Table 2

Means and Standard Deviations for Criteria by Level of Musical Expertise

<table>
<thead>
<tr>
<th>Music Performance Criterion</th>
<th>Novice</th>
<th>SD</th>
<th>Expert</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Proficiency</td>
<td>5.49</td>
<td>(1.05)</td>
<td>5.67</td>
<td>(0.93)</td>
</tr>
<tr>
<td>Communicative Ability</td>
<td>5.55</td>
<td>(1.11)</td>
<td>5.73</td>
<td>(1.10)</td>
</tr>
<tr>
<td>Musical Understanding</td>
<td>6.05</td>
<td>(0.89)</td>
<td>5.76</td>
<td>(0.96)</td>
</tr>
<tr>
<td>Overall Performance Quality</td>
<td>5.76</td>
<td>(0.85)</td>
<td>5.83</td>
<td>(0.63)</td>
</tr>
</tbody>
</table>

In order to investigate differences in the evaluators’ of music performance quality by experts and novices under two different performance conditions (e.g., casual vs. formal), I conducted a two-way ANOVA (condition by level of musical expertise) for each criterion. Table 3 displays for the results for the technical proficiency criterion.

Table 3

Analysis of Variance for Technical Proficiency

<table>
<thead>
<tr>
<th>Performance Criterion</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>0.62</td>
<td>1</td>
<td>0.62</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>Level</td>
<td>1.08</td>
<td>1</td>
<td>1.08</td>
<td>1.11</td>
<td>0.29</td>
</tr>
<tr>
<td>Condition vs. Level</td>
<td>5.67</td>
<td>1</td>
<td>5.67</td>
<td>5.82</td>
<td>0.02</td>
</tr>
<tr>
<td>Error</td>
<td>170.47</td>
<td>175</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The ANOVA results revealed a significant interaction ($p = 0.02$) for technical proficiency criterion. Figure 1 displays the interaction. Experts judged technical proficiency to be higher under the casual condition when compared to the formal condition; novices judged technical proficiency to be lower under the casual condition when compared to the formal condition.

Figure 1. Technical Proficiency

I conducted a two-way ANOVA (condition by level of musical expertise) for communicative ability. Table 4 displays the results for communicative ability.
Table 4

Analysis of Variance for Communicative Ability

<table>
<thead>
<tr>
<th>Performance Criterion</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>1.22</td>
<td>1</td>
<td>1.22</td>
<td>1.01</td>
<td>0.32</td>
</tr>
<tr>
<td>Level</td>
<td>1.11</td>
<td>1</td>
<td>1.11</td>
<td>0.92</td>
<td>0.34</td>
</tr>
<tr>
<td>Condition vs. Level</td>
<td>3.31</td>
<td>1</td>
<td>3.31</td>
<td>2.73</td>
<td>0.10</td>
</tr>
<tr>
<td>Error</td>
<td>212.18</td>
<td>175</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ANOVA results showed no significant main effects or interaction. Although not a significant difference, the experts judged communicative ability to be higher under the formal condition (p = 0.10), as shown in Figure 2.

Figure 2. Communicative Ability
I conducted a two-way ANOVA (condition vs. level of musical expertise) for musical understanding. Table 5 displays the results for musical understanding.

Table 5

Analysis of Variance for Musical Understanding

<table>
<thead>
<tr>
<th>Performance Criterion</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>0.28</td>
<td>1</td>
<td>0.28</td>
<td>0.32</td>
<td>0.57</td>
</tr>
<tr>
<td>Level</td>
<td>4.46</td>
<td>1</td>
<td>4.46</td>
<td>5.21</td>
<td>0.02</td>
</tr>
<tr>
<td>Condition vs. Level</td>
<td>1.03</td>
<td>1</td>
<td>1.03</td>
<td>1.12</td>
<td>0.28</td>
</tr>
<tr>
<td>Error</td>
<td>149.87</td>
<td>175</td>
<td>0.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ANOVA results revealed a significant main effect by level of musical expertise for musical understanding ($p = 0.02$). Figure 3 displays the results for musical understanding. Novices judged musical understanding more highly than expert judges, regardless of performance condition.

Figure 3. Musical Understanding
Finally, I conducted a two-way ANOVA (condition vs. level of musical expertise) for overall quality. Table 6 displays the results for overall quality.

Table 6

<table>
<thead>
<tr>
<th>Performance Criterion</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>0.22</td>
<td>1</td>
<td>0.22</td>
<td>0.37</td>
<td>0.54</td>
</tr>
<tr>
<td>Level</td>
<td>0.18</td>
<td>1</td>
<td>0.18</td>
<td>0.31</td>
<td>0.58</td>
</tr>
<tr>
<td>Condition vs. Level</td>
<td>0.01</td>
<td>1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.89</td>
</tr>
<tr>
<td>Error</td>
<td>101.43</td>
<td>175</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ANOVA results revealed no significant interaction or main effect for overall quality. Figure 4 displays the results of overall quality. Experts judged overall quality to be higher than novices under both the casual condition and the formal condition, although not significantly.

Figure 4. Overall Quality
CHAPTER V. DISCUSSION

The purpose of my study was to investigate the relationship of a performer’s visual communication (e.g., nonverbal communication, attractiveness, and facial expression) to evaluator’s judgments of music performance quality. A secondary purpose was to investigate whether characteristics of the evaluators (e.g., expert vs. novice) influenced judgments of performance quality. Among the four criteria (e.g., technical proficiency, communicative ability, musical understanding, and overall quality) only technical proficiency (i.e., accuracy of pitch, rhythm) and musical understanding (i.e., phrasing, dynamic contrasts) were judged differently by experts and novices.

My results showed that evaluations of technical proficiency were lowest when judges were novices and the performance condition was casual. My results for novice judgments support those of Wapnick, Darrow, Kovas, and Dalrymple (1997, 1998, 2000) and Ryan and Costa-Giomi (2004) who found that less attractive performers in casual attire received lower ratings than attractive performers in formal attire. However, my results for music expert judges who gave lower ratings for the formal performance condition suggest that the formal performance condition created higher expectations for technical proficiency, intonation, and rhythmic accuracy, and that these expectations were not met. Therefore, the level of music experience of the judges may have affected their evaluations of technical proficiency: the formal performance condition may have created an expectation for higher accuracy in technical proficiency by music expert judges.

My results showed that evaluations of musical understanding were lower when judges were experts, regardless of performance condition. Here again, the level of music
experience of the judges may have affected their evaluations of musical understanding: music expert judges may have had an expectation for higher accuracy in musical understanding than novice judges. Therefore, music experts judged both technical proficiency in a formal performance condition and musical understanding more harshly than novices. From this finding, I conclude that music expert judges do take physical attractiveness, performing by memory, and nonverbal and verbal communication into consideration when evaluating performance quality and that these are accompanied by higher expectations for technical proficiency and musical understanding.

My results support previous research done by Walster (1972), who stated, “what is beautiful is good.” However, my results support a variation of “what is beautiful is good.” For music expert judges, “what is beautiful ought to be better.” For music expert judges in my study, physical attractiveness and formal attire created higher expectations for technical proficiency and musical understanding. This finding supports the research of Afifi and Burgoon (2000) who found that individuals who deviate from behavior that is expected will be judged more harshly. It is reasonable to expect that vocalists, and all music performers for that matter, ought to strive for the highest levels of visual communication and be able to perform skillfully as musicians.

Implications for Music Education

My results suggest that a physically attractive performer with high musical skills will likely be rated highly by music expert judges. All of the research I reviewed supported the notion, in one way or another, that “what is beautiful is good.” That the formal performance condition was rated lower by music expert judges suggests that a formal condition creates a greater expectation of excellence. Therefore, it is important
that music educators stress the importance of a performer’s visual communication as well as high levels of music skills in performance situations.

Recommendations for Further Research

On the basis of my results, I conclude that attractive performers who perform by memory will likely be rated more highly if they satisfy the expectations for high musical skills held by music expert judges. Suggestions for furthering my study would be to compare evaluations of performance quality by judges with even higher levels of musical expertise, e.g., music performance faculty, music critics, and active musical performers in order to test the uncertainty theory suggests expectancy violations trigger negative evaluations.
REFERENCES

APPENDIX

MUSIC PERFORMANCE EVALUATION

NAME:_____________________________ DATE:______________________

MAJOR:____________________________

Please rate the performer based on the following performance criteria:

Please circle the rating number that best applies:

1. TECHNICAL PROFICIENCY
 (Accuracy of pitch, rhythm)
 1 2 3 4 5 6 7

Inaccurate ______________________________________ Accurate in performance

2. COMMUNICATIVE ABILITY
 (Diction, awareness of text)
 1 2 3 4 5 6 7

Unclear ______________________________________ Clear communication of text

3. MUSICAL UNDERSTANDING
 (Phrasing, dynamic contrasts)
 1 2 3 4 5 6 7

Unexpressive ______________________________ Expressive in performance

4. OVERALL PERFORMANCE QUALITY
 1 2 3 4 5 6 7

Low ______________________________________ High