TAking the role of the other:
Empathy in the attribution of responsibility for wrongdoing in organizations

a thesis
presented to
the graduate faculty of the university of akron

in partial fulfillment
of the requirements for the degree
master of arts

peter barr
may, 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>An Overview of Aspects of the Integrated Model</td>
<td>7</td>
</tr>
<tr>
<td>Research on AOR and Organizational Wrongdoing Using the Integrated Model</td>
<td>12</td>
</tr>
<tr>
<td>The Role of Empathy and its Influence on AOR</td>
<td>14</td>
</tr>
<tr>
<td>III. METHODS</td>
<td>19</td>
</tr>
<tr>
<td>Data and Sample</td>
<td>19</td>
</tr>
<tr>
<td>Analytical Approach</td>
<td>21</td>
</tr>
<tr>
<td>Independent Variables</td>
<td>21</td>
</tr>
<tr>
<td>Empathy</td>
<td>21</td>
</tr>
<tr>
<td>Actor's Role</td>
<td>22</td>
</tr>
<tr>
<td>Nature of the Deed</td>
<td>22</td>
</tr>
<tr>
<td>Standard Operating Procedures</td>
<td>23</td>
</tr>
<tr>
<td>Mental Schema</td>
<td>23</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unstandardized OLS Regression Estimates for Individual Responsibility</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>Unstandardized OLS Regression Estimates for Organizational Responsibility</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>Descriptive Statistics</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
</tr>
</tbody>
</table>

Integrated Model of Attribution of Responsibility for Organizational Wrongdoing
CHAPTER I
INTRODUCTION

The twentieth century was marked by numerous cases of abuse by the institution of science. From the Tuskegee Syphilis experiments to the experiments performed by Nazi scientists, we have abundant examples to discuss in our research methods classes as lapses in ethical concern. However, these were not merely lapses in individual ethics, but institutionally sanctioned actions that served interests of both science and military dominance. A broad group of experiments that have been labeled the "Cold War Human Radiation Experiments" represents another of these cases of human rights violations. Throughout the Cold War, American scientists supported by the Atomic Energy Commission (later the Department of Energy) performed experiments on various citizens without their consent. Newspaper titles such as "Doctors of Death" (Herken and David 1994) and "Tales From the Crypt" (Pasternak and Cary 1995) help to demonstrate the severity of these accounts. From the 1940's until the 1970's, there were over 4000 documented experiments where "doctors, propelled by the potential medical benefits of radiation and pushed [by the federal government] to learn more about the effects of radiation on humans, subjected many Americans to medical excesses and abuses" (Pasternak and Cary 1995).
Take for example, the story of Dr. Joseph Hamilton. Near the end of WWII, Hamilton injected a young man with what he believed would be lethal amounts of plutonium in order to track its effects on the human body (Herken and David 1994). Though he believed the man had a terminal case of stomach cancer, the illness turned out to only be an ulcer. However, Hamilton never informed the patient whose plutonium levels he continued to track through urine and feces collected from him. Though the Army eventually denied his request for additional plutonium, the Atomic Energy Commission (AEC) continued to support his plans for future human experimentation (Herken and David 1994). The Army did agree to help Hamilton study the effects of radioactive gas on healthy volunteers for the possibility of weaponizing it. Hamilton never found the volunteers and even admitted that the experiments had a "little Buchenwald touch" (Hamilton quoted in Herken and David 1994). Numerous other examples detail the acts individual scientists engaged in while receiving institutional support and legitimacy. Because of both the organizational and individual culpability in many of these cases, it is important to understand how observers make sense of the situation. Who (or what) is held responsible and under what circumstances? What influences people’s attributions of responsibility in these complex scenarios.

A large body of literature exists within both psychology and sociology on how individuals attribute responsibility for acts of wrongdoing. This attribution is not concerned necessarily with actual causality, but is more concerned with why observers believe an act of wrongdoing has happened (Gailey and Lee 2005a). There has been a great deal of research on this issue, but one area that has received relatively little attention is how individuals attribute responsibility for organizational wrongdoing. Complex
organizations provide a landscape in which individual action can become obscured by the larger context of bureaucratic processes. This can make it very difficult to assess who is responsible for a given act of wrongdoing. Is it the result of a "bad apple" acting on his or her own accord? Or rather is it the result of organizational structure and industry norms? Is it the result of both, or something else? The answers to these questions can have repercussions for the sentencing and punishment for crimes and wrongdoing by powerful actors, both individual and organizational.

What is organizational wrongdoing? Before understanding how responsibility is attributed for organizational wrongdoing, we must establish what it is. I prefer the term "wrongdoing" over either crime or deviance because organizations can engage in harmful behavior that is not considered a legal violation or criminal (Hamilton and Sanders 1995; Schwendinger and Schwendinger 1970) and deviance can also incorporate pro-social or positive actions as well as negative ones, such as altruistic behavior or genius (Gailey and Lee 2005a). With those points in mind, organizational wrongdoing can be defined as "wrongdoing by individuals acting in formal capacity on behalf of an organization to further organizational not (exclusively) personal interests" (Gailey and Lee 2005a: 340). This wrongdoing can occur at "different levels of analysis, such as an individual manager mobilizing an organization to violate community norms or established organizational routines directing individuals to violate norms, or both" (Lee and Gailey 2007: 537). Previous analyses and case studies of instances of organizational wrongdoing (see Vaughan 1996; Lee and Ermann 1999) have demonstrated the importance of understanding multiple levels of analysis, while some accounts minimize the agency of individuals and focus instead on organizational action (Laroche 1995).
Gailey and Lee (2005a) developed an integrated model\(^1\) for understanding attributions of responsibility with regard to organizational wrongdoing that focuses on these different levels of analysis. I follow Gailey and Lee's (2005a: 340) conception of responsibility as falling on a burden-of-proof continuum. Social responsibility is at the least restrictive end of the continuum: public disapproval (and in some cases) outrage is tied weakly, or not at all, to prevailing legal standards of guilt or blameworthiness. At the other end is criminal culpability, which is based on the strictest standard of guilt "beyond a reasonable doubt."

Between these two extremes is the intermediate standard of "preponderance of evidence" used by the civil justice system. It is with the least restrictive "social responsibility" that I am concerned with here. Criminality can be a narrow conception that does not envelop the harmful behavior engaged in by some organs that may not only be legal, but also receive institutional approval (see Schwendinger and Schwendinger 1970 for a more thorough critique of "crime") This model integrates elements from both the psychological and sociological literature on the attribution of responsibility (AOR) as well as incorporating concepts from the organizational literature. While some initial empirical support has been found for the model based on quasi-experimental research designs using vignettes (see also Gailey and Lee 2005b; Gailey and Lee 2008), not all aspects of the model have been

\[\text{\footnotesize See Appendix A for a diagram of the integrated model.}\]
tested. In addition, it has yet to be evaluated using samples other than those drawn from student populations.

Along with testing aspects of the model with a non-student sample, the goal of this paper is to extend Gailey and Lee’s quasi-experimental work to test the role that empathy plays in attributing responsibility. In their discussion of implications for AOR research regarding wrongdoing in organizations, Gailey and Lee (2005a: 351) point out that acquittals of individuals in instances of corporate wrongdoing may reflect observers’ experience with bureaucratic pressures and they draw attention to the "ability to 'take the role of the other.'" Vaughan (1996) described how her reanalysis of the Challenger launch disaster started with her assuming that individuals willfully violated the rules. However, once she understood the "native" meaning of decisions for engineers working at NASA, she began to see things from their perspective. This enabled her to understand the difficulties of action within the confines of a complex organization. It also highlighted the importance of understanding action situated in its historical and social context (Vaughan 1996). With this in mind we will see if empathy, as a “role-taking emotion” (Shott 1979), helps to explain whether an individual or the organization is held responsible for acts of wrongdoing. Empathy has received attention in psychological AOR research, but this work has not focused on organizational wrongdoing and is more concerned with "street" crimes involving individual perpetrators such as rape (Deitz and Byrnes 1981; Deitz, Littman, and Bentley 1984) or larceny (Johnson et al. 2002). In sociology, empathy has received more attention in the sociology of emotions but has not yet been considered in sociological research on AOR. Starting with a brief overview of the literature on psychological, sociological, and organizational aspects of the integrated AOR model, I
then provide a brief review of previous AOR research on wrongdoing in organizations. Finally I will consider the attribution of responsibility research that has used empathy in other instances and offer some points from the sociology of emotions on empathy to demonstrate why it may be a useful for understanding AOR for the present study.
CHAPTER II

LITERATURE REVIEW

Before reviewing the literature on AOR that has specifically looked at organizational wrongdoing or empathy, it may be helpful to provide an overview of the general AOR research and literature that was the basis for the Gailey/Lee integrated model. Drawing on the bodies of literature from three different disciplines—psychological, sociological, and organizational—the amount of literature is vast. Therefore this review is not able to include of all the research that exists. Instead, it offers a short overview to provide sufficient background information.

An Overview of Aspects of the Integrated Model

Attribution of responsibility has its origins in psychological research, beginning with the work of Piaget (1932) on moral development and later expanded by Heider (1958). Heider (1958) developed a model in which responsibility judgments are attributed based on both the intentions of the actor involved and environmental forces impinging on the actor. This model includes five stages; association, commission, foreseeability, intention, and justification. Association implies that an individual is held responsible for anything connected to him or her. Commission refers to a causal attribution, even though it was not foreseeable. Foreseeability implies the individual may have seen the possible
outcome, though it was not their intention. The intention level refers to an individual as being seen as causing an event with the outcome as intended. Finally, justification brings in environmental causes which mitigate the level of responsibility to which the person is held. The first four involve an increasing degree in the likelihood of responsibility being attributed to the actor, with justification shifting some portion of responsibility to environmental forces (Heider 1958).

Research on attribution of responsibility has been less of a focus in sociology than in psychology. However, sociological research has enhanced our understanding of how people attribute responsibility in important ways. The work of V. Lee Hamilton (1978) and her development of a "roles-and-deeds" model have demonstrated the importance of social roles in the attribution process and have moved beyond the largely individualistic framework evident in the psychological literature. Her model builds upon the psychological research which has primarily focused on the nature and outcome of the deed. The social roles of the actor in a particular situation as well as their status affect how observers will attribute responsibility for wrongdoing to that actor. Within an organization, we can think of roles in terms of workers and managers. The expected behavior attached to each of these roles is very different, as are the statuses (i.e., subordinate or superior). The “deed” part of the model is what one did in the situation. Hamilton (1978: 320) describes her model as “a perspective in which liability for sanctions rests on a combination of physical deeds and social expectations.”

The importance of social roles has received consistent empirical support in AOR research, demonstrating those in higher authority positions or those accorded higher
status are in fact held to a higher standard (Hamilton 1978; Hamilton and Sanders 1981, 1995; Hamilton and Hagiwara 1992; Gailey and Lee 2005b, 2006). Hamilton and Sanders (1983) tested this cross-culturally between United States and Japanese respondents and found that the effect of social role held across cultures. This included vertical role relations (whether actors involved were equals in status or not) and horizontal (whether actors had status ties, such as family or friends, or involved in a contractual relationship). The vignettes used in these studies did not deal only with organizational or corporate wrongdoing. However, some of the work of Hamilton and others have focused specifically on this area.

“Crimes of obedience,” when subordinates follow orders from an authority that involves engaging in actions that violate broader norms, have been examined in military, government, and corporate settings (Kelman and Hamilton 1989). Audiences tend to attribute higher levels of responsibility to those who act autonomously instead of acting under orders and those who are higher in the bureaucratic hierarchy (Hamilton and Sanders 1995). Once again, comparing these findings across cultures (the United States, Russia, and Japan) reveals that cultures with more rigid hierarchical structures, in this case Russia and Japan, attributed less responsibility to the subordinate following orders (Hamilton and Sanders 1995). As the authors note, this was only weakly confirmed, but it does reveal something about the impact of social expectations on attributions. Perhaps there is more empathy for actors when observers have experienced rigid hierarchy themselves. Hamilton and Sanders (1996) also examined the relationship between the social class of the observer and the attributions they would make to autonomous/obedient
observers. Those with higher social class and education backgrounds were more likely to hold obedient actors responsible. Drawing on the work of Kohn (1977), they proposed that those who occupy higher positions come to value autonomy more and are more likely to hold others to the standard of autonomy that they enjoy (Hamilton and Sanders 1996). Other research has demonstrated that when both individuals and corporations commit the same offense, the corporation is held to a higher standard of criminal and civil liability, mainly because corporate action is seen as more reckless and more foreseeable (Hans and Ermann 1989). Gailey and Lee (2005a) also point out the impact of the media in framing how a given act of organizational wrongdoing occurred. Media has been shown to influence attributions (see Gailey and Lee 2008), but more research on the impact of media frames is needed to assess how these frames can alter responsibility attributions.

The literature on organizational analysis (often conducted by sociologists, but also by business scholars and those with an interdisciplinary focus) provides additional insight into how people may view wrongdoing in these contexts. Though organizational wrongdoing is often framed as being committed by individuals viewed as "amoral calculators", reanalysis of some key cases has demonstrated that wrongdoing is often the product of banal organizational/network actions and routine processes (Vaughan 1996; Lee and Ermann 1999). Rather than being the result of amoral "decisions," action in organizations is often unreflective and decisions are "social representations" constructed subsequent to action in order to provide an after-the-fact rationale (Laroche 1995). These actions are generated by standard operating procedures (SOP's) which draw upon institutional logics (Jackall 1988; Friedland and Alford 1991).
Institutional logics stem from the dominant institutions in our society—the family, the state, the market, etc.—and each offers multiple and sometimes contradictory rationales for normative behavior (Friedland and Alford 1991). Institutional logics are defined by Jackall (1988: 11) as:

the complicated, experientially constructed, and therefore contingent, set of rules, premiums, and sanctions that men and women in a particular context create and recreate in such a way that their behavior and accompanying perspectives are to some extent regularized and predictable. Put succinctly, institutional logic is the way a particular social world works; of course, although individuals are participant in shaping the logic of institutions, they also experience the logic as an objective set of norms.

Therefore, institutional logics exist both within and beyond the individual (DiMaggio 1997). Standard operating procedures that occur within or across organizations in a given industry generate unreflective action because they dictate what is to be done in a given situation. As Laroche (1995) describes, rather than "decisions" being the culmination of a rational weighing of costs and benefits to find the optimal solution, more often than not unreflective “actions” are guided by SOP's and previous "decisions." SOP's and institutional logics influence the mental schemas (Gailey and Lee 2005a) that guide individual behavior. These mental schemas refer to socially patterned "mental structures... of complex social phenomena, which shape the way we attend to, interpret, remember, and respond to emotionally to the information we encounter and possess" (DiMaggio...
1997: 274) and influence normative judgments about a situation. Thus, we can see how institutional logics operate through individual action.

If individuals understand these aspects of organizational life, it may influence how they attribute responsibility. Knowing the nature of actions in a complex bureaucratic environment may lead some to understand why managers may engage in questionable financial practices or why a company markets a product that may prove to be unsafe. This may in turn shape who and what they hold responsible. But what has the empirical literature on AOR for organizational wrongdoing yielded thus far? What has been shown to accurately predict people's attributions? Moving now to literature that has specifically addressed AOR and organizational wrongdoing, we can gain a better overview of the research.

Research on AOR and Organizational Wrongdoing using the Integrated Model

As seen with some of the examples above, research looking specifically at AOR for organizational wrongdoing exists within the sociological literature. I discuss this research here in order assess what aspects of Gailey and Lee's (2005a) integrated model have received empirical support. Almost all the research in AOR for organizational wrongdoing has been conducted with undergraduates who read short vignettes of different forms of wrongdoing. Some of these vignettes have depicted corporate wrongdoing (Hans and Ermann 1989; Hamilton and Sanders 1995, 1996) and others have used government/scientific wrongdoing (Kelman and Hamilton 1989; Gailey and Lee 2005b, 2008). This method has the benefit of the researcher being able to manipulate
scenarios to test the influences of various factors, but of course there is a high degree of artificiality involved in reducing complex cases to short descriptions.

In an initial test of the effect of both social roles and media frames, Gailey and Lee (2005b) found mixed results. Using scenarios based on the broadly classified "The Cold-War Human Radiation Experiments," the goal was to test the independent impact of both roles and frames on attributions of responsibility and whether or not there was an interactive effect. Neither sensational news reports nor reports that justified scientists’ actions had any significant effect on attributions, and no interaction occurred between media frames and roles. However, as demonstrated in previous AOR research, the role of the scientist was a significant predictor. Those who received a vignette with an “obedient” scientist were more likely to attribute responsibility to the organization and those who received one with an autonomous scientist were more likely to attribute to the individual (Gailey and Lee 2005b). Whether or not the media primer they used captured the influence they desired was not clear and the authors called for more research.

Gailey and Lee (2008) retested the effect of media frames and roles in follow up research. Once again the scenarios centered on the radiation experiments engaged in by the United States government and scientists during the Cold War. However, this time two short documentaries were used as a primer for media frames instead of the print media used in the previous study. These videos highlighted aspects of government secrecy and support surrounding the experiment and were meant to demonstrate wrongdoing at the organizational level (Gailey and Lee 2008). As in the previous study, roles were significantly associated with individual or organizational responsibility. Those who
received vignettes with autonomous scientists attributed responsibility to the scientist while those who read about an obedient scientist attributed responsibility to the organization. Unlike the previous study, media was a significantly associated with attributing responsibility to the organization. However, as in the previous research, no interaction was observed between media frames and roles. These two initial tests help to add to the viability of the integrated model, but further testing is still needed. One downside to both of these studies (and many in the area of AOR) is they have been limited to convenience samples of student populations. That is one problem this current study hopes to overcome.

The Role of Empathy and its Influence on AOR

Having looked at some of the previous AOR research, I now review some of the literature concerning empathy. Empathy has received attention in both psychology and sociology. Looking first at the psychological social-psychology research on AOR, followed by research on the sociology of emotions, empathy has been used as a key variable in many instances although it has not been used in AOR research on organizational wrongdoing. I review some of this literature to provide a brief overview.

In experimental settings, empathy has been shown influence attributions. Early research on attributions of responsibility using both empathy and punitiveness as predictors found that “more empathetic and less punitive individuals tend to hold others less personally responsible for negative outcomes which are carelessly produced and for those which are intentionally produced under external coercion” (Sulzar and Burglass 1968: 279). Given that organizational wrongdoing may occur under the duress of
coercive pressure from superiors or may be produced through careless neglect and inability to foresee consequences, both conditions in which empathy was significant for responsibility attributions adds to the theoretical viability that empathy will influence attributions in cases of organizational wrongdoing. Regan and Totten (1975) demonstrated that those observers primed to be especially empathetic were more likely to attribute causality to situational factors. Those in the control group were more likely to attribute to dispositional (individual) factors.

The effect of empathy as a predictor may depend on whose perspective the observer is given. Aderman (1975) found that those induced into empathy with an innocent victim were more likely to attribute responsibility to actors in the scenario. Empathizing with the victim has also been the subject of AOR research involving rape and sexual assault. In assessing whether those who displayed greater empathy toward rape victims were more likely to enact harsh punishments on perpetrators, Deitz and Byrnes (1981) found that those who scored higher in the Rape Empathy Scale (RES), demonstrating more empathy with the rape victim, were more likely to identify with the victim and express positive feelings toward them, provide a harsher punishment, and were less likely to "blame the victim" for the rape occurring. When testing for an interaction with the attractiveness of the perpetrator, those with higher empathy scores were consistent in responsibility attributions across both attractive and unattractive perception manipulations in the experiment. Deitz, Littman, and Bentley (1984) found that those with higher victim empathy attributed more responsibility to the perpetrator, identified more highly with the victim and had more negative feelings about the perpetrator. Those who demonstrated higher empathy scores did not differentiate between
attractive and unattractive perpetrators, but those with low empathy scores did. In this study, victim resistance was also added as a possible predictor and demonstrated no significant interaction with more empathetic observers. However, those with lower empathy scores attributed less responsibility to the perpetrator if the victim did not aggressively resist (Deitz et al 1984).

Johnson and colleagues (2002) tested whether or not empathy for the perpetrator played a role in responsibility attributions in mock trial situations. They also tested to see if this proposed relationship was moderated by race. Respondents were given scenarios to induce no empathy, low empathy, and high empathy toward a young man who had committed an act of felony larceny. High and low empathy respondents were given a personal narrative of the perpetrator, while the control group was not. The high empathy group was told to empathize with the perpetrator and the low empathy group was instructed to remain objective. Race was also manipulated using either a white or black perpetrator. Compared to the low empathy and control groups the high empathy condition "reported greater defendant empathy, made attributions that were more situational, and assigned more lenient punishments" (Johnson et al 2002: 1216). This relationship was moderated by race. The all-white student sample demonstrated more overall empathy toward the white perpetrator in the scenario than those who received a vignette with a black perpetrator.

These examples do not represent the full range of empathy research. I have reviewed them to illustrate the utility of empathy as a possible influence on responsibility attributions. Looking now at some of the sociological research we can try to establish
why empathy may also be important for understanding responsibility attributions in cases of organizational wrongdoing. From the perspective of the sociology of emotions, we can see that empathy and empathic emotions result in individuals actively placing themselves in the context of the other and attempting to experience and understand the position of the other. "Empathic role-taking emotions, or vicarious emotions, result from mentally placing oneself in another's position and feeling what the other might feel in that situation" (Thoits 1989: 328). Shott (1979: 1328) defines empathy as "the arousal in oneself of the emotion one observes in another or the emotion one would feel in another's situation." We see in these definitions that empathy is not merely a cognitive experience, but it is also an emotional experience. "Perhaps more than any other sentiment, empathy connects us intimately with others, making us share their distress or pleasure" (Shott 1979: 1329).

If empathy allows individuals to place themselves in the position of another and understand their motives as well as share their experience, perhaps this will affect whom they hold responsible for wrongdoing in and by complex organizations. If an observer is better able to understand the role of an individual within an organization, and perceive them as being at the mercy of a powerful bureaucracy and operating according to SOP’s, the observer may be less inclined to hold the individual responsible and more inclined to attribute responsibility to the organization. In reviewing the past 40 years of empathy research, Davis (2006: 451) points out that "role-taking observers become more likely to experience two affective states: feelings of sympathy and compassion for the target and feelings of personal unease and distress."
Given mixed literature and exploratory nature of this project, I have research expectations but not specific hypotheses in regards to empathy. Empathy is obviously important in AOR, but the outcomes depend on how the scenario has been framed. Highlighting the victim or the perpetrator may direct attentions of respondents to empathize with one or the other. How does empathy effect people's attributions in cases of organizational wrongdoing? Are those with greater empathy more likely to hold an organization responsible? Is this relationship moderated by the role of the actor in the vignette? These are the questions I hope to address in this analysis.
CHAPTER III

METHODS

Data and Sample

The data for this study were collected by Jeannine Gailey and funded by a grant from Texas Christian University (RCAF Grant: Project Code 60445). Respondents to her survey were drawn from a random sample of 1000 households in the Fort Worth, Texas area. Of those 1000 households, 221 returned usable surveys. Though only having a sample from one state makes it difficult to generalize to the entire country, these data are more generalizable than previously used student samples. The mean age of respondents was 49.13 years old (standard deviation =14.64) and ranged from 21 up to 87 years of age. The sample is almost evenly split between males and females with 105 male respondents, (49.3%)\(^2\) and 108 female respondents (50.7%), and 5 who were missing or did not respond. The racial and ethnic makeup of the sample was predominantly white, with 166 (77.9%) respondents identifying as Caucasian, 21 (9.6%) identifying as African-American, 21 (9.6%) identifying as Hispanic, 3 (1.4%) identifying as Asian/Pacific Islander, 2 (.9%) as other, and 5 who did not choose an racial/ethnic identity. Only 9 (4.2%) respondents admitted to having less than a high school education. Those who

\(^2\) All percentages are valid percentages.
had at least a high school degree or equivalent totaled 38 (17.8%) and those who had some technical/trade training totaled 7 (3.2%). The majority of the sample had at least some college or more. Of those, 59 (27.6%) had some college, 60 (28%) had a bachelor's degree, and 41 (18.8) had a graduate or professional degree. Only 4 respondents did not divulge their educational attainment. The median income for the sample was in the $50,000-$59,999 range.

The survey instrument for this data collection involved the use of short vignettes. Similar to previous research on the integrated model (Gailey and Lee 2005b, 2008) the vignettes involved examples drawing on the Cold War Human Radiation Experiments. In the story, a scientist is depicted as injecting a person with plutonium to further understand the effects of radiation on the human body. Manipulations were implemented in different surveys to test the effects of different parts of the model. For social role, some of the respondents received vignettes in which Dave (the scientist) was acting autonomously and others received vignettes in which he was acting under orders from the Atomic Energy Commission (AEC, the organization). Role of the injectee was manipulated using both hospital patients with terminal conditions and prisoners. Deed was manipulated by adding whether or not a vignette included the informed consent of the injectee. Whether or not this was typical of previous research demonstrated the presence or absence of a standard operating procedure (SOP) and whether or not Dave felt that experimenting on someone who was terminally ill was wrong was included for the presence of a mental schema. After reading the vignettes, respondents were asked to answer questions.
involving who was responsible for the act, as well as other questions pertaining to religious and personal values and demographic characteristics.

Analytical Approach

One of the benefits of this particular data set is that not only were manipulations included in all of the vignettes, but independent variables were also measured as continuous variables. This allows for the use of OLS multiple regression as opposed to the ANOVA/MANOVA used throughout previous research endeavors. Not only does this allow us to control for each variable entered into the model simultaneously, but it also allows us to assess the predictors that have the strongest influence on responsibility attributions. We are able to see the strength of the model as a whole, identify possible spurious and mediation effects, and measure the independent effects of individual predictors. OLS is a robust method that can withstand many challenges as long as the assumption of a randomly drawn sample is met. These benefits make the use of multiple regression appropriate for the current analysis.

Independent Variables

Empathy. The measure for empathy is drawn from Scott’s (1965) Personal Value Scales. Scott’s “kindness” sub-scale ($\alpha = .72$) is used here as a measure of empathy. Scott (1965: 24) describes this as “mostly being concerned about other people, doing good for them, and trying to make them happy, even if it is against one’s own interests.” This scale has been used as a measure of “other orientation” (see Wright 2008). It has also been found to factor with a scale that "reflects altruistic tendencies, equalitarianism, and a
desire for peace among nations" (Lorr, Suziedelis, and Tunesk 1973:142). The strong relationship between empathy and altruism is well-documented (see Batson et al 1981; Oliner and Oliner 1988). Though the kindness scale is not only a measure of empathy, it contains empathy measures within it as well as related other-oriented concerns. This measure is made up of 20 questions\(^3\) that ask respondents whether a given behavior is always admired, whether it depends on the situation, or whether it is always disliked. The mean score on the scale was 16.68 (SD = 1.93). Though it did show signs of a moderate negative skew, none of the skewness or kurtosis indices were great enough to indicate problems with normality assumptions.

Actor's Perceived Role. Role was also included to assess how much respondents saw the scientist as acting autonomously versus acting obediently according to orders from superiors (mean = 3.19, standard deviation = 3.73). Role has consistently demonstrated a significant association with responsibility attributions. Respondents were asked how much they agreed with or disagreed with the statement that "Dave was forced to inject the patient with plutonium" on a scale from zero to ten. A score of zero indicated complete disagreement and ten indicated complete agreement with the statement. Inspection of distributions and both skewness and kurtosis indices showed no initial problems with univariate non-normality.

Nature of the Deed. The "nature of the deed" (deed) was measured, like role, with a zero to ten scale of agreement. Respondents were asked to assess how much they did or did not agree with the statement that "Dave attempted to cover up the plutonium

\(^3\) See Appendix B for the full list of questions.
injection." This measure helps to determine whether the actor should be held responsible for the act given the context of the situation. This measure also showed no problems with normality and had a mean score of 2.90 (SD = 4.05).

Standard Operating Procedures. Whether or not the respondent saw these as common practices (standard operating procedures or SOP's) was measured with the statement "Government experimentation on people without consent is common" (mean = 4.76, SD = 3.4). People may be less likely to hold individuals accountable if these practices are seen as commonly occurring throughout an organization or institutional field. There are no apparent issues with univariate normality and this variable is the least skewed of all the independent variables.

Mental Schema. Mental schema had a mean of 1.34 (SD = 2.54) and was captured by agreement or disagreement with the statement "Potentially harmful experimentation on people who are terminally ill is not wrong because they are going to die anyway." As with the other predictors from the integrated model, its possible scores ranged from zero to ten. It is possible that this cognitive framework helped to guide some of the actions of the actual scientists involved in the experiments and respondents who share it would be less likely to hold individuals responsible, thus representing a form of empathy with the perpetrator. Though the skewness of this variable is not beyond a threshold where it may pose a problem, this variable has a definite positive skew. Given the topic of this question, it is not surprising that this is the most skewed of all the variables.
Control Variables

Control variables were included to ensure that relationships were not the result of background characteristics that might influence a person’s attributions of responsibility. Four demographic control variables were included. Race was analyzed using a dummy code with 0 being non-white and 1 being white. This is an extremely limited approach and lumps diverse racial ethnic categories into the broad category of "non-white." However, due to the relatively small sample size and even smaller amount of racial and ethnic minorities in the sample, race could not be further elaborated. Gender was also analyzed with a dummy code, 0 being female and 1 being male. Age is an entered as a continuous variable (mean = 49.31, SD = 14.64) with ages ranging from 21 to 87. Education was entered as three categories. Those who had a Bachelor’s Degree or greater and those who had some college or technical school experience were compared to the omitted category, those with a high school diploma or less. Income was included even though Hamilton and Sanders (1996) demonstrated that education was a better predictor of attributions than social class. All of the breakdown of demographic variables can be seen in Table 3.

For each model, dummy coded control variables were included for two of the vignette manipulations. The first was a control for whether or not the respondent received a vignette in which the actor was acting according to orders or autonomously (Vignette Control: Role of Actor). This needed to be accounted for because of the impact it could have on how respondents would view the role of the actor. Second, I included a control for the status of the injectee (Vignette Control: Injectee Status). Some respondents
received vignettes in which hospital patients received the injection and some vignettes substituted prisoners. It was believed that this could drastically influence the amount of empathy respondents had for the victim and this effect needed to be controlled. The results for these controls are not discussed in detail but they are included in the Tables to account for their influence.

Dependent Variables

Organizational Responsibility. Responsibility that each respondent attributes to the organization (AEC is Responsible) was measured in a single item and is the first model to be tested. Respondents were asked to rate on a scale from zero to ten (zero being not at all responsible and ten completely responsible) the following statement "The AEC is responsible for the injection." This had a mean score of 6.17 (SD = 3.87) and showed no problems with univariate normality. Looking at some preliminary correlations, organizational responsibility has a moderately strong negative correlation ($r = -.475$) with individual responsibility. This could mean that most respondents chose *either* the individual or organization as responsible, but often they did not attribute responsibility to both.

Individual Responsibility. For the second model, individual responsibility (Dave is Responsible) will be assessed. Respondents were once again asked to rate on a scale from zero to ten. This time it was how much they agreed with the statement "Dave is solely responsible for the injection." This variable had a mean score of 6.03 (SD = 4.03). Like organizational responsibility, the dependent variable for individual responsibility shows no severe signs of non-normality.
Though responsibility has been demonstrated to be multidimensional concept (see Gailey and Falk 2008), the smaller sample size may threaten the precision of using a latent construct with multiple indicators. The use of a single measure, though not ideal, has been used throughout the AOR research and is appropriate for this current analysis.
CHAPTER IV

RESULTS

The results of all the OLS models can be seen in Tables 1 (individual responsibility) and 2 (organizational responsibility) in Appendix A. Starting with individual responsibility in Table 1, we can see in Model 1 that none of the demographic variables have any independent significant impact on attributions of individual responsibility. The large amount of explained variance in this model ($R^2=.266$) is due to the vignette control for role of the scientist. It is not surprising that those who received a vignette with a scientist obediently following orders had a mean score 4.26 (p<.001) points lower than those who received the vignette with an autonomous actor, indicating that the latter were perceived to be much more responsible. This control remains significant across all of the models, though some of its effect is mediated.

The inclusion of the measure for empathy provides little improvement in Model 2, though it is in the expected direction. In Model 3, empathy is still not significant (p=.072) though the inclusion of the organizational measures demonstrates a minor suppression effect. The addition of organizational measures offers a significant improvement to the model, explaining about 32% of the variation in attributions of individual responsibility. How respondents perceived the role of the actor influenced the amount of responsibility
they attributed. Increased perception of obedient action led to a decrease in responsibility for the individual (b = -.187, p<.01). The variable for "mental schema" was also significant in this model (b = -.314, p<.01) and in the expected direction. Those who did not see the actions of the scientist as problematic were less likely to attribute responsibility. Even though this was not specifically predicted in this analysis, mental schemas are predicted to influence attributions based on the theoretical model put forth by Gailey and Lee (2005a). Models 4 and 5 tested for possible interactions of empathy between both perceived role of the actor and the respondent’s education. None of these interactions are significant and none add anything to the overall model.

Moving on to organizational responsibility in Table 2, we can see that like the models for individual responsibility, the vignette control for role was significant across all of the models. In Model 1, those who received an obedient vignette on average scored 3.895 points higher in the amount of responsibility attributed to the organization (p<.001). The vignette controls and the demographic variables explain just under 24% of the variation in responsibility attributed to the organization. Model 2 includes empathy as well as the variables in the previous model. Empathy is not significant, though once again it is in the predicted direction. The inclusion of the organizational variables once again demonstrates a suppression effect on empathy, but unlike the results in Table 1 this time it is significant (b=.267, p<.05). Under these conditions increases in empathy lead to an increase in the likelihood that the organization will be held accountable rather than the individual. Also, the more respondents perceived the scientist in the vignette as acting obediently, the more responsible they held the organization (b=.274, p<.001). This also conforms to the original expectations, though it is surprising none of the other
organizational variables significantly impacted attributions to the organization. Overall, Model 3 explains just over 33% of the variation in organizational responsibility. Finally, the tests for moderating effects were similar to those with individual responsibility in that none of the interaction terms were significant.
The exploration of attribution of responsibility in this project has yielded many interesting results. A few warrant some deeper discussion here. First, there is a relatively strong negative correlation \((r=-.475, p<.01)\) between the dependent variables for individual and organizational responsibility. The respondents to this survey saw either the individual or the organization as responsible, but rarely both. Looking at the historical cases in the Cold War Human Radiation Experiments we often see instances of both the individuals acting on their own, such as Dr. Joseph Hamilton who continued his research even after losing financial support from the US army- as well as organizations promoting these acts of harmful wrongdoing, such as the AEC’s continued financial support of radiation experiments on human subjects.

It was possible that this stark difference in who or what was held responsible was due to the vignette that respondents received. Obviously if the scenario was framed with the organization as coercing the actor, people would be more likely to hold the organization responsible. However, even though the correlations were reduced, splitting the sample revealed similar results. Those who received a vignette with an autonomous actor \((r=-.294, p<.01)\) and those who received a vignette with an obedient actor \((r=-.298, p<.01)\) both tended to attribute to one or the other. It is interesting to see that the only
thing changed by comparing these groups is the overall strength of the correlation. The oversimplification of these events into a vignette may not fully capture the complexity of the situation. If a full discussion of the events could be provided (and this might require a lengthy account of events told from multiple perspectives), respondents might be better able to imagine both the individual and the organization as being partly responsible. New methods of testing these scenarios to see if we can understand why it is one or the other, or both, must be sought. Whoever initiated the action, individual or organization, it was done in a broader environment in which institutional support from science as an institution and the government (often involving the military) legitimated the actions of those involved. We must more fully explore how institutional legitimation would influence who or what respondents are prepared to hold accountable. It would be interesting to see whether they see it as a problem that reaches beyond the individual or the organization to encompass a larger organizational network, set of institutions, or a subculture or culture.

Second, what does this research tell us about empathy and the attribution of responsibility for organizational wrongdoing? Is it empathy that this study is tapping? Or is it altruistic beliefs, kindness, or some underlying factor of "other-orientation" that manifests in all of these constructions? It is hard to determine from the data alone, but work by researchers such as psychologist C. Daniel Batson\(^4\) early on in his career (Batson and his associates 1981: 302) stated that "the research to date convinces us of the legitimacy of suggesting that empathic motivation for helping may be truly altruistic."

\(^4\) See Batson et al. 1981 and Batson et al 2002 for more in depth discussions.
While this is concerned with motivating altruistic behavior, it still links the concepts of empathy, altruism, and an overall orientation towards others. The empathy literature seemed best suited to help explain this relationship. Those who can see themselves in another person’s position, taking the role of the other, may be more able to understand situational and broader forces that shape individual action. Though this research is exploratory at best, I feel comfortable with saying that empathy has important implications for justice. Fostering empathy might help us not only to create engaged citizens who understand the causes of organizational wrongdoing but also people who may be more responsive to the plights caused by various other social problems. Understanding the constraints on individual behavior in one situation could affect how other situations are perceived. It would seem that we cannot reach a just and equal society without this orientation towards other people. Increasing our cultural focus on empathy may also help to shift our focus from "technical" to a more "substantive" rationality, transforming a broader cultural logic that helps to perpetuate these acts of organizational wrongdoing (Lee and Gailey 2007).

Finally, this research helps to inform us of the complex nature of both the causes behind action in and by organizations as well as how observers make sense of it. Multiple factors help to shape people's understanding. An actor's location in the organizational hierarchy may help respondents to see those in power as having greater responsibility to ensure that wrongdoing does not occur. Those who are more able to reflect on people's roles in an organization may be better suited to recognize that there is little one person can do to change the broader organization by themselves. It may also reflect that people understand that one rarely is able to see the "big picture" that is occurring. Individuals are
limited to the knowledge they have in each partitioned block of the bureaucracy. The vignettes used are an attempt to frame the situation that may influence responses, but are far from an accurate representation of the complexity of actual situations. It is hard to present these scenarios in a way that taps "real life" and in a way that can be used to research diverse groups of people. Respondents must take the information given and assess responsibility. This is not done in a vacuum as many make these decisions within cultural logics that emphasize individual accountability rather than social influence. The respondent's ability to empathize and their understanding of the actor's hierarchical position may help people to see beyond ideology and confront a more accurate depiction of the scenario. While we can never deny that individuals are at least passively responsible, these acts could not occur without broader organizational and social legitimacy. If we want to prevent these types of wrongdoing from occurring again and ensuring that justice is done, than these more macro forces must be held responsible.

This research is not without its limitations. First, is the measure of responsibility. Shaver (1985) has posited that responsibility is a multidimensional concept made up of various components. Gailey and Falk (2008) provided some initial empirical support for this theoretical conception of responsibility, so future research should try and move beyond the simplistic measure of responsibility that has been used in this and many previous research endeavors. Not only is the concept of responsibility multidimensional, but it also falls along a continuum (Gailey and Lee 2005a) as described in the opening paragraphs. Therefore we should determine if using a more stringent criminal liability or a more lenient civil liability changes the way people make attributions. Second, the measure I used for empathy may tap something more than "empathy" because it is a
"kindness" scale. The kindness scale has been used in other research as a measure of "other-orientation" (Wright 2008) and many of the questions used in the kindness scale are similar to questions others have used in empathy scales (Schieman and Van Gundy 2000). Research in the future can incorporate scales designed to specifically tap empathy and to see if the results can be replicated.

Even with these limitations in mind, this research can have important practical implications. These acts and many others perpetrated by powerful organizations have not resulted in punishment, for individuals or organizations, with the exception of some limited civil liability. Though the criminal justice system rarely takes up these cases, it seems important to give prosecutors the necessary tools not to convict individual scapegoats, but to address the culpability of broader organization in which they act as well. By understanding "situated action" (Vaughan 1996; Zimbardo 2007) the criminal justice system might be more effective in directing responsibility where it is most appropriate. This seems especially important when we consider that even though the United States government did pay some compensation to the families of victims, none of the individuals or organizations in the Cold War Human Radiation Experiments ever faced any criminal charges. The limits of a legal definition of crime (Schwendinger and Schwendinger 1970) are highly visible when we see that they do not encompass these human rights violations of powerful individuals and institutions. In order to understand organizational wrongdoing we must redefine "crime" or "deviance" in terms of these types of violations of human rights. This will help us to understand that the total lack of criminal proceedings in the Cold War Human Radiation experiments was a crime in and of itself.
The goal of this paper was to extend the research by Gailey and Lee (2005a) and their integrated model of AOR for organizational wrongdoing. Not every aspect of the model was included in the analysis. Given the complex nature of how people make attributions, including many aspects is important, which is what I attempted here. It would be overly cumbersome to include every possible influence in the analysis. My goal was to balance parsimony while still attempting some of the complexity that makes up these attributions. By moving beyond the student populations used in previous research, this analysis has given further weight to the integrated model as well as adding the influence that empathy has in shaping how people attribute responsibility. Increasing the value we place on empathy as a culture could have radical effects on how we see others position and situation. This could lead to a more just and compassionate society in which we understand the broader social forces that often shape individual behavior.
References

APPENDICES
Gailey and Lee's (2005a) Integrated Model of Attribution of Responsibility for Organizational Wrongdoing

Actor Characteristics:
- Demographics
- Social status
- Social role
- Organizational embeddedness
- Positive/negative traits
- Mental state
- Intervening causation
- Behavioral consistency
- Behavioral distinctiveness
- Behavioral consensus

Respondent Characteristics:
- Demographics
- Cultural background
- Moral development
- Educational attainment
- Attributional style
- Context of attribution

Social/Organizational Context:
- Media frame
- SOIs
- Mental schemas
- Outcome severity
- Nature of the deed

Diagram:

- Responsibility (social, civil, or criminal)
- Causality
- Knowledge
- Intentionality
- Coercion
- Moral Wrongfulness
Table 1: Unstandardized Coefficients for Individual (Dave) Responsibility

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
</tr>
<tr>
<td>Empathy</td>
<td>-</td>
<td>-.117 (.123)</td>
<td>-.220 (.122)</td>
<td>-.331 (.180)</td>
<td>-.180 (.267)</td>
</tr>
<tr>
<td>Organizational Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Role</td>
<td>-</td>
<td></td>
<td>-1.27 (.071)**</td>
<td>-1.80 (.071)**</td>
<td>-1.80 (.071)**</td>
</tr>
<tr>
<td>Deed</td>
<td>-</td>
<td></td>
<td>.050 (.065)</td>
<td>.046 (.065)</td>
<td>.046 (.065)</td>
</tr>
<tr>
<td>SOP</td>
<td>-</td>
<td></td>
<td>.005 (.077)</td>
<td>.017 (.078)</td>
<td>.016 (.077)</td>
</tr>
<tr>
<td>Mental Schema</td>
<td>-</td>
<td></td>
<td>-.314 (.106)**</td>
<td>-.335 (.107)**</td>
<td>-.317 (.104)*****</td>
</tr>
<tr>
<td>Control Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>.333 (.514)</td>
<td>.461 (.332)</td>
<td>.426 (.513)</td>
<td>.474 (.516)</td>
<td>.330 (.522)</td>
</tr>
<tr>
<td>Race</td>
<td>.461 (.615)</td>
<td>.506 (.620)</td>
<td>.435 (.616)</td>
<td>.446 (.617)</td>
<td>.492 (.627)</td>
</tr>
<tr>
<td>Age</td>
<td>.027 (.018)</td>
<td>.029 (.018)</td>
<td>-.025 (.018)</td>
<td>-.026 (.018)</td>
<td>-.026 (.019)</td>
</tr>
<tr>
<td>Education: Some College</td>
<td>.534 (.098)</td>
<td>.624 (.710)</td>
<td>.748 (.898)</td>
<td>.722 (.998)</td>
<td>2.560 (.232)</td>
</tr>
<tr>
<td>Education: Bachelors Degree or more</td>
<td>.314 (.740)</td>
<td>.330 (.740)</td>
<td>-.359 (.740)</td>
<td>-1.340 (.740)</td>
<td>2.785 (.107)</td>
</tr>
<tr>
<td>Income</td>
<td>-.001 (.002)</td>
<td>-.012 (.003)</td>
<td>-.034 (.003)</td>
<td>-.035 (.003)</td>
<td>-.034 (.004)</td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role x empathy</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empathy x some college</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empathy x degree or more</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vignette Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injectee Status</td>
<td>-.050 (.485)</td>
<td>-.213 (.503)</td>
<td>-.104 (.487)</td>
<td>-.150 (.481)</td>
<td>-.22 (.522)</td>
</tr>
<tr>
<td>Adjusted Model R-Squared</td>
<td>.266</td>
<td>.266</td>
<td>.321</td>
<td>.320</td>
<td>.319</td>
</tr>
</tbody>
</table>

*p < .05, **p < .01, ***p < .001

Omitted categories for dummy coded variables are: sex = male, race = non-white, education = high-school or less.

Coding for vignette controls: Role 1=obedient vignette, 0= autonomous vignette; Injectee Status 1=prisoner, 0= hospital patient

Table 2: Unstandardized Coefficients for Organizational (AEC) Responsibility

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
<td>B (SE)</td>
</tr>
<tr>
<td>Empathy</td>
<td>-</td>
<td>.210 (.124)</td>
<td>.267 (.119)**</td>
<td>.158 (.171)</td>
<td>.013 (.232)</td>
</tr>
<tr>
<td>Organizational Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Role</td>
<td>-</td>
<td></td>
<td>.274 (.060)*****</td>
<td>-.141 (.473)</td>
<td>.281 (.069)*****</td>
</tr>
<tr>
<td>Deed</td>
<td>-</td>
<td></td>
<td>-.017 (.064)</td>
<td>-.023 (.064)</td>
<td>-.023 (.064)</td>
</tr>
<tr>
<td>SOP</td>
<td>-</td>
<td></td>
<td>.129 (.074)</td>
<td>.143 (.076)</td>
<td>.123 (.075)</td>
</tr>
<tr>
<td>Mental Schema</td>
<td>-</td>
<td></td>
<td>.173 (.100)</td>
<td>.148 (.104)</td>
<td>.172 (.101)</td>
</tr>
<tr>
<td>Control Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>.174 (.516)</td>
<td>-.090 (.537)</td>
<td>-.054 (.500)</td>
<td>-.013 (.508)</td>
<td>-.107 (.544)</td>
</tr>
<tr>
<td>Race</td>
<td>-1.102 (.623)</td>
<td>-.120 (.624)</td>
<td>-.769 (.609)</td>
<td>-.747 (.607)</td>
<td>-.658 (.805)</td>
</tr>
<tr>
<td>Age</td>
<td>.016 (.018)</td>
<td>.018 (.018)</td>
<td>.025 (.018)</td>
<td>.024 (.018)</td>
<td>.023 (.018)</td>
</tr>
<tr>
<td>Education: Some College</td>
<td>.400 (.711)</td>
<td>.517 (.710)</td>
<td>.664 (.679)</td>
<td>.701 (.681)</td>
<td>.491 (.964)</td>
</tr>
<tr>
<td>Education: Bachelors Degree or more</td>
<td>.523 (.742)</td>
<td>.519 (.738)</td>
<td>.539 (.710)</td>
<td>.565 (.704)</td>
<td>-.498 (.487)</td>
</tr>
<tr>
<td>Income</td>
<td>.042 (.092)</td>
<td>.016 (.093)</td>
<td>.059 (.091)</td>
<td>.058 (.091)</td>
<td>.071 (.092)</td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role x empathy</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empathy x some college</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empathy x degree or more</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vignette Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Role of Actor</td>
<td>3.095 (.403)*****</td>
<td>3.899 (.502)*****</td>
<td>3.858 (.500)*****</td>
<td>3.036 (.507)*****</td>
<td>3.055 (.506)*****</td>
</tr>
<tr>
<td>Injectee Status</td>
<td>.436 (.491)</td>
<td>.598 (.502)</td>
<td>.714 (.504)</td>
<td>.579 (.481)</td>
<td>.665 (.480)</td>
</tr>
<tr>
<td>Adjusted Model R-Squared</td>
<td>.238</td>
<td>.245</td>
<td>.323</td>
<td>.331</td>
<td>.331</td>
</tr>
</tbody>
</table>

*p < .05, **p < .01, ***p < .001

Omitted categories for dummy coded variables are: sex = male, race = non-white, education = high-school or less.

Coding for vignette controls: Role 1=obedient vignette, 0= autonomous vignette; Injectee Status 1=prisoner, 0= hospital patient
Table 3: Descriptive Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empathy</td>
<td>16.68</td>
<td>1.93</td>
<td>0-20</td>
</tr>
<tr>
<td>AEC's Responsibility</td>
<td>6.17</td>
<td>3.87</td>
<td>0-10</td>
</tr>
<tr>
<td>Dave's Responsibility</td>
<td>6.03</td>
<td>4.03</td>
<td>0-10</td>
</tr>
<tr>
<td>Role</td>
<td>3.19</td>
<td>3.73</td>
<td>0-10</td>
</tr>
<tr>
<td>Mental Schema</td>
<td>1.34</td>
<td>2.54</td>
<td>0-10</td>
</tr>
<tr>
<td>Standard Operating Procedure</td>
<td>4.76</td>
<td>3.4</td>
<td>0-10</td>
</tr>
<tr>
<td>Deed</td>
<td>2.9</td>
<td>4.05</td>
<td>0-10</td>
</tr>
<tr>
<td>Age</td>
<td>49.3</td>
<td>14.6</td>
<td>21-87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent* (N)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>77.9%</td>
<td>(166)</td>
</tr>
<tr>
<td>African American</td>
<td>9.9%</td>
<td>(21)</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>1.4%</td>
<td>(3)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>9.9%</td>
<td>(21)</td>
</tr>
<tr>
<td>Other</td>
<td>.9%</td>
<td>(2)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>49.3%</td>
<td>(105)</td>
</tr>
<tr>
<td>Female</td>
<td>50.7%</td>
<td>(108)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than HS</td>
<td>4.2%</td>
<td>(9)</td>
</tr>
<tr>
<td>HS/GED</td>
<td>17.8%</td>
<td>(38)</td>
</tr>
<tr>
<td>Tech/Trade School</td>
<td>3.3%</td>
<td>(7)</td>
</tr>
<tr>
<td>Some College</td>
<td>27.6%</td>
<td>(59)</td>
</tr>
<tr>
<td>Bachelor's Degree</td>
<td>28%</td>
<td>(60)</td>
</tr>
<tr>
<td>Professional/Graduate Degree</td>
<td>19.2%</td>
<td>(41)</td>
</tr>
<tr>
<td>Median Annual Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>50,000-59,999</td>
</tr>
</tbody>
</table>

*All percentages based on valid percentages
APPENDIX B

MEASURES OF EMPATHY

Scott’s (1965) Kindness Sub-scale
(3= Always Admire, 2= Depends on the Situation, 1= Always Dislike)

Direct Scored Items
1. Being kind to people, even if they do things contrary to ones beliefs.
2. Helping another person feel more secure, even if one doesn't like them.
3. Helping another achieve his/her own goals, even if it might interfere with your own.
4. Turning the other cheek, and forgiving others when they harm you.
5. Being considerate of others' feelings.
6. Finding ways to help others less fortunate than oneself.
7. Being utterly selfless in all one's actions.
8. Having a deep love of all people whoever they are.
9. Going out of one's way to help someone new feel at home.
10. Being concerned about the happiness of other people.

Reverse Scored Items
11. Looking out for one's own interests first.
12. Ridiculing other people.
14. Ignoring the needs of other people.
15. Revenging the wrongs of other people have done to one.
16. Being unable to empathize with other people.
17. Hurting other peoples feelings.
18. Making jokes at the expense of other people.
19. Letting each person go it alone, without offering help.
20. Refusing any aid to people who don't deserve it.

Schieman and Van Gundy's (2000) Empathy Scale

1. "I tend to get emotionally involved with friends' problems."
2. "I don't get upset because a friend is troubled."
3. "When a friend starts to talk about his or her problems, I try to steer the conversation to something else."
4. "Sometimes I don't feel very sorry for other people when they are having problems."
5. "Other people's sorrows do not usually disturb me a great deal."
6. "I am usually aware of the feelings of other people."
7. "I feel that other people ought to take care of their own problems themselves."
8. "Many times I have felt so close to someone else's difficulties that they seemed as if they were ."
Prisoner Vignettes:

<table>
<thead>
<tr>
<th>Role</th>
<th>Deed</th>
<th>Schema</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A=autonomy O=obedient) (C=cover-up I=informed consent) (S=schema N=no schema) (S=typical N=not)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PACSS
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a prisoner diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the prisoner of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave did not believe that injecting the prisoner with plutonium was a problem because the prisoner was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using prisoners in this manner was typical of AEC-funded research.

POCSS
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a prisoner diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the prisoner of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave did not believe that injecting the prisoner with plutonium was a problem because the prisoner was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using prisoners in this manner was typical of AEC-funded research.
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a prisoner diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the prisoner and documented the injection in the prisoner’s chart. Dave did not believe that injecting the prisoner with plutonium was a problem because the prisoner was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using prisoners in this manner was typical of AEC-funded research.
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a prisoner diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the prisoner of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave did not believe that injecting the prisoner with plutonium was a problem because the prisoner was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using prisoners in this manner was not typical of AEC-funded research.
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a prisoner diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the prisoner and documented the injection in the prisoner’s chart. Dave knew from past experience that using prisoners in this manner was typical of AEC-funded research.
plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the prisoner and documented the injection in the prisoner’s chart. Dave did not believe that injecting the prisoner with plutonium was a problem because the prisoner was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using prisoners in this manner was not typical of AEC-funded research.

POISN

Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a prisoner diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not believe that injecting the prisoner with plutonium was a problem because the prisoner was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using prisoners in this manner was not typical of AEC-funded research.

Hospital Patient Vignettes:

<table>
<thead>
<tr>
<th>Role</th>
<th>Deed</th>
<th>Schema</th>
<th>SOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A=autonomy O=obedient)</td>
<td>(C=cover-up I=informed consent)</td>
<td>(S=schema N=no schema)</td>
<td>(S=typical N=not)</td>
</tr>
</tbody>
</table>

HACSS

Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave did not believe that injecting the patient with plutonium was a problem because the patient was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using patients in this manner was typical of AEC-funded research.

HOCSS

Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave did not believe that injecting the
patient with plutonium was a problem because the patient was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using patients in this manner was typical of AEC-funded research.

HAISS

Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the patient and documented the injection in the patient’s chart. Dave did not believe that injecting the patient with plutonium was a problem because the patient was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using patients in this manner was typical of AEC-funded research.

HOISS

Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the patient and documented the injection in the patient’s chart. Dave did not believe that injecting the patient with plutonium was a problem because the patient was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using patients in this manner was typical of AEC-funded research.

HACNS

Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave knew from past experience that using patients in this manner was typical of AEC-funded research.

HOCNS

Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the
fact that the amount of plutonium was unsafe. Dave knew from past experience that using patients in this manner was typical of AEC-funded research.

HACSN
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave did not believe that injecting the patient with plutonium was a problem because the patient was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.

HOCSN
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave did not believe that injecting the patient with plutonium was a problem because the patient was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.

HACNN
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.

HOCCN
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not inform the patient of the injection in order to cover up the fact that the amount of plutonium was unsafe. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.
fact that the amount of plutonium was unsafe. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.

HAINS
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the patient and documented the injection in the patient’s chart. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.

HOINS
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the patient and documented the injection in the patient’s chart. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.

HAINN
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the patient and documented the injection in the patient’s chart. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.

HOINN
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave was ordered to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the patient and documented the injection in the patient’s chart. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.
Dave was a doctor on a research team working with the Atomic Energy Commission (AEC) to determine a safe level of exposure to radioactive plutonium for workers involved with the production of nuclear weapons. As part of this project, Dave decided to inject a hospital patient diagnosed as having a terminal illness with a potentially lethal dose of plutonium, in order to better understand how the human body will process it. Dave did not cover up the fact that the injection was unsafe. Instead, he informed the patient and documented the injection in the patient’s chart. Dave did not believe that injecting the patient with plutonium was a problem because the patient was diagnosed as terminal and probably would not live very long anyway. Dave knew from past experience that using patients in this manner was not typical of AEC-funded research.